Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds

Annales de l'institut Fourier, tome 22, nº 1 (1972), p. 271-286 http://www.numdam.org/item?id=AIF_1972_22_1_271_0

© Annales de l'institut Fourier, 1972, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 22,1 (1972), 271-286

CONSTRUCTING MANIFOLDS BY HOMOTOPY EQUIVALENCES I. AN OBSTRUCTION TO CONSTRUCTING PL-MANIFOLDS FROM HOMOLOGY MANIFOLDS

by Hajime SATO

0. Introduction.

A homology manifold can be given a canonical cell complex structure, where each cell is a contractible homology manifold. In this paper, given a homology manifold M, we aim at constructing a PL-manifold with a cell complex structure, where each cell is an acyclic PL-manifold, which is cellularly equivalent to the canonical cell complex structure of M. We obtain a theorem that, if the dimension n of M is greater than 4 and if the boundary ∂M is a PL-manifold or empty, there is a unique obstruction element in $H_{n-4}(M;\mathcal{H}^3)$, where \mathcal{H}^3 is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the manifold is compact, the constructed PL-manifold is simple homotopy equivalent to M.

I have heard that similar results have been obtained independently and previously by M. Cohen and D. Sullivan, refer [1] and [9].

I would like to thank Professors V. Poénaru and F. Laudenbach for their kind support.

1. Definition of homology manifold with boundary(1).

Let K be a locally finite simplicial complex and let σ be a simplex of K. We define the subcomplexes of K as follows.

^{(&}lt;sup>1</sup>) We can refer the chapter 5 of the book : C.R.F. Maunder, "Algebraic topology", Van Nostrand, London (1970).

$$St(\sigma, K) = St(\sigma) = \{\tau \in K, \exists \alpha > \tau, \alpha > \sigma\}$$

$$\partial St(\sigma, K) = \partial St(\sigma) = \{\tau \in St(\sigma), \tau > \sigma\}$$

$$Lk(\sigma, K) = Lk(\sigma) = \{\tau \in St(\sigma), \tau \cap \sigma = \emptyset\}$$

We write by K', K", the first and the second barycentric subdivisions of K.

Let M be a locally finite full simplicial complex of dimension n. We say that M is a homology manifold of dimension n if the following equivalent condition holds :

LEMMA 1. – The followings are equivalent :

i) for any simplex σ of dimension p,

 $\widetilde{\mathrm{H}}_{i}(\mathrm{L}k(\sigma,\mathrm{M})) = \widetilde{\mathrm{H}}_{i}(\mathrm{S}^{n-p-1}) \quad \mathrm{or} \quad 0.$

ii) for any simplex σ of dimension p,

 $\widetilde{H}_i(St(\sigma, M)/\partial St(\sigma, M)) = \widetilde{H}_i(S^n)$ or 0.

iii) for any point x of |M|, where |M| denotes the underlying topological space of M,

$$H_i(|M|, |M| - x) = \widetilde{H}_i(S^n)$$
 or 0.

The definition is invariant by the PL-homeomorphism in the category of simplicial complexes.

LEMMA 2. – For any p-simplex σ of M, Lk(σ , M) is a compact (n - p - 1)-dimensional homology manifold.

Proof. – It is compact because M is locally finite. Let τ be a q-simplex of $Lk(\sigma, M)$. We have

$$Lk(\tau, Lk(\sigma, M)) = Lk(\tau\sigma, M)$$
.

Hence $\widetilde{H}_i(Lk(\tau, Lk(\sigma, M))) = \widetilde{H}_i(S^{n-p-q-1})$ or 0, which completes the proof.

Let us define the subset ∂M of M by

$$\partial M = \{ \sigma \in M \mid \widetilde{H}_i(\sigma, M) = 0 \}$$

We call it as the boundary of M. If $\partial M = \phi$, the manifold is classical

and the following Poincaré duality is well known (see for example [7; (7,4)]).

LEMMA 3. – Let M be an orientable compact n-dimensional homology manifold without boundary. Let $A_1 \supset A_2$ be subcomplexes of M. Then we have the isomorphism

$$H'(A_1, A_2) = H_{n-i}(|M| - |A_2|, |M| - |A_1|).$$

Using this we will prove the followings. By lemma 2, for psimplex σ , $Lk(\sigma, M)$ is a homology manifold and we can define $\partial Lk(\sigma, M)$.

LEMMA 4. $- If \partial Lk(\sigma, M) \neq \emptyset$, $Lk(\sigma, M)$ is acyclic and $\partial Lk(\sigma, M)$ is an (n - p - 2)-dimensional homology manifold such that

$$\widetilde{H}_{i}(\partial Lk(\sigma, M)) = \widetilde{H}_{i}(S^{n-p-2}) .$$

PROPOSITION 5. – If $\partial M \neq \emptyset$, ∂M is a subcomplex and is an (n-1)-dimensional homology manifold without boundary.

We prove that lemma 4 for n = k implies proposition 5 for n = k and proposition 5 for $n \le k$ implies lemma 4 for n = k + 1. Since lemma 4 holds for n = 1, we can continue by induction.

