Annales de l'institut Fourier

Hajime Sato

Constructing manifolds by homotopy equivalences I. An obstruction to constructing PL-manifolds from homology manifolds

Annales de l'institut Fourier, tome 22, n ${ }^{\circ} 1$ (1972), p. 271-286
http://www.numdam.org/item?id=AIF_1972__22_1_271_0
© Annales de l'institut Fourier, 1972, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CONSTRUCTING MANIFOLDS BY HOMOTOPY EQUIVALENCES I. AN OBSTRUCTION TO CONSTRUCTING PL-MANIFOLDS FROM HOMOLOGY MANIFOLDS

by Hajime SATO

0. Introduction.

A homology manifold can be given a canonical cell complex structure, where each cell is a contractible homology manifold. In this paper, given a homology manifold M , we aim at constructing a PL-manifold with a cell complex structure, where each cell is an acyclic PL-manifold, which is cellularly equivalent to the canonical cell complex structure of M. We obtain a theorem that, if the dimension n of M is greater than 4 and if the boundary $\partial \mathrm{M}$ is a PL-manifold or empty, there is a unique obstruction element in $\mathrm{H}_{n-4}\left(\mathrm{M} ; \mathcal{H e}^{3}\right)$, where \mathscr{H}^{3} is the group of 3 -dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the manifold is compact, the constructed PL-manifold is simple homotopy equivalent to M .

I have heard that similar results have been obtained independently and previously by M. Cohen and D. Sullivan, refer [1] and [9].

I would like to thank Professors V. Poénaru and F. Laudenbach for their kind support.

1. Definition of homology manifold with boundary $\left({ }^{1}\right)$.

Let K be a locally finite simplicial complex and let σ be a simplex of K. We define the subcomplexes of K as follows.

[^0]\[

$$
\begin{gathered}
\mathrm{St}(\sigma, \mathrm{~K})=\operatorname{St}(\sigma)=\{\tau \in \mathrm{K}, \exists \alpha>\tau, \alpha>\sigma\} \\
\partial \mathrm{S} t(\sigma, \mathrm{~K})=\partial \mathrm{S} t(\sigma)=\{\tau \in \mathrm{St}(\sigma), \tau \ngtr \sigma\} \\
\mathrm{L} k(\sigma, \mathrm{~K})=\mathrm{L} k(\sigma)=\{\tau \in \mathrm{S} t(\sigma), \tau \cap \sigma=\varnothing\}
\end{gathered}
$$
\]

We write by $K^{\prime}, K^{\prime \prime}$, the first and the second barycentric subdivisions of K.

Let M be a locally finite full simplicial complex of dimension n. We say that M is a homology manifold of dimension n if the following equivalent condition holds :

Lemma 1. - The followings are equivalent:
i) for any simplex σ of dimension p,

$$
\widetilde{\mathrm{H}}_{i}(\mathrm{~L} k(\sigma, \mathrm{M}))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{n-p-1}\right) \quad \text { or } \quad 0 .
$$

ii) for any simplex σ of dimension p,

$$
\widetilde{\mathrm{H}}_{i}(\mathrm{~S} t(\sigma, \mathrm{M}) / \partial \mathrm{S} t(\sigma, \mathrm{M}))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{n}\right) \quad \text { or } \quad 0
$$

iii) for any point x of $|\mathrm{M}|$, where $|\mathrm{M}|$ denotes the underlying topological space of M ,

$$
\mathrm{H}_{i}(|\mathrm{M}|,|\mathrm{M}|-x)=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{n}\right) \quad \text { or } \quad 0 .
$$

The definition is invariant by the PL-homeomorphism in the category of simplicial complexes.

Lemma 2. - For any p-simplex σ of $\mathrm{M}, \mathrm{L} k(\sigma, \mathrm{M})$ is a compact ($n-p-1$)-dimensional homology manifold.

Proof. - It is compact because M is locally finite. Let τ be a q simplex of $\operatorname{Lk}(\sigma, \mathrm{M})$. We have

$$
\mathrm{L} k(\tau, \mathrm{~L} k(\sigma, \mathrm{M}))=\mathrm{L} k(\tau \sigma, \mathrm{M})
$$

Hence $\widetilde{\mathrm{H}}_{i}(\operatorname{Lk}(\tau, \operatorname{Lk}(\sigma, \mathrm{M})))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{n-p-q-1}\right)$ or 0 , which completes the proof.

Let us define the subset $\partial \mathrm{M}$ of M by

$$
\partial \mathrm{M}=\left\{\sigma \in \mathrm{M} \mid \widetilde{\mathrm{H}}_{i}(\sigma, \mathrm{M})=0\right\}
$$

We call it as the boundary of M . If $\partial \mathrm{M}=\phi$, the manifold is classical
and the following Poincaré duality is well known (see for example [7; 7,4$)]$).

Lemma 3. - Let M be an orientable compact n-dimensional homology manifold without boundary. Let $\mathrm{A}_{1} \supset \mathrm{~A}_{2}$ be subcomplexes of M. Then we have the isomorphism

$$
\mathrm{H}^{i}\left(\mathrm{~A}_{1}, \mathrm{~A}_{2}\right)=\mathrm{H}_{n-i}\left(|\mathrm{M}|-\left|\mathrm{A}_{2}\right|,|\mathrm{M}|-\left|\mathrm{A}_{1}\right|\right)
$$

Using this we will prove the followings. By lemma 2, for p simplex $\sigma, \operatorname{Lk}(\sigma, \mathrm{M})$ is a homology manifold and we can define $\partial \mathrm{Lk}(\sigma, \mathrm{M})$.

Lemma 4. - If $\partial \mathrm{L} k(\sigma, \mathrm{M}) \neq \emptyset, \operatorname{L} k(\sigma, \mathrm{M})$ is acyclic and $\partial \mathrm{L} k(\sigma, \mathrm{M})$ is an ($n-p-2$)-dimensional homology manifold such that

$$
\widetilde{\mathrm{H}}_{i}(\partial \mathrm{~L} k(\sigma, \mathrm{M}))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{n-p-2}\right) .
$$

Proposition 5. - If $\partial \mathrm{M} \neq \emptyset$, $\partial \mathrm{M}$ is a subcomplex and is an ($n-1$)-dimensional homology manifold without boundary.

We prove that lemma 4 for $n=k$ implies proposition 5 for $n=k$ and proposition 5 for $n \leqslant k$ implies lemma 4 for $n=k+1$. Since lemma 4 holds for $n=1$, we can continue by induction.

