Annales de l'institut Fourier

Y. K. Kwon
 Leo Sario
 Bertram Walsh
 Behavior of biharmonic functions on Wiener's and Royden's compactifications

Annales de l'institut Fourier, tome 21, no 3 (1971), p. 217-226
http://www.numdam.org/item?id=AIF_1971__21_3_217_0
© Annales de l'institut Fourier, 1971, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

BEHAVIOR OF BIHARMONIC FUNCTIONS ON WIENER'S AND ROYDEN'S COMPACTIFICATIONS

by Y.K. KWON, L. SARIO, and B. WALSH

In the theory of bending of thin plates the biharmonic functions play an important role; their local properties have been studied by several authors (cf. Bergman-Schiffer [1], Vekua [9], Garabedian [3]). The main purpose of the present paper is to establish some global properties of biharmonic functions in terms of Wiener's and Royden's compactifications of a smooth Riemannian manifold (see also NakaiSario [4], [5]). For notation and terminology we refer the reader to the monograph Sario-Nakai [7].

1. On a smooth Riemannian manifold R of dimension $n \geqslant 2$, consider the Laplace-Beltrami operator

$$
\Delta u=\frac{1}{\sqrt{g}} \sum_{i, j=1}^{n} \frac{\partial}{\partial x^{i}}\left(\sqrt{g} g^{i j} \frac{\partial u}{\partial x^{j}}\right)
$$

where $x=\left(x^{1}, \ldots, x^{n}\right)$ is the local coordinate, $\left(g^{i j}\right)$ the inverse matrix of the fundamental metric tensor $\left(g_{i j}\right)$, and g the determinant of $\left(g_{i j}\right)$.

A C^{4}-function u on R satisfying the equation

$$
\Delta^{2} u=\Delta \Delta u=0
$$

is called a biharmonic function on R. In view of a theorem of de Rham [6, p. 149], every biharmonic function is smooth. We denote by W(R) the family of all biharmonic functions on R .

As an example of a simple biharmonic function we give the function v of the following

[^0]Lemma. - If the volume of R is finite and R is hyperbolic, then the function

$$
v(x)=\int_{\mathrm{R}} g(x, y) d y
$$

is biharmonic on R. Here $g(x, y)$ is the harmonic Green's function on R with singularity at y, and dy the volume element of R .

Proof. - For an arbitrary $x \in \mathrm{R}$ choose a real $\alpha=\alpha_{x}>0$ so large that the set

$$
\mathrm{A}=\{y \in \mathrm{R} \mid g(x, y)>\alpha\}
$$

is relatively compact in R . If $g_{\mathrm{A}}(x, y)$ is the Green's function of A , then

$$
\begin{aligned}
0 \leqslant v(x) & -\int_{\mathrm{A}} g_{\mathrm{A}}(x, y) d y=\int_{\mathrm{A}}\left[g(x, y)-g_{\mathrm{A}}(x, y)\right] d y+ \\
& +\int_{\mathrm{R}-\mathrm{A}} g(x, y) d y \leqslant \alpha \operatorname{vol}(\mathrm{~A})+\alpha \operatorname{vol}(\mathrm{R}-\mathrm{A})=\alpha \operatorname{vol}(\mathrm{R})
\end{aligned}
$$

Since $\int_{\mathrm{A}} g_{\mathrm{A}}(x, y) d y \leqslant \int_{\mathrm{A}} g(x, y) d y<\infty, v(x)$ is well-defined on R. In view of the fact that $\Delta v=-1$ (see Theorem 3 below), we can draw the desired conclusion.

We remark in passing that the finiteness of the volume of R is not necessary for $v(x)$ to be defined on R. In fact, take

$$
\mathrm{R}=\left\{x=\left.\left(x^{1}, x^{2}\right)| | x\right|^{2}=\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}<1\right\}
$$

with the metric tensor $g_{i j}=(1-r)^{-1} \delta_{i j}$, where $r=\sqrt{\left(x^{1}\right)^{2}+\left(x^{2}\right)^{2}}$. It is easy to see that $\operatorname{vol}(\mathrm{R})=\infty$ and

$$
v(x) \leqslant \frac{1}{\varepsilon} \log \frac{\varepsilon+2}{\varepsilon}+\frac{1}{2} \varepsilon \log (2+\varepsilon)+1-\log \varepsilon<\infty
$$

for any $x \in \mathrm{R}$ and $0<2 \varepsilon<1-|x|$.
2. Throughout the following discussion we assume that the manifold R has finite volume. Let $\mathrm{N}(\mathrm{R})$ be the Wiener algebra, which consists of bounded continuous harmonizable functions on R, and $\mathrm{N}_{\delta}(\mathrm{R})$ the Wiener potential subalgebra, i.e. the subfamily of functions $f \in \mathrm{~N}(\mathrm{R})$ whose harmonic projections πf on R vanish identically (cf. Sario-Nakai [7]).