Lemma $4_{n=k} \Rightarrow$ Proposition $5_{n=k}$. Let σ be a *p*-simplex of ∂M and let $\sigma_0 < \sigma$. Then we can write $\sigma = \sigma_0 \sigma_1$. We have

$$\widetilde{H}_{*}(Lk(\sigma_{1}, Lk(\sigma_{0}, M))) = \widetilde{H}_{*}(Lk(\sigma, M)) = 0 ,$$

which shows that $\sigma_1 \in \partial Lk(\sigma_0, M)$ and so $\partial Lk(\sigma_0, M) \neq \emptyset$. By the lemma 4, $Lk(\sigma_0, M)$ is acyclic and it follows that $\sigma_0 \in \partial M$. Hence ∂M is a well-defined subcomplex of M. A *q*-simplex τ of $Lk(\sigma, M)$ is in $Lk(\sigma, \partial M)$ if and only if $\widetilde{H}_i(Lk(\tau\sigma, M)) = 0$. Since

$$Lk(\tau\sigma, M) = Lk(\tau, Lk(\sigma, M))$$

it is equivalent to that τ belongs to $\partial Lk(\sigma, M)$. Hence the complex $Lk(\sigma, \partial M)$ coincides with $\partial Lk(\sigma, M)$. By lemma 4_k , we have $\widetilde{H}_i(\partial Lk(\sigma, M)) = \widetilde{H}_i(S^{k-p-2})$, which shows that ∂M is a (k-1)-dimensional homology manifold without boundary.

Proposition $5_{n \leq k} \Rightarrow$ Lemma $4_{n=k+1}$. Let M be a homology manifold of dimension k + 1. Let σ be a p-simplex of M. By lemma 2,

 $Lk(\sigma, M)$ is a homology manifold of dimension k - p. By proposition 5 for n = k - p, $\partial Lk(\sigma, M)$ is a (k - p - 1)-dimensional homology manifold without boundary if it is not empty. Let $2Lk(\sigma, M)$ be the double of $Lk(\sigma, M)$, i.e.,

$$2Lk(\sigma, M) = Lk(\sigma, M) \bigcup_{\substack{\partial Lk(\sigma, M)}} Lk(\sigma, M) .$$

Let τ be a q-simplex of $2Lk(\sigma, M)$. If τ is not a simplex of $\partial Lk(\sigma, M)$, clearly,

$$\widetilde{\mathrm{H}}_{i}(\mathrm{L}k(\tau,2\mathrm{L}k(\sigma,\mathbb{M})))=\widetilde{\mathrm{H}}_{i}(\mathrm{L}k(\tau,\mathrm{L}k(\sigma,\mathbb{M})))=\widetilde{\mathrm{H}}_{i}(\mathrm{S}^{k-p-q-1})$$

If τ is a simplex of $\partial Lk(\sigma, M)$, we have

 $Lk(\tau, 2Lk(\sigma, M))$

$$= \operatorname{Lk}(\tau,\operatorname{Lk}(\sigma,\operatorname{M})) \bigcup_{\operatorname{Lk}(\tau,\partial\operatorname{Lk}(\sigma,\operatorname{M}))} \operatorname{Lk}(\tau,\operatorname{Lk}(\sigma,\operatorname{M})) \ .$$

By definition $\widetilde{H}_i(Lk(\tau, Lk(\sigma, M))) = 0$ and by the proposition 5 for n = k - p - 1, we have

$$\widetilde{\mathrm{H}}_{i}(\mathrm{L}k(\tau,\partial\mathrm{L}k(\sigma,\mathrm{M}))) = \widetilde{\mathrm{H}}_{i}(\mathrm{S}^{k-p-q-2}) \; .$$

Hence in any case $\widetilde{H}_i(Lk(\tau, 2Lk(\sigma, M))) = \widetilde{H}_i(S^{k-p-q-1})$, which shows that $2Lk(\sigma, M)$ is a (k - p)-dimensional homology manifold without boundary. Applying lemma 3, we have

$$\mathrm{H}^{i}(\mathrm{L}k(\sigma,\mathrm{M}), \partial \mathrm{L}k(\sigma,\mathrm{M})) = \mathrm{H}_{k-p-i}(|\mathrm{L}k(\sigma,\mathrm{M})| - |\partial \mathrm{L}k(\sigma,\mathrm{M})|)$$
.

Notice that for any homology manifold M, $H_i(|M| - |\partial M|) = H_i(M)$. Hence $H^i(Lk(\sigma, M), \ \partial Lk(\sigma, M)) = H_{k-p-i}(S^{k-p})$ or $H_{k-p-i}(pt)$. But if it is isomorphic to $H_{k-p-i}(S^{k-p})$, we have

$$H^{0}(Lk(\sigma, M), \partial Lk(\sigma, M)) = Z,$$

which contradicts to the definition that $\widetilde{H}_0(Lk(\sigma, M)) = 0$. Hence $Lk(\sigma, M)$ is acyclic and consequently $\widetilde{H}_i(\partial Lk(\sigma, M)) = \widetilde{H}_i(S^{k-p-1})$, which completes the proof.

