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SOME REMARKS ON Q-ALGEBRAS
par Nicolas Th. VAROPOULOS

0. Introduction.

We shall follow J. Wermer [1] and say that R a Banach
algebra i1s a Q-algebra if there exists A a uniform algebra
(i.e. a closed subalgebra of C(X) for some compact space X;
in our definition we do not necessarily assume that a uniform
algebra contains an identity) and I ¢ A a closed ideal of A
such that R =~ A/L

In this note we shall prove a number of (fairly superficial)

results on Q-algebras. The first thing we do is to state the
following :

Criterion.
Let R be a commutative Banach algebra, then R is

a Q-algebra if and only if there exists C > 0 some constant
with the following property :

— For any p > 1 positive integer, any choice
Xy, Xy, ..., TER
of p elements in the unit ball of the algebra and any
P(z, 2z, ..., %)

homogeneous polynomial of p variables (of positive degree)
we have: ' .

HP<x1’ Tgy o0y xp)“ll < CdeGP“PHw
where

Pl = sup [Play, 2 -y 5

1$J<P
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The above criterion i1s very close to the criterion already
developed by A.M. Davie [2], the proof is also analogous.

We introduce now the following:

DerinttioNn 0.1. — Let R be a Banach algebra, we shall
say that R s an injective algebra if the linear mappzng induced
by the algebra multiplication. :

m:RQR-—sR (rh(x'@y),cz‘wg;m,yeR)

is continuous for the injective norm of the tensor product R ® R

(3]

We can state then the -following :

- Turorem 1. — Every ’commu‘tative injective algeb‘ra i'is‘ a
Q-algebra.

To state our next theorem we must start with a reminder
on intermediate spaces (cf. e.g. [4]). For us an interpolation
pair of Banach algebras will be a' pair of complex Banach
algebras R0 and R! continuously and algebraically embedded
in a complex topological algebra V in such a way that the
subspace R° + R! =« V of V is a subalgebra of V.
We shall denote by | |, and | |, the norms of R®
and R! respectively, the space R 4+ R! (= V) ean then
be assigned with a naturel Banach norm (cf. [4] § 1). We
shall assume that with that norms R° 4 R! becomes a
Banach algebra.

We can consider then as in [4] § 2% = Z(Ro, Rl) the space
of RO+ R valued functions f(z) 'defined 'in the strip
{z€e C; 0 < Rez < 1} continuous and bounded with respect
to the norm of R 4 R! analytlc in {ze G; 0 < Rez < 1}
and such that f(it) € R® is Ro-contitiuous and tends to zero
as |t| > oo, f(1 + it) e R* 1s R!-continuous and tends to
zero as |t| — oo. ” '

The space ‘% is then an algebra under pointwise multlph-
cation and if we norm 1t by:

(1) If s = max [sup [f(it)lo, sup e i0)l ]

it becomes a Banach algebra.
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For every real number s (0 < s < 1) ‘we denote then by
To, = {f e Z; f(s) =0} (cf. [4], §3) and we define: R, =%/,
which is also then a Banacfl algebra, we call R, the s-mter-
mediate algebra between RO and R

As an example we may con51der the algebras

(1< + oo)

of p- -summable (or bounded for p=-+ oo) sequences under

pointwise multiplication. It is well known then (ef. [4] § 13)

that for two values of p = a, B(x < B) the two algebras [*

and [? form an interpolation pair (V = [*) the intermediate

algebras obtained then are all the algebras ', « < vy < B.
We can now state our next

Taeorem 2. — Let R° ‘and- R be two (Q-algebras that
form an interpolation pair then, for all 0 < s < 1 the inter-
mediate algebra R, is also a (Q-algebra.

