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A NOTE ON REARRANGEMENTS
OF FOURIER COEFFICIENTS

by Hugh L. MONTGOMERY

Let {9^} be a sequence of functions on T = R/Z, with
the property that they are uniformly bounded,

(1) ' II 9.11 oo ^ M,

and satisfy a Bessels inequality

(2) SLC^M^1!^.

For the sake of simplicity we suppose that M has the same
value in (1) and (2); this does not occasion any loss of gene-
rality. Suppose that ^ [a/J2 < oo. Then

k

(3) f(x) == S a^,(x)
k

is a member of L^T), since the dual of (2) asserts that

(4) f^ 2 ^P.|2 ^ M2 S Kl2.

In this note we obtain bounds for j \f\2 in terms of the
measure of the set E and the numbers |a^|. Following Hardy
and Littlewood, we let the numbers a^, a^, . . . be the
numbers [a^[, permuted so that flC\. Then we set

00

(5) f^W = 5 a^ cos ̂ nx.
n=0

THEOREM 1. — Let {<pfc} be a sequence of functions satis-
fying (1) and (2), let f and f* be defined by (3) and (5). Then
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for any measurable set E c T, with measure |E| = 26,
we have

(6) Jjyp ^ 20MP/_9J^12.
00

If C e L^T), C{x} ~ S ̂  cos 27cna;, and if C,\, then
n=0

C = C*, so (6) implies that

/JC|^ < 20/_°JCp,

where E c T, |E| =26. Thus, although it is not necessar-
r i \ .ily true that C{x) is decreasing on ( ) , — ) » in a certain
L /

sense it is still the case that C is largest near 0.
Using a simple inequality of. A. Baernstein [2], we shall

derive from Theorem 1 the following.

THEOREM 2. — Let ^ be a convex increasing function
from [0, oo) to R. Then, in the above notation,

J^dfl2) ^ /_>(20]\P|n2).
Taking ^(t) = (g/2, we see from the above that

(7) 11/1, ^ 5MIIH. {q ^ 2).

Inequalities of this type have a long history. Hardy and
Littlewood [3, 4] proved that

(8) llfll, ^ c,[in, (q ^ 2)

in the case ^u{x) = ^ikx, — oo < k < + oo. Littlewood [6]
has shown that Cq is bounded in this case, and F. R. Keogh [5]
has shown that Cp —> 1 as q —> oo. In the opposite direction,
Littlewood [7] showed that Cq > 1 except when q is an
even integer. Consequently, the constant 20 in Theorems 1
and 2 can not be replaced by 1. R. E. A. C. Paley [9] exten-
ded (8) to the case of arbitrary uniformly bounded orthonor-
mal 9^ (see Zygmund [11, XII § 5] for a simple proof).
Theorem 2 does not seem to follow from the special case (7),
since in general a convex increasing function ^(^ ls not

comparable to a sum ^ c^, c^ ^ 0, a,. ^ 1.
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If one were to consider, in place of /'*, a function
oo

/^) = 5 ̂  ̂  y,^),
n=0

then one does not in genera] expect the inequality

11/1, ^ ^ll/'-ll, (q > 2)

to be valid, even when the q^ are given in some natural
order. (See G. A. Bachelis [I], and H. S. Shapiro [10]). How-
ever, in the special case of ordinary Dirichlet series, there are
good reasons to believe that something positive may be said.
For example, we can formulate a

Conjecture. — Let s > 0, and 2 ^ q ^ 4. Then for T ^ 2,
N > No(e, g), we have

C. S ̂ ""l dt ^ (T + N^N^S
7»==1 I

for arbitrary coefficients a^ satisfying |aJ ^ 1.
The above is known to be true when q == 2, q = 4; thus

by Holder's inequality it suffices to consider the case T == N^2.
The Conjecture is of special interest in multiplicative number
theory, since from it one can deduce (see Montgomery [8,

Theorem 12.6]) that the interval [x, x + x ^ ) contains a
prime number, for all x > Xo{e).