Lemma $4_{n=k} \Rightarrow$ Proposition $5_{n=k}$. Let σ be a p-simplex of $\partial \mathrm{M}$ and let $\sigma_{0}<\sigma$. Then we can write $\sigma=\sigma_{0} \sigma_{1}$. We have

$$
\widetilde{\mathrm{H}}_{*}\left(\mathrm{~L} k\left(\sigma_{1}, \mathrm{~L} k\left(\sigma_{0}, \mathrm{M}\right)\right)\right)=\widetilde{\mathrm{H}}_{*}(\mathrm{~L} k(\sigma, \mathrm{M}))=0
$$

which shows that $\sigma_{1} \in \partial \operatorname{Lk}\left(\sigma_{0}, \mathrm{M}\right)$ and so $\partial \operatorname{Lk}\left(\sigma_{0}, \mathrm{M}\right) \neq \emptyset$. By the lemma $4, L k\left(\sigma_{0}, \mathrm{M}\right)$ is acyclic and it follows that $\sigma_{0} \in \partial \mathrm{M}$. Hence $\partial \mathrm{M}$ is a well-defined subcomplex of M. A q-simplex τ of $L k(\sigma, \mathrm{M})$ is in $L k(\sigma, \partial \mathrm{M})$ if and only if $\widetilde{\mathrm{H}}_{i}(\mathrm{~L} k(\tau \sigma, \mathrm{M}))=0$. Since

$$
\mathrm{L} k(\tau \sigma, \mathrm{M})=\mathrm{L} k(\tau, \mathrm{~L} k(\sigma, \mathrm{M}))
$$

it is equivalent to that τ belongs to $\partial \mathrm{L} k(\sigma, \mathrm{M})$. Hence the complex $\underset{\sim}{L} k(\sigma, \partial \mathrm{M})$ coincides with $\partial \mathrm{L} k(\sigma, \mathrm{M})$. By lemma 4_{k}, we have $\widetilde{\mathrm{H}}_{i}(\partial \mathrm{~L} k(\sigma, \mathrm{M}))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{k-p-2}\right)$, which shows that $\partial \mathrm{M}$ is a $(k-1)$ dimensional homology manifold without boundary.

Proposition $5_{n} \leqslant k \Rightarrow$ Lemma $4_{n=k+1}$. Let M be a homology manifold of dimension $k+1$. Let σ be a p-simplex of M. By lemma 2,
$\mathrm{L} k(\sigma, \mathrm{M})$ is a homology manifold of dimension $k-p$. By proposition 5 for $n=k-p, \partial \mathrm{~L} k(\sigma, \mathrm{M})$ is a $(k-p-1)$-dimensional homology manifold without boundary if it is not empty. Let $2 \mathrm{~L} k(\sigma, \mathrm{M})$ be the double of $L k(\sigma, \mathrm{M})$, i.e.,

$$
2 \mathrm{~L} k(\sigma, \mathrm{M})=\mathrm{L} k(\sigma, \mathrm{M}) \underset{\partial \mathrm{L} k(\sigma, \mathrm{M})}{\cup} \mathrm{L} k(\sigma, \mathrm{M})
$$

Let τ be a q-simplex of $2 \mathrm{~L} k(\sigma, \mathrm{M})$. If τ is not a simplex of $\partial \mathrm{L} k(\sigma, \mathrm{M})$, clearly,

$$
\widetilde{\mathrm{H}}_{i}\left(\operatorname{Lk}\left(\tau, 2 \operatorname{Lk}\left(\sigma, \mathrm{~N}_{1}\right)\right)\right)=\widetilde{\mathrm{H}}_{i}(\operatorname{L} k(\tau, \operatorname{L} k(\sigma, \mathrm{M})))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{k-p-q-1}\right)
$$

If τ is a simplex of $\partial \mathrm{L} k(\sigma, \mathrm{M})$, we have
$\operatorname{Lk}(\tau, 2 \operatorname{Lk}(\sigma, \mathrm{M}))$

$$
=\mathrm{L} k(\tau, \mathrm{~L} k(\sigma, \mathrm{M})) \underset{\mathrm{L} k(\tau, \partial \mathrm{~L} k(\sigma, \mathrm{M}))}{\cup} \mathrm{L} k(\tau, \mathrm{~L} k(\sigma, \mathrm{M}))
$$

By definition $\widetilde{\mathrm{H}}_{i}(\mathrm{~L} k(\tau, \mathrm{~L} k(\sigma, \mathrm{M})))=0$ and by the proposition 5 for $n=k-p-1$, we have

$$
\widetilde{\mathrm{H}}_{i}(\mathrm{~L} k(\tau, \partial \mathrm{~L} k(\sigma, \mathrm{M})))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{k-p-q-2}\right)
$$

Hence in any case $\widetilde{\mathrm{H}}_{i}(\operatorname{Lk}(\tau, 2 \operatorname{Lk}(\sigma, \mathrm{M})))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{k-p-q-1}\right)$, which shows that $2 \mathrm{~L} k(\sigma, \mathrm{M})$ is a $(k-p)$-dimensional homology manifold without boundary. Applying lemma 3, we have

$$
\mathrm{H}^{i}(\mathrm{~L} k(\sigma, \mathrm{M}), \partial \mathrm{L} k(\sigma, \mathrm{M}))=\mathrm{H}_{k-p-i}(|\mathrm{~L} k(\sigma, \mathrm{M})|-|\partial \mathrm{L} k(\sigma, \mathrm{M})|)
$$

Notice that for any homology manifold M, $H_{i}(|\mathrm{M}|-|\partial \mathrm{M}|)=\mathrm{H}_{i}(\mathrm{M})$. Hence $\mathrm{H}^{i}(\mathrm{~L} k(\sigma, \mathrm{M}), \quad \partial \mathrm{L} k(\sigma, \mathrm{M}))=\mathrm{H}_{k-p-i}\left(\mathrm{~S}^{k-p}\right)$ or $\mathrm{H}_{k-p-i}(p t$.$) .$ But if it is isomorphic to $\mathrm{H}_{k-p-i}\left(\mathrm{~S}^{k-p}\right)$, we have

$$
\mathrm{H}^{0}(\mathrm{~L} k(\sigma, \mathrm{M}), \partial \mathrm{L} k(\sigma, \mathrm{M}))=\mathrm{Z}
$$

which contradicts to the definition that $\widetilde{\mathrm{H}}_{0}(\mathrm{~L} k(\sigma, \mathrm{M}))=0$. Hence $\operatorname{Lk}(\sigma, \mathrm{M})$ is acyclic and consequently $\widetilde{\mathrm{H}}_{i}(\partial \mathrm{~L} k(\sigma, \mathrm{M}))=\widetilde{\mathrm{H}}_{i}\left(\mathrm{~S}^{k-p-1}\right)$, which completes the proof.

2. Cell decomposition of a homology manifold.

We mean by a homology cell (resp. pscudo homology cell) of dimension n or homology n-cell (resp. pseudo homology n-cell) a
compact contractible (resp. acyclic) homology manifold of dimension n with a boundary, the boundary being a homology sphere but not necessarily simply connected. A (pseudo) homology cell complex is a complex K with a locally finite family of (pseudo) homology cells $\mathrm{C}=\left\{\mathrm{C}_{\alpha}\right\}$, such that :
i) $K=\cup C_{\alpha}$
ii) $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta} \in \mathrm{C}$ implies $\partial \mathrm{C}_{\alpha}, \mathrm{C}_{\alpha} \cap \mathrm{C}_{\beta}$ are unions of cells in C
iii) If $\alpha \neq \beta$, then Int $C_{\alpha} \cap \operatorname{Int} C_{\beta}=\varnothing$.