Theorem. - Let v be an element of the Wiener potential subalgebra $\mathrm{N}_{\delta}(\mathrm{R})$ such that Δv is bounded. Then

$$
\nu(x)=-\int_{\mathrm{R}} g(y, x) \Delta v(y) d y
$$

on R .
Proof. - For a regular exhaustion $\left\{\mathrm{R}_{m}\right\}$ of R , let $g_{m}(y, x)$ be the Green's function on R_{m} and $\left\{\mathrm{B}_{l}\right\}$ a sequence of parametric balls about $x \in \mathrm{R}_{1}$ such that $\overline{\mathrm{B}}_{l} \subset \mathrm{R}_{1}$ and the sequence $\left\{\mathrm{B}_{l}\right\}$ shrinks down to x as $l \rightarrow \infty$. Then the Green's formula yields

$$
\begin{aligned}
& \int_{\partial\left(\mathrm{R}_{m}-\mathrm{B}_{l}\right)} v(y) * d g_{m}(y, x)-g_{m}(y, x) * d v(y)= \\
&=-\int_{\mathrm{R}_{m}-\mathrm{B}_{l}} g_{m}(y, x) \Delta v(y) d y .
\end{aligned}
$$

On the other hand

$$
\int_{\partial\left(\mathrm{R}_{m}-\mathrm{B}_{l}\right)} g_{m}(y, x) * d v(y)=-\int_{\partial \mathrm{B}_{l}} g_{m}(y, x) * d v(y) \rightarrow 0
$$

$$
\text { as } \quad l \rightarrow \infty \text {, }
$$

and
$\int_{\mathrm{R}_{m}-\mathrm{B}_{l}} g_{m}(y, x) \Delta v(y) d y \rightarrow \int_{\mathrm{R}_{m}} g_{m}(y, x) \Delta v(y) d y$ as $l \rightarrow \infty$. In view of $\int_{\partial_{\mathrm{B}_{l}}} v(y) * d g_{m}(y, x) \rightarrow-v(x)$ as $l \rightarrow \infty$, we obtain

$$
v(x)=-\int_{\partial_{\mathrm{R}_{m}}} v(y) * d g_{m}(y, x)-\int_{\mathrm{R}_{m}} g_{m}(y, x) \Delta v(y) d y
$$

for all $x \in \mathrm{R}_{m}$.
Consider $v_{m} \in \mathrm{H}\left(\mathrm{R}_{m}\right)$ such that $\nu_{m} \equiv v$ on $\mathrm{R}-\mathrm{R}_{m}$. Then we may assume that the sequence $\left\{\nu_{m}\right\}$ converges to zero uniformly on compact subsets of R (cf. Sario-Nakai [7]), and

$$
v_{m}(x)=-\int_{\partial \mathrm{R}_{m}} v(y) * d g_{m}(y, x)
$$

on R_{m}. Thus Lebesgue's dominated convergence theorem yields

$$
v(x)=-\int_{\mathrm{R}} g(y, x) \Delta v(y) d y
$$

on R as desired.
3. For the sake of completeness we include the proof of the following well-known theorem, which establishes a right inverse of the Laplace-Beltrami operator on bounded smooth functions :

Theorem. - For any function $f \in \mathrm{C}^{\infty}(\mathrm{R}) \cap \mathrm{B}(\mathrm{R})$,

$$
\Delta_{x} \int_{\mathrm{R}} g(x, y) f(y) d y=-f(x)
$$

for all $x \in \mathrm{R}$.

Proof. - Fix a point $x_{0} \in R$, and construct a function h defined on a neighborhood U of x_{0} in R such that $\Delta h=f$ on U (de Rham [6, p. 151]). Choose an open neighborhood V of x_{0} with $\overline{\mathrm{V}} \subset \mathrm{U}$, and a function $\varphi \in \mathrm{C}_{0}^{\infty}(\mathrm{R})$ with $\varphi|\mathrm{V} \equiv 1, \varphi| \mathrm{R}-\mathrm{U} \equiv 0$, and $0 \leqslant \varphi \leqslant 1$. Then $\Delta(h \varphi)=f$ on V , and $h \varphi \in \mathrm{~N}_{\delta}(\mathrm{R})$ with its obvious extension to R .