We can finally state the following :

Tueorem 3. — Let R be a Q-algebra and let C > 0 and
o > 0 be two constants and fe R some element of the algebra
such that

If*la < Cn® (n > 1),

For any polynomial of one variable then P(z) = 3 az"
and any positive ¢ > 0 we have

2 a, nza+s

n=1

IP()ln < G sup

where C; is a constant that depends only on C, « and «.
This theorem is of course a partial generalization of the
theorem of J. Wermer [1].
Let us denote by A, (@ > 0) the algebra of functions on
T = R(mod 2=) of the form

+00 : +o

f0)= X ae; 3 la@ 4+ 1]v*) < +

V_.--m V=

we have then.
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Prorosition 0.1.

(i) A, is an injective algebra for all o > v_-—;—; and it is not
injective for all 0 < « < N | :

2
(ii) & is an injective algebra. (This has been pointed out
to me by S. Kaijser).
We have finally the followmg

COROLLARY
(i) A; is a Q-algebra for all « > —;-
(11) A, s not a Q-algebra for all « <-—;—- (The special case

= 0 s due to J. Wermer [1]).

111) I? is a Q-algebra for all 1 < p < oo (The special case
1 < p <2 is already due to A. M. Davie [2]).

1. Proof of the criterion.

The criterion is a direct consequence of the following lemma
which is due to I. G. Craw.

Craw’s lemma.

Let R be a commutative Banach algebra and let us suppose
that there exist two constants M > 0 and & > 0 such that
for any choice of p elements in the 3-ball of R, 2, a, ..., z,
(lz] <38,1<j<p) and any P(z, 2, ..., z,) polynomial
with P(O) = O we have

“P(xl, Loy « ooy xp)“l\ < MSUP {IP(ZI, Bgy ey zp)l;
5l <11 << ph
Then R is a Q-algebra. ,

The proof of the lemma is easy and can at any rate be
found in [2]. It is also easy to show that if an algebra satisfies
the conditions of our criterion it also satisfies the conditions
of Craw’s lemma. It is finally trivial to verify that any Q-
algebra satisfies the conditions of the criterion with C =1
already. For a more elaborate treatment of a very analogous
situation we refer the reader to [2]. For an even more precise
theorem cf. [7].
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2. Injective algebras.

Proposition 2.4.

(1) Let R be a Banach algebra and let us suppose that there
exists some constant C such that for any fe R there exist
S, P, Q. eR' (n > 1) such that:

S, > 171 3 IPIIQ < €

-]

<S) $y> == 2 <Pm_m><Qm y>, V.’B, ye R

n=1
then R is an injective algebra.

(i1) Let R be a commutative injective algebra then there exists
a constant K such that for any n > 1 and any S e R, (= the

unit ball of the dual of R) there exists p € M(R;) some Radon
measure such that

@ Sma...md = [ T, 3. CT, 2 dy(T),

Vo, %, ..., Z, € R;
and |u| < K~

Proof. — Both (i) and (ii) are immediate consequences of the
definition of the ®¢-norm.

For (i1) observe that we may suppose w.l.o.g. that
T = Xy = 00 = @y

(2) is then obtained by an obvious symmetrization process,

based on the fact that there exists a numerical constant ¢ > 0

such that for all n > 1 we can express the monomial
. R n n n

%% . . .2, asasum of powers ) 7\,<2 oc}z,) where ) |« <1

J=1 :

.8 J=1

and Z[A] < C‘n; e.g. Zz = <ZI _;lzzy B <ZI —2— ?)s-

Proof of Theorem 1. — Liet P ‘be a homogeneous polynomial
of p variables and let g, #;, ..., z,€ R be p elements
of the unit ball of the injective algebra R we have then
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for any S e R; using (2):

I<Sa P(xl’ Ty ooy x;)‘}]=tﬁip}((’l‘, xlil’ <T’ wz); ey
(T, z,») dp(T) < lul [Pl s K2 |P]..

+/Fhis.‘together - with: our criterion proves the theorem.
-2.Obvious examples-of injective algebras are of course supplied
by the algebras of bounded differentiable (or lipschitz) func-
tions on any manifold, this is seen by our proposition 2.1 (i)
above. Less obvious ones can be given among the A, algebras,
indeed we have .