We now prove Theorem 1. We have only countably many
functions 9^, so without loss of generality we may suppose
that 0 ^ k < oo. Let TT be the permutation such that
^ == ^(n)|. Put N = [(26)-1], and set

^ = {n(n) : 0 ^ n ^ N}.

Thus ^ is the set of indices of the N + 1 coefficients of
largest absolute value. Break the sum (3) into two parts,

f= S + 2 -A+/2 ,
ne% ^%

say. On one hand,

JjAI2 ^ I IAPocr i ^ 26 ("M S ai)\
\ n=0 /
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in view of (1). On the other hand, from (4) we see that

/j/2i2 ^ r i / 2 i 2 ^ M2 s ^2.
l /E l/o n>N

For each x, \f\2 ^ 2\f^\2 + 2|/2|2, so on combining the above
we find that

(9) fj/12 ^ 46 (M S a;Y + 2M2 S ^2.
l/E \ n=0 / n>N

It now remains to relate the right hand side above to {_ \f*\2.
A J-e

Let K{x) = max (0, 1 — \x\Q-1) for \x\ < —• Then

L

fin2 ^ r^ Kin2 = 4 i ^(^ + ^) + ̂  - ^))-
l/ ' î 2 m.n=0

I\T f>/ \ n/sin7rm6\2 /.Now K(m) = 6 ( ———— ) ^ 0, so
\ TCJTIV J

(10) 1 S o;a;fC(m-n) ^ fe |^|2.
^ m,n=0 •/ '

If | AH — n) ^ N then
/ . 1 \ 2

^T^\ 0 / s]n "<T~ 7t \

(11) K{m - n) > 6 (sm^6)2 ^ 6 -̂ - = 4.-6,

\ y" /
since N < (26)-1. But o; > 0, so

(12) 6 / S a:\^ 1 ^ ^ ft(m-n)a;a:.
\0^n<^ / ^ O < W , T I < N

If 0 < n — N ^ m ^ / z then a^ ^ a ,̂ so from (11) we
find that

S a;K(m - n) ^ 47t-2e(N + l)a; ^ 27^-2a;,
n—N.^m<n

since N + 1 > (26)-1. Hence

(13) S <»:2 < 1 TC2 S ^{rn - n)a^.
n>N ^ n>N

n—N^m^n
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Combining (9) with (12), (13), we find that

f |/12 ^ 7^6M2 S a;a:6:(m - n).
t/ E w. n=0

But 27i2 < 20, so by (10) our proof is complete.
We note that once (9) is established, the remainder of the

proof can be effected in several ways. In proving (8), Hardy
and Littlewood [3] established that

Ciri^.i^(^+i)^-2.
*/u n=0

One can modify their proof of this (see also Keogh [5]) to
show that

s ^( s ^2 < cf\\r\2.
n>6-1 \0<m<n / v

Theorem 1 follows easily from the above and (9), apart from
the values of constants.

To prove Theorem 2 we require the following result of
A. Baernstein [2].

LEMMA. — For fe L^T), 0 ^ 6 < 1 letf^-{Q) = sup f ( f l ,
2 E J E

where the supremum is taken over all measurable sets E c 0, 1)
such that [E| ==26. For two functions r, s e L^T), the fol-
lowing are equivalent:

(a) For all 6 e JO, i\ r+(6) ^ 5+(6);
L 2 /

(6) For any ^ ((), convex and increasing on [0, oo), we
have r^H) ^r^i)-

In the language of this lemma, we find from Theorem 1
that (^^(O) < (20M|/•*|2)+(e). Hence

W\fn\i < ll'F(20M|/•*|2)||l.

However, with a little more care we obtain the full strength
of Theorem 2. Let E s [0, 1) be a set with [E| =26. Put
r = l/p/E, s == 20M!!|/<*|2X(-9,e). Then by Theorem 1, r+ ^ s+,
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so by the Lemma above, ||+(r)i|i ^ ||+0?)||i. If ^(0) == 0,
then this asserts that

X^i2) ^ /.^(2oM^T).
To obtain this for general ^ we have only to add a constant
to both sides of the inequality. This completes the proof
of Theorem 2.
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