By Theorem 2 we have

$$
(h \varphi)(x)=-\int_{\mathrm{R}} g(x, y) \Delta(h \varphi)(y) d y
$$

on R. In particular on V,

$$
\begin{aligned}
h(x) & =(h \varphi)(x)=-\int_{\mathrm{R}} g(x, y) \Delta(h \varphi)(y) d y \\
& =-\int_{\mathrm{R}} g(x, y)[\Delta(h \varphi)(y)-f(y)] d y-\int_{\mathrm{R}} g(x, y) f(y) d y
\end{aligned}
$$

Moreover

$$
f\left(x_{0}\right)=(\Delta h)\left(x_{0}\right)=-\left[\Delta_{x} \int_{\mathrm{R}} g(x, y) f(y) d y\right]_{x=x_{0}}
$$

as asserted, because the first integral on the right is harmonic on V (cf. Constantinescu-Cornea [2, p. 15]).

Remark. - The boundedness of Δv in Theorem 2 and of f in Theorem 3 was used only to assure the existence of their Green's potentials. Although these potentials do exist under milder conditions we do not intend to seek the most general statements.
4. For a bounded measurable function f on R , set

$$
(\Gamma f)(x)=-\int_{\mathrm{R}} g(x, y) f(y) d y
$$

on R. It is easy to see that Γf is harmonizable on R. If f belongs to the family $B(R)$ of bounded continuous functions, then Γf is continuous and therefore the operator

$$
\Gamma: B(\mathrm{R}) \rightarrow \mathrm{N}(\mathrm{R})
$$

is well-defined whenever $\Gamma 1$ is bounded.
Set $\mathrm{WBB}_{\Delta}(\mathrm{R})=\{u \in \mathrm{~W}(\mathrm{R}) \mid u, \Delta u$ are bounded $\}$, and denote by $H B(R)$ the class of bounded harmonic functions on R.

Theorem. - Let $\Gamma 1$ be bounded on R . Then the decomposition

$$
\mathrm{WBB}_{\Delta}(\mathrm{R})=\mathrm{HB}(\mathrm{R}) \oplus \Gamma \mathrm{HB}(\mathrm{R})
$$

is valid.

Proof. - In view of Theorem 3 it is easily seen that

$$
\mathrm{HB}(\mathrm{R})+\Gamma \mathrm{HB}(\mathrm{R}) \subseteq \mathrm{WBB}_{\Delta}(\mathrm{R})
$$

when $\Gamma 1$ is bounded. Since every function in $\Gamma H B(R)$ vanishes on the Wiener harmonic boundary Δ_{N}, the maximum principle for HBfunctions yields

$$
H B(R) \cap \Gamma H B(R)=\{0\}
$$

Thus it remains to show that every $u \in \mathrm{WBB}_{\Delta}(\mathrm{R})$ has the desired decomposition.

Let $\pi: N(R) \rightarrow H B(R)$ be the harmonic projection (cf. SarioNakai [7]). By Theorem 3, the function

$$
u(x)-(\pi u)(x)-[\Gamma \Delta(u-\pi u)](x)
$$

is a bounded harmonic function on R. Furthermore it vanishes on the Wiener harmonic boundary Δ_{N} and therefore on R. Thus

$$
u=\pi u+\Gamma \Delta u
$$

on R as desired.

Corollary. - Suppose $\Gamma 1$ is bounded on R. Then for any $m \geqslant 1$, $\operatorname{dim} \mathrm{WBB}_{\Delta}(\mathrm{R})=2 m$ if and only if the cardinality of the Wiener harmonic boundary Δ_{N} of R is m.

Proof. - It is known that the cardinality of Δ_{N} is m if and only if $\operatorname{dim} \mathrm{HB}(\mathrm{R})=m$.

Let $\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis of the space $\mathrm{HB}(\mathrm{R})$. In view of Theorems 3 and 4 , it is seen that the set $\left\{u_{1}, \ldots, u_{m} ; \Gamma u_{1}, \ldots, \Gamma u_{m}\right\}$ forms a basis for the space $\mathrm{WBB}_{\Delta}(\mathrm{R})$.

Throughout the rest of our discussion we shall assume that the function $\Gamma 1$ is bounded on R .
5. Denote by $\mathrm{NN}_{\Delta}(\mathrm{R})$ the family of functions f on R with f, $\Delta f \in \mathrm{~N}(\mathrm{R})$, and by $\mathrm{N}_{\delta} \mathrm{N}_{\delta \Delta}(\mathrm{R})$ the family of functions g on R with $g, \Delta g \in \mathrm{~N}_{\delta}(\mathrm{R})$.