Proofofproposztwn 0.1 (1). — Let us denote by || |, = | |
the projective norm on the tensor product C(Iy) ® G(Iy)
where Iy(N > 1) denotes the finite space of 2N 4 1 points
In={—N, —N+1, ..., N} (for a systematic 'study of
I I cf. [5]) and let us denote by V the Banach space of
double sequences a = {a,,€ C; n, meZ} such that
[{asn€ C;|n|, |Im < N}|:5me 0(1) with its natural norm
(cf. [8]). The thing to observe about V is that for any double
sequence a we have

1
~+ 00 2
(L) lay < Coup( 3 lanalt)
where C is a numerical constant, this is a result of J. E. Little-
wood (for a proof cf. [6] ch. 6). Our proposition is now a
consequence of the following

LEmMMA. — Let « > 0 and let us denote

T — S, — g [ L1+l ]g

e = $ = o, i v, neg,
% v x+"l(1+l\'|)(1+lv~|) YRS

_‘ Vx—{a:v,veZ}el‘”
fo(2) = n§o“ﬁ|—'—"|_)& z*; Vf (3). = 20 a,z" ana,lytw in {|z] < 1}
We have then:
. (1) Ay isaninjective algebra if and only if T e V (Vz e l”).

) If « > %"then T® eV (Voel).
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@) If TP eV for all z€l” (gnd some, fized -« > 0)
then forail f, e H? (the H ardy class) there exists some 4; € H3
such that: amall a7 o

fa®a = %, lIMz < Cllfll 'P“z

where C is mdependent of for q> and 4;

(1v) If the. concluswn of (ul) holds then. ’a > -;-

Proof of Lemma — (1) 1s. an 1mmedlate conseguence of

proposition 2.1 apphed to z = e"‘° y = ¢, (ii) is an 0bv10us
double use of "(L).
.. To see.(iii) we first observe that the hypothesm that there
exists a constant C (dependmg only on «) such that for
every y = {ypv; v, ¢ > 0} el2®* (= the completion of
B ® P for the projective ®r-norm) we have:

| {55 v, 1 > OHagr < Clollylrsn
By passage to Fourier transforms this implies that for all

, ¢ € H® if we denote by 6 = f,9, = Y b, we have
y n=0

o n n(1 + n)?zn - < C x“a“f “2“‘?“

and zel® being arbitrary if we put z,= + 1 and take
the expectation we obtain that

© S 1B 4 < 400 CHIF T}

which proves ().

To see (iv) let us observe that the conclusion of (i) simply
says that H2? can be assigned with a commutative unitary
Banach algebra structure for wich the mappings

M.: f—>fuz) (2 <1)

are multiplicative linear functionals. But this implies that
|]M|] <1 and that therefore we have

Ifaz)] < Ifls YfeH? |3 <1
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and this is clearly only poss1ble if «> —g— (it suffices to
1
try it on f(z) 2 n (log n)g ez")

n=1
Proof of proposition 0.1 (ii). — Let us use the standard
notation and denote by I! ® I the completion of I ®, I;
! ® I can then be identified with a space of double sequences
= {ayu; v, ¢ > 0} and to prove our proposition it suffices
then to show that for all « in the unit ball of P8I we

have i |eyy] < 1. But by the very definition of the ®,-

v=0
norm we see that this fact is an immediate consequence of

the following

Lemma. — Let us denote by G = Z(m) the group of integers
(mod m) where m is an arbitrary integers and let fe CG(G)
be a function on G (i.e. a choice of m values). There exists

then F eV = CG(G) ® G(G). such that

F(gl’ ga) =0, Vg, ngG & F 85
F(g,g) =1f(g); IFlv < Ifl..

Proof of the lemma. — Let us denote by G the character
group of G, it suffices to set then

Flg, ) =1(8) (5 3, &xR); g heC.

(For a general treatment of the algebra V = G(G)® G(G)
cf. [5].)