If a homology manifold M has a (pseudo) homology cell complex structure, we call it a (pseudo) cellular decomposition of M. Two (pseudo) homology cell complexes $K=\cup \mathrm{C}_{\alpha}, \mathrm{K}^{\prime}=\cup \mathrm{C}_{\alpha}^{\prime}$ are isomorphic if there exists a bijection $k: \mathrm{C} \rightarrow \mathrm{C}^{\prime}$ such that both k and k^{-1} are incidence preserving. In such a case we say that they are cellularly equivalent.

Now we have the following :

Proposition 1. - If two finite homology cell complexes $\mathrm{K}, \mathrm{K}^{\prime}$ are cellularly equivalent, then they are simple homotopy equivalent.

We can define a simplicial $\operatorname{map} f: K \rightarrow \mathrm{~K}^{\prime}$ inductively by the dimension of the cells. Hence it is sufficient to prove the following lemma.

Lemma 2. - Let $\mathrm{A}_{j}^{i}(j=1,2, \ldots, r)$ be subcomplex of simplicial complexes B^{i} for $i=1,2$ respectively such that $\mathrm{B}^{i}=\underset{j}{\cup} \mathrm{~A}_{j}^{i}$, and let $f: \mathrm{B}^{1} \rightarrow \mathrm{~B}^{2}$ be a simplicial map. For any subset s of $\{1,2, \ldots, r\}$, let $\mathrm{A}_{s}^{i}=\cap_{j \in s} \mathrm{~A}_{j}^{i}$ and let f_{s} be the restriction of f on A_{s}. If f_{s} is a mapping from A_{s}^{1} to A_{s}^{2} which is a simple homotopy equivalence for any s, then f itself is a simple homotopy equivalence.

Proof. - First suppose that $r=2$. We have the exact sequence

$$
\left.0 \rightarrow \mathrm{C}_{*}\left(\mathrm{~A}_{1}^{i}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~B}^{i}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~A}_{1}^{i} \cap \mathrm{~A}_{2}^{i}\right)\right) \rightarrow 0
$$

of the chain complexes. Let $g: \mathrm{A}_{2}^{1} /\left(\mathrm{A}_{1}^{1} \cap \mathrm{~A}_{2}^{1}\right) \rightarrow \mathrm{A}_{2}^{2} /\left(\mathrm{A}_{1}^{2} \cap \mathrm{~A}_{2}^{2}\right)$ be the map induced by f and let us denote by $w()$ the Whitehead torsion. Then by theorem 10 of [8], we have

$$
w(f)=w\left(f_{\{1\}}\right)+w(g)
$$

Remark here that f and g can easily be seen to be homotopy equivalences. Further we have the exact sequence

$$
0 \rightarrow \mathrm{C}_{*}\left(\mathrm{~A}_{1}^{i} \cap \mathrm{~A}_{2}^{i}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~A}_{2}^{i}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~A}_{2}^{i} /\left(\mathrm{A}_{1}^{i} \cap \mathrm{~A}_{2}^{i}\right)\right) \rightarrow 0
$$

which shows that

$$
w\left(f_{\{2\}}\right)=w\left(f_{\{1,2\}}\right)+w(g)
$$

Since $w\left(f_{\{1\}}\right)=w\left(f_{\{2\}}\right)=w\left(f_{\{1,2\}}\right)=0$, we have $w(f)=0$. If $r \geqslant 3$, we can repeat this argument, which shows that f is a simple homotopy equivalence for any r.

Now let σ be a simplex of a locally finite simplicial complex K. We denote by $b_{\sigma} \in \mathrm{K}^{\prime}$ its barycenter. We define dualcomplex $\mathrm{D}(\sigma)$ and its subcomplex $\delta \mathrm{D}(\sigma)$ which are subcomplexes of K^{\prime} by

$$
\begin{gathered}
\mathrm{D}(\sigma)=\mathrm{D}(\sigma, \mathrm{~K})=\left\{b_{\sigma_{0}} \ldots b_{\sigma_{r}} \mid \sigma<\sigma_{0}<\ldots<\sigma_{r} \in \mathrm{~K}\right\} \\
\delta \mathrm{D}(\sigma)=\delta \mathrm{D}(\sigma, \mathrm{~K})=\left\{b_{\sigma_{0}} \ldots b_{\sigma_{r}} \mid \sigma \neq \sigma_{0}<\ldots<\sigma_{r} \in \mathrm{~K}\right\}
\end{gathered}
$$

The followings are easy to see.
i) if $\sigma<\sigma^{\prime} \Rightarrow \mathrm{D}(\sigma) \supset \mathrm{D}\left(\sigma^{\prime}\right)$
ii) $\mathrm{D}(\sigma)=b_{\sigma} * \delta \mathrm{D}(\sigma)$
iii) $\delta \mathrm{D}(\sigma)=\bigcup_{\tau} \mathrm{D}(\tau)$ where $\tau>\sigma$ and $\tau \neq \sigma$
iv) $\delta \mathrm{D}(\sigma)$ is isomorphic to $\operatorname{Lk}(\sigma, \mathrm{K})^{\prime}$.

Let M be a homology manifold. For each simplex

$$
\sigma=b_{\sigma_{0}} b_{\sigma_{1}} \ldots b_{\sigma_{r}}
$$

of M^{\prime}, where $\sigma_{0}^{n_{0}}<\sigma_{1}^{n_{1}}<\ldots<\sigma_{r}^{n_{r}}$ are a set of simplexes of M , we have the duall cell $\mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$. It is a compact homology manifold by lemma 2 of $\S 1$. Further we have

$$
\begin{aligned}
\delta \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right) & \cong \mathrm{L} k(\sigma, \mathrm{M}) \\
& \cong \mathrm{L} k\left(\sigma, \sigma_{r}\right) * \mathrm{~L} k\left(\sigma_{r}, \mathrm{M}\right) \\
& \cong \mathrm{S}^{n_{r}-r-1} * \mathrm{~L} k\left(\sigma_{r}, \mathrm{M}\right) \\
& \cong \mathrm{L} k\left(\sigma_{r}, \mathrm{M}\right) \times \mathrm{D}^{n_{r}-r} \cup\left(\mathrm{~L} k\left(\sigma_{r}, \mathrm{M}\right) *(p t .)\right) \times \mathrm{S}^{n_{r}-r-1}
\end{aligned}
$$