2. Cell decomposition of a homology manifold.

We mean by a homology cell (resp. pseudo homology cell) of dimension n or homology n-cell (resp. pseudo homology n-cell) a

compact contractible (resp. acyclic) homology manifold of dimension n with a boundary, the boundary being a homology sphere but not necessarily simply connected. A (pseudo) homology cell complex is a complex K with a locally finite family of (pseudo) homology cells $C = \{C_{\alpha}\}$, such that :

i) $K = \bigcup C_{\alpha}$

ii) C_{α} , $C_{\beta} \in C$ implies ∂C_{α} , $C_{\alpha} \cap C_{\beta}$ are unions of cells in C

iii) If $\alpha \neq \beta$, then Int $C_{\alpha} \cap$ Int $C_{\beta} = \emptyset$.

If a homology manifold M has a (pseudo) homology cell complex structure, we call it a (pseudo) cellular decomposition of M. Two (pseudo) homology cell complexes $K = \bigcup C_{\alpha}$, $K' = \bigcup C'_{\alpha}$ are isomorphic if there exists a bijection $k : C \to C'$ such that both k and k^{-1} are incidence preserving. In such a case we say that they are cellularly equivalent.

Now we have the following :

PROPOSITION 1. – If two finite homology cell complexes K, K' are cellularly equivalent, then they are simple homotopy equivalent.

We can define a simplicial map $f: K \to K'$ inductively by the dimension of the cells. Hence it is sufficient to prove the following lemma.

LEMMA 2. – Let A_j^i (j = 1, 2, ..., r) be subcomplex of simplicial complexes B^i for i = 1, 2 respectively such that $B^i = \bigcup A_j^i$, and let $f: B^1 \rightarrow B^2$ be a simplicial map. For any subset s of $\{1, 2, ..., r\}$, let $A_s^i = \bigcap_{j \in s} A_j^i$ and let f_s be the restriction of f on A_s . If f_s is a mapping from A_s^1 to A_s^2 which is a simple homotopy equivalence for any s, then f itself is a simple homotopy equivalence.

Proof. – First suppose that r = 2. We have the exact sequence $0 \rightarrow C_*(A_1^i) \rightarrow C_*(B^i) \rightarrow C_*(A_1^i \cap A_2^i)) \rightarrow 0$

of the chain complexes. Let $g: A_2^1/(A_1^1 \cap A_2^1) \to A_2^2/(A_1^2 \cap A_2^2)$ be the map induced by f and let us denote by w() the Whitehead torsion. Then by theorem 10 of [8], we have

$$w(f) = w(f_{\{1\}}) + w(g)$$
.

Remark here that f and g can easily be seen to be homotopy equivalences. Further we have the exact sequence

$$0 \rightarrow \mathrm{C}_{\ast}(\mathrm{A}_{1}^{i} \cap \mathrm{A}_{2}^{i}) \rightarrow \mathrm{C}_{\ast}(\mathrm{A}_{2}^{i}) \rightarrow \mathrm{C}_{\ast}(\mathrm{A}_{2}^{i}/(\mathrm{A}_{1}^{i} \cap \mathrm{A}_{2}^{i})) \rightarrow 0$$

which shows that

$$w(f_{\{2\}}) = w(f_{\{1,2\}}) + w(g)$$
.

Since $w(f_{\{1\}}) = w(f_{\{2\}}) = w(f_{\{1,2\}}) = 0$, we have w(f) = 0. If $r \ge 3$, we can repeat this argument, which shows that f is a simple homotopy equivalence for any r.

Now let σ be a simplex of a locally finite simplicial complex K. We denote by $b_{\sigma} \in K'$ its barycenter. We define dualcomplex $D(\sigma)$ and its subcomplex $\delta D(\sigma)$ which are subcomplexes of K' by

$$D(\sigma) = D(\sigma, K) = \{ b_{\sigma_0} \dots b_{\sigma_r} | \sigma < \sigma_0 < \dots < \sigma_r \in K \}$$

$$\delta D(\sigma) = \delta D(\sigma, K) = \{ b_{\sigma_0} \dots b_{\sigma_r} | \sigma \nleq \sigma_0 < \dots < \sigma_r \in K \}$$

The followings are easy to see.

i) if
$$\sigma < \sigma' \Rightarrow D(\sigma) \supset D(\sigma')$$

ii)
$$D(\sigma) = b_{\sigma} * \delta D(\sigma)$$

- iii) $\delta D(\sigma) = \bigcup_{\tau} D(\tau)$ where $\tau > \sigma$ and $\tau \neq \sigma$
- iv) $\delta D(\sigma)$ is isomorphic to $Lk(\sigma, K)'$.

Let M be a homology manifold. For each simplex

$$\sigma = b_{\sigma_0} b_{\sigma_1} \dots b_{\sigma_r}$$

of M', where $\sigma_0^{n_0} < \sigma_1^{n_1} < \cdots < \sigma_r^{n_r}$ are a set of simplexes of M, we have the duall cell $D(\sigma, M')$. It is a compact homology manifold by lemma 2 of § 1. Further we have

$$\begin{split} \delta \mathrm{D}(\sigma, \mathrm{M}') &\cong \mathrm{L}k(\sigma, \mathrm{M}) \\ &\cong \mathrm{L}k(\sigma, \sigma_r) * \mathrm{L}k(\sigma_r, \mathrm{M}) \\ &\cong \mathrm{S}^{n_r - r - 1} * \mathrm{L}k(\sigma_r, \mathrm{M}) \\ &\cong \mathrm{L}k(\sigma_r, \mathrm{M}) \times \mathrm{D}^{n_r - r} \cup (\mathrm{L}k(\sigma_r, \mathrm{M}) * (pt.)) \times \mathrm{S}^{n_r - r - 1} , \end{split}$$