Theorem. - The following biharmonic decomposition of the class $\mathrm{NN}_{\Delta}(\mathrm{R})$ is valid :

$$
\mathrm{NN}_{\Delta}(\mathrm{R})=\mathrm{WBB}_{\Delta}(\mathrm{R}) \oplus \mathrm{N}_{\delta} \mathrm{N}_{\delta \Delta}(\mathrm{R})
$$

Proof. - Note that for any $v \in \mathrm{~N}_{\delta}(\mathrm{R})$ with Δv bounded,

$$
v(x)=-\int_{\mathrm{R}} g(x, y) \Delta v(y) d y=(\Gamma \Delta v)(x)
$$

on R (Theorem 2).
Let $f \in \mathrm{NN}_{\Delta}(\mathrm{R})$. By the direct sum decomposition

$$
\mathrm{N}(\mathrm{R})=\mathrm{HB}(\mathrm{R}) \oplus \mathrm{N}_{\delta}(\mathrm{R})
$$

$f=u_{1}+v_{1}$ for $u_{1} \in \mathrm{HB}(\mathrm{R})$ and $v_{1} \in \mathrm{~N}_{\delta}(\mathrm{R})$. Thus the above remark yields $v_{1}=\Gamma \Delta v_{1}$ on R. Since $\Delta v_{1}=\Delta f=u_{2}+v_{2}$ for some $u_{2} \in \operatorname{HB}(\mathrm{R})$ and $\nu_{2} \in \mathrm{~N}_{\delta}(\mathrm{R}), \nu_{1}=\Gamma u_{2}+\Gamma \nu_{2}$ on R and therefore

$$
f=\left(u_{1}+\Gamma u_{2}\right)+\Gamma v_{2}
$$

on R.
To show the uniqueness of the decomposition, suppose that $u \in \mathrm{WBB}_{\Delta}(\mathrm{R}) \cap \mathrm{N}_{\delta} \mathrm{N}_{\delta \Delta}(\mathrm{R})$. Since $\Delta u \in \mathrm{HB}(\mathrm{R}) \cap \mathrm{N}_{\delta}(\mathrm{R}), \Delta u \equiv 0 \quad$ on R and therefore $u \in H B(R) \cap N_{\delta}(R)=\{0\}$ as desired.

This completes the proof of the theorem.
6. We turn to the integral representation of the WBB_{Δ}-functions on R.

Let $\mathrm{P}(x, t)$ be the harmonic kernel on $\mathrm{R} \times \Delta_{\mathrm{N}}$ with $\mathrm{P}\left(x_{0}, t\right) \equiv 1$, and μ the harmonic measure on Δ_{N} centered at the fixed point $x_{0} \in \mathrm{R}$.

As immediate consequences of Theorem 4 we state the following results.

Theorem. - Every $u \in \mathrm{WBB}_{\Delta}(\mathrm{R})$ has the integral representation $u(x)=\int_{\Delta_{\mathbf{N}}} \mathrm{P}(x, t) f(t) d \mu(t)-\iint_{\mathrm{R} \times \Delta_{\mathbf{N}}} g(x, y) \mathrm{P}(y, t) \Delta u(t) d \mu(t) d y$ on R .

Theorem. - Let f and h be bounded μ-measurable functions on Δ_{N}. Then the function
$u(x)=\int_{\Delta_{\mathbf{N}}} \mathrm{P}(x, t) f(t) d \mu(t)-\iint_{\mathbf{R}_{\times \Delta_{\mathbf{N}}}} g(x, y) \mathrm{P}(y, t) h(t) d \mu(t) d y$
is biharmonic on R. If f and h are continuous at $t_{0} \in \Delta_{N}$, then $\lim _{x \in \mathrm{R}, x \rightarrow t_{0}} u(x)=f\left(t_{0}\right)$ and $\lim _{x \in \mathrm{R}, x \rightarrow t_{0}} \Delta u(x)=h\left(t_{0}\right)$.
7. A function $u \in \mathrm{WBB}_{\Delta}(\mathrm{R})$ is called $\dot{\mathrm{WBB}}_{\Delta}$-minimal on R if $u \neq 0, u \geqslant 0, \Delta u \leqslant 0$, and for any $v \in \mathrm{WBB}_{\Delta}(\mathrm{R})$ with $0 \leqslant v \leqslant u$, there exists a constant c_{v} with $v=c_{v} u$ on R.

The WBB_{Δ}-minimal functions have the following characterization in terms of Δ_{N}.

