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HOLDER ESTIMATES AND HYPOELLIPTICITY
by A. and J. UNTERBERGER

When one has proved an estimate of the kind

II < ^ C(IK+I|P<),
in order to show that this implies the sought after regularity
theorem, there still remains to be carried a shift in the S j ' s ,
possibly a localization, and a regularization: a secondary
objective of this paper is to help in this humble task.

Our chief concern will be with « Holder estimates », a kind
which was introduced by F. John [7] and used also by L. Hor-
mander [4, 5]. As a comparison between theorem 5.1 in [4]
and theorem 3.1 in [11] may suggest, there is an obvious link
between Holder estimates and Carleman estimates of a rather
loose type.

The main tool in this paper is a generalization of theorem
2.4.1 of L. Hormander [3], another generalization of which
was systematically used by A. Unterberger [10, 11].

To illustrate on a well-known example the flexibility as a
tool of Holder estimates, especially when induction is needed,
we give a new proof of L. Hormander's theorem on hypoelliptic
second-order operators [6], somewhat inspired by that of
J. Kohn [8], but slightly shorter, and perhaps easier to gene-
ralize, as an example will show.

1. Mollifiers, regularization and Sobolev-norms.

We use mollifiers associated with multiple symbols 9(rr, T], y)
by the formula

OpWu(x) = f <p(.r, Y], y)e-2i^a;l^u{y) dy d^.

The authors take this opportunity to thank Aarhus University for the wonderful
hospitality they enjoyed during the academic year 1974-75.
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We always assume
(S) 9 is a C°° function on R3", and for all multi-

indices oci, (3, o^ and every M > 0, there exists
C > 0 such that

\D^D^(x,^y)\ ^ 0(1+1^1)^

for all {x, T], y) e R3".

On the subject of multiple symbols, the reader may consult
K. 0. Friedrichs [2], or H. Kumano-go [9], or K. Wata-
nabe [12], or forthcoming lecture notes by A. Unterberger
at Aarhus University.

As is well-known, one may also write

OpWu{x) == f 9(0;, SM^217^ d^

where the symbol

9^, ̂  = f dz f ̂  S + ̂ x + z)e-2iK^ d^

belongs to S~30, the usual notation for a class of symbols of
order — oo ; it is then clear, using an integration by parts,
that 0^(9) operates continuously from the space <^'(R/1)
to the space ^(R"),

We also consider, for t > 0, the one-parameter family
of mollifiers Op(9(), where 9^, Y], y) = 9 (re, IT], y).

The main reason for the introduction of these mollifiers
is the following commutation theorem :

THEOREM 1.1. — Let 9 satisfy (S); let X be a first-order
differential operator whose coefficients are defined and C00 in an
open subset £2 of R"; let 0.' be a relatively compact open
subset of Q, and assume that there exists a compact subset L
of Q. with the following property:

for every y e tT, the set of x e R'1 such that 9(0;, T], y) ^ 0
for some 73 £ R71 is contained in L.

Then there exists ^ satisfying (S) such that, for every
u e ^'(Q7), and every t > 0, one has

[X, Op(9,)]u = Op(^)u.
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Proof. — First note that for every u e ^'(n'), the support
of Op(<p()u is included in L, so that [X, Op(y<)]u is well
defined and has its support contained in L; changing X
outside L, it is no loss of generality to assume that the
coefficients of X extend as functions in ^(R"); also,
one may assume that u e ^(i27).

Let X == ^ Ok — + b. One has
fc bXj,

Op(^,)Xu{x) = S f^t^y)e-2i^^^a,{y)u,{y)dyd^

+ / ?(^ ̂  y)e-2i^-a1^b(y)u(y) dy d^

and, after an integration by parts, the first term may be
written as

^ F e-^^u{y) dy dr^ f- ̂  (x, t^ y)a,(y)
* v L °yk

+ 2i7cY]fc9(a;, <T], y)a^y) — 9(0;, ̂ , y) ̂ k (y) .