where \cong denotes that both sides are PL-homeomorphic and let

$$d_{\sigma}: \delta D(\sigma, M') \rightarrow Lk(\sigma_r, M) \times D^{n_r - r} \cup (Lk(\sigma_r, M) * (pt)) \times S^{n_r - r - 1}$$

be the PL-homeomorphism, which we call the trivialization of $\delta D(\sigma, M')$. If σ is not in ∂M , $\delta D(\sigma, M')$ is a homology manifold whose homology groups are isomorphic to those of S^{n-1} , boundary being empty. If $\sigma \in \partial M$, $\delta D(\sigma, M')$ is an acyclic homology manifold with the boundary $Lk(\sigma, \partial M'')$ which is PL-homeomorphic to $\partial Lk(\sigma_r, M) \times D^{n_r-r} \cup (\partial Lk(\sigma_r, M) * (pt.)) \times S^{n_r-r-1}$. The union $St(\sigma, \partial M'') \cup \delta(\sigma, M') = \partial D(\sigma, M')$ is a homology manifold without boundary whose homology groups are isomorphic to those of S^{n-1} . Hence in any case $D(\sigma, M')$ is a homology cell. The union $\cup D(\sigma, M')$, σ moving all simplexes of M', gives the cellular decomposition of M, which we call the canonical one.

We define the handle M_i of index *i* by the disjoint union

$$\mathbf{M}_i = \bigcup \mathbf{D}(b_{a^{n-i}})$$

where σ changes all (n - i)-simplexes of M. We have $\delta D(b_{\sigma}) = \bigcup D(\tau)$, where $\sigma < \tau \in M'$, and it gives a cellular decomposition of M_i . We can devide the boundary as $\delta D(b_{\sigma}) = LD(b_{\sigma}) \cup HD(b_{\sigma})$, which consists of unions of celles attached to the handles of lower indexes and higher indexes. We define them as

$$LD(b_{\sigma}) = \delta D(b_{\sigma}) \cap \left(\bigcup_{j < i} M_{j} \right)$$

$$HD(b_{\sigma}) = \delta D(b_{\sigma}) \cap \left(\bigcup_{j > i} M_{j} \right) .$$

Let $\tau = b_{\tau_0} b_{\tau_1} \dots b_{\tau_r} \neq \sigma$ be a simplex of M', where

$$\tau_0^{m_0} < \tau_1^{m_1} \cdots < \tau_r^{m_r} \in \mathbf{M} \ .$$

Then $D(\tau) \in LD(b_{\sigma})$ if and only if $\tau_r > \sigma$ and $D(\tau) \in HD(b_{\sigma})$ if and only if $\tau_0 < \sigma$. It is easy to see that

$$\begin{split} & \mathrm{LD}(b_{\sigma}) \cong \mathrm{L}k(\sigma,\mathrm{M}) \times \mathrm{D}^{n-i} \\ & \mathrm{HD}(b_{\sigma}) \cong (\mathrm{L}k(\sigma,\mathrm{M}) * (pt.)) \times \mathrm{S}^{n-i-1} \end{split}$$

and these isomorphism together give the trivialization $d_{b_{\sigma}}$ of $\delta D(b_{\sigma})$.

Let Δ^{n-i} be the standard (n-i)-simplex and let

$$\partial \Delta^{n-i} = \mathbf{S}^{n-i-1} = \bigcup_{\alpha} \mathbf{C}_{\alpha}$$

be the cell decomposition defined as above, which we call the standard decomposition of S^{n-i-1} . The decomposition

$$HD(b_{\sigma}) = \cup D(\tau)$$
.

is equal to the standard product decomposition

$$\{Lk(\sigma, M) * (pt)\} \times \left(\bigcup_{\alpha} C_{\alpha}\right).$$

All the cells of $HD(b_{\sigma})$ which is not contained in $LD(b_{\sigma}) \cap HD(b_{\sigma})$ is written as

$$(Lk(\sigma, M) * (pt.)) \times C_{\alpha}$$

Finally we define $M_{(i)}$ the subcomplex of M composed of handles whose indexes are inferior or equal to *i*, that is,

$$\mathbf{M}_{(i)} = \bigcup_{j \leqslant i} \mathbf{M}_j \subset \mathbf{M} \ .$$

Then we have

$$\mathbf{M}_{(i)} = \mathbf{M}_{(i-1)} \cup \mathbf{M}_i$$

attached on $\bigcup_{\sigma} \text{LD}(b_{\sigma})$, σ being (n - i)-simplexes.

3. PL-homology spheres.

We call an *n*-dimensional homology manifold whose homology groups are isomorphic to those of S^n a homology *n*-sphere or homology sphere of dimension *n*. If it is a PL-manifold, it is called a PLhomology *n*-sphere.

If dimension is smaller than 3, a homology sphere is the natural sphere. And so any 3-dimensional homology manifold is a PL-manifold. In order to study higher dimensional cases we define the group \mathcal{H}^3 .