3. Proofs of | theorems 2 and 3.

Indeed this is an immediate consequence of the definition
R, = Z/T, (cf. § 0) provided that we prove that Z is a
Q-algebra.

But this fact is a consequence of our criterion applied to
the norm of % (cf.[1]) since both R° and R! are by hypo-
thesis Q- algebras )
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We shall now prove the following:

Prorosiion 3.4. — Let H be some Hzlbert space and let
T € 4(H) be. such: that
|]T"[] < en* (n >
where ¢ > ‘0 and « > 0. For every '€ > 0 then and every
P(z) = Z a,z* we have

“n=1

2 a,n2+ez"

C\l P2a+¢“»

(4) P(T)| <

|z| 1
where C is a constant ‘that’ depends only on ¢, « and «.

Proof. — In the proof we may suppose that 0 < « < %
and 2a¢ 4+ ¢ < 1. for otherwise. the proposition is an easy
consequence of classical results on Riesz potentials and Bern-
stein’s theorem [6]. ,

Let us as usual denote by T* the adjoined operator of
T and by (,) the scalar product in H, let also Ae H be
some fixed element of H and let us define: «

L]

F() = 3 A7 5 (Them € L(T; )

F, () = 3 A (Trhjen ¢ LT; H)

n=o0

(cf. (7) bellow) where we deﬁne the Af by:

(1_—‘7:) ‘H“EAﬁ B # ——1"—2’-—3’ ’(le < 1)

L R=0 e ot '
and where L¥(T; H) denotes of course the space of H- valued
L? functions on T. Taking into account then the obvious
ldentlty

"‘Ag+~r+1—_— 3 AgA;r"“

© PAg=n .

valid for all gdmissil;le B and vy we see that :

(B) . ®(t) = <F, (1), F(t)> = 3 A-2%~ (Th, hpe™
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and that L 0 T N It AR LY

RS

L ® t)eug'r y <z)um\__{;_,,w_,‘

where C depends only on ¢, and e. But (5) and (6) 1mply
then that G
L

KP(T)h, B ——-f P*ae"’)@(e*‘*) ) <

< Gjp* II.,

where P*(e%) = 3 (Ar**=)-lae™; but if we ’tel(emtbeh

into account that for every‘a‘dmlsmhle B we have:

M., - A= (3+1){1+0< >l

‘We see that . [P*|. < K|Pgeel (where, K depends .only
on « and e) and our result follows.

. Theorem 3 follows now’at once ‘from' proposmon 3.4 if
wé use the technique in [1] of representmg a Q-algebra’ as
an algebra of operators in some appropriate Hilbert space.
A direct proof 'of Theorem 3'in the same' lines as above can

also be given, but we felt that proposmon 3 1 presented some
independent intereést.’

Proof of corollary 2.(i1). — If we suppose that 0 < « < -%—

and apply theorem 3 to the element f( ) = e“‘eA(
it is then clear that |f*]i. = n® (n > 1), ‘we conclude there-
fore that if A, ‘were a Q algebra we would have

IIP(e"”)IlA ClPyate(e” )llm

for every polynom1al P which is mamfestly*false because it
1mplles the false assertlon Aseie S A, (for all & > 0) [6].

)3

The:case a = —Q- is more. dehcate, of: [7]

It is worth remarkmg perhaps that a more elaborate tech
nique in the proof of proposition 3.1 can improve the growth
n?*+ in the second member of (%) (an,d therefore also in
Theorem 3) to n®* (log'n)!** or &éven to n2® log n(log log nji+
e.c.t. The exponent 2z of n** in Theorem 3 is however best
possible i.e. it'cannot be mplaced by anything smaller; indeed
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if it could, the argument we used to prove corollary 2 (ii)

and the fact that A, is a Q-algebra for all « < % would
supply a contradiction.

To conclude we remark that the other parts of the corollary
are immediate, (i) is a consequence of Theorem 1 and propo-
sition 0.1 (1); and (i1) 1s obtained by interpolating between
I and [* which are Q-algebras.
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