With the straightforward expression for X Oj9(<p()u(a?),
one gets

[X, Op{^}]u(x} = f e-^-^^y) dy d^

I ^ ak^ S ̂  ̂ »y) + ̂ {y) ̂ - {x^t^ y}
+ 2in ^ {a^x) — a^y}}^^ ^? y)

fc
+ S ?(^ ̂ , y) ̂  (y) + (^) - ^y))<p(^ ̂  y)T

fc ^y/c J

With smooth functions Cjjc chosen such that

a^x) — a^y) = S c^x, y){x^ — y^)

hewnever y e Q' and x e L, one may, after an integration
by parts, rewrite the bothering term in the middle as

- S F e-^^c^x, y) ^ {w{x, t^ y))u{y) ̂  dy,
3 J ^^j

5
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which proves Theorem 1.1 if we choose

^ ̂  y) == S ^(aQ —L {x, T), y} + Ok(i/) ̂ - (a;, T), y)k &a;k 5yk
— S ^(^ y)?^, •»)» y)

k

— 2 Cjk{x,y)flk——{x, Y),y)

+ S <p(^ ̂  y) |̂  (y) + (^) - &(y))y(^ ̂  y).

REMARK. — If X is reduced to its zero-order term b,
and b{x) — b{y) = ̂ dj{x, y){xj — y^ one may also write
[X, Op(9,)] = t0p{^}, with

x(^ ^], y) = ̂  5 ^-(^ y) — (^ ^^ y)-

THEOREM 1.2. — Let 9 satisfy (S), 6md 5 e R. r/i(3n
(i) for 0 < t ^ 1, Op(<p() remains in a bounded subset of

the space of continuous linear endomorphisms of H^R") with
the operator-norm topology.

(ii) for every u e H^(R"), Op(<p()u converges in the space
H^R"), as t -> 0, (o (Ae product of u by the function 9(0;, 0, x).

PROOF. — As, tor 0 < ( < 1,

ID^D?^, t^ y))\ ^ CtW{i + t\^\)-W ^ C(l + I^D- 'P ' ,

with a constant C independent of t, the simple symbol
associated with 9^ remains in a bounded subset of the space
of symbols S°, which proves (i).

When ( — 0, 9 (re, (•/], y) converges in the standard (local-
type) topology of C^R3") to 9(rr, 0, z/), which is a multiple
symbol of the operator of multiplication by 9 (re, 0, x) ' , toge-
ther with the already remarked boundedness of {9^} in the
space of multiple symbols of order 0, this suffices to imply (ii) :
this easy, but useful, argument is implicit in all treatments
of pseudo-differential operators, when a reduction to compactly
supported (possibly multiple) symbols is needed; it is stated
explicitly, for instance, in R. Beals and C. Fefferman ([I],
corollary, p. 4).
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The next theorem generalizes theorem 2.4.1. of L. Hor-
mander [3].

THEOREM 1.3. — Let 9 satisfy (S), and s e R, m e R.
Assume that for some a > $, and all multi-indices 04, (B, ag,

tAe estimate \D^D^D^{x, T], z/)[ ^ CH^-lPl is valid for
some C > 0, and all {x, 73, y) with [Y ] | ^ 1. TA<m there
exists Ci > 0 such that for every u e ^(R"), one has

/»! Jf
{ r^j|0p(^)ul|2^ < CM^-

Jo t

Assume moreover that for a certain open subset Q of R71,
there is no point {x, T]) with x e 0. and T] e R", T) ^ 0,
such that 9 (re, XT), x) = 0 /br e^ri/ X > 0.

TAen, /or e^ry compact subset K of Q., there exist two
constants Cg > 0 and €3 > 0 such that^ for every u e ̂ (^
one has

/»i /7+
1H2^ ^ ^ ( ^^||Op(9<)u|12-£+C3||u||2^_l.

Jo t 2

Proof. — It is no loss of generality to assume
1

S < (J ^ S -{- ——
JL

One has ||Op(cp()u|L -= l|A'''Op(9,)u||, with

/ A \'"/2
Am=(l-^) •

As
ID^D^^,^,^)! < C^Til-IFl,

t-^t remains in a bounded subset of the space of (classical)
multiple symbols of order o-, so that (-'[A", Op(<p()] remains,
for t > 0, in a bounded subset of the space of operators of
order m + o' — 1; with some constant C > 0, one may then
write, for every u e ^(R") :

pr^ll^Op^^ull^ ^ C Ft-^M^.^
JQ L JQ t

< CJull^..^.

In this way, the proof of Theorem 1.3 is reduced to the case
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when m == 0. One has

Op^^u(x) = f 9(y, (T), x)e-2iK<y-a:f^u{y) dy d^

and ||Op(9()uB2 == (Op(9()*0p(9()u, u), with

OpWOp{9tMx)
== / <P(2/, ̂  ^)<P(2/, ̂ , z)^2^^-^^^.?)]^^) ̂  ̂  ̂  ̂ ^

so that Op(9^)*0p(9() is an operator with multiple symbol
b{x, T), y , S? z) of a type considered by Watanabe [12] and
possibly, previously, by Kumano-go [9], a paper which was
unfortunately unavailable to us.