Let X^3 be the set of oriented 3-dimensional PL-homology spheres. Note that any homology sphere is orientable. We say that $H_1^3 \in X^3$ is equivalent to $H_2^3 \in X^3$ if $H_1^3 \# (-H_2^3)$ is the boundary of an acyclic PL-manifold, where # denotes the connected sum and

 $-H_2^3$ is H_2^3 with the orientation inversed. Let $\mathcal{H}^3 = X^3/\sim$ be the set of equivalence classes. By the connected sum operation, \mathcal{H}^3 is an abelian group. Let G be the binary dodecahedral group. The quotient space S^3/G is a PL-homology sphere whose class in \mathcal{H}^3 is non trivial.

On the contrary, for higher dimensions the following is known [2] [6] [4].

PROPOSITION 1 (Hsiang-Hsiang, Tamura, Kervaire). – Any PLhomology sphere is the boundary of a contractible PL-manifold, if the dimension is greater than 3.

We will prove the followings, where x is a point in S^i , $i \ge 1$.

PROPOSITION 2. – Let $H^3 \in X^3$, then $H^3 \times S^1$ is the boundary of a PL-manifold K^5 such that $H_*(K) \cong H_*(S^1)$ and the inclusion

$$j: S^{1} \hookrightarrow \{x\} \times S^{1} \hookrightarrow H^{3} \times S^{1} \hookrightarrow K$$

induce an isomorphism of the fundamental groups.

PROPOSITION 3. – Let $H^3 \in X^3$ and let $i \ge 2$. Then $H^3 \times S^i$ is the boundary of a PL-manifold K^{4+i} such that the inclusion

$$j: S^i \hookrightarrow \{x\} \times S^i \hookrightarrow H^3 \times S^i \hookrightarrow K$$

induces a homotopy equivalence.

Proof of Proposition 2. — Since any orientable closed 3-dimensional PL-manifold is a boundary of a 4-dimensional parallelizable PL-manifold (See by example [3]), we have a parallelizable PL-manifold L⁴ such that $\partial L = H$. By doing surgery we can assume that $\pi_1(L) = 0$. By the Poincaré duality theorem, $H_2(L)$ is free abelian. Let $p : L \times S^1 \rightarrow S^1$ be the projection. Then it induces an isomorphism of the fundamental groups. Remark that if we have a manifold K with boundary $H^3 \times S^1$ such that $H_2(K) \cong 0$ and the inclusion $j : S^1 \hookrightarrow K$ induces the isomorphism of the fundamental groups, then, by the Poincaré duality, we have $H_i(K) = 0$ for $i \ge 2$. Hence it is sufficient to kill $H_2(L \times S^1)$. Since $H_2(L)$ is free, so is $H_2(L \times S^1)$. We can follow the method of lemma 5.7 of Kervaire-Milnor [5]. Since $\pi_1(L) = 0$, the Hurewicz map of L, $\pi_2(L) \rightarrow H_2(L)$, is isomorphic,

and so is the Hurewicz map of $L \times S^1$

$$h: \pi_2(L \times S^1) \rightarrow H_2(L \times S^1)$$
.

Hence we can represent any element of $H_2(L \times S^1)$ by an embedded sphere. In our case the boundary $\partial(L \times S^1)$ is $H^3 \times S^1$ and it does not satisfy the hypothesis of that lemma. But since we have

$$H_2(\partial(L \times S^1)) = 0 ,$$

the result is the same.

Proof of Proposition 3. – Let K^5 be the 5-dimensional PLmanifold of proposition 2. Attach K with $H^3 \times D^2$ by the identity map on $H^3 \times S^1$. The constructed manifold W^5 is a simply connected PL-homology sphere, and by the generalized Poincaré conjecture, it is the natural sphere S^5 . It shows that we can embed H^3 in S^5 with a trivial normal bundle. By composing with the natural embedding $S^5 \leftrightarrow S^{4+i}$, we have an embedding of H^3 in S^{4+i} with the trivial normal bundle. The manifold N which is the complement of the open regular neighbourhood of H^3 in S^{4+i} has $H^3 \times S^i$ as the boundary and the inclusion $j : S^i \hookrightarrow N$ induces an isomorphism of homology groups, hence homotopy equivalence, which completes the proof.

4. An obstruction to constructing PL-manifold.

Let M be a homology manifold of dimension greater than 4. We assume that the boundary ∂M is a PL-manifold if it is not empty. As in § 2, it has the handle decomposition

$$\mathbf{M} = \mathbf{M}_{(n)} = \bigcup_{0 \le i \le n} \mathbf{M}_i$$

which has also the canonical homology cell complex structure. We want to construct a PL-manifold with a pseudo homology cell complex structure which is cellularly equivalent to M. Since $M_{(3)}$ is a PL-manifold, a problem first arises when we attach handles of index 4.

Let σ be an (n - 4)-simplex in the interior of M. Then $Lk(\sigma, M)$ is a 3-dimensional PL-homology sphere. Connecting σ by a path from

a fixed base point of M, we can give the orientation for the neighbourhood of σ , and hence for $Lk(\sigma, M)$.

Let $Lk(\sigma, M)$ be the class in the group \mathcal{H}^3 . To each (n - 4)-simplex σ of M, we define a function $\lambda(M) : \{(n - 4)\text{-simplex}\} \to \mathcal{H}^3$ by

$$\lambda(\mathbf{M})(\sigma) = \left\{ \{ Lk(\sigma, \mathbf{M}) \} \text{ if } \sigma \in \text{Int. M} \\ 0 \text{ otherwise.} \right\}$$

Then $\lambda(M)$ is an element of the chain group $C_{n-4}(M, \mathcal{H}^3)$. The coefficient may be twisted if the manifold is not orientable.