where \cong denotes that both sides are PL-homeomorphic and let
$d_{\sigma}: \delta \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right) \rightarrow \mathrm{L} k\left(\sigma_{r}, \mathrm{M}\right) \times \mathrm{D}^{n_{r}-r} \cup\left(\mathrm{~L} k\left(\sigma_{r}, \mathrm{M}\right) *\left(p t_{\mathrm{o}}\right)\right) \times \mathrm{S}^{n^{r}-r-1}$
be the PL-homeomorphism, which we call the trivialization of $\delta \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$. If σ is not in $\partial \mathrm{M}, \delta \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$ is a homology manifold whose homology groups are isomorphic to those of S^{n-1}, boundary being empty. If $\sigma \in \partial \mathrm{M}, \delta \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$ is an acyclic homology manifold with the boundary $\mathrm{L} k\left(\sigma, \partial \mathrm{M}^{\prime \prime}\right)$ which is PL-homeomorphic to $\partial \mathrm{L} k\left(\sigma_{r}, \mathrm{M}\right) \times \mathrm{D}^{n_{r}-r} \cup\left(\partial \mathrm{~L} k\left(\sigma_{r}, \mathrm{M}\right) *(p t).\right) \times \mathrm{S}^{n_{r}^{-r-1}}$. The union $\mathrm{St}\left(\sigma, \partial \mathrm{M}^{\prime \prime}\right) \cup \delta\left(\sigma, \mathrm{M}^{\prime}\right)=\partial \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$ is a homology manifold without boundary whose homology groups are isomorphic to those of S^{n-1}. Hence in any case $\mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$ is a homology cell. The union $\cup \mathrm{D}\left(\sigma, \mathrm{M}^{\prime}\right)$, σ moving all simplexes of M^{\prime}, gives the cellular decomposition of M , which we call the canonical one.

We define the handle M_{i} of index i by the disjoint union

$$
\mathrm{M}_{i}=\cup \mathrm{D}\left(b_{\sigma^{n-i}}\right)
$$

where σ changes all $(n-i)$-simplexes of M. We have $\delta \mathrm{D}\left(b_{\sigma}\right)=\cup \mathrm{D}(\tau)$, where $\sigma<\tau \in \mathrm{M}^{\prime}$, and it gives a cellular decomposition of M_{i}. We can devide the boundary as $\delta \mathrm{D}\left(b_{\sigma}\right)=\operatorname{LD}\left(b_{\sigma}\right) \cup \mathrm{HD}\left(b_{\sigma}\right)$, which consists of unions of celles attached to the handles of lower indexes and higher indexes. We define them as

$$
\begin{aligned}
& \operatorname{LD}\left(b_{\sigma}\right)=\delta \mathrm{D}\left(b_{\sigma}\right) \cap\left(\cup_{j<i} \mathrm{M}_{j}\right) \\
& \operatorname{HD}\left(b_{\sigma}\right)=\delta \mathrm{D}\left(b_{\sigma}\right) \cap\left(\bigcup_{j>i} \mathrm{M}_{j}\right) .
\end{aligned}
$$

Let $\tau=b_{\tau_{0}} b_{\tau_{1}} \ldots b_{\tau_{r}} \neq \sigma$ be a simplex of M^{\prime}, where

$$
\tau_{0}^{m_{0}}<\tau_{1}^{m_{1}} \cdots<\tau_{r}^{m_{r}} \in \mathrm{M}
$$

Then $\mathrm{D}(\tau) \in \mathrm{LD}\left(b_{\sigma}\right)$ if and only if $\tau_{r}>\sigma$ and $\mathrm{D}(\tau) \in \mathrm{HD}\left(b_{\sigma}\right)$ if and only if $\tau_{0}<\sigma$. It is easy to see that

$$
\begin{aligned}
& \mathrm{LD}\left(b_{\sigma}\right) \cong \operatorname{Lk}(\sigma, \mathrm{M}) \times \mathrm{D}^{n-i} \\
& \mathrm{HD}\left(b_{\sigma}\right) \cong(\mathrm{L} k(\sigma, \mathrm{M}) *(p t .)) \times \mathrm{S}^{n-i-1}
\end{aligned}
$$

and these isomorphism together give the trivialization $d_{b_{\sigma}}$ of $\delta \mathrm{D}\left(b_{\sigma}\right)$.

Let Δ^{n-i} be the standard ($n-i$)-simplex and let

$$
\partial \Delta^{n-i}=\mathrm{S}^{n-i-1}=\bigcup_{\alpha} \mathrm{C}_{\alpha}
$$

be the cell decomposition defined as above, which we call the standard decomposition of S^{n-i-1}. The decomposition

$$
\mathrm{HD}\left(b_{\sigma}\right)=\cup \mathrm{D}(\tau)
$$

is equal to the standard product decomposition

$$
\{\mathrm{L} k(\sigma, \mathrm{M}) *(p t .)\} \times\left(\cup_{\alpha}^{\cup} \mathrm{C}_{\alpha}\right)
$$

All the cells of $\operatorname{HD}\left(b_{\sigma}\right)$ which is not contained in $\operatorname{LD}\left(b_{\sigma}\right) \cap \operatorname{HD}\left(b_{\sigma}\right)$ is written as

$$
(\mathrm{L} k(\sigma, \mathrm{M}) *(p t .)) \times \mathrm{C}_{\alpha}
$$

Finally we define $\mathrm{M}_{(i)}$ the subcomplex of M composed of handles whose indexes are inferior or equal to i, that is,

$$
\mathrm{M}_{(i)}=\underset{j \leqslant i}{\cup} \mathrm{M}_{j} \subset \mathrm{M}
$$

Then we have

$$
\mathrm{M}_{(i)}=\mathrm{M}_{(i-1)} \cup \mathrm{M}_{i}
$$

attached on $\cup_{\sigma} \mathrm{LD}\left(b_{\sigma}\right), \sigma$ being $(n-i)$-simplexes.

3. PL-homology spheres.

We call an n-dimensional homology manifold whose homology groups are isomorphic to those of S^{n} a homology n-sphere or homology sphere of dimension n. If it is a PL-manifold, it is called a PLhomology n-sphere.

If dimension is smaller than 3, a homology sphere is the natural sphere. And so any 3-dimensional homology manifold is a PL-manifold. In order to study higher dimensional cases we define the group $\mathcal{H e}^{3}$.

Let X^{3} be the set of oriented 3-dimensional PL-homology spheres. Note that any homology sphere is orientable. We say that $H_{1}^{3} \in \mathrm{X}^{3}$ is equivalent to $\mathrm{H}_{2}^{3} \in \mathrm{X}^{3}$ if $\mathrm{H}_{1}^{3} \#\left(-\mathrm{H}_{2}^{3}\right)$ is the boundary of an acyclic PL-manifold, where $\#$ denotes the connected sum and
$-\mathrm{H}_{2}^{3}$ is H_{2}^{3} with the orientation inversed. Let $\mathscr{\not} \mathscr{B}^{3}=\mathrm{X}^{3} / \sim$ be the set of equivalence classes. By the connected sum operation, \mathscr{H}^{3} is an abelian group. Let G be the binary dodecahedral group. The quotient space S^{3} / G is a PL-homology sphere whose class in \mathcal{H}^{3} is non trivial.

On the contrary, for higher dimensions the following is known [2] [6] [4].