Then

fl(-210p(9t)u||2^-(Ru,u),
J0 v

where R is the operator with multiple symbol

r 1 — dtr{x, T], t/, S, z) = 1 r2^(y, tr^, x)^{y, t^ z) —.
Jo £

On R271, let l==(B(7] ,S)+ai (7] ,S)+a^ ,S) where pe^(R2 '1),
a^ and 03 are two C00 functions whose supports do not
contain the origin and which are moreover homogeneous of
degree 0 for |^|2 + M2 ^ I? and satisfy the following two

IS!conditions: |T]| > -u- on the support of 04, and |S| > |'y]|2t
on the support of ag.

Then, with obvious changes of variables, one may write

^^i/?^)=p;.--^ (i-?)/;•••+..;.•••• +../.-•••
= P(l, 6) t" t-«'T(y, H, ..•)»(./, IS, z) *

Jo c;

/l(x>
 — fit

- (1 - P(YI, S)) J t-^y, (T), a;)(p(y, (S, z) -y

+^^)l.l̂ "r^(,,^, ̂ (^^. .)f

+ a,(7), ^)|S|2- r t-^(y, t—, x\(y, t^-, z\ dt.
«/o \ \-'\ / \ l-'l / t
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With the notations of Watanabe, it is clear that the first
two terms are multiple symbols in the class S^'~00, and
that the last two terms belong respectively to S^o° and
S?;^? so that R is a pseudo-differential operator of order 2s :
the first part of Theorem 1.3. follows.

Also, the simple symbol defining the same operator as the
myltiple symbol r(^, T], y, S? ^) differs by an error term in

/»i ^f
S25-1 from r{x^,x,^x}= \ t-2!?^ ^, x)\2 -, a function

J o t
which, up to an error term in S~°°, may be written for large

/^°° /It /l00 / ? \ 2 ^f
| S | a s f t-^{x,t^x^d-=\^s t-^v(x,t—-,x) a-.

J o v J o \ 1^1 / i

The second part of Theorem 1.3 is then a consequence of
the (non-sharp) Garding inequality.

2. How to derive classical estimates from Holder estimates.

Holder estimates are, generally speaking, estimates of the
kind p(u) ^ C^u))^^))1"'5, where p, g, r are semi-norms
on a vector space, and 0 < 8 ^ 1; more factors may be
allowed.

On this subject, the reader may consult the papers of
F. John and L. Hormander mentioned in the introduction.

As, unless 8 == 0 or 1, the right-hand side of a Holder
estimate is generally not a sublinear function of u, such an
estimate may carry a lot more information than it seems. As a
first example, let us show that an estimate

p{u) ^ C||<|]i<--8l—o
^11 ^[\Ss 5

assumed to be valid for every u e ^(R"), is almost as good
as an estimate p(u) ^ C|[u|[^4.(i.§)^.

It is clearly weaker, due to the logarithmic convexity of
the function 51—^l|u||^ and as a matter of fact, strictly
weaker in general, as the elementary estimate

K0)|2 ^ ||u|i Mi,
valid for u e ^(R), together with the fact that the Dirac
measure on R does not belong to H 2 (R), shows.
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However, let us introduce, for s e R and k e R, the
semi-norm || ||,̂  defined, for u e ^(R/1), by

IK/c - / (I + mW + Log (1 + \WW^ ^.

Then one has the following result:

PROPOSITION 2.1. — Let 8 e ]0, 1[ and s^ < $2; let

s=Ss^ + (i- 8)^;
'[

^ A* > — There exists a constant C > 0 depending only
L

on n, S, ^i, ^2 and k such that, for every semi-norm p on
^(R") satisfying p{u) ^ \\u\\^\\u\\^ for every u e ^(R71),
one has, for every u e QfTS^) :

p{u) ^ CM^.

Proof. — By Hahn-Banach's theorem one may assume
that p(u) = K/*, u>| for a certain /'eH-'^R"); one may
in fact even assume that feSCR^): for let ^ e ^(R2")
satisfy ^(0) = 1, and let, for 0 < s ^ 1, Rg be the pseudo-
differential operator with symbol ^(^ ^^S). Then, as s -> 0,
Rgjf converges weakly to /*, and <Rg/*, u> = </*, ^RgU),
where the operators ^Rg are uniformly bounded either as
endomorphisms of H^^R") or as endomorphisms of H^R").