LEMMA 1. $-\lambda(M)$ is a cycle.

Proof. — Let μ be an (n - 5)-simplex. In the homology 4-sphere $Lk(\mu)$, the complex $\cup Lk(\sigma_i) * (x_i)$, where x_i denotes the barycenter of the 1-simplex $b_{\mu}b_{\sigma_i}$ and the sum extends to all the (n - 4)-simplexes such that $\sigma_i > \mu$, is a subcomplex whose complement in $Lk(\mu)$ is a PL-manifold. So the connected-summed PL-manifold $\Sigma Lk(\sigma_i)$ bounds an acyclic PL-manifold.

Hence $\lambda(M)$ represents an element $\{\lambda(M)\}$ of $H_{n-4}(M, \mathcal{H}^3)$. Now we have the theorem :

THEOREM. – Let M^n be a homology manifold with the dimension n > 4. Assume that ∂M is a PL-manifold if $\partial M \neq \emptyset$. If the obstruction class

$$\{\lambda(M)\} \in H_{n-4}(M, \mathcal{H}^3)$$

is zero, then there exists a PL-manifold N with a pseudo homology cell decomposition which is cellularly equivalent to M.

Proof. – Since $\{\lambda(M)\} = 0$, there exists a correspondence

$$g: \{(n-3)\text{-simplex}\} \rightarrow \mathcal{H}^3$$

such that

$$\sum_{\tau_i > \sigma} g(\tau_i) = \{ Lk(\sigma, M) \} \in \mathcal{H}^3 .$$

We will inductively construct PL-manifolds N_p and $N_{(p)} = \bigcup_{q \leq p} N_q$ with a pseudo homology cell decomposition $N_p = \bigcup E_{\alpha}$ where all

pseudo cells are PL-manifolds such that $N_{(p)}$ is cellularly equivalent to $M_{(p)}$.

(a) $p \le 2$. In this case, the manifolds N_p , $N_{(p)}$ and their cells are just equal to M_p , $M_{(p)}$ and their cells. That is, for any *j*-simplex σ , $j \ge n - 2$, we define the PL-manifolds as

$$E(b_{\sigma}) = D(b_{\sigma})$$

$$N_{p} = \bigcup \{E(b_{\sigma}) | \dim \sigma = n - p\} = \bigcup \{D(b_{\sigma}) | \dim \sigma = n - p\} = M_{p}$$
For any simplex $\mu \in M'$ such that $\mu > b_{\sigma}$, we put

$$E(\boldsymbol{\mu}) = D(\boldsymbol{\mu}) \ .$$

Hence $\partial E(b_{\sigma}) = \partial D(b_{\sigma}) = \cup D(\mu) = \cup E(\mu)$, and $N_{(p)} = M_{(p)}$.

(b) p = 3. Let τ_i be an (n - 3)-simplex. Let H_i^3 be the 3-dimensional PL-homology sphere which represents $g(\tau_i)$ and let K_i be the PL-manifold whose boundary is $H_i^3 \times S^{n-4}$ such that the inclusion $j: S^{n-4} \hookrightarrow K_i$ induces the isomorphisms of the fundamental groups and the homology groups, whose existence is shown by propositions 2 and 3 of § 3. Let $D^3 \subset H_i^3$ be a disc. Then $D^3 \times S^{n-4} \subset \partial K_i$. We have the PL-homeomorphism $\partial D(b_{\tau_i}) = S^2 \times D^{n-3} \cup D^3 \times S^{n-4}$. We define the PL-manifolds $E(b_{\tau_i})$ and N_3 by

$$E(b_{\tau_i}) = D(b_{\tau_i}) \bigcup_{D^3 \times S^{n-4}} K_i$$
$$N_3 = \bigcup E(b_{\tau_i})$$

where $D(b_{\tau_i})$ is attaced to K_i by the identity map on $D^3 \times S^{n-4}$. It is easy to see that $E(b_{\tau_i})$ is a homology cell. We will give the pseudo cell decomposition for $\partial E(b_{\tau_i})$. First we devide $\partial E(b_{\tau_i})$ as the union $\partial E(b_{\tau_i}) = LE(b_{\tau_i}) \cup HE(b_{\tau_i})$, where

$$\begin{split} \mathrm{LE}(b_{\tau_i}) &= \partial \mathrm{D}(b_{\tau_i}) - \mathrm{D}^3 \times \mathrm{D}^{n-3} \\ \mathrm{HE}(b_{\tau_i}) &= \partial \mathrm{K}_i - \mathrm{D}^3 \times \mathrm{S}^{n-4} = (\mathrm{H}_i^3 - \mathrm{D}^3) \times \mathrm{S}^{n-4} \; . \end{split}$$

