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THE GROWTH OF ENTIRE SOLUTIONS
OF DIFFERENTIAL EQUATIONS

OF FINITE AND INFINITE ORDER

by Lawrence GRUMAN

Let /(z) be an entire function (of one or several variables) of
finite order p. A proximate order p(r) is a function which satisfies
the conditions

lim p{r) = p and lim r p\r) In r = 0 . (1)
r —>oo r—>oo

The function L(r) = r^ - p satisfies

L(kr)
lim ——— = 1 uniformly for 0 < a < k < b < o° . (2)r-»oo L(/-)

We assume in addition that lim L(r) exists (perhaps infinite). For
r —>oo

every entire function of order p, there exists a proximate order p ( r )
with respect to which /(z) has normal type [5].

For a given proximate order p(r), we define the functions

f \n\f(rz)\~\
h^(z) = lim lim ——..— , r > 0r z' —>z I r-^oo y - P ( ^ ) I

/ _ r _ \n\f(uz')\^ \
(resp. h^z) = ̂  ĵ lm^ ^ ̂  J ^ u GC) .

If f(z) is of normal type with respect to the proximate order p(^),
it follows from (2) that these functions are pluri-subharmonic and
real positive homogeneous (resp. complex homogeneous) of order p
[4]. The function h^(z) (resp. h^(z)) is called the radial (resp. circular)
indicator of growth function of /(z).

A convex homogeneous function g(z) is one which satisfies
^(z^ + z^) < g ( z ^ ) + g ( z ^ ) and g ( t z ) = tg(z), t > 0. To every convex
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homogeneous function g(z\ we associate the compact convex set
K = {w : Re < w, z > < g(z) V z € C'1}, and to every compact con-
vex set K, we associate the convex homogeneous function

g^(z) = sup Re < w, z > ,
weK

which is called the support function of K. If p = 1, we define h^(z),
the convex indicator of growth function of /(z), to be the least
convex homogeneous majorant of /z*(z). It is evidently the support
function of the closed convex hull of the set

{w : Re <w ,z >< / z * ( z )Vz^C ' 1 } .

If the dimension n == 1, these two functions are the same [5].
In § 1, we investigate for the case n = 1 the relationship between

the growth of the function f(z) and that of solutions u(z) of the dif-
3

ferential equation P(D) u == / (where D = — and P(D) is a differential
3z

polynomial).
Let p ( z ) be a complex norm (i.e. p(Xz) = |X |^(z) , XEC) , B^

the space of functions which satisfy a maj oration

| / (z ) |<CAexp{(A^(z)n

and E^ = 0 B^. In [8], A. Martineau introduced the notion of a
A ^^ 1't

constant coefficient differential operator as a convolution operator on
the dual space (E^)' of continuous linear functionals defined on E^.
We will take as our definition of such an operator the transpose,
which is a linear operator on the space E^ into itself. This category
includes the usual constant coefficient differential operator as a special
case. For p > 1, Martineau showed that for every such operator jn on
E^ and every /GE^, there exists a solution ^^E^ of the equation
fi(g) = /.

In § 2, we extend this notion and this result to the case ofp(z)
a pseudo-norm and p(r) a proximate order (p ̂  1), including the im-
portant case of p < 1. In § 3, we extend this notion and result to the
case p = 1 and p(z) an arbitrary convex homogeneous function. In
§ 4, we extend this notion and result to those functions which sa-
tisfy a majoration of the type exp{k(\r\r)p} for p > 1.
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Remark. — The case of proximate orders for p = 1 is rendered
much more difficult by the special role played by the exponentials.
We do not treat this case.

1. Ordinary differential equations.

Let f(z) be an entire function of a single variable and h^(z) its
indicator function with respect to a proximate order p{r). We will
henceforth in this section use the notation kAQ) = h^(e16), which is
the standard notation for n = 1. If u(z) is a solution of the constant
coefficient differential equation P(D) u = /, then it is an easy conse-
quence of Cauchy's theorem that kAO) < k^(0). We are interested in
seeing if we can choose a solution such that equality holds (at least
locally). We will need

LEMMA 1. — The number of disjoint open intervals on which
kAQ) can be negative is at most sup [2ap] (where [ ] means "greatest

a<l
integer in").

Proof. - For0^ < 6^ < 6^ and^ - 6^ < TT/R, we have [5, p. 70]

^(^)sinp(^ - 03)+fe /02)s inp(03- 0,) +
4- ^(03)sinp(0i - 6^)<0 .

Thus, any two disjoint intervals on which k^(6) is negative are sepa-
rated by an interval of length at least TT/R on which k^(9) is non-
negative. Q.E.D.

THEOREM 1. - Let f{z) be an entire function with indicator
k.(Q) with respect to the proximate order p(r). Then there exists a
solution u(z) of the differential equation P(D) u = f such that

i) M0) =k^0) for p < 1.
ii) k^(Q) < k^(6) < A^(0) = max (k^(Q\ 0) for p > 1 and for

any specific interval (0^ , 6^) on which kAQ) is negative, there exists
a unique solution u with this property such that k^(6) == k^(6) for
^ <0 < 0 2 -
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Proof. - It is enough to consider solutions of the equation
(D - a) u = f and then iterate the result. All such solutions are given
by

u(z) = e^ f f^)e-^d^ + Ce^ . (3)

If for some open interval of 0, the function /(z)^-^ has negative
indicator (with respect to any proximate order), then

C = f00 m) e-^ Hdt , ^ = e10 ,

defines a constant for all 6 in this interval. If there is no such region,
we choose C = 0. By Lemma 1, for p < 1, there is at most one such
interval, but for p > 1 there may be more than one such interval and
we may only be able to choose C to satisfy this relation in one of
the intervals. (This explains the difference between i) and ii) above).

From (1), we have that

(r^V = p(r)r^-1 + r^ p ( r ) In r -> p(r)r^-^ . (4)

Let us consider the case p < 1. For a given ^ = e16, let b = kAQ)
and s = Re a^. Then given £ > 0, we have | /(^) | < K exp(Z? + £) tp(t\

i) If s < 0 and b < 0 and if £ < - - , then
2 "

\u(^)\<Kesr F^(^e)^0-^ dt + |C|^
"o

<K^ ̂  f [(&+£) d (t^)-s\ e^^-^dt + |C | ̂  ,JclQ L dt J

where q^ is chosen so large that | {b + £) — (r^0) - s is bounded

below and K\ depends on q^ .

1^(^)1 <K', [^^^ - ^ .K^ 1 + \C\esr

< K" e(^?+6)rp(r)

ii) If s > 0 and 6 < 0, then by the choice of C, we have
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1^(^)1 < K ^ F e^^^ .e-^dt
J r

< K F'e^^^dt^Ke^^y^ F e-^^ dtj, jy
^K^(^26)^) ^

since by (4), r p ( r } is increasing for sufficiently large r.
hi) If 5 > 0 and b > 0, then

\u(r^)\ < K ^ r e^^^-^dt
^r

< K'3 ̂ r J^ [(6 + £) -^ 0^^) - S\ ̂ +E)rp(o-^

< K" 6? (6+6 ) rp ( r )

iv) If 5 < 0 and b > 0, then

\u{r^)\ < K e ^ r e ^ ' ^ ^ - ' " dt ^\C\esr

"Q

^K^re^^^ .

The case p > 1 is treated similarly (for p = 1, we must make use
of the assumption that lim r^^'^ exists). For p > 1, if for some0,

Y —>• <x»

k^(6) ̂  k^(Q\ then u(z) = w(z) + C^2, where k^O) = k^(6) < 0,
so ^(0) = 0. Q.E.D.

Remark. — It follows from Theorem 6 below that if P(D) has a
non-zero constant term, then for p < 1, the solution u(z) in i) is
unique.

The following example shows that it is not always possible to
find a solution u of P(D) u = / with the same indicator as /. Let
f(z) = e2 and let u be a solution of Du = f. The function /(z) has
two intervals on which its indicator is negative/If we integrate f(z)
along the positive imaginary axis, we obtain a constant different from
that which we obtain by integrating along the negative imaginary axis.

There is even a more intimate connection between the growth
of the function f(z) and the solution u(z) of P(D) u = f. If /(z)
grows regularly in a given direction, then so will u(z). We introduce
our criterion for regularity of growth.
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Let E be a measurable set of positive real numbers and let
E^ == E 0 [0, r]. A set is said to have upper relative measure U if
— meas (E^) „
lim ————— = U. If U = 0, E is an E°-set.

r—>oo Y

DEFINITION [5]. — Let /(z) be an entire function with indicator
kAQ) with respect to a given proximate order p ( r ) ; f(z) is said to
be of completely regular growth along the ray re10 if

,. ln|/(^)|lim ——r ~->oo Y
in \j yc ) |

.^——pcT—^/W'
where r takes on all values except perhaps for some E°-set.

Remark. — The property of being of completely regular growth
is not invariant with respect to a change in proximate orders.

THEOREM 2. — // u(z) is a solution of P(D) u = f for an entire
function f(z) and if p(r) is a proximate order with respect to which
both kAQ) and k^(6) are bounded, then if f(z) is of completely
regular growth along the ray re16, so is u(z).

Proof. — We consider a solution of (D — a) u = f. By Theorem 1,
for given 0, there is an interval (6^ , Q^) containing Q such that
u = w 4- C e^ and w has the same indicator as / in the interval

\n\u{rei6)\
(0^ , 6^). Thus, if k^(6) ̂  ^(0), we have that ^lim ——^— exists

with no exceptional set. Hence, in the following, we assume that
k^(0) = kAQ). We assume without loss of generality that 0 = 0 .

Let c and 17 be given positive numbers. Then there exists a set
E, of upper relative measure less than 17/4 such that if r ^ E ^ , the

family of functions^ /0) = ———/.—— is equicontinuous [5, p. 96].

Thus, there is a § > 0 such that for |0| < 5,

\ku^-ku,^\<^ ̂  1^(0)-^(0)1 <^ for r^E, .

Since / is of completely regular growth along the positive real
axis, given 7 > 0 (depending eventually on 17 and £), for r not in
some E°-set E^ ,
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- ̂ + fe/0)< ln^1 < "r(0) + i= ̂ (0) + i • (5)

77 Inj^r^'0)! . , 7
We choose r so large that meas (E^) < — r and ——^—— < /c^ (0) + ^

[5, p. 71]. By Cauchy's formula,

^,-.^-l-r ^^),--^)^.
2TTi ^ I S I - l ^2

So by (5) for rf E^ and r sufficiently large, there exists w with
| w - r | = 1 such that, noting 0^, = arg w,

|a|4-ln|^w)|>l^(0)-^{^ r)>j^(0,)-^||w|p< l vv l )

1 _i_ <M \^

Let R^ = ( — — ' ) . Then, as in the proof of Theorem 31

[5, p. 73], we can choose 7 so small (depending on £ and T) but inde-
pendent of w since k^(6) is bounded) such that

^\u(r^)\ e
r p ( r ) " ku{(pw' 4

n2

except perhaps on a set of measure at most — R^ for

(1 - 2r?)R^ < / • < ( ! +2r?)R^

(for m > WQ so large that the above inequalities hold). Let

E , = [ 0 , R ] U ( U E^) .
- '"0 \m>mQ /

Then
, ^ I2 ̂ p ~ R»•)

'"0 ,-^o 4 l - ( 1 + T ? )

meas(E;) ____________(1 - H)
r " R,(l - T?)

n / ^"'o\ ^
<0(l)^(l-^)<,
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for m sufficiently large. Let E^ = E ^ E ^ U E ^ . Then

— measCE^)
lim ————^ < T? ,
r —> oo Y ' 5

and gathering together our inequalities, we have | k^ /O) - A: (0) | < £
for r(f E. To see that this implies the theorem, w^ refer the" reader to
Theorem 1, part 3 [5, p. 141]. Q.E.D.

Remark. - The fact that a function is of completely regular
growth in an interval has important consequences for the distribution
of its zeros. This is fully discussed in [5].

2. Differential operators with constant coefficients.

Let p ^ ( z ) be a decreasing sequence of real valued functions and
\ the space of entire functions such that \f(z)exp{-p (z)} | goes
to zero at infinity. This is a Lanach space with norm

11/11,, = sup |/(z)exp{--^(z)}| .

We then set
E=^B^ (6)

which is a Frechet space when we equip it with the projective limit
topology. If B^ is the dual space of B^ , E' that ofE, then E' == U B' .

n n

Let p(z) be a complex pseudo-norm and p(r) a proximate order
The space E^ will designate the space we get in (6) by setting

_i } ^Pn (z) -) P (z) + - I I ^ I I (where r = [[ z [ | , and we use the Euclidean' n )
norm). The space E° will be the space we get in (6) by setting
p ^ ( z ) = [|z H17" (the space of entire functions of zero order).

For a given proximate order p(r), we have by (4) that r^^ is
increasing for sufficiently large r. For a given integer q, we define
0(^) = ̂  to be the largest solution of q = r^. Then the type with
respect to p(r) of an entire function of one variable with coefficients
Cq (in its Taylor series expansion at the origin) is given by the formula
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(ope)^ = lim (0(<?) | c. l'^) [5, p. 42] . (7)
q - > oo *«

If /^E^^, we expand / at the origin in homogeneous poly-
/(|)(Q)p\q/p

nomials /(z) = V P,(z) . Let A. = (-t—1— ) . If we set^ q q \ e p '

W= H A^(z) ,
q

then/^(z) is a holomorphic function in the open set D = { z : p ( z ) < 1},
and when we equip the space 9€(D) of holomorphic functions defined
on D with the topology of uniform convergence on compact subsets,
the mapping / -> f^ becomes an isomorphism of E^^ onto ^(D)
(cf. [8], Prop. 4, p. 116 and [4]).

For JLI G (E^^), we define the linear functional JLI^ on 36(D) by
(/^ ^) = (f^ ̂  This is an isomorphism of (E^^V onto ^'(D),
the space of continuous linear functionals on 36(D). We say that a
linear functional jn^ is carried by the compact convex set K if for
every open neighborhood ^2 of K, there exists a constant C^ such
that | JLI^(^) I < C^ sup |/J . Every ^ Gg^D) is carried by one of

n

the sets K^ = j z : p(z) +-1- ||z||< l [ .

We define the Fourier-Borel transform of the functional jn^ to
be the entire function ju^(i0 = jL^(exp < Z , M > ) . Then we have [3],
[7].

PROPOSITION 1. — The functional p.^ is carried by the compact
convex set K // and only if

IJL,(U) < Cg expCIi^) + § I I u ||) for all § > 0 ,

v^here H^(u) is the support function of K.
Let p^(u) = sup Re < z , ^ >. Then p^(^) is a family of in-

zcK^

creasing complex norms, and since each jn^ G^(D) is carried by some
K^ , we have

JL^(K) < C^ exp H^ {u) for ^ sufficiently large.

Let a be a multi-index of positive numbers, | a \ = Z c .̂ and
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a — a! a^z - z . . . z . Since the polynomials converge to exp < z u > in
96(D), we have

Mexp<z^»=^ 1: $; ^^ ^ ^ ^(z^-^
<7 | a | - < 7 a - <7 | t t | -<y 0'!

= Z P;^)
<7

and from (7) and Proposition 1, we have

^^^W^^^p^)

for n sufficiently large. From the relation ̂  0^) = —'—^(z0'), we see

that ^(E^y (resp. (E0)') if and only if l a l

_ ( q l ^a i/^ .

^^'A^i^^^l ^^^ W

for n sufficiently large (resp. for p sufficiently small).
For p. E (E^^V (resp. (E°)'), we define its Fourier-Borel transform

to be the formal power series

?(„) = ̂ (exp < z ,u » = ̂  ^ ^) ̂  = V PM(^).
Q \d\-q a! ^

If p > 1, we assume that the proximate order p(r) satisfies :
i) p(r)> 1 for all r

^^r^ 1 ) > 0 for all/'-

By (1), these properties hold eventually, so this is an inessential assump-
tion. Then the equation r == r^^"1 has a unique solution for all r.
We define

P(0
?*('*) = /^ _ i > where r is this unique solution.

It is an easy calculation to show that p*(r) satisfies the conditions
(1) and so is a proximate order. For p > 1, we designate
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pp*(r) _ (j F?*(r)
^Ap- -^^ -

where A =

p-i
(p- 1) p

THEOREM 3. — The mapping p. '-> ^.(u) is a one-to-one linear
mapping of (E^)' (resp. (E0)') onto

^ p y ) f o r p > l
ii) the set Q^^ of formal power series at the origin which satisfy

( 8 ) for some n for p < 1
iii) the set Qo of formal power series at the origin which satisfy

( 8 ) for some p > 0 for (E°)\

Proof - We have that (8) holds for some n^ . Since

^ - ^) ^ 1 - A^-'
" (ep)1'" e A^ (ep*)'/"*

(where r, = ^(qr)). Let r^ = r^'1. Then

-^•(^^^-y.^)-)
•<r ^^

P(^)
,^)-i^)-^^),^

so if ^ ' ( q ) is the unique solution of (/^) = ^, we have that
q 1 (f>'(q)
— . , _ = A ———,7~» so the mapping is into. Since the calculations
e A lq (ep*) fp

are all reversible, the mapping is also onto. This proves case i). Cases
ii) and iii) follow directly from (8). Q.E.D.

Let ft G (E^^Y. Then for any other element v, we define the
convolution of v with 71, ^ * v = r by (/(z), ̂  * v) = (^ f(z + w), ^).
This is defined at least on the polynomials, which are dense in E^^.
For p > 1, it is also defined on the exponentials [8]. We then have
the relationship (for p ^ 1) ^r(u) = ?(^)' ̂ (u\ which, for the case
p < 1, follows from
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LEMMA 2. - For ^(u\ "P(U) G Q^^ (resp. Q^), w^ /z^
^(u) = jn(^) ^C^EQ^ (wp. Q^) for p <\ (i.e. these spaces are
algebras).

Proof. - We choose n^ so large so that for ^ > ̂  , (8) holds
for both p. and ^. Consider such an n and let c > 0 be given. Then
there exist constants C^ and C^ such that

,<f)(^y\^ /^|P^)| <c^[p» + e ii^ir (-w-) (^)
and

i P^(«)I < C^^(K) + e \\u \\r (^y7" (-e)".
Then
|P , T (M) |= | ^ P;»P»|

w + M q»

^CgC^p^+eil^ll]^*^)^)'
^ ^p / ^^ '

pCmr^^n (m+AzF^

m^-cz l^(^ +^r+"J ^w^
Let ^ = <^). Then -̂ - = ^p (^ ) - l , and hence, since by (1), r^-1

^ $(^) g

is decreasing for r sufficiently large

\yp^rm^n}~lvn^n
V ——. w+yz———:—r—— < K q for some constant K .-^.[^(w) ri^"1]'1

Thus | P^(^) I satisfies (8). For Qo , we choose pp so small that (8)
holds for both p. and v for p < p^ . The result then follows from the
above calculations. Q.E.D.

Thus, by Theorem 3, for p < 1, the mapping v -> p. * v is a map
of (E^V (resp^ (E0/) into (E^V (resp. (E^). If p > 1, this is
only the case if fi{u) is of minimal type with respect to the proximate
order ?*(/'). Assuming fi to satisfy these conditions, we define fi to
be the transpose of jn, (f!i(f), v) = (/, ^ * ^). We are interested in
proving that the mapping ^(E^^) (resp. E°) is onto (i.e. that there
always exists a solution g such that ^(g) =/). We will make use of
[cf. 9, p. 85].
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PROPOSITION 2. — Let E, F be two Frechet spaces, a a continuous
linear map of E into F. The two following are equivalent

i) a is onto
ii) ^ : F' -^ E' ^/z^ transpose map) is one-to'one and its image

^a(F') ls ^^kly closed in E ' .
We shall prove the closure of fi * v in the equivalent spaces as

determined by Theorem 3, but first we must equip these spaces with
topologies. For p > 1, we equip the space F^-^ with the topology
of pointwise convergence. For p < 1, we equip Q^ (resp. Q^) with
the topology of convergence of Taylofs series coefficients. Each of
these topologies is at least as weak as the weak topology.

We define a differential operator with constant coefficients (with
respect to a given proximate order p(r)) to be

i) ^ for ju G (E^^V for p < 1
ii) fl for ix G (E°y

iii) ]i for IJL E (E^^V such that ^(u) is of minimal type with
respect to ?*(/•) for p > 1.
For p > 1, the mapping T^(u) -> ^(u) ^v(u) is closed in the topology
we have chosen (the proof is carried out in [8] ; the modifications ne-
cessary to treat the case of proximate orders are obvious). Thus, we
limit ourselves to the case p < 1 and E°.

LEMMA 3. - Let A^(u) = n+m— be a homogeneous polyno-
Cy^(u)

mial which is the ratio of two homogeneous polynomials. Furthermore,
assume that for some complex norm PQ^U) that

\B^^u)\<C[p,(u)}^m .

Then given 8 > 0, there is a constant K^ (depending only on C^(u)
and 6) such that | AJ^) | < C Kg [p^W (1 + S)"^ .

Proof. - Let Sl ={u : 1 - § <po(^) < 1 +6}. For every point
u in Sl we find a polydisc (by making a non-singular linear change of
variable if necessary) A(K ; r") centered at u and lying in Sl such that
C^u\ , . . . , u^,, , ̂ ) ̂  0 for | ̂  - ̂  | = ̂  and
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\^-u,\<r^i= 1 , . . .^- i [2].

Let n' ={u : PQ(U) = 1}. We now consider the polydisc A^ = A (u ;'-)•

Since Sl' is compact, it can be covered by a finite number of A' .
u^ 9

\ ^
7 = 1 ,. . . , N. The function -—— is bounded, say by —6 , on the

^w(^) 2
compact set

K=U{u' :u'e^ , |^-^,|<^ , z = 1 , . . .^ -1, |^-^ |

^= r n} .

Let the function A^ take its maximum on ^ at the point u°. Then
M° CA^. for some 7. By Cauchy's formula

[ A (,/))= _L f B^(^,. . . ,^o_^^)^
27n ^1^-^|^ C,(^ , . . . ,^_, ,^)(^-^)

-KgC^^d +6)"^ . Q.E.D.

THEOREM 4 (Division Theorem). - Let H(u\ FC^EQ^ for
p < 1 (r^p. Qo) w/^ H(^) = F(^)G(^), where G(u) is a formal
power series at the origin. Then GO^^Q^^ (resp. Q^).

Proof. - Let £ > 0 be given and let

G(u) = ^ R^(u) , H(u) = ^ P^(^) , and F(u) = ̂  T^(^) ,
^ q q

with ^ the smallest integer such that T^(i0 ^ 0. We choose HQ so large
that (8) holds for both H(^) and F(u) for n> n^. Thus, there exist
constants C, and C^ such that

and

/ (h(a}p\q^p / ^ ^|P^)| < C^[P,^) + £ i i ^ i i r (^^-) ^\
^ ep / \q /

/fh(n^p\c!l/p P c!
T,(«)| <€,[?„(«) + £ | | M ||f (vw-) (^\ .Y ep / \q /

We have
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P,^")- I R^(")T^,(«)
m+ k~^ q

or

R,(") =

P,+,(")- S R.,(")T^(M)
w+fc=<7

m tq

Tc(^)

We now show by induction that there exist constants K (with
K^-! ^ K^) such that

p-^s

|R^(^) |<K^^(^)+£| |^ | | r (14•5)^(0^+^ ) p) p (-e—^ s ^
• • v ep f ^q + s /

where K^ = K^ _ , for q sufficiently large.

For q = 0, it follows from Lemma 3. We assume it true for
q <<7o - L

I^O+^I-^ S IRm(«)T^^)|
m+fc=<7o

W ^ Q Q

IR.^)1 <<?0 |T-(«)|

(lQ^S_
' \ P

ep / <qr+5^
< K,(l + 6)- [p» +£ ||^ ||fo(l + 6^0(^0^) p (-^-)qb+' ,

ep ' Y q r + 5 /

x C + V 1C r r0(mr 0(^4-5^^1 (m+fc-^r^
1 .̂ ,0 q" 2W l^^+^+^'——J m^k+sr5

m^qo

v^
^maxIKod+S/C^K^.C^^^+ell^l lAl+fi)^0^!^ ') p ^-Fv ep / \<7+5 /

^^r^^+^^i (m+fc+^r^^[^(wr^^+^^i
^m+k+sr^^ix i + y Kgd+fi^wi—————T.^i———i-r—

< m^^ L0(m+^+5^+fc+JJ (^+5) f c+^mw

w^go

We assume that the function r1"^^ is increasing. By (1), this holds
eventually, so this is an inessential assumption
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^(mr^k+s)"^} (q^s)"^'

0«?o+^o+I J mm(k+s)k+s~ \,l-ll(r''o+s)}m L1-"^5)'}^
| QQ+s I I • a ^ + s Igo-^

.^p(r^/-^m)
' w

3
Let us assume for the moment that k + 5 < — (q^ 4- 5). Then

'-^o^) pl^l0-^
/-^o^P4' ^ I-P

^ o 4 ^go-^y
^-^(r^.) l-p(^^) p

r l-P ' 2' k ^ s
l-P(^) P

Let i//(r) =r l-p * 2 . Then

y^o^ 5 rf /l^o+•y ^
^^.„)-^^)=J^ ^^(/•)^>/,^^ ^^r)dr

4^0^'

dr^o^
> J^r .

dr
i^o-) dr

for q^ + s sufficiently large, by (1). Thus

^o^ r /s^i
^^ - ̂ r^) > r^ [l -(^) j = T(^ + ,)1/4 .

P 1For (k + s) > 12 -- = a, we have
2 1 -p

•-^Q^) J^^^'-^

>- 1-p
^o + ^
'-^(^^.v^ P

• / k+ . v

T^+^l^^0-^1 4- —-0

^^(^Ac+P P
2.. l-p

' fc+5

^fl+^^ol^,.^
^^^fe+p p

• • • + K T 7 ( ^ 4 - ^ + . • .

, •-P ' 2
'A:+$

-( l -p)
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P 1where 7 > 3 — —
2 1-p

>T(^ +^) 3 .

For (fc 4- s) < a + 1

/ 1-^^) p x
T^since ^+,l-p ' 2 = 0(^ 4- 5)172,)

\l-p^o^)
'qo^s

l-^(rfc+.)
^+^

fc+.v

>

'-^o^)'
• f fO -^^

j3
(a+ D^gd + 5 ) ^ 3 ,

^where j3 == max ^^p(r<t+s)) for <7Q sufficiently large. By sym-

metry, similar inequalities exist if we replace (k + s) by m. We choose
Kg (!+§)' 1

<7o so large that —————-^ < ——. Thus
T (q'o + s)' qo

1 + V K fl I SYm \(l>(m)m<!>(k+^s^ (m+k+sr^^n.^ 6( ) [^kTsr^l m^k^sr-
m^yy

(gp - 1)< 1 + — — 3 — — + 2 « 7 < ,

for q^ sufficiently large, which establishes the induction.
Furthermore,

f^^^i"", \/-p^A ̂  ^ r^r" rr^^r^, r/-^^" <?+^ iV^'fl+^T'"1^1 'A±^___|
I q + s J [r^ J I <? J [^-PC-,)<?

;(i+6)- ^r4'1v
for arbitrary § > 0 when ^ is sufficiently large. Thus

i/<?
^(7 ^^(^ ^P.(").

which proves the theorem. Q.E.D.
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COROLLARY. - Let F(u) = ^ T^), H(u) = ^ P^) 6(? ^
<7 <7

Q^ (r^p. Qo) fl^d assume To ^ 0. 77^72 r/!^ ex^ a unique
GWeQ^ (resp. Qo) ^c/z that F(u) G(u) = H(^).

Proof. — It is well known that the set of formal power series
with non-zero constant term forms a group under multiplication. By
Theorem 4, GO^GQ^ (resp. Q^). Q.E.D.

Combining Theorem 4 with Proposition 2, we obtain the following

THEOREM 5. - Let ii be a differential operator with constant
coefficients for some space ^p(r) for a complex pseudo-norm p ( z )
and a proximate order p(r) (p ^ 1) (resp. E°). Then for /EE^^
(resp. E°), there always exists g^E^ (resp. E°) such that {i(g) = f.
For p < 1 (resp. E°), ;/ ^i(l) ^ 0, the solution g is unique.

Proof. - As a result of Theorem 4, the mapping v -> ^ * v is
one-to-one and closed. If ]l(u) has a non-zero constant term, then by
the corollary to Theorem 4, this mapping is also onto, so its transpose
p. is one-to-one. Q.E.D.

We now show that for p < 1, the uniqueness of the solution has
important consequences for the circular indicator function. Instead of
a complex pseudo-norm, we let PQ(Z) be any positive upper semi-
continuous complex homogeneous function (i.e. ^o(Xz) = |X|po(z)).
We construct the space E^^ as in (6).

LEMMA 4. — Let po(z) be a positive upper semi-continuous
complex homogeneous function, ^ = { p ( z ) : p ( z ) a complex norm,
p ( z ) >p^(z)}. Then p^(z) = ̂ ^ {p(z)}.

Proof. -Le tD = { z : p ^ ( z ) < 1}, De = { z : p ^ ( z ) + £ ||z||< 1},
which are open. Consider a complex line (Xz^), X E C (which we
assume to be (X(z^ , 0 ,. . . , 0)), and let

D'0 = D H (Xzo) , D'e0 = De H (Xz^) .

This determines two concentric circles in the (Xz^) line. We choose a
radius A - < °° between the radii of these two concentric circles andzo
E so small that the convex set^
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K ^ = { z : | | z j | < ^ , /t Iz . l^^CD.
V i^2

We define p^ (z) = inf r, which is a complex norm. Since Dg
0 ^K-t zo

is a compact set, it can be covered by a finite number of the open
sets K , 7 = 1,. . . , N. Then p^z) < inf p,.(z) < p^t) + £ || t \\.

1 ] Q.E.D.

THEOREM 6. — Let p < 1 and let f have circular indicator h^ (z)
with respect to p(r). Let ^ E 0 (E^\y ^c/z r/z^ /x(l) ̂  0. 77z^

A ^ 0

there is a unique solution g of the equation ^(x) = / such that, if
k^(z) is the circular indicator of g with respect to p(r), A^(z) < h^(z).

Proof. - Let pa(z) be a family of norms such that

^*(z)^ = inf p^z) .

Then ^(E^^Y for every a, and by Theorem 5, there exists a
unique solution g to the equation ]!i(g) = f. We clearly have

^(z)<^(z) . Q.E.D.
In particular, if P(D) is a differential polynomial with constant

coefficients and non-zero constant term, then for p < 1, there is a
unique solution g of the differential equation P(D)g =/where g has
the same circular indicator as /.

3. The case of p = 1 and convex functions.

Let h^ be a convex function, K the associated convex compact
set. We make the space E^ of entire functions P(u) whose convex
indicator functions are less than or equal to h^ into a Frechet space

as in (6) by choosing p^(z) = h^(z) 4- — ||z || ; (E^ V is its dual space.
n k

We have the following characterization of (E^ )' [8].
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PROPOSITION 3. - The space (E^/ is just the set of measures m
for which there exists an £ > 0 such that m. ̂ (Z)+£M ^ ^
bounded measure.

We recall some of the basic notions that A. Martineau [8] used
in defining the projective Laplace transformation of a function f(z)
of exponential type. Let V be an ^-dimensional linear vector space,
V its dual. Let P(V) be the projective space obtained from V by
adding the points at infinity, P(V') that obtained from V by adding
the points at infinity. We write the coordinates of P(V) as(?o,z),
those of PCV) as (^, {), and we let i be the hyperplane

?o • ^o + < z ̂  > = 0 .

We introduce the differential forms 7r(z) = dz^ A . . . A dz^ ,

0(^) =1 ( - l ) / ^ l A . . . A 4 A . . . ^d^
7 = 1

(d^ omitted) and oj^, z) = 0(S) A 7r(z), which is defined in V x P(V').
Let F be the boundary of a strictly convex open set ft and assume

r regular and oriented by Stokes' formula / TT == / dv Tot /^^ ^n
each point z G r, we have the associated hyperplane ^(z) through z
tangent to F. This defines a manifold I:(T) in V x P(V').

For a compact convex set K, we designate by CK the open
subset of P(V') formed of hyperplanes ^ such that ^ 0 K = {0}.

PROPOSITION 4 [8]. - Suppose K convex and compact. Let V/ be
a function defined in C K, holomorphic there, and zero at the points
at infinity (^ = 0). Let f G S6(K) (functions holomorphic in a neigh-
borhood of K) a^ / a representative of f in an open neighborhood
ft of K. Let (j^ be a strictly convex neighborhood of K with regular
boundary included in ft. Posing

^(7) =~^f^/(z) !̂  ̂ )) "(z's) (9)

w^ define a continuous linear functional on S€(K) which is independant
of the choice of the representative f and of GJ.
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Let F(u) be an arbitrary element of E^ . We define the function

W)=^o f00 F^-Si^e'^dt .

This defines a function in C K which is zero at the points at infinity
^ = 0. The function ffy is called the projective Fourier-Borel transform
of F. We then have

PROPOSITION 5 [8]. - Let F(^)GE^ . Then

^'(^^^^'•^a^^^'0'0^
where ^ is any strictly convex neighborhood of K with regular
boundary.

Let jn G (E^ V. We define the Fourier-Borel transform of IJL to be
/^(z) = ^(exp < z , u >), which, by Proposition 3, defines a function
holomorphic in a neighborhood of K. For v G (E^ )\ we define the
convolution of ^ with v as 0 * ii) (F(u)) = ^Oy F(M -h v)). We refer
the reader again to [8] to see that the convolution is well defined.
We then have the relationship that fy^Az) = fy(z)' f^(z) where these
functions are defined.

On the other hand, let g(z) be a function holomorphic in a
neighborhood of K. Then g defines a continuous linear operator S
from E^ into E^ by

^(F(M)) = (̂ o" 4.) "(2) exp < z •"> w^ ̂  "(z • £ ) '
where a? is a suitably small strictly convex regular neighborhood of K.

LEMMA 5. - Let V/^ "^exp^ ,u>forzo^^' Then the linear
functional on 9C(K) determined by V/^ , T., = S(ZQ), the Dirac

0 ^ZQ

measure.

Proof. - Let / be a representative of / E ̂ (K) defined in some
convex neighborhood a? of K. Since a; is a Runge domain, / can be
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uniformly approximated by polynomials in an open neighborhood of
z.\e — 1

K, and since z, = lim ——-—— , X E C, / can be uniformly approxi-
|A.|—>0 A.

mated by exponentials. But by (10), we have that T^, is just/(z^)zo
for the exponentials. It now follows from the uniform convergence in
a neighborhood of K that T. (/) = /(zj. Q.E.D.

^o

LEMMA 6. - Let v G (E^ V. // fy is its Fourier-Borel transform,
then the linear operator Q .̂ : E^ -> E^ is just the transpose of the
convolution v * ^ (i.e. (Q^. (F), fi) = (F , v * ^i)).

-Proo/ — By Proposition 3, we can represent ^ by a measure m
such that m^ e k{u + " is a bounded measure for e sufficiently
small. Then

M(F(U)) = (2^ ̂ (-) "(exp <zfu>)^ (^)) "(z • £)

follows from Fubunfs theorem for a? a sufficiently small, strictly
convex neighborhood of K. Thus, 11 is completely determined by its
values on a set of exponentials exp < z , u > defined for 2 in a
neighborhood of K. We choose a? so small that fy is defined and
bounded in co. Then for Zp (= c^

(Q^(exp <ZQ,U »,/i) =

/ i r y~1 /^n^x \
=<(2^^)exp<z^>/-(z)^^

= /^o) ^i(exp < ZQ , M >) = /^(Zo)^(Zo) ,

from which the lemma follows. Q.E.D.
For v G (E^ )', we define the differential operator with constant

coefficients ^ on E^ to be the transpose of the convolution operation
li -^ v * p. on (H^V.
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THEOREM 7. - Let ^ be a differential operator with constant
coefficients on E^ . Then

(a) for F G E^ , ^6?/^ a/mz>^ exists G G E^ ^c/z r/^r i!(G) = F,

(b) ;//„ /?fl5 no zeros in K, ^^ G is unique
(c) ̂  polynomial exponential solutions of ^(x) = 0 are dense

in the space of all solutions of this equation.

Proof. - (a) The mapping JLI -> f^ is a one-to-one linear mapping
of (£„ V onto ^(K). We topologize ^(K) with the topology of
convergence of the Taylor series coefficients at each point of K. This
is at least as weak as the equivalente on 9e(K) of the weak topology
on (E^ V, since, for a multi-index a,

al^l f (z \
^exp <z,,u » = ——^Lo-

V fv'fi. ls a filter converging to ^G96(K), then we must have
^7

^ = f • f , since the Taylor series of ^ is divisible by that of fy at
each point of K. Thus the mapping f^ -> fy - f^ is one-to-one and
closed, so VL -> v * ^ is also one-to-one and closed. By Proposition 2,
its transpose is onto.

(b) If fy has no zeros in K, then/^ -> fy • f^ is onto so ̂  -> v * fi
is onto and hence its transpose is one-to-one.

(c) See [8] and [6]. Q.E.D.
The following example, due to C.O. Kiselman, shows that in

3 3
some sense the results of § 2 and § 3 are sharp. Let P(D) = -^— + -—dZj 6z^
and let /(z) = cos ->/z, z^ , which is of exponential type. Let u be a
solution of exponential type of P(D) u = f. Then

u(0,r)-u(-r,0)= [ — u(- r{\ - t) , tr) dt =
"o dt

=r f' cosr ./-t(\ -Ddi^-'- !\er-^^~T^ e-r^^)dt>
^o 2 ^o

r^L r\r^~D^^—^ .
2 -'o 2^2
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But h^(z) the circular indicator of /(z), is zero in both the
complex line (X(0 , z^)) and (X(z^ , 0)), so that the circular indicator
(and hence the radial indicator) of u is strictly greater than that of /.

4. Functions of slow growth.

In this section, we extend the notion of a differential operator
with constant coefficients to entire functions which satisfy a maj oration
of the form

|/(z)| ^expOn^z)]^ (11)

asymptotically for some k > 1 and some norm p(z). These functions
are known to have very even growth [1].

We define the logarithmic order p of such a function to be the
infemum of all k for which (11) holds. We define the logarithmic type
a of f (with respect to a logarithmic order p) to be the infemum of
all b such that

|/(z)| <C^ exp&Qn^z^ .

These values are clearly independent of the norm used to define them.

THEOREM 8. — Let m be a multi-index of positive numbers
m = {m^ , . . . , m^), | m \ = 2 w,. Then the logarithmic order and
logarithmic type of a function f are given by

Inh^—L , —
P ,- ____^1 , / P - l \ f 1 Y———= hm ————-—\and (——) \—\ =

P - 1 lW|->oo 1^^ \ p / \OR\

In
"ilm m

|W|-^oo JP_

^P-l

where f(z) = ̂  c^zm and \r^ a = sup (0 , In a).

Remark — We interpret this to mean p = 1 if the limit in (12)
is infinite. In this case, if we have a<+°°,wehave a polynomial. We
do not consider this case but rather assume that if p = 1 that a = 4- oo .
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Proof. — Let b > 0 and k > 1 be numbers such that

|/(z)| < C expf tdnr^ .

We assume without loss of generality that 7 ' = | | z | | ^ , where
|[ z I I , = max |zJ . By applying Cauchy's formula to the distinguished

boundary of the polydisc of radius r, we get

\c^ | <C exp { S C l n r ^ - \m\ In r} .

This function takes on its maximum (for k > 1) when In r = —————
kb

-1-) f-1

-kb1 ^k

i
k-\ , i „ ^

and equals exp ] (—) (.T~~ 1) I m 1^ 1 which establishes the

theorem in one direction. i
^-1 , i ^ JL.j (H""i-U l \fc-l / I \On the other hand, if | c^ \ <K exp —) (- - l) I m I""m ^ kb' ' k /

i
( / 1 X^""1 / 1 \ -k- }

|/(z)|< V K I m I " exp (—) (-- 1; Im^- 1 + | m \ In r\
m { Kt) K )kb/ ^k

on the distinguished boundary of the polydisc of radius r. The function
_j_

/ 1 X^"' / 1 \ -k-(—) (~" ~~ l) xk~l + -^ Inr takes on its maximum for
^kb/ ^k '

k-\

x = {(kbf~1 In r}
and equals exp b (In r)^ .

Let MQ = [((kb)^ Inr}^1] and

"•-ni^^1"^'IVlQ

("greatest integer in"). Then

| f(z) | < K'(ln r)2^-^ exp ft (In r^ +
( / i \fc-i / i \ ^L

+ I ^'exp (-) 0- l)l^-1;-(! • ^
A;6/ ^A:\m\ -M/ .4 1
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£ ^lexp^-n--,) ml^^
i | M o l l (^A7 ^ /I^M,M (^A7 ^ / 1 ' )

( / 1 \fc~l //1 \ -fc -L
< i ^P (—)' 1 ((--Ol^+I^KMo+l)^

|m| M'o+» /co A;

and this last series is bounded independently of Mg since

'(HO'"'1"1-^^')^""^
for some T > 0. Q.E.D.

We let Ey ̂  be the Frechet space that we get by taking

Pn =(a4--) On^n'
( l+ l)m (6), E, that which we get by taking p^ = (In r) " , and we de-

signate their duals by (£„ p)' and (E,)'.

LEMMA 7. - A linear functional 11 on Eg (resp. E^) is in
(E^ p)' (resp. (E,)') //and on/j/ ;/

[ 1 l^1" f 1 1 -p-
^(z^KKeexp —————— I_II^|P-I (13)

(o+e)pj [ pj

^P- ^

[ i i 6 r e i 1+6 \
|^(z '") |<K,exp ^-^J [̂  |^| 6 ; (14)

for some e > 0.

Proof. - It follows from the proof of Theorem 8 that the Taylor
series of an element in E^ ^ (resp. E^) converges to the function in
this space (cf. [8]). Thus, if /i is a continuous linear functional, it
follows that (13) (resp. (14)) holds.
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On the other hand, if (13) (resp. (14)) holds, it follows from the
estimates of Theorem 8 that p. is a continuous linear functional on
E^ (resp. E,). Q.E.D.

For JLI E (Ey ^ ) ' (resp. (Ei)'), we define its Fourier-Borel transform
^ u"1

fi(u) = ̂ i(exp < z , u >) = 2 ^(z^) —— , in the sense of a formal
m !

power series at the origin. We topologize this space with the topology
of convergence of coefficients. Let Q^ (resp. Q,) be the space of
formal power series whose coefficients satisfy (13) (resp. (14)) above.

For ^ ,^G(E^y (resp. (EjV), we define the convolution of
p. with v, v * ^ to be

v * ^(f(u)) = ̂ (f(u + v))) .

A differential operator with constant coefficients on Ey (resp. E^
is defined as the transpose of this convolution operation. We then
have the following

THEOREM 9. — Let ^ be a differential operator with constant coef-
ficients on the space Ey ̂  (resp. E,). Then for fEEy ^ (resp. E^)
there is always a solution g^=: E (resp. E,) of the equation ^(g) == f.
If ^(1) = 0, then g is unique.

The proof is the same as that of Theorem 6, with some alterations
in the calculations of Theorem 5 to prove that the operation of convo-
lution is closed. The details are left to the interested reader.

I would like to express my gratitude and appreciation to C.O.
Kiselman for the many useful conversations that we had during the
course of this research, for his patience, and for his encouragement.
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