Thus assume that for some jfe^R") and all u e ^(R^
one has [</•, u>| ^ |My<\-8.

We want to show that for some constant C depending
only on n, 8, ^i, s^ and /c, one has

11/1-,.-. ^ C.

By Young's inequality, one has, for every u e ^(R") and
( > 0:

KA ^>l2 ^ \WW1-^ == r2^-^-<)[|u||28.t28(i-ox^)^[[^-8)
^ sr^-^-^j^ii^ + (i -^ 8)^^111<,

hence
^1<A ^>|2 ^ ^^IHI2, + (1 - s)^^!!^!^.

Added in proof: Prop. 2.1. is a consequence of (I V.I.I) in Lions-Peetre : Sur une
classe d'espaces d'interpolation, IHES n0 19, 1964.
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Let 9 e ^(B/1) be real valued and satisfy $(^) = 0(1^) as
|S| ->" 0 for some sufficiently large a and, with

<p^) = r^ (̂

and ^t[x) = 9((— x), apply this inequality to

u == <P( * <p^ J

1and integrate from 0 to — with respect to the measure
/ 1 V2^ fit ~I t JL \ Url> /-\| log — ) —• One gets\ t J t °

/^2" / I \-2k Jf

f (log-) ^ll^^ll4-
Jo \ i / i

r^ / 1 \-^ _ Jf< § ( (log-) ^^v^m-
«/o \ v / t

+ (1 - 8) f2 flog ly2'c ^^^llyt * 711^ ̂
Jo \ (; / r

By theorem 1.1 of [II], the right-hand side is less than
Cill/'ll2-^-^ for some constant Ci depending only on n, 9, s^y
$2, 8 and k.

Using this theorem again, and with constants depending
only on n, 9, «i, 5i, 8 and k, one has

n n4-,.-^
< c, [^ (log ̂ -V2* ^1|9< * H2 ̂ ] + C3llfll4-,.

.^^(log^^^^^^.^rf)
wo \ <• / t / wo \ t / t /

+ ̂ ll/'ll4^
- c, f2' flog ̂ y2' ̂ ||y, » /•||« dt + C311/-H4-,.

Jo \ i / t

Now, obviously, [|/'|[-^ ^ 1. Hence

U îL.,̂  ^ c^fl^^+c^
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i r " îand U/ll2.^^ ^ -o-L^i + (̂ ! + ^s)2!? which concludes
JL

the proof of Proposition 2.1.
The next theorem shows how regularity theorems may be

proved via Holder estimates (which may in some instances be
easier to prove than standard ones) : its principal defect is
that we have to assume that P dominates, in a certain sense,
some operators Q/, which are not intrinsically attached to P,
but depend on a certain representation of P.

Let P belong to <9L^, the free associative algebra over C
on m generators Xi, . . . , X^. Adding a new generator 0
free from the XyS, one has the identities

[X, ... X,, 0] = X, . . . X,_.[X,, 0]
+ X, ... [X,,_., OJX,, + • • • + [X,, 0]X, . . . X,.

Also

X, ... X,^[X,, 0]X,,. ... X,
= X, . . . X.,JX.,, OJX^X,, ... X,,
+ X., . . . X.^[X^, [X.,, <D]]X^ ... X,,

from which it is easily seen by induction that there exists a
finite number of elements Q^ of (tn, such that one has the
identity

[P(Xi,...,XJ,0>]= 5 [x^[x^,..., [x^, o]. . .]]Q,(Xi,..., x,).
k

Note that the « degrees » of the Q^'s are strictly less than the
degree of P, so that, enlarging the set {Q/J, one may
assume that a like identity holds with P replaced by any
of the Q^s.

Now one may, in these identities, substitute operators for
the letters X i , . . . ,X^ ,0 , provided that all the words
containing at most once the letter 0 be well-defined as
operators.

THEOREM 2.2. — Let the operator P be expressed as
P(Xi, . . . ,X,n) , where the \j ^s are smooth first-order diffe-
rential operators in an open subset 0 of R".
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Let the differential operators Q^ be expressed as Qfc(Xi, ..., X)^,
and! assume that whenever R 15 e^/ier P or one of ^Ae Q//5,
one has formally, as just explained, the following identity with
complex coefficients depending on R :

(1) [R(X,, .. , XJ, 0]
= Saf,[X,, [X,, . . ., [X,,, 0] . . .]] Q,(X,, . . ., XJ.