Since $LE(b_{\tau_i}) = LD(b_{\tau_i})$, we give the cell decomposition by that of $LD(b_{\tau_i})$. We give the pseudo cell decomposition in the interior of $HE(b_{\tau_i})$ as

$$(\mathrm{H}_{i}^{3}-\mathrm{D}^{3})\times\mathrm{S}^{n-4}=(\mathrm{H}_{i}^{3}-\mathrm{D}^{3})\times\left(\bigcup_{\alpha}\,\mathrm{C}_{\alpha}\right)=\bigcup_{\alpha}\,(\mathrm{H}_{i}^{3}-\mathrm{D}^{3})\times\mathrm{C}_{\alpha}\;,$$

where $S^{n-4} = \bigcup C_{\alpha}$ is the standard decomposition. These decompositions of $LE(b_{\tau_i})$ and $HE(b_{\tau_i})$ fit together on their intersection and give the decomposition of $\partial E(b_{\tau_i})$, which is clearly cellular equivalent to that of $\partial D(b_{\tau_i})$. For each simplex $\mu > b_{\tau_i}$, $\mu \in M'$, we denote by $E(\mu)$ the pseudo cell of $\partial E(b_{\tau_i})$ which corresponds by the equivalence to $D(\mu) \in \partial D(b_{\tau_i})$. We have $\partial E(b_{\tau_i}) = \bigcup E(\mu)$. We define $N_{(3)}$ by

$$N_{(3)} = N_{(2)} \cup N_3$$

attached by the identity on $LE(b_{\tau_i})$. $N_{(3)}$ is cellularly equivalent to $M_{(3)}$.

(c) p = 4. Let σ be a (n - 4)-simplex. Let $\cup E(\mu) \subset \partial N_{(3)}$ be the union of pseudo cells such that $b_{\sigma} < \mu \in M'$, $\mu \neq b_{\sigma}$. Then by the definition, it is PL-homeomorphic to the PL-manifold

$$(Lk(\sigma) \# \Sigma(-H_i^3)) \times D^{n-4}$$

where H_i^3 represents $g(\tau_i)$ and the sum extends to all $\tau_i > \sigma$.

Since $\{Lk(\sigma)\} = \sum g(\tau_i)$ in \mathcal{H}^3 , the PL-homology 3-sphere

$$H_{\sigma}^{3} = Lk(\sigma) \# \Sigma(-H_{i}^{3})$$

is the boundary of an acyclic PL-manifold W_{σ}^4 . The union

$$W_{a}^{4} \times S^{n-5} \cup H_{a}^{3} \times D^{n-4}$$

is a PL-homology (n-1)-sphere. By the proposition 1 of § 3, it is the boundary of a contractible PL-manifold Y_{σ} . We define the PLmanifolds $E(b_{\sigma})$ and N_4 as

$$E(b_{\sigma}) = Y_{\sigma}$$
$$N_{a} = \bigcup E(b_{\sigma}) .$$

Further we define $LE(b_{\sigma})$ and $HE(b_{\sigma})$ by

$$LE(b_{\sigma}) = H_{\sigma}^{3} \times D^{n-4}$$
$$HE(b_{\sigma}) = W_{\sigma}^{4} \times S^{n-5}.$$

The pseudo cellular decomposition for $LE(b_{\sigma})$ is already defined and we give for $HE(b_{\sigma})$ by the product with the standard decomposition

of S^{n-5} . They give a pseudo cellular decomposition of

$$\partial \mathcal{E}(b_{\sigma}) = \mathcal{L}\mathcal{E}(b_{\sigma}) \cup \mathcal{H}\mathcal{E}(b_{\sigma})$$
,

which is cellularly equivalent to that of $\partial D(b_{\sigma})$. For each simplex $\mu > b_{\sigma}$, $\mu \in M'$, we define $E(\mu)$ by the pseudo cell which corresponds to $D(\mu)$ by this equivalence. We define $N_{(4)}$ by $N_{(3)} \cup N_4$ attached by the identity of $LE(b_{\sigma})$, which is cellularly equivalent to $M_{(4)}$.

(d) $p \ge 5$. Let σ be a *j*-simplex $j \le n - 5$. Let $\cup E(\mu) \subset \partial N_{(n-j-1)}$ be the union of pseudo cells such that $\mu > b_{\sigma}$, $\mu \neq b_{\sigma}$. Then by our definition, it is a PL-manifold

$$H_{a}^{p-1} \times D^{n-p}$$

where H_{σ}^{p-1} is a PL-homology (p-1)-sphere, where p = n - j. By the proposition 1 of § 3, H^{p-1} is the boundary of a contractible PL-manifold W_{σ}^{p} . We define $E(b_{\sigma})$ by

$$\mathbf{E}(b_{\sigma}) = \mathbf{W}_{\sigma}^{p} \times \mathbf{D}^{n-p} \ .$$

The other definitions are just similar to the case when p = 4.

Continuing this process, we obtain a PL-manifold $N = N_{(n)}$ which is cellularly equivalent to $M = M_{(n)}$. Q.E.D.

5. Simple homotopy equivalence.

By the theorem of § 4, for the same M, if the obstruction class is 0, we can construct a PL-manifold N. In this section, we prove the following.

THEOREM. – If M is compact, the constructed manifold N is simple homotopy equivalent to M.