Proposition 1 (Hsiang-Hsiang, Tamura, Kervaire). - Any PLhomology sphere is the boundary of a contractible PL-manifold, if the dimension is greater than 3.

We will prove the followings, where x is a point in $\mathrm{S}^{i}, i \geqslant 1$.
Proposition 2. - Let $\mathrm{H}^{3} \in \mathrm{X}^{3}$, then $\mathrm{H}^{3} \times \mathrm{S}^{1}$ is the boundary of a PL-manifold K^{5} such that $\mathrm{H}_{*}(\mathrm{~K}) \cong \mathrm{H}_{*}\left(\mathrm{~S}^{1}\right)$ and the inclusion

$$
j: \mathrm{S}^{1} \hookrightarrow\{x\} \times \mathrm{S}^{1} \hookrightarrow \mathrm{H}^{3} \times \mathrm{S}^{1} \hookrightarrow \mathrm{~K}
$$

induce an isomorphism of the fundamental groups.
Proposition 3. - Let $\mathrm{H}^{3} \in \mathrm{X}^{3}$ and let $i \geqslant 2$. Then $\mathrm{H}^{3} \times \mathrm{S}^{i}$ is the boundary of a PL-manifold K^{4+i} such that the inclusion

$$
j: \mathrm{S}^{i} \hookrightarrow\{x\} \times \mathrm{S}^{i} \hookrightarrow \mathrm{H}^{3} \times \mathrm{S}^{i} \hookrightarrow \mathrm{~K}
$$

induces a homotopy equivalence.

Proof of Proposition 2. - Since any orientable closed 3-dimensional PL-manifold is a boundary of a 4-dimensional parallelizable PL-manifold (See by example [3]), we have a parallelizable PLmanifold L^{4} such that $\partial \mathrm{L}=\mathrm{H}$. By doing surgery we can assume that $\pi_{1}(\mathrm{~L})=0$. By the Poincaré duality theorem, $\mathrm{H}_{2}(\mathrm{~L})$ is free abelian. Let $p: \mathrm{L} \times \mathrm{S}^{1} \rightarrow \mathrm{~S}^{1}$ be the projection. Then it induces an isomorphism of the fundamental groups. Remark that if we have a manifold K with boundary $\mathrm{H}^{3} \times \mathrm{S}^{1}$ such that $\mathrm{H}_{2}(\mathrm{~K}) \cong 0$ and the inclusion $j: \mathrm{S}^{1} \hookrightarrow \mathrm{~K}$ induces the isomorphism of the fundamental groups, then, by the Poincaré duality, we have $\mathrm{H}_{i}(\mathrm{~K})=0$ for $i \geqslant 2$. Hence it is sufficient to kill $\mathrm{H}_{2}\left(\mathrm{~L} \times \mathrm{S}^{1}\right)$. Since $\mathrm{H}_{2}(\mathrm{~L})$ is free, so is $\mathrm{H}_{2}\left(\mathrm{~L} \times \mathrm{S}^{1}\right)$. We can follow the method of lemma 5.7 of Kervaire-Milnor [5]. Since $\pi_{1}(L)=0$, the Hurewicz map of $L, \pi_{2}(L) \rightarrow H_{2}(L)$, is isomorphic,
and so is the Hurewicz map of $L \times S^{1}$

$$
h: \pi_{2}\left(\mathrm{~L} \times \mathrm{S}^{1}\right) \rightarrow \mathrm{H}_{2}\left(\mathrm{~L} \times \mathrm{S}^{1}\right)
$$

Hence we can represent any element of $\mathrm{H}_{2}\left(\mathrm{~L} \times \mathrm{S}^{1}\right)$ by an embedded sphere. In our case the boundary $\partial\left(L \times S^{1}\right)$ is $H^{3} \times S^{1}$ and it does not satisfy the hypothesis of that lemma. But since we have

$$
\mathrm{H}_{2}\left(\partial\left(\mathrm{~L} \times \mathrm{S}^{1}\right)\right)=0
$$

the result is the same.
Proof of Proposition 3. - Let K^{5} be the 5-dimensional PLmanifold of proposition 2 . Attach K with $\mathrm{H}^{3} \times \mathrm{D}^{2}$ by the identity map on $\mathrm{H}^{3} \times \mathrm{S}^{1}$. The constructed manifold W^{5} is a simply connected PL-homology sphere, and by the generalized Poincaré conjecture, it is the natural sphere S^{5}. It shows that we can embed H^{3} in S^{5} with a trivial normal bundle. By composing with the natural embedding $\mathrm{S}^{5} \hookrightarrow \mathrm{~S}^{4+i}$, we have an embedding of H^{3} in S^{4+i} with the trivial normal bundle. The manifold N which is the complement of the open regular neighbourhood of H^{3} in S^{4+i} has $\mathrm{H}^{3} \times \mathrm{S}^{i}$ as the boundary and the inclusion $j: \mathrm{S}^{i} \hookrightarrow \mathrm{~N}$ induces an isomorphism of homology groups, hence homotopy equivalence, which completes the proof.

4. An obstruction to constructing PL-manifold.

Let Mi be a homology manifold of dimension greater than 4 . We assume that the boundary $\partial \mathrm{M}_{\mathrm{N}}$ is a PL-manifold if it is not empty. As in § 2 , it has the handle decomposition

$$
\mathrm{M}:=\mathrm{M}_{(n)}=\underset{0 \leqslant i \leqslant n}{\cup} \mathrm{M}_{i}
$$

which has also the canonical homology cell complex structure. We want to construct a PL-manifold with a pseudo homology cell complex structure which is cellularly equivalent to M. Since $M_{(3)}$ is a PLmanifold, a problem first arises when we attach handles of index 4.

Let σ be an $(n-4)$-simplex in the interior of M. Then $L k(\sigma, \mathrm{M})$ is a 3-dimensional PL-homology sphere. Connecting σ by a path from
a fixed base point of M, we can give the orientation for the neighbourhood of σ, and hence for $\operatorname{Lk}(\sigma, \mathrm{M})$.

Let $\operatorname{Lk}(\sigma, \mathrm{M})$ be the class in the group \mathscr{H}^{3}. To each $(n-4)$ simplex σ of M , we define a function $\lambda(\mathrm{M}):\{(n-4)$-simplex $\} \rightarrow \mathscr{H}{ }^{3}$ by

$$
\lambda(\mathrm{M})(\sigma)= \begin{cases}\{\mathrm{L} k(\sigma, \mathrm{M})\} & \text { if } \quad \sigma \in \text { Int. } \mathrm{M} \\ 0 & \text { otherwise. }\end{cases}
$$

Then $\lambda(\mathrm{M})$ is an element of the chain group $\mathrm{C}_{n-4}\left(\mathrm{M}, \mathcal{H} \mathscr{P}^{3}\right)$. The coefficient may be twisted if the manifold is not orientable.

Lemma 1. - $\lambda(\mathrm{M})$ is a cycle.

Proof. - Let μ be an $(n-5)$-simplex. In the homology 4 -sphere $\mathrm{L} k(\mu)$, the complex $\cup \mathrm{L} k\left(\sigma_{i}\right) *\left(x_{i}\right)$, where x_{i} denotes the barycenter of the 1 -simplex $b_{\mu} b_{\sigma_{i}}$ and the sum extends to all the $(n-4)$ simplexes such that $\sigma_{i}>\mu$, is a subcomplex whose complement in $L k(\mu)$ is a PL-manifold. So the connected-summed PL-manifold $\Sigma \operatorname{Lk}\left(\sigma_{i}\right)$ bounds an acyclic PL-manifold.

Hence $\lambda(M)$ represents an element $\{\lambda(M)\}$ of $H_{n-4}\left(M, \mathcal{H} e^{3}\right)$. Now we have the theorem :

Theorem. - Let M^{n} be a homology manifold with the dimension $n>4$. Assume that $\partial \mathrm{M}$ is a PL -manifold if $\partial \mathrm{M} \neq \emptyset$. If the obstruction class

$$
\{\lambda(\mathrm{M})\} \in \mathrm{H}_{n-4}\left(\mathrm{M}, \mathscr{H}^{3}\right)
$$

is zero, then there exists a PL-manifold N with a pseudo homology cell decomposition which is cellularly equivalent to M .

Proof. - Since $\{\lambda(M)\}=0$, there exists a correspondance

$$
g:\{(n-3) \text {-simplex }\} \rightarrow \mathcal{F} \mathbb{Z}^{3}
$$

such that

$$
\sum_{\tau_{i}>\sigma} g\left(\tau_{i}\right)=\{\mathrm{L} k(\sigma, \mathrm{M})\} \in \mathscr{H}^{3}
$$

We will inductively construct PL-manifolds N_{p} and $\mathrm{N}_{(p)}=\underset{q \leqslant p}{\bigcup_{q}} \mathrm{~N}_{q}$ with a pseudo homology cell decomposition $\mathrm{N}_{p}=\cup \mathrm{E}_{\alpha}$ where all
pseudo cells are PL-manifolds such that $\mathrm{N}_{(p)}$ is cellularly equivalent to $\mathrm{M}_{(p)}$.
(a) $p \leqslant 2$. In this case, the manifolds $\mathrm{N}_{p}, \mathrm{~N}_{(p)}$ and their cells are just equal to $\mathrm{M}_{p}, \mathrm{M}_{(p)}$ and their cells. That is, for any j-simplex σ, $j \geqslant n-2$, we define the PL-manifolds as

$$
\begin{gathered}
\mathrm{E}\left(b_{\sigma}\right)=\mathrm{D}\left(b_{\sigma}\right) \\
\mathrm{N}_{p}=\cup\left\{\mathrm{E}\left(b_{\sigma}\right) \mid \operatorname{dim} \sigma=n-p\right\}=\cup\left\{\mathrm{D}\left(b_{\sigma}\right) \mid \operatorname{dim} \sigma=n-p\right\}=\mathrm{M}_{p}
\end{gathered}
$$

For any simplex $\mu \in M^{\prime}$ such that $\mu>b_{\sigma}$, we put

$$
\mathrm{E}(\mu)=\mathrm{D}(\mu)
$$

Hence $\partial \mathrm{E}\left(b_{\sigma}\right)=\partial \mathrm{D}\left(b_{\sigma}\right)=\cup \mathrm{D}(\mu)=\cup \mathrm{E}(\mu)$, and $\mathrm{N}_{(p)}=\mathrm{M}_{(p)}$.
(b) $p=3$. Let τ_{i} be an $(n-3)$-simplex. Let H_{i}^{3} be the 3-dimensional PL-homology sphere which represents $g\left(\tau_{i}\right)$ and let K_{i} be the PL-manifold whose boundary is $\mathrm{H}_{i}^{3} \times \mathrm{S}^{n-4}$ such that the inclusion $j: \mathrm{S}^{n-4} \hookrightarrow \mathrm{~K}_{i}$ induces the isomorphisms of the fundamental groups and the homology groups, whose existence is shown by propositions 2 and 3 of $\S 3$. Let $\mathrm{D}^{3} \subset \mathrm{H}_{i}^{3}$ be a disc. Then $\mathrm{D}^{3} \times \mathrm{S}^{n-4} \subset \partial \mathrm{~K}_{i}$. We have the PL-homeomorphism $\partial \mathrm{D}\left(b_{\tau_{i}}\right)=\mathrm{S}^{2} \times \mathrm{D}^{n-3} \cup \mathrm{D}^{3} \times \mathrm{S}^{n-4}$. We define the PL-manifolds $\mathrm{E}\left(b_{\tau_{i}}\right)$ and N_{3} by

$$
\begin{aligned}
& \mathrm{E}\left(b_{\tau_{i}}\right)=\mathrm{D}\left(b_{\tau_{i}}\right) \underset{\mathrm{D}^{3} \times \mathrm{S}^{n-4}}{\cup} \mathrm{~K}_{i} \\
& \mathrm{~N}_{3}=\cup_{i} \mathrm{E}\left(b_{\tau_{i}}\right)
\end{aligned}
$$

where $\mathrm{D}\left(b_{\tau_{i}}\right)$ is attaced to K_{i} by the identity map on $\mathrm{D}^{3} \times \mathrm{S}^{n-4}$. It is easy to see that $\mathrm{E}\left(b_{\tau_{i}}\right)$ is a homology cell. We will give the pseudo cell decomposition for $\partial \mathrm{E}\left(b_{\tau_{i}}\right)$. First we devide $\partial \mathrm{E}\left(b_{\tau_{i}}\right)$ as the union $\partial \mathrm{E}\left(b_{\tau_{i}}\right)=\operatorname{LE}\left(b_{\tau_{i}}\right) \cup \operatorname{HE}\left(b_{\tau_{i}}\right)$, where

$$
\begin{aligned}
& \operatorname{LE}\left(b_{\tau_{i}}\right)=\partial \mathrm{D}\left(b_{\tau_{i}}\right)-\mathrm{D}^{3} \times \mathrm{D}^{n-3} \\
& \operatorname{HE}\left(b_{\tau_{i}}\right)=\partial \mathrm{K}_{i}-\mathrm{D}^{3} \times \mathrm{S}^{n-4}=\left(\mathrm{H}_{i}^{3}-\mathrm{D}^{3}\right) \times \mathrm{S}^{n-4}
\end{aligned}
$$

Since $\operatorname{LE}\left(b_{\tau_{i}}\right)=\operatorname{LD}\left(b_{\tau_{i}}\right)$, we give the cell decomposition by that of $\operatorname{LD}\left(b_{\tau_{i}}\right)$. We give the pseudo cell decomposition in the interior of $\operatorname{HE}\left(b_{\tau_{i}}\right)$ as

$$
\left(\mathrm{H}_{i}^{3}-\mathrm{D}^{3}\right) \times \mathrm{S}^{n-4}=\left(\mathrm{H}_{i}^{3}-\mathrm{D}^{3}\right) \times\left(\cup_{\alpha} \mathrm{C}_{\alpha}\right)=\cup_{\alpha}\left(\mathrm{H}_{i}^{3}-\mathrm{D}^{3}\right) \times \mathrm{C}_{\alpha}
$$

where $\mathrm{S}^{n-4}=\cup \mathrm{C}_{\alpha}$ is the standard decomposition. These decompositions of $\operatorname{LE}\left(b_{\tau_{i}}\right)$ and $\operatorname{HE}\left(b_{\tau_{i}}\right)$ fit together on their intersection and give the decomposition of $\partial \mathrm{E}\left(b_{\tau_{i}}\right)$, which is clearly cellular equivalent to that of $\partial \mathrm{D}\left(b_{\tau_{i}}\right)$. For each simplex $\mu>b_{\tau_{i}}, \mu \in \mathrm{M}^{\prime}$, we denote by $\mathrm{E}(\mu)$ the pseudo cell of $\partial \mathrm{E}\left(b_{\tau_{i}}\right)$ which corresponds by the equivalence to $\mathrm{D}(\mu) \in \partial \mathrm{D}\left(b_{\tau_{i}}\right)$. We have $\partial \mathrm{E}\left(b_{\tau_{i}}\right)=\cup \mathrm{E}(\mu)$. We define $\mathrm{N}_{(3)}$ by

$$
N_{(3)}=N_{(2)} \cup N_{3}
$$

attached by the identity on $\operatorname{LE}\left(b_{\tau_{i}}\right) . \mathrm{N}_{(3)}$ is cellularly equivalent to $M_{(3)}$.
(c) $p=4$. Let σ be a $(n-4)$-simplex. Let $\cup \mathrm{E}(\mu) \subset \partial \mathrm{N}_{(3)}$ be the union of pseudo cells such that $b_{\sigma}<\mu \in \mathrm{M}^{\prime}, \mu \neq b_{\sigma}$. Then by the definition, it is PL-homeomorphic to the PL-manifold

$$
\left(\mathrm{L} k(\sigma) \# \Sigma\left(-\mathrm{H}_{i}^{3}\right)\right) \times \mathrm{D}^{n-4}
$$

where H_{i}^{3} represents $g\left(\tau_{i}\right)$ and the sum extends to all $\tau_{i}>\sigma$.
Since $\{\operatorname{Lk}(\sigma)\}=\Sigma g\left(\tau_{i}\right)$ in $\mathcal{H e}^{3}$, the PL-homology 3-sphere

$$
\mathrm{H}_{\sigma}^{3}=\mathrm{L} k(\sigma) \# \Sigma\left(-\mathrm{H}_{i}^{3}\right)
$$

is the boundary of an acyclic PL-manifold W_{σ}^{4}. The union

$$
\mathrm{W}_{\sigma}^{4} \times \mathrm{S}^{n-5} \cup \mathrm{H}_{\sigma}^{3} \times \mathrm{D}^{n-4}
$$

is a PL-homology $(n-1)$-sphere. By the proposition 1 of $\S 3$, it is the boundary of a contractible PL-manifold Y_{σ}. We define the PLmanifolds $\mathrm{E}\left(b_{\sigma}\right)$ and N_{4} as

$$
\begin{aligned}
& \mathrm{E}\left(b_{\sigma}\right)=\mathrm{Y}_{\sigma} \\
& \mathrm{N}_{4}=\cup \mathrm{E}\left(b_{\sigma}\right) .
\end{aligned}
$$

Further we define $\operatorname{LE}\left(b_{\sigma}\right)$ and $\operatorname{HE}\left(b_{\sigma}\right)$ by

$$
\begin{aligned}
& \operatorname{LE}\left(b_{\sigma}\right)=\mathrm{H}_{\sigma}^{3} \times \mathrm{D}^{n-4} \\
& \operatorname{HE}\left(b_{\sigma}\right)=\mathrm{W}_{\sigma}^{4} \times \mathrm{S}^{n-5}
\end{aligned}
$$

The pseudo cellular decomposition for $\operatorname{LE}\left(b_{\sigma}\right)$ is already defined and we give for $\operatorname{HE}\left(b_{\sigma}\right)$ by the product with the standard decomposition
of S^{n-5}. They give a pseudo cellular decomposition of

$$
\partial \mathrm{E}\left(b_{\sigma}\right)=\mathrm{LE}\left(b_{\sigma}\right) \cup \mathrm{HE}\left(b_{\sigma}\right)
$$

which is cellularly equivalent to that of $\partial \mathrm{D}\left(b_{\sigma}\right)$. For each simplex $\mu>b_{\sigma}, \mu \in \mathrm{M}^{\prime}$, we define $\mathrm{E}(\mu)$ by the pseudo cell which corresponds to $D(\mu)$ by this equivalence. We define $N_{(4)}$ by $N_{(3)} \cup N_{4}$ attached by the identity of $\operatorname{LE}\left(b_{\sigma}\right)$, which is cellularly equivalent to $\mathrm{M}_{(4)}$.
(d) $p \geqslant 5$. Let σ be a j-simplex $j \leqslant n-5$. Let $\cup \mathrm{E}(\mu) \subset \partial \mathrm{N}_{(n-j-1)}$ be the union of pseudo cells such that $\mu>b_{\sigma}, \mu \neq b_{\sigma}$. Then by our definition, it is a PL-manifold

$$
\mathrm{H}_{\sigma}^{p-1} \times \mathrm{D}^{n-p}
$$

where $\mathrm{H}_{\sigma}^{p-1}$ is a PL-homology $(p-1)$-sphere, where $p=n-j$. By the proposition 1 of $\S 3, \mathrm{H}^{p-1}$ is the boundary of a contractible PLmanifold W_{σ}^{p}. We define $\mathrm{E}\left(b_{\sigma}\right)$ by

$$
\mathrm{E}\left(b_{\sigma}\right)=\mathrm{W}_{\sigma}^{p} \times \mathrm{D}^{n-p}
$$

The other definitions are just similar to the case when $p=4$.
Continuing this process, we obtain a PL-manifold $\mathrm{N}=\mathrm{N}_{(n)}$ which is cellularly equivalent to $\mathrm{M}=\mathrm{M}_{(n)}$.
Q.E.D.

5. Simple homotopy equivalence.

By the theorem of $\S 4$, for the same M, if the obstruction class is 0 , we can construct a PL-manifold N . In this section, we prove the following.

ThEOREM. - If M is compact, the constructed manifold N is simple homotopy equivalent to M .

Let $\mathrm{M}^{(k)}$ denote the k-skelton of M . Let L be a subcomplex of $\mathrm{M}^{(k)}$, we define the PL-submanifold $\mathrm{N}^{(\mathrm{L})}$ of N by

$$
\mathrm{N}^{(\mathrm{L})}=\cup\left\{\mathrm{E}\left(b_{\sigma}\right) \mid \sigma \in \mathrm{L}\right\}
$$

We put

$$
\mathrm{N}^{(k)}=\mathrm{N}^{\left(\mathrm{M}^{(k)}\right)}=\cup\left\{\mathrm{E}(b) \mid \sigma \in \mathrm{M}^{(k)}\right\}
$$

By the induction of k, we prove the stronger

Lemma 1. - There exists a simple homotopy equivalence

$$
f: \mathrm{M}^{(k)} \rightarrow \mathrm{N}^{(k)}
$$

such that, for any $(k+1)$-simplex $\mu, f(\partial \mu) \subset \mathrm{N}^{(\partial \mu)}$ and

$$
f / \partial \mu: \partial \mu \rightarrow \mathrm{N}^{(\partial \mu)}
$$

is a simple homotopy equivalence.

Proof. - If $k=0$, it holds obviously. Now we will prove the lemma for $k+1$ assuming the lemma for k. Let μ be a $(k+1)$ simplex. Since the collar of $\partial \mu$ is PL-homeomorphic to $\mathrm{S}^{k} \times \mathrm{I}$, we can write

$$
\mu=\mathrm{S}^{k} \times \mathrm{I} \cup \mathrm{~S}^{k} *\left(b_{\mu}\right)
$$

where $\mathrm{S}_{0}^{k}=\mathrm{S}^{k} \times\{0\}=\partial \mu$ and $\mathrm{S}_{1}^{k}=\mathrm{S}^{k} \times\{1\}=\mathrm{S}^{k} \times \mathrm{I} \cap \mathrm{S}^{k} *\left(b_{\mu}\right)$. Recall that

$$
\begin{aligned}
& \mathrm{N}^{\left(\mathrm{M}^{(k)} \cup \mu\right)}=\mathrm{N}^{(k)} \cup \mathrm{E}\left(b_{\mu}\right) \\
& \mathrm{N}^{(k)} \cap \mathrm{E}\left(b_{\mu}\right)=\mathrm{N}^{(\partial \mu)} \cap \mathrm{E}\left(b_{\mu}\right)=\mathrm{HE}\left(b_{\mu}\right)=\mathrm{W}_{\mu}^{n-k-1} \times \mathrm{S}^{k}
\end{aligned}
$$

where W_{μ}^{n-k-1} is an acyclic (or contractible) PL-manifold. Let x be a point in the interior of W_{μ} and let $d: \mathrm{S}^{k} \rightarrow \mathrm{~W}_{\mu} \times \mathrm{S}^{k}$ be the embedding defined by $d\left(S^{k}\right)=\{x\} \times S^{k}$. We define a map

$$
\widetilde{f}: \mathrm{S}_{0}^{k} \cup \mathrm{~S}_{1}^{k} \rightarrow \mathrm{~N}^{(k)}
$$

by

$$
\begin{aligned}
& \widetilde{f} \mid S_{0}^{k}=f \\
& \widetilde{f} \mid S_{1}^{k}=d
\end{aligned}
$$

Since $\tilde{f} \mid \partial \mathrm{M}$ gives a simple homotopy equivalence $\partial \mu \rightarrow \mathrm{N}^{(\partial \mu)}, \mathrm{N}^{(\partial \mu)}$ is homotopy equivalent to S^{k}, and so $\widetilde{f} \mid \mathrm{S}_{0}^{k}$ and $\widetilde{f} \mid \mathrm{S}_{1}^{k}$ are homotopic. Hence we can extend \widetilde{f} on $\mathrm{S}^{k} \times \mathrm{I}$. Further since $\mathrm{E}\left(b_{\mu}\right)$ is contractible, we can extend \widetilde{f} to a map from $\mu=\mathrm{S}^{k} \times \mathrm{I} \cup \mathrm{S}^{k} *\left(b_{\mu}\right)$ to $\mathrm{N}^{\left(\mathrm{m}^{(k)} \cup \mu\right)}$. By the definition, f and \widetilde{f} coincide on $\partial \mu$, and so we have a map

$$
g=f \cup \widetilde{f}: \mathrm{M}^{(k)} \cup \mu \rightarrow \mathrm{N}^{\left(\mathrm{M}^{(k)} \cup \mu\right)}
$$

Repeating this for all $(k+1)$-simplexes of M , we obtain a map $g: \mathrm{M}^{(k+1)} \rightarrow \mathrm{N}^{(k+1)}$. We have the exact sequences of chain groups,

$$
\begin{gathered}
0 \rightarrow \mathrm{C}_{*}\left(\mathrm{M}^{(k)}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{M}^{(k+1)}\right) \rightarrow \Sigma \mathrm{C}_{*}(\mu / \partial \mu) \rightarrow 0 \\
0 \rightarrow \mathrm{C}_{*}\left(\mathrm{~N}^{(k)}\right) \rightarrow \mathrm{C}_{*}\left(\mathrm{~N}^{(k+1)}\right) \rightarrow \Sigma \mathrm{C}_{*}\left(\mathrm{E}\left(b_{\mu}\right) / \operatorname{HE}\left(b_{\mu}\right)\right) \rightarrow 0
\end{gathered}
$$

where we regard them as $\mathrm{Z} \pi_{1}\left(\mathrm{M}^{(k+1)}\right)=\mathrm{Z} \pi_{1}\left(\mathrm{~N}^{(k+1)}\right)$-modules.

The map g induces f_{*} on the first elements and id.* on the third elements. Since they are chain equivalences with trivial Whitehead torsion, so is g_{*} by [8]. Hence g is a simple homotopy equivalence. It is easy to see that, for any $(k+2)$-simplex τ, g induce a simple homotopy equivalence

$$
g \mid \partial \tau: \partial \tau \rightarrow \mathrm{N}^{(\partial \tau)}
$$

Q.E.D.

BIBLIOGRAPHY

[1] M.C. Cohen, Homeomorphisms between homotopy manifolds and their resolutions, Inventions Math. 10 (1970), 239-250.
[2] W.C. Hsiang et W.Y. Hsiang, Differentiable actions of compact connected classical groups I, Amer. J. Math. 89 (1967), 705-786.
[3] M. Kervaire, Les noeuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965), 225-271.
[4] M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72.
[5] M. Kervaire et J. Milnor, Groups of homotopy spheres I, Ann. Math. 77 (1963), 504-537.
[6] I. Tamura, Variety of manifolds (in Japanese), Sûgaku 21 (1969), 275-285.
[7] G.W. Whitehead, Generalized homology theory, Trans. Amer. Math. Soc. 102 (1962), 227-283.
[8] J.H.C. Whitehead, Simple homotopy types, Amer. J. Math. 72 (1950), 1-57.
[9] D. Sullivan, Geometric periodicity and the invariants of manifolds, Lecture Notes in Math. Springer Verlag 197, 44-75.

Manuscrit reçu le 7 juillet 1971
accepté par M. Brelot
Hajime Sato
Mathematical Institute
Tôhoku University
Sendai (Japon)

[^0]: (${ }^{1}$) We can refer the chapter 5 of the book: C.R.F. Maunder, "Algebraic topology", Van Nostrand, London (1970).