Assume that for some relatively compact subset 0.' of Q.,
there exist real numbers s^, s^, r^ rg, s' and r ' , a finite set
{^}, numbers (B^p., p ,̂ Yi,p.? ^2,^ all ^ 0 and satisfying
Pi, p. + ?2, p. + Yi, p. + Ta, p. = I? ^^ ^ number C > 0 such
that, for every u e 2(^1'), one has

Ms'+ S II QA ^ C s ll^^^uii^^Puii^^iiPuli,?^.fc ^
TAen, i/* /or ewry (JL one Aa5

(PI,SX + Pa,^7 + (Yi,p. + Y2,(x)^ > Pi, (A + pg^^
+ Yl,^l + Y2,^2»

(/ie operator P 15 hypoelliptic in ^.

REMARK. — Due to the logarithmic convexity of the function
s i—^ || u\\s, it would not be a greater generality to allow s^, 53,
r^ and rg to depend on [JL.

Proo/ of Theorem 2.2. — Let e > 0 be the minimum for
all (A of

(Pl.p. + P2,(xV + (Yl.tx + Y2.(x)^ - Pl.̂ l

— P2,(x52 — Yl,^l — Y2,^2-
We are going to show first:
for every T e R and every compact subset K of ^r

there exists C > 0 such that, for every u e ^^[£1'), one has

(2) llull̂ , + S flQA+T ^ C[HL^ + ||Pul|,̂ .,].
k

There exists a finite decreasing sequence {{^q)i^q^p of sub-
sets of {Q/J with the following two properties :

(i) ^i = {Q^}, and Sp contains only constants.
(ii) for every q < p — 1, and every R e Sp, an identity
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such as (1) holds, where in the right-hand side occur only
elements of ^+r

For convenience, we set ^p+i ===== {0}.
For the typographer's benefit, we delete everywhere the

sign ^ as well as the subscript (JL in the following proof
p.

of (2). Also, we discard temporarily the terms tor which either
Pi + ?2 = 0 or Yi + Y2 = 0.

Let

^'—'A ^—'A
and

^ ^ Pî i + P2^2 ,. ^ Yiri + Y2^
Pi + ?2 ' Yi + Y2 '

8 = (Pi + P2)(Yi + Y2)(r - r ' - s + s').

By the hypothesis of Theorem 2.2, for every u e ^(Q')
and all values of the parameters X > 1 and ( > 0, one has,
with a constant C > 0 independent of u, X and (:

W+ 5 ^ S IIQull?,
I$»«P Qea,

/ -aPfe- .aB—2^18- ^ / -2P^- 2B—2&8- \
< C(,XP<+^( M^llull^^^t ^P'llull^/

/ _2Y+-2Tl8- \ /2•r+-2^8- \
^ -T ^'IIPull^;^1 T |̂lPu||̂ ;.

Using the concavity of the logarithm (i.e. Young's inequality
1 1 1 1 \with exponents —» —> — and — h one gets
Pi ?2 Yl Y2/

(3) ||u||^+ S ^ S IIQull2.
I^?<P Q62,

( 2P |~ _2S_ 28 2?_ 2g "I

< c j x P < + P « | _ < pl p•+ptll"lli,+^t ^^'llMllU
2T ^ 28 2T , '28 J

+( T. T.+T.[|Pu||^+(T. T.+T.KPull2^.

Observe that

i P i P P I 8
s! + — — — + „ , „ =^2 -——+

Pi Pi + ?2 ?2 Pi + ?2

= s' + (Pi + P2)(^ - •»') + (Yi + Y2)(r - r') < ^/ - e
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and

i Y 8 Y 8y-i + — — —.— = y-2 — -— — ———
Yi Yi + Y2 Y2 Yi + Y2
= r1 + (Pi + ̂ ){s - ̂ ) + (Yi + Y2)(r - r') ^ r1 - s.

Now choose <p(a;, T), y) == a(a;, y)| ̂ l2'7^!711', where a is a
large integer and the smooth function a is such that a (re, y)
is zero for all y when x is outside some compact subset
of fT, and a(n?, ^) = 1 for all re in some neighbourhood
of K.

Applying Theorem 1.1, whenever R is P or one of the
Q^ '5, one has, for some nice mollifiers ^ and every ( > 0

(4) [R, Op(y,)] = S Op((^)t)Q,
k

where, moreover, if R e ̂  (1 ^ (7 ^ p), only Q^ ' s belon-
ging to ^q-^\ occur in the right-hand side.

On the other hand, observe that in the last part of Theo-
rem 1.3 one may obviously replace the error term Csllufl2 ^
by €411 u\\2.^ however large N. ^'+'CT-2

Applying the estimate (3) with u replaced by Op(<p()u,
and integrating from 0 to 1 with respect to the measure

t~2^—» one gets, applying Theorem 1.3 and choosing p '{/
as the maximum of all the numbers ——^—— :

Pi + ?2
there exist two constants h > 0 and C > 0 such that,

for every u e Qfy^W) and every X > 1, one has

(5) Ar|H^+ s ^ S IIQ ÎÎ I
L l^^P Qe^L J

-c s ^ S IIQ^II2^
1^<7<P Q€^+i

^ C(x^||u||^_,+||pu||^^+ 2 11<N12^.
< Q€^ $

This yields (2) if X is chosen large enough.
However, we did not take into account the terms for which

Y2 + Y2 = 0 or (BI + pa == 0, and one may verify that,
though the preceding proof takes care also of the terms with
Yi + Y2 == 0, it is not adapted for terms with Pi + (^ == 0.
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Noting that in this case T\ + —r- = ̂  ~ -T- = r ^ r ' — c
Yi Y2

we get on the right-hand side of (5) terms of the form

cxmpul|2^+ s 1|(»+T-4
L Qe^, J

As on the left-hand side of (5) we have a term AX2 ^ |[ Quil2^,
Qe^

it is obviously enough, in order that (5), hence (2), be valid,
that one may write, for some p ' :

^2P S IIQ^ll^-s ^ c r x s IIQ^II^+^H^II^-sl.
Q^i L Qe^ J

But now, d being the order of the operator P, this is a
consequence of the estimate, valid for ^ e ^(R/1) and every
X > 0:

Ml̂ -s ^ C(^-2Pl|^||2^+x2(^)|l^||^,_,_^),
in its turn a consequence of the logarithmic convexity of the
function 51—^ II^L.

Thus (2) is proved in general.
Finally, assume that for some u e <^(^), some T e R and

some open subset ^" of ^ /, u is Hfo^"8 in ^/', Pu is
H^"-5 and Qi^ is Hf^^2 in Q" for every Qe^ i ; then
we shall show that u is Hfo^ in Q" and that QIA is Hfo^
in t2" for every Q e ^i, which will prove Theorem 2.2 by
induction.

For every compact subset L of Q", there exists a compact
subset K of 0" and a smooth function a (re, y) with support
in K X K such that a(o;, x) = 1 for all x in some neigh-
bourhood of L. Choose this time <p(^, T], y) = a(a?, y)^171!2,
so that the distribution a (a;, x)u{x) is the weak limit, as
t -> 0, of Op(9()u; also, for every Q e ^i, a(a;, a;)Qu(a;)
is the weak limit, as ( ->• 0, of Op(9^)Qu. Thus it suffices
to show that, as t -> 0, Op(<p^)u remains in a bounded subset
of H^+^R") and that, for every Q e ^i, Op(cp()u remains
in a bounded subset of IP'+^R"). One may apply the esti-
mate (2) with u replaced by Op(<p()u, and use the identi-
ties (4) to express the commutators with Op(<p() : note that
the formula given in the proof of Theorem 1.1 shows that the
mollifiers ^ also have their (re, ^-supports contained in
K X K.
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Using the first part of Theorem 1.2, one gets immediately
that Op(<p()u remains in a bounded subset of IP^R"). If
R e Sly we also get that OJO(<P()RU remains in a bounded
subset of H^^R"), provided that we know already that all
the Qu '5 are H}̂  in Q" when Q e ^+1, so that this
last part is proved by induction on q, starting from q === p 4- 1.

This concludes the proof of Theorem 2.2.

3. A short proof of L. Hormander's theorem
on hypoelliptic second-order operators.

Let P == — 5 X^ + Xo + y, where the X^ 's (/ ^ 0)
y>i

are C°° real vector fields on an open subset 0 of R", and
f is a C00 complex-valued function on 0.

Denote by ^p{p ^ 0) the set of all iterated brackets
[XJX,.... [X^,X,,J.. .]] with O ^ q ^ p .

In [6], L. Hormander proved the following theorem : Assume
that condition (H) holds :
(H) For every compact subset K of t2, there exists p ^ 0

such that at every point of K the linear space of all
vectors is generated by the set of values at this point of
the fields belonging to ^p.

Then P is hypoelliptic in 0.

We shall prove that for every compact subset K of Q.,
there exist 8 e ]0, 1] and C > 0 such that the following
two estimates hold for every u e ^K(^) ;

(1) Hli ^ C(H|i + IIP -̂W ÎM + IIP^2.
(2) for every / ^ 1

||X |̂|̂  ^ C(H|, + IIP^̂ HÎ IMI + IIP^I)^2.
This will imply the result by Theorem 2.2.
In the following estimates, claimed for u e ^^Q.)^ the

constant C may depend on K; as X^ == — Xy 4" ^y? ^ a

C°° real-valued function, an obvious integration by parts
yields

(3) Re(Pu, u) = S l|X^u||2 + R^(u, (g + f)u),
j^i
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where g is a function depending only on the Xy '5, so that,
adding if necessary a constant to /*, we may assume without
loss of generality that

(4) Re{Pu,u) ^ S UX,u||2+ 1| u|2.
j>i

LEMMA 3.1. — For any three real sector fields A, Bi, Bg :

|R.(Au,BAu)| ^ C{|Hi(l|B,ul| + ||B,u||)
+||Aul| l|[B,,B,]u||}.

Proof. — Neglecting small terms, one has

Re(Au, BAu) = R^Au, Bgu) - — Re(BiAu, Bgu)
^ — R(°(ABiU, Bau),

and

Re(Au, B^u) - R^Au.BgBiu) - — R^AB^u, Biu)
- Re(BaU, ABiu).

LEMMA 3.2. — For any two real sector fields Zi, ̂ :

|Re(PZiU, Z^u)! ^ C{(l|ul|i + llPO((R^(Pu, u))'2'^- IIZauB)
+S ll[X^Zi]u|| [[[X^Z^ul}.

î
p^o/1. - Re(PZiU, Z^u) = Re([P, Zi]u, Zau)+R^ZiPu, Z^u).

The second term is less in absolute value than C||Pu[li||Z2u||.
Also

Re([P,Zi]u,Z2u)
- - 2Re S (X^[X^ Zi]u, Z,u) + R^T^u, Z^u)

j^i
== 2Re S ([X^, Zi]u, X^u) + R^T^, Z^u),

j^i
where Ti and Ta are first order differential operators, and
one uses Lemma 3.1 and (4).

LEMMA 3.3. — For every real vector field Y, and j ^ 1 :

|| [X,, Y]u|| ^ C(|Hi + \\Pu\\^{(Re{Pu, u)}^ + IjYuU)"2 ' .

Proof. — We first remark that for every real vector field Z :

(5) |!X,.Zu|| ^ C(|K+l|Pu|[i)
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and

(6) ||ZX^[| < C(|K+[|PO;
for (6) is an obvious consequence of (5), and

S l|X^Zu[|2 < R^PZu, Zu) ^ C(|K + |[Pul|i)[|uni
j>i

by Lemma 3.2. Now

|| [X,, Y]up = (X^Yu, [X,, Y]u) - (YX,u, [X,, Y]u),

and

Re(X,Yu, [X,, Y]u ^ C||Yul| [|u||i - Re(Yu, X^X^, Y]u)
, ^ . < CnYul|(||ul[,+l|Pul|,)
by (5). Also

- Re(YX^, [X,, Y]u)
^ C||X |̂| ||ufli + Rc(X^, [X ,̂, Y]Yu)
< C||X l̂| ||u||i - Re([X^, Y]X^u, Yu)

< C{(Re(Pu, u))"^)!^! + l|Yu||(Hu||i + IIPMHi)},
by (6).

LEMMA 3.4. — ||Xoull < C(||u||i + ||PMlll)T((Re(Pu,M))^.

Proof. - IIXoull^XoU, Pu) + S (Xou, X^u)-Re(X,u, fu)

^ C||u||(||ul|i +y|pul|l) + S Re(XoU, X^u),
y?-i

and by Lemma 3.1 :

Re(XoU, X2^) < C||u||illX^ul| < C||ul|i(Re(Pu, u))"^.

LEMMA 3.5. — Î or every real vector field Y:

11 [Xo, Y]u|| < C(||u||^ + IIPull̂ aR^Pu, u))^ + l|Yu||)i/4.