Let $M^{(k)}$ denote the k-skelton of M. Let L be a subcomplex of $M^{(k)}$, we define the PL-submanifold $N^{(L)}$ of N by

$$\mathbf{N}^{(\mathrm{L})} = \bigcup \{ \mathrm{E}(b_{\sigma}) \mid \sigma \in \mathrm{L} \} .$$

We put

$$N^{(k)} = N^{(M^{(k)})} = \cup \{E(b) | \sigma \in M^{(k)}\}.$$

By the induction of k, we prove the stronger

LEMMA 1. – There exists a simple homotopy equivalence $f: M^{(k)} \rightarrow N^{(k)}$

such that, for any (k + 1)-simplex μ , $f(\partial \mu) \subset N^{(\partial \mu)}$ and

 $f/\partial\mu: \partial\mu \to N^{(\partial\mu)}$

is a simple homotopy equivalence.

Proof. If k = 0, it holds obviously. Now we will prove the lemma for k + 1 assuming the lemma for k. Let μ be a (k + 1)-simplex. Since the collar of $\partial \mu$ is PL-homeomorphic to $S^k \times I$, we can write

$$\mu = \mathbf{S}^k \times \mathbf{I} \cup \mathbf{S}^k * (b_{\mu})$$

where $S_0^k = S^k \times \{0\} = \partial \mu$ and $S_1^k = S^k \times \{1\} = S^k \times I \cap S^k * (b_{\mu})$. Recall that

$$N^{(M^{(k)} \cup \mu)} = N^{(k)} \cup E(b_{\mu})$$

$$N^{(k)} \cap E(b_{\mu}) = N^{(\partial \mu)} \cap E(b_{\mu}) = HE(b_{\mu}) = W_{\mu}^{n-k-1} \times S^{k}$$

where W_{μ}^{n-k-1} is an acyclic (or contractible) PL-manifold. Let x be a point in the interior of W_{μ} and let $d: S^k \to W_{\mu} \times S^k$ be the embedding defined by $d(S^k) = \{x\} \times S^k$. We define a map

$$\widetilde{f}: S_0^k \cup S_1^k \to N^{(k)}$$

by

$$\widetilde{f} | \mathbf{S}_0^k = f$$
$$\widetilde{f} | \mathbf{S}_1^k = d .$$

Since $\widetilde{f} \mid \partial M$ gives a simple homotopy equivalence $\partial \mu \to N^{(\partial \mu)}$, $N^{(\partial \mu)}$ is homotopy equivalent to S^k , and so $\widetilde{f} \mid S_0^k$ and $\widetilde{f} \mid S_1^k$ are homotopic. Hence we can extend \widetilde{f} on $S^k \times I$. Further since $E(b_{\mu})$ is contractible, we can extend \widetilde{f} to a map from $\mu = S^k \times I \cup S^k * (b_{\mu})$ to $N^{(M^{(k)} \cup \mu)}$. By the definition, f and \widetilde{f} coïncide on $\partial \mu$, and so we have a map

$$g = f \cup \widetilde{f} : \mathbf{M}^{(k)} \cup \mu \to \mathbf{N}^{(\mathbf{M}^{(k)} \cup \mu)}$$

Repeating this for all (k + 1)-simplexes of M, we obtain a map $g: M^{(k+1)} \rightarrow N^{(k+1)}$. We have the exact sequences of chain groups,

$$0 \rightarrow C_*(M^{(k)}) \rightarrow C_*(M^{(k+1)}) \rightarrow \Sigma C_*(\mu/\partial\mu) \rightarrow 0$$
$$0 \rightarrow C_*(N^{(k)}) \rightarrow C_*(N^{(k+1)}) \rightarrow \Sigma C_*(E(b_{\mu})/HE(b_{\mu})) \rightarrow 0$$

where we regard them as $Z \pi_1(M^{(k+1)}) = Z \pi_1(N^{(k+1)})$ -modules.

The map g induces f_* on the first elements and id.* on the third elements. Since they are chain equivalences with trivial Whitehead torsion, so is g_* by [8]. Hence g is a simple homotopy equivalence. It is easy to see that, for any (k + 2)-simplex τ , g induce a simple homotopy equivalence

$$g \mid \partial \tau : \partial \tau \rightarrow N^{(o\tau)}$$
.

Q.E.D.

BIBLIOGRAPHY

- [1] M.C. COHEN, Homeomorphisms between homotopy manifolds and their resolutions, *Inventions Math.* 10 (1970), 239-250.
- [2] W.C. HSIANG et W.Y. HSIANG, Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786.
- [3] M. KERVAIRE, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
- [4] M. KERVAIRE, Smooth homology spheres and their fundamental groups, *Trans. Amer. Math. Soc.* 144 (1969), 67-72.
- [5] M. KERVAIRE et J. MILNOR, Groups of homotopy spheres I, Ann. Math. 77 (1963), 504-537.
- [6] I. TAMURA, Variety of manifolds (in Japanese), Sûgaku 21 (1969), 275-285.
- [7] G.W. WHITEHEAD, Generalized homology theory, *Trans. Amer. Math. Soc.* 102 (1962), 227-283.
- [8] J.H.C. WHITEHEAD, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57.
- [9] D. SULLIVAN, Geometric periodicity and the invariants of manifolds, *Lecture Notes in Math.* Springer Verlag 197, 44-75.

Manuscrit reçu le 7 juillet 1971 accepté par M. Brelot Hajime SATO Mathematical Institute Tôhoku University Sendai (Japon)