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A NOTE ON THE PAPER
« THE POULSEN SIMPLEX »
OF LINDENSTRAUSS,
OLSEN AND STERNFELD

by Wolfgang LUSKY

It was shown 1n [5] that there is only one metrizable Poulsen
simplex S (i.e. the extreme points ex S are dense in S)
up to affine homeomorphism. Thus, S 1s universal in the
following sense: Every metrizable simplex is affinely homeo-
morphic to a closed face of S ([5], [6]).

The Poulsen simplex can be regarded as the opposite
simplex to the class of metrizable Bauer simplices ([5]).
There 1s a certain analogy in the class of separable Linden-
strauss spaces (i.e. the preduals of L,-spaces); the Gurarij
space G 1s uniquely determined (up to isometric isomor-
phisms) by the following property: G is separable and for
any finite dimensional Banach spaces E < F , linear isometry
T:E - G,e > 0, thereis a linear extension T:F - G of T
with (1 — e)|z] < |T@)] < (1 + ¢)|z] for all zeF. ([3],
[7]).

G 1s unmversal: Any separable Lindenstrauss space X is
isometrically isomorphic to a subspace X = G with a
contractive projection P: G - X ([9], [6]).

Furthermore G 1is opposite to the class of separable C(K)-
spaces. There 1s another interesting property of G :

For any smooth points z ,y € G thereis a linearisometry T
from G onto G with T(r) =y. (z € G is smooth point if
|z] =1 and there is only one z* € G* with

z*(z) =1 =) .
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In their last remark the authors of [5] point out that here
the analogy between G and A(S)= {f: S— R|f affine
continuous} seems to break down.

The purpose of this note is to show that under the aspect of
rotation properties there is still some kind of analogy between

G and A(S).

Take s, € ex S and consider

Ao(S;5 8) = {f e A(S)| f(so) = 03,
for any normed space X let B(X) = {ze X| |z < 1} and
dB(X) = {z € X| |z| = 1}. In particular

: oB(A(S))+ = {f€3B(A(S))| f > 0}
We show :

THEOREM.

(a) Let f, gedB(A(S)), sothat f,1—f,g,1— g are
smooth points of A(S). Then there is an isometric isomorphism
T from A(S) onto A(S) with

W) T(f) = ¢

(1) T(Ao(S; 5)) = Ao(S;81) where f(sy) =0 = g(s,)

(i) T(1) = 1

(b) Let fedB(Ay(S;s))y and gedB(Ay(S;s)) so that
neither g < 0 nor g > 0 hold. Then there is no isometric
tsomorphism T from A(S) onto A(S) with T(f) = g.

(¢) The elements fe Ay(S; s,), so that f, 1 — f are smooth
points of A(S), form a dense subset of dB(A4(S; sp))+

The proof of the Theorem which i1s based on a method
used in [5] and [7] is a consequence of the following lemmas
and proposition 6. From now on let s, € ex S be fixed and set
Ao(S) = Ay(S; ). We shall retain a notation of [5]:

By a peaked partition we mean positive elements

S nel = max 7] for all

A € R; 1 < n. Notice that this definition just means « peaked

er, ..., €,€A(S) so that

partition of unity in A(S) » ([5]) if we add ¢, =1 — Y e;.

i=1
Call a [i-subspace E <= Ay(S) ([6]) positively generated
if E is spanned by a peaked partition. If ™1 >~ E < A(S)
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1s spanned by the peaked partition of unity {fy, fi, --., fa}
and contains e, , € , ..., e, then we may arrange the indices
j=0,1,...,m sothat

(*) ei=fi+j§1kjj+n; i=0>1’-'°’n;

m—n

where k; > 0 forall j and ¥ k; < 1 ([6] Lemma 1.3 (3)).
Jj=1

Lemma 1. — Let E, F < Ay(S) be finite dimensional
subspaces so that E s a positively generated [.-space. For any

e > 0 there is a positively generated I7-space B < Ay(S) so
that E < B and inf {Jz —y| |y e E} < ¢ forall zeF.

Proof. — We may assume without loss of generality that F
is spanned by positive elements. Let {e;, ...,e,} be the
peaked partition which spans E. Add e, as above. By [3]

Theorem 3.1. there is " =~ E < A(S) with E < E and

inf {|]t —y||yeE} <¢|z| for all zeF. Hence E is
positively generated by a peaked partitionof unity {f;,f, . . ., n}

By (*) f()=0; 1<i<m. Set E=Ilnear span
{fi- - ofn}. O

Lemma 2. — Let I = E < F =12 be positively generated
subspaces of Ay(S). Let ® € E* be positive. Then there is a
positive extension ® € F* of ® with |®| = |D]|.

Proof. — Let {e|1 <i<n} and {fj|1 < < m} be
peaked partitions spanning E and F respectively, so that (*)
holds. Define then ®(f;) = ®(¢;) for all i=1, ..., n and
&f)=0 forall j=n41,...,m. O

Lemma 3. — Let {e; ,€Ay(S)|1 <t < n} be a peaked
partition. Suppose that there is a positive @ € ex B(Ay(S)*)
so that é ®(e; ,) < 1. Then there s a peaked partition
ferncAo(S) |1 <i<ntl}) with

€i,n = € 11+ D& n)ensa, nna

forall 1=1,...,n.
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Proof. — Let @, € exB(A(S)*) be an element satisfying
®y(y) =0 for all y e Ay(S). Consider furthermore

@, € ex B(A(S)*); =1, ...,n;
with
1 v=7j, .
(Di(ej,n)z 0 l,#], ]=1,...,n.

Define the affine w*-continuous function f: H—> R by
f(+ ®)=0; 1:=0, 1, ..., n; f(+ ® = + 1 where
H=conv({+ &,|1:=0,1,...,n} U{+ ®}). Set

1—3 eiy*(ei,n)
i=1

1— 2 0@ (e;,n)

hy(y*) = min 16, =+ 1;i=1,...,n

1— y*(e — ei,n)
d)(ei,n)

ha(y*) = min | @) > 05i=1,...,n
and consider g(y*) = min (hy(y*), hy(y*), 1 + y*(e)) .
Hence g: B(A(S)*) - R 1is w*-continuous, concave and

nonnegative. In addition, f(y*) < g(y*) holds forall y* e H.
By [3] Theorem 2.1. there is e,.; ,41 € A(S) with

Y*(eria,nt1) < 8(Y*)

for all y* € B(A(S)*) and y*(e,y1 .11) = f(y*) forall y*e H.
Hence’ "e - [ei.n - (I)<ei,n)en+l,n+l]“ < 1 and

le — en+1,‘n+1" <1.

Thus 0 <e ,— @€ )41, and 0 <ey .4y for
it=1, ..., n. Furthermore ®4(e,;; ,4+1) = 0, hence
ent1,ni1 € Ao(S). That means, €,41 .1 and e, — @(e;, n)enq1, 011
are the elements of a peaked partition in Ay (S). [J

Lemma 4. — Let ry, ..., 1,>0 with Y r, <1 and a
peaked partition {e; ., ... ,e, .} < Ao(S) be ,;,;iven. Then there
is a positive element @ €ex B(Ay(S)*) with ®(e ,) =,
forall 1 < n.
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Proof. — Let {x,| ne N} be dense in Ay(S). Set linear
span {e; ,|t < n} =E. Define @z by ®(, ,) =r, for
all i. Assume that we have defined ® already on a positively
generated I"-subspace E > E of Ay(S) so that |®z] < 1.

Then there is a basis {e; ,| i < m} of E consisting of a
peaked partition so that ®(e; ,) > 0 forall t=1, ... ,m.

Now, let 0 < ¢ < 1/2m+1 <1 -3 (D(ei’,,,)>- There 1s a positive

linear extension ¥ € ex B(A,(S)*) of ® by Lemma 1 and

Lemma 2. We derive from exS =S that ex B(Ay(S)*), 1s
w*-dense 1n  B(A,(S)*).. It follows that there 1is
Q€ ex B(A (S)*); with ®(e; ,) > Q(¢; ,,) forall i=1,...,m

)
and with 2 | Q(e;,n) — P(e; n)] < ¢. Weinfer from Lemma 3
that there s peaked partition

{eimn €A(S)|1=1,...,m+ 1}

with €im = €,mt1 T Q(ei,m)em+1,m+1; i=1, ..., m. Set
E,;y =span {¢ nu1| ¢ < m+ 1} and extend @ linearly by
defining ®(e,i1,n41) = (1 +27)71. Hence [®pf, [ < 1.
Find a positively generated [Z*1t+*-space F < Ay (S) with
E,in < F and inf {|z, —yl|lye F} < (m + 1)Y=z for all
k < m. Continue this process with F instead of E . Finally
we obtain an increasing sequence E, < A(S) of positively

generated [”-spaces so that Ay (S) = UE,, where m runs
through a subsequence of N . Furthermore there are peaked
partitions {¢; ,€ E, |1 < m} so that lim ®(e, ,) = 1. The

m>x

latter condition implies that ® 1is a positive extreme point

of B(A(S)*). O

CororLLArY. — Let ¢; , € Ay(S) be a peaked partition and let
0<r;1=1, ..., n; bereal numbers with 2 r,< 1. Then

there is a peaked partition {e; ,41 € Ay(S)|j=1,...,n+1}

Wlth eln"—ez n+1+ren+1 n+17l‘_11 ceey .

Remark. — If we omit « 2 r, < 1» then the above

corollary is no longer true (see [7] remark after the corollary
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of Lemma 2). The previous corollary does not hold either
if we drop «0 < r; for all i» This follows from the next
lemma.

Lemma 5. — Let sy €exS be fizxed. Then the set
A(S, s0) = {f € B(Ao(S, %)) | f
and 1 — f are smooth points of A(S)} ts dense in dB(Ay(S, so))+ -

Proof. — Let gedB(Ay(S,s)), and s, €exS so that
g(s;) =1. Set F = conv ({sy,s,}). Let {z,|ne N} be
dense in {z € Ay(S, s) | |z]| < 1; z|]¢ = 0}. Define the affine
continuous function h: F—> R by h(s,) =0, h(sy) =1.

Furthermore let fi(s) =1 — 1/2 ¥ 2-(z,(s))? and

fls) = 1/2 3 2(a )y

forall seS. Then f; and f; are continuous; f; is concave,
fo 1s convex. Furthermore f,(s) < h(s) < fi(s) forall seF.
Hence there is an affine, continuous extension A: S — R
of h with fy(s) < h(s) < fi(s) forall seS ([1], [2]).
Thus A(s,) =0, h(s;) =1, 0 < h(s) <1 for s # sy, 5.
Then lim (1—clg+ a{l =
>0 (1 — &)g + <h|
Now, if we take e, ; € A(S,s,) and suppose that there is
D e ex B(Ay(S, s)*) with @(e; ;) =0 then there must be
s,eexS with s #s, so that e ,(s) =0, which is a
contradiction. This concludes our above remark.

8.

ProrosiTioNn 6. — Let S be the Poulsen simplex and s,
§eexS. Consider x € A(S,s) and y e A(S, 3). Then there is
an isometric (linear and order-) isomorphism T :

Ay(S, ) = Ay(S,5) (onto) with T(z) =vy.

Proof. — In the following we set X = Ay(S,s) and
Y = A(S,5). We claim that there are peaked partitions

{e.lt<n} =X, {fi,li<n}<Y; neN;
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and real numbers a, ,;t < n; ne N; with

ei,n == ei,n+1 + ai,nen+1,n+l

(1) fi,n=fi,n+1 +ai,nfn+l,n+1
n
0 < a,; 1 € n; Sa,<1l; neN;
i=1
1,1 = X; fii=y.

For this purpose we construct peaked partitions
(e ]i < n} =X

{fAli < n} =Y; neN,] n; such that

(2) el = ehr + i, 0
(2’) l(JZl = z(jZH-l _I_' a: n 75{0—1 n+1
(3) Jefh, — el '< 2
(3’) " (]) fi(,j:_l)" < 2—.1"

We proceed by induction :
Let {z,| ne N} be dense in X and let {y,| ne N} be
dense in Y. Assume that

{ef% | v < Kk}, {ffili < k}
and 0 <a, ;;7=1, ..., n—1 k< p;k,p=1,...,n;

>
have been introduced already such that e’ =z and f{*, =vy.

Set E, = Span {¢",| ¢ < n}; F, = Span {f(",| ¢ < n}

(*) There are positively generated [%-subspaces E, < X
with E,, <« E;k=n-+1, ..., m; so that

(4) inf {|z;, — 2| |2z E,} <27x); j=1,...,n.

Consider a system of peaked partitions {e{*,| i < k} spanning
E, and real numbers 0 < b, , with

(5) e %Y = €% + by ka16k; 2 b;, k—l < 1
=n-+1,

Notice that (6) 0 < Z b; .-y forall k.

Since otherwise there 1s ® eexB(X*) with ®|p_; =0
and @(ef?,) =1. As zeE,,, there are two different s,
s €ex S with a(s) = z(s;) = 0, a contradiction.
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We first perturb {e{”,| ¢ < n}:
sTeEP (n + 1):

Consider
n
(7) z=¢e" =eP, + 2 ke, = e + X kel
j=2
n
+ <b1,n ~+ Z kjbj,n>efz'f:il,)n+1
J=2

where 0 < k; < 1;2 <j <n. Even k; <1 holds properly
for all j =2, ..., n; since otherwise there would be two
different s, , s, € ex S with x(s;) = z(s;) = 1; which can be
infered from (7) similarly as the proof of (6). Using the same
kind of argument shows 0 <k, for all j=2, ..., n.
In view of (6) there 1s some b, , # 0.

(a) Let X b, , < 1:
Let 1, l;glan index with b, , # 0. Set & =1 and
o — min ((1 _y bi,,,>|k,.°(n — 0= 3 Kl 1/n>.
i=1 1;%0
Define

<1 _ 9 ,>b,.°,n
J:

%4
=b,,+ 2%0kb, .; L F .

M:

(b) Assume now 2 b, , = 1

From our assumptlon xeA(S s) together with (7) it
follows similarly as above that thereis 7 > 2 with b, , > 0.
Assume without loss of generality that &, , > 0.

n—-1

Let o = min (—é— (1 — kk(n — 1) — 3 k1 1/n>-
j=1

Define

o+ 27CVE (1 + 0)b, .

n 27k ob, s 2<i<n—1 (ifn>2)

b,
b
j=1

ll
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Hence in either case 0 < a;, forall i=1, ..., n and

2 a; , < 1. Furthermore

(8) la;, — b, ] <2 forall i<n.
Define
o = D + g ey B < nt 1
(9) eg’:_'.l‘l) = eg':—:l) + al n—le(n+1) t1sn

(n+1) ; (n+1) (n+l)
a1 =63 + a6

From (8) and (9) we derive easily [e"} — ™) < 27"
k=1, ..., n+1;7i<n. Hence (2),,, and (3),,, are
established.

Furthermore, because the elements k; of (7) depend only on
a;, ;1 < k < n—1; weobtain

n
PP =i + 3 kel
= ef" T + 2 kjeﬁ"“xi’l + (al,,. + Z kjaj ) eht n1

— e, 4 z Rty (bl + 2 kb, u)em‘ »
=e =z.

Now, in stEp (n + 2), repeat the procedure of stEP
(n 4+ 1) but replace E,,, by E,;, and n+1 by n+4 2.
Then turn to step (n+3), ..., step (m). We obtain
(2)n+l L] (2)”1 and (3)n+l y c (3)," .

Consider now F,. Find positively generated ¥ subspaces
F,<F,,< ... <F,<=Y and peaked partitions spanning
F,, {fih e F,| i < k} with

ffml)c = M1 + ai,kﬁc”a‘-)l.kﬂ; k=n,...,m—1

where we have set f™ = f";1=1, , n. This is possible
by the Corollary after Lemma 4. Deﬁne
fPe=fm; i<k; n+l<sk<sm; nt+l<jsm
fOe=1f"; 1 <k; 1<k<n; n+1l<j<m

Find positively generated I -subspaces F, of Y with
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F,i<F;k=m+1, ..., r; such that

(10) inf {ly,— ol [z F.} < 2"lyl; j=1,...,m.
Repeat (*) with r instead of m and F, instead of E, . This
yields (2)p41s --- 5 (2), and (3 )pgrs «-- 5 (3)-

Then go back to E, and find positively generated ¥ -sub-
spaces E, ., < ... <E  of X with E,<E,,; and

peaked partitions {e{”| ¢ < k} of E, with

(M — oM ( —
er 3r+1+a’|kek—0)-1k+1> k’—m""9r—1'

(We have set €7, = &™,).
Define
egj,:)k = ¢{"; +1
e = e +1
Finally go back to (*) and repeat everything with E, and F
instead of E, and F,, respectively. By (3) and (3') we obtain
&, ,=lime; f,,=lmf%; i<n, neN;

FE J>o

which are elements of peaked partitions with

ei,n = ei.n+1 + ai,nen+l,n+l; fi.n = i,n+1 + ai,nfn+1,n+1

1< n;neN;fii=y;e,,=2 ((2) and (2')). From (4), (10)
and (3), (3') we infer that

closed span {f; ,|i < n; neN} =Y
and
closed span {e; ,|t < n; neN} =X

We define an isometric isomorphism T : Ay(S;s) = Ay(S;5) by
T(e;,) =fi.; 1 <n;neN.[

Proposition 6 establishes the assertion (a) of the Theorem
if we extend T isometrically on A(S) by defining T(1) =1.

Proof of (b):

Let u, veexS so that g(u) >0 and g(v) < 0. If
there were an isometric isomorphism (onto) then in view of
Lemma 5 there would be g edB(Ay(S;s;)) with g(u) > 0
and g(v) < 0 so that g(s) #0 for all se€S;s+#s . But
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then s; = Au 4 (1 — A)o for suitable A; 0 < A < 1. Hence
u=y¢=s, a contradiction.

(c) has been proved already by Lemma 5.

Concluding remarks. — The assertion (a) of the Theorem
cannot be extended on any dense subset of dB(A(S)), since
otherwise any element of dB(A(S)), would be extreme point
of B(A(S)) which is certainly not true. This follows from the
fact that for any e e ex B(A(S)),

max (|z +ef, [z —e]) =1+ ||
holds for all 2 e A(S). (cf. [4] Theorem 4.7. and 4.8.).
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