Proof. — Let Z = [Xo, Y].

||Zuj|2 = (XoYu, Zu) - (YXoU, Zu).
We have

Re(XoYu, Zu) < — Re(Yu, XpZu) + C||Yu[| ||u||i,
and

- Re(YXoU, Zu) < C||Xou|| Hu||i+ Re(XoU, ZYu)
^ C(||Xou|| + l|Yu||)||ul|i - Re(XoZu, Yu).
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Using Lemma 3.4, Lemma 3.5 is reduced to estimating
— Re(XoZu, Yu) by the right-hand side of the claimed ine-
quality. Now

- Re(XoZu, Yu) = - Re(PZu, Yu)
- S Re(X$Zu, Yu) + Re^Zu, Yu),

j'^i
and the third term is trivial; the first one is taken care of by
Lemmas 3.2 and 3.3.

Also, by (5)
|Re(X5Zu, Yu)| ^ |Re(X^Zu, X/fu)| + C(||u||i + ||Pu|[i)||Yul[,

and
|R^(X^Zu,X^Yu)| < ||X^Zu|| ||X^Yu||

< (Re(PZu, Zu))^(Re(PYu, Yu))^.

Finally, by Lemma 3.2:
|R^(PZu,Zu)| ^ C(||u||i+l|Pul|i)2,

and by Lemmas 3.2 and 3.3 :

|R^(PYu, Yu)| < C(|Hi + ||Pu||i)((R^(Pu, u}^ + HYul l ) .

Proof of (1) anrf (2). - As l|X^||i_8 ^ \\X^\\^\\XjU\\\ (2)
is a consequence of (6) and (4).

If F e ^p (p > 0), (4) and Lemmas 3.4, 3.3 and 3.5 show
by induction that

11 Full < C(|K + |lPu|L)l---2-2p-l((R.(Pu, u))^)2-2^.

Together with the hypothesis (H), this obviously implies
(1), which completes this proof of L Hormander's theorem.

Remark 1. — Using, in Lemma 3.4,

| (XoU,Pu)l ^ CMMPuh ^ Cl lu l l ' ^ l lu l l^ l lPul l^ l lPul l^ ,
2 2

and trivial modifications elsewhere, one may easily improve
estimates (1) and (2) to

11 ^111 + S l^lll-S
J^l 1-5 _5. i_g ^

^ C||uh2 ||u|| 2(||ul|l + IIP ÎIi) 2 (l|u|l + IIPull)2,
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for which the « gain » s occuring in the proof of Theorem 2.2
. 8 , , 82
is -7- rather than - ^ '

/i 2i

Remark 2. — X being an integer ^ 1, the preceding
proof applies equally well to the (principal type) operator
on R 2 :

Q- 0 . o \ / o . . ̂  ^ \
—— — z —— ) ( —— 4- ^2A —— )
^1 (^2/ V^l ^2/

/ ^ V , / ) ^ \2 I • ^ / 2 ) ^ \ . 0 0—- I ___ l _j— I /yA ___ 1 _J_ ; ___l /yxSA ___ I __ -i ___ ___
—— I i I l 1 I \ \ 1 I

V^l/ \ ^2/ <^2\ ^2/ ^^l ^^2

With Xi = — and X2 == x\ —, so that^i 2 1 ̂ ^

(a^Xi)^ = X!-^-,
b^

the starting point is the identity

— R^(QM, u) = [|Xiu|[2 + ||X2u||2 — Re{\{X^u, x^u),

which yields

||Xiu|| +l|X2u|| ^ CM^{\U\\ + 1 1 0 ^ 1 1 ) ^ .

With Zi = —, Z2 = —— (/5 A* == 1, 2), so that Zi commutes
^^j . ^xk . ^ ^

with the bothering therm i —— — of Q, Lemma 3.2 is
0.2^ 0 ̂ g

proved to be valid for Q in a straightforward way, and so
j_

is Lemma 3.3, when in both lemmas (Re(P^, u)) 2 is replaced

by jl up (|| u\\ +llQu]|)i.
With 8 = 2~\ one then gets, by induction :

ll<+l|Xiu||^+l|X,u||^

^ Cdlufli + IIQulli^llull^dlull + IIQ^II)'1.

Finally, despite the presence of the term — i — — in Q,

the proof of Theorem 2.2 applies in this case too provided we
take only mollifiers <p(rr, 73, y) of the form a(a;2, y^)^^)

6
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(with ^ e ^(R2)), so that Op(<p() will commute with —»
& ^1

and — will not occur among the Q^s.
^2

In this way, we prove only global hypoellipticity in strips
a < x^ < fc, but hypoellipticity follows since Q is elliptic
for x^ ^ 0.
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