Theorem. - If u is WBB_{Δ}-minimal on R , then there exists an isolated point $t \in \Delta$ such that either $u_{1}(x)=P(x, t) \mu(t), u_{2}=0$, or $u_{1}=0, u_{2}(x)=\mathrm{P}(x, t) \mu(t)$ where $u_{1}=\pi u$ and $u_{2}=-\Delta u$.

Proof. - By the proof of Theorem 4, we have $u=u_{1}-\Gamma u_{2}$ on R. Since $0 \leqslant-\Gamma u_{2} \leqslant u$, the WBB_{Δ}-minimality of u yields $-\Gamma u_{2}=c_{1} u=c_{1} u_{1}-c_{1} \Gamma u_{2}$ for some constant c_{1}. Since $\Gamma u_{2}=0$ on $\Delta_{\mathrm{N}}, c_{1} u_{1}=0$ on Δ_{N} and therefore on R in view of the maximum principle for HB-functions. If $c_{1}=0, u_{2}=0$ and u_{1} is a HB-minimal function. If $c_{1} \neq 0$, then $u_{1}=0$ and $-\Gamma u_{2}$ is WBB_{Δ}-minimal.

It remains to show that u_{2} is HB-minimal whenever $-\Gamma u_{2}$ is WBB $_{\Delta}$-minimal. Let $w \in H B(R)$ be such that $0 \leqslant w \leqslant u_{2}$. Since $-\Gamma$ is a positive operator, we have $0 \leqslant-\Gamma w \leqslant-\Gamma u_{2}$ and therefore

$$
\Gamma\left(w-c u_{2}\right)=0
$$

on R for some constant c. The assertion follows by virtue of Theorem 3.
8. Finally we turn to the study of biharmonic functions in connection with the Dirichlet integrals of these functions and their Laplacians.

First we establish :

Theorem. - For a function $f \in \mathrm{C}^{\infty}(\mathrm{R}) \cap \mathrm{B}(\mathrm{R})$,

$$
\mathrm{D}(\Gamma f)=\iint_{\mathrm{R} \times \mathrm{R}} g(x, y) f(x) f(y) d x d y
$$

Proof. - Let $\left\{\mathrm{R}_{m}\right\}$ be a regular exhaustion of R and $g_{m}(x, y)$ the Green's function for R_{m}. Define $g_{m}(x, y)=0$ on

$$
\left(\mathrm{R}-\mathrm{R}_{m}\right) \times \mathrm{R}_{m} \cup \mathrm{R}_{m} \times\left(\mathrm{R}-\mathrm{R}_{m}\right)
$$

Set

$$
v_{m}(x)=-\int_{\mathrm{R}} g_{m}(x, y) f(y) d y
$$

Then $v_{m}=0$ on $\mathrm{R}-\mathrm{R}_{m}$ and the Green's formula yields

$$
0=\int_{\partial \mathrm{R}_{m}} v_{m}(x) * d v_{m}(x)=\mathrm{D}_{\mathrm{R}}\left(v_{m}\right)+\int_{\mathrm{R}} v_{m}(x) \Delta v_{m}(x) d x
$$

Since $\Delta v_{m}(x)=f(x)$ on R_{m}, we have

$$
\begin{aligned}
\mathrm{D}_{\mathrm{R}}\left(v_{m}\right) & =-\int_{\mathrm{R}} v_{m}(x) f(x) d x \\
& =\iint_{\mathrm{R} \times \mathrm{R}} g_{m}(x, y) f(y) f(x) d x d y \leqslant\|f\|_{\infty}^{2} \iint_{\mathrm{R} \times \mathrm{R}} g(x, y) d x d y
\end{aligned}
$$

Therefore we may assume that the sequence $\left\{\mathrm{D}_{\mathrm{R}}\left(v_{m}\right)\right\}_{m}$ converges. By Fatou's lemma and Lebesgue's convergence theorem we obtain

$$
\mathrm{D}_{\mathrm{R}}(\Gamma f) \leqslant \lim _{m \rightarrow \infty} \mathrm{D}_{\mathrm{R}}\left(v_{m}\right)=\iint_{\mathrm{R} \times \mathrm{R}} g(x, y) f(x) f(y) d x d y<\infty
$$

On the other hand $\Delta\left(\Gamma f-v_{m}\right)=0$ on R_{m} and $v_{m}=0$ on $\partial \mathrm{R}_{m}$. Let $h_{m} \in H\left(R_{m}\right)$ be such that $h_{m} \mid \partial \mathrm{R}_{m}=\Gamma f \in \mathrm{M}_{\delta}(\mathrm{R})$. Here $\mathrm{M}_{\delta}(\mathrm{R})$ is the Royden potