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BEHAVIOR OF BIHARMONIC FUNCTIONS ON
WIENER'S AND ROYDEN'S COMPACTIFICATIONS

by Y.K. KWON, L. SARIO, and B. WALSH

In the theory of bending of thin plates the biharmonic functions
play an important role ; their local properties have been studied by
several authors (cf. Bergman-Schiffer [I], Vekua [9], Garabedian [3]).
The main purpose of the present paper is to establish some global
properties of biharmonic functions in terms of Wienefs and Roy den's
compactifications of a smooth Riemannian manifold (see also Nakai-
Sario [4], [5]). For notation and terminology we refer the reader to
the monograph Sario-Nakai [7].

1. On a smooth Riemannian manifold R of dimension n > 2,
consider the Laplace-Beltrami operator

A 1 V a ( r- a 9U \Au "~/= ^ ^~T W^7 ̂ i)\/g i , /= i Qx1 v ajc77

where x = (x1 , . . . , x " ) is the local coordinate, (g^) the inverse
matrix of the fundamental metric tensor (^,y), and g the determinant
of (^).

A C^function u on R satisfying the equation

A2^ = AA^ = 0

is called a biharmonic function on R. In view of a theorem of de Rham
[6, p. 149], every biharmonic function is smooth. We denote byW(R)
the family of all biharmonic functions on R.

As an example of a simple biharmonic function we give the
function v of the following
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LEMMA. — // the volume of R is finite and R is hyperbolic, then
the function

v(x) = f g(x,y)dy
R

is biharmonic on R. Here g ( x , y) is the harmonic Green's function on
R with singularity at y, and dy the volume element of R.

Proof. — For an arbitrary x € R choose a real a = a^ > 0 so
large that the set

A = { y C R \ g ( x ^ y ) > a }

is relatively compact in R. If g^(x, y) is the Green's function of A,
then
0<v(x)- f g ^ ( x , y ) d y = f [^(x, >/) - g^(x, y)} dy +

^A ^A

+ f ^,^)rfy <avo l (A)+avo l (R-A) =avol(R) .
^R-A

Since j g^(x , y) dy < j g(x , y) dy < °°, v(x) is well-defined
A A.

on R. In view of the fact that Ay = — 1 (see Theorem 3 below),
we can draw the desired conclusion.

We remark in passing that the finiteness of the volume of R is
not necessary for v(x) to be defined on R. In fact, take

R = = { x -Oc1 ,^2)!!^!2 =0c1)2 +(x2)2 < 1}

with the metric tensor g^ = (1 — r)~"1 6,.y, where r = \/0c1)2 + (x2)2.
It is easy to see that vol(R) = oo and

v(x) < — log ——— 4- — £ log(2 + e) + 1 - loge < oo
£ £ 2

for any x G R and 0 < 2e < 1 - | x \ .

2. Throughout the following discussion "we assume that the ma-
nifold R has finite volume. Let N(R) be the Wiener algebra, which
consists of bounded continuous harmonizable functions on R, and
N5 (R) the Wiener potential subalgebra, i.e. the subfamily of functions
/GN(R) whose harmonic projections TT/ on R vanish identically (cf.
Sario-Nakai [7]).
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THEOREM. - Let v be an element of the Wiener potential subal-
gebra Ng(R) such that Av is bounded Then

v(x) = - f g(y , x) Av(y) dy
wo

on R.

Proof. - For a regular exhaustion {R^} of R, let g ^ ( y , x) be
the Green's function on R^ and {B/} a sequence of parametric balls
about x ^ RI such that B^ C R^ and the sequence {B,} shrinks down
to x as / -^ oo. Then the Green's formula yields

j _ v(y) * dg^(y , x) - g^(y , x) * dv(y) =
^(R^-Bp

== ~ J ^m(^' x) ̂ (y) dy .
^m-Sj

On the other hand

f gm(.y'x) * ̂ W = ~ f gm(y»x) * ̂ (^ -> o
^m-8/) <7^

as / -^ oo,
and

J ^w^^)^^)^ ^ f ^O^^OAvOQrfy as / - ^ o o .
^m-^ "Rm

In view of J v(y) * rf^(^, .y) -^ - y(.y) as / -> oo, we obtain
OBj

v(x) = ~" <^ V(J/) *dgm(y f x) ~ f ̂ yf x) Av(y) dy
^m ^m

for all x E R^ .
Consider v^eH(R^) such that v^ = v on R - R^ . Then we

may assume that the sequence {v^} converges to zero uniformly on
compact subsets of R (cf. Sario-Nakai [7]), and

vmW = - f v(y) * dg^(y, x)
^m

on R^. Thus Lebesgue's dominated convergence theorem yields

v(x)=-f g(y,x)^v(y)dy
' R

on R as desired.
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3. For the sake of completeness we include the proof of the
following well-known theorem, which establishes a right inverse of the
Laplace-Beltrami operator on bounded smooth functions :

THEOREM. - For any function f€ C°°(R) 0 B(R) ,

^ / g ( x , y ) f ( y ) d y = - f ( x )
R

for all x € R.

Proof. — Fix a point XQ € R, and construct a function h defined
on a neighborhood U of XQ in R such that A A = / on U (de Rham
[6, p. 151]). Choose an open neighborhood V ofjCo with V C U, and
a function ^ G C^(R) with ^ | V = 1, ^ | R - U = = 0 , and 0 < (^ < 1.
Then A(A(^) ==/ on V, and A^GNg(R) with its obvious extension
to R.

By Theorem 2 we have

(A^) (x) = ~ f g ( x , y) A(A<p) (y) dy
^R

on R. In particular on V,

A00==(^)0c)==- f g ( x , y ) ^ ( h ^ ) ( y ) d y
^R

= ~ f ̂  , y ) [A(A^) (j/) - /(3.)] dy - f ^Qc, ;Q/(jO ̂  .
"R ^R

Moreover

/(^) = (AA) (xo) = - [A, / ^(x. y)f(y) dy]^^
R

as asserted, because the first integral on the right is harmonic on V
(cf. Constantinescu-Comea [2, p. 15]).

Remark — The boundedness of Av in Theorem 2 and of / in
Theorem 3 was used only to assure the existence of their Green's
potentials. Although these potentials do exist under milder conditions
we do not intend to seek the most general statements.

4. For a bounded measurable function / on R, set

(IY)Oc)=~ f ^ g ( x , y ) f ( y ) d y
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on R. It is easy to see that F/is harmonizable on R. If/belongs to
the family B(R) of bounded continuous functions, then r/is conti-
nuous and therefore the operator

F : B(R) -^ N(R)

is well-defined whenever Fl is bounded.
Set WBB^(R) = { u e W ( R ) | M , A^ are bounded}, and denote by

HB(R) the class of bounded harmonic functions on R.

THEOREM. - Let n be bounded on R. Then the decomposition

WBB^(R) = HB(R) ® FHB(R)
is valid

Proof. — In view of Theorem 3 it is easily seen that

HB(R) 4- rHB(R) C WBB^(R)

when n is bounded. Since every function in FHB(R) vanishes on
the Wiener harmonic boundary A^, the maximum principle for HB-
functions yields

HB(R)nrHB(R) ={0} .

Thus it remains to show that every ^GWBB^(R) has the desired
decomposition.

Let TT : N(R) -> HB(R) be the harmonic projection (cf. Sario-
Nakai [7]). By Theorem 3, the function

u(x) - (TO) (x) - [FA(u - TO)] (x)

is a bounded harmonic function on R. Furthermore it vanishes on
the Wiener harmonic boundary A^ and therefore on R. Thus

u = TO + FA^
on R as desired.

COROLLARY. — Suppose n is bounded on R. Then for any
m > 1, dim WBB^(R) = 2m if and only if the cardinality of the
Wiener harmonic boundary Ajq of R is w.

Proof. — It is known that the cardinality of A^ is m if and
only if dim HB(R) = m.
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Let {i^ ,. .., u^} be a basis of the space HB(R). In view of
Theorems 3 and 4, it is seen that the set {u^ , . . . , u^ ; F u ^ , . .. , Fu^}
forms a basis for the space WBB^(R).

Throughout the rest of our discussion we shall assume that the
function Fl is bounded on R.

5. Denote by NN^(R) the family of functions / on R with /,
A/EN(R), and by NgN^(R) the family of functions g on R with
g,Age^,(R).

THEOREM. — The following biharmonic decomposition of the
class NN^(R) is valid :

NN^(R) = WBB^(R) ® N^N^(R) .

Proof — Note that for any vGNf i (R) with Av bounded,

v(x) = - f g ( x , y) ^v(y) dy = (FAy) (x)
"R

on R (Theorem 2).
Let/GNN^(R). By the direct sum decomposition

N(R) == HB(R) e N^R) ,

/= u^ + Vi for Mi GHB(R) and v^ ENgCR). Thus the above remark
yields v^ = FAi^ on R. Since Ai^ = A/= M^ 4- v^ for some ^^ G HB(R)
and y^ ENg(R), v^ = FM^ + Fv^ on R and therefore

f==(u, 4-r^)+r^
on R.

To show the uniqueness of the decomposition, suppose that
MGWBB^(R)nN5N^(R). Since Ay GHB(R) 0 N^R), Au = 0 on
R and therefore u G HB(R) H NgCR) == {0} as desired.

This completes the proof of the theorem.

6. We turn to the integral representation of the WBB ̂ -functions
on R.

Let PO: , t) be the harmonic kernel on R x Ap^ with P(XQ , 0=1,
and p. the harmonic measure on Aj^ centered at the fixed point XQ G R.
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As immediate consequences of Theorem 4 we state the following
results.

THEOREM. - Every u GWBB^(R) has the integral representation

u(x)= f^ P(x,t)f(t)dfJi(t)- ff^^ g ( x , y ) f ( y , t ) A u ( t ) d ^ ( t ) d y

on R.

THEOREM. — Let f and h be bounded ^-measurable functions on
AN . Then the function

u(x) = L v(x - ̂ f^ d^ - ff S(x. y) P(y, t) h(t) d^(t) dyv^ "R^AN

is biharmonic on R. // / and h are continuous at ^ E A^, then
^eR^^^) =/^o) and ^xeR^-^tQ ^W = ^o)-

7. A function MeWBB^(R) is called WBB ̂ minimal on R if
u ̂  0, u > 0, AM < 0, and for any v GWBB^(R) with 0 < v < M,
there exists a constant Cy with v = c^u on R.

The WBB^-minimal functions have the following characterization
in terms of Ap^.

THEOREM. — If u is WBB ̂ -minimal on R, then there exists an
isolated point t € A such that either u^ (x) = P(;c, t) ̂ (0, u^ = 0, or
Mi = 0, M^CX-) = P(X , 0 JLl(0 W/^re Mi == TTM flAZrf M^ = ~~ AM.

Proof. — By the proof of Theorem 4, we have u = M^ — FM^
on R. Since 0 < — Yu^ < M, the WBB ̂ -minimality of u yields
— FM^ = c^u = c ^ M ^ -- C^FM^ for some constant c^ . Since FM^ = 0
on AN , CiMi = 0 on AN and therefore on R in view of the maximum
principle for HB-functions. If c^ = 0, M^ = 0 and MI is a HB-minimal
function. If Ci ^ 0, then M^ = 0 and — Vu^ is WBB^-minimal.

It remains to show that M^ is HB-minimal whenever — FM^ is
WBB^-minimal. Let w E HB(R) be such that 0 < w < u^ . Since — F
is a positive operator, we have 0 < -- Fw < — Tu^ and therefore

r(w - cu^) = 0
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on R for some constant c. The assertion follows by virtue of Theorem 3.

8. Finally we turn to the study of biharmonic functions in con-
nection with the Dirichlet integrals of these functions and their
Laplacians.

First we establish :

THEOREM. - For a function /eC°°(R) H B(R),

DOY) == ff g(x, y)f(x)f(y) dxdy .
•^RxR

Proof. — Let {R^} be a regular exhaustion of R and g^(x, y)
the Green's function for R^ . Define g^(x, y) == 0 on

(R - RJ x R^ U R^ x (R - R^) .
Set

Vm(x)=- f g^(x,y)f(y)dy .
R

Then v^ = 0 on R — R^ and the Green's formula yields

^J-L vm^)*^^)=D^^)+/^(x)A^(^)dx.OR^ R

Since Av^(x) = f(x) on R^ , we have

DpCm)———/ ^M/W^R

= ft 8m(x,y)f(y)f(x)dxdy<\\f\\lff g(x,y)dxdy.
"'^RxR ""RxR

Therefore we may assume that the sequence {DR(I^)}^ converges.
By Fatou's lemma and Lebesgue's convergence theorem we obtain

DR(F/) < lim DR(V^) = ff g(x,y)f(x)f(y) dxdy < oo .
m->00 "^RxR

On the other hand A(r/~ v^) = 0 on R^ and v^ = 0 on 3R^ .
Let A^GH(R^) be such that h^ \ 3R^ = r/eMfi(R). Here M^CR)
is the Royden potential subalgebra which consists of limits of uni-
formly bounded functions in the Royden algebra M(R) with compact
supports which converge uniformly in compact subsets and in the
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Dirichlet norm. The sequence {h^} converges to zero uniformly on
compact subsets of R and D^(h^) -> 0 as m -> °° (cf. Sario-Schiffer-
Glasner [8]). Since

DR(F/- hj = D^(vJ = ff g^(x,y)f(x)f(y)dxdy ,

we have

lim D^IY- h^) =ff g ( x ^ y ) f ( x ) f ( y ) d x d y .
rft ~~y — w D v D'RxR

In view of
/D^dT)- V^Vf-h^)\<^D^) ^ 0 ,

we conclude that

DR(^^ = ff S ( x , y ) f ( x ) f ( y ) d x d y .""RxR

9. Let WCC^(R) be the family of all biharmonic functions
MEWBB^(R) such that u and AM are Dirichlet-finite.

By virtue of the above theorem we have a counterpart of
Theorem 4 :

THEOREM. - The decomposition

WCC^(R) = HBD(R) © FHBD(R)
is valid.

COROLLARY. - For any m > 1, dim WCC^(R) = 2m if and only
if the cardinality of the Royden harmonic boundary Aj^ of R is m.

Let MM^(R) = { /GM(R) |A/GM(R)} and

Mg M^(R) = {g € M^R) | A^ G MgCR)} .

As in Theorem 5 we have :

THEOREM. - MM^(R) = WCC^(R) + MfiM^(R) .

We remark that the integral representation of WCC^-functions
along Aj^ is also valid, and that a characterization of WCC ̂ -minimal
functions, similar to that in Theorem 7, can be given in terms of the
Royden harmonic boundary.



226 Y.K. KWON, L. SARIO, and B. WALSH

BIBLIOGRAPHY

[1] S. BERGMAN and M. SCHIFFER, Kernel functions and elliptic diffe-
rential equations in mathematical physics. Academic Press,
New York, (1953), 432 p.

[2] C. CONSTANINESCU and A. CORNEA, Ideale Rander Riemannscher
Flachen, Springer, (1963), 244 p.

[3] P.R. GARABEDIAN, Partial differential equations, Wiley, New York,
(1964), 672 p.

[4] M. NAKAI and L. SARIO, Biharmonic classification of Riemannian
manifolds, (to appear).

[5] M. NAKAI and L. SARIO, Quasiharmonic classification of Riemannian
manifolds, (to appear).

[6] G. DE RHAM, Varies difftrentiables, Hermann, Paris, (1960),
196 p.

[7] L. SARIO - M. NAKAI, Classification theory of Riemann surfaces,
Springer, (1970), 446 p.

[8] L. SARIO - M. SCHIFFER - M. GLASNER, The span and principal
functions in Riemannian spaces,/. Analyse Math. 15 (1965),
115-134.

[9] I.N. VEKUA, New methods for solving elliptic equations, North-
Holland, Amsterdam, (1967), 358 p.

Manuscrit re^u Ie 7 novembre 1970

Y.K. KWON
Department of Mathematics

T o,p,/. University of Texas
Austin, Texas 78712

Department of Mathematics
University of California

Los Angeles, California 90 024 B- ^LSH
Department of Mathematics

Rutgers University
New Brunswick N.J. 08903 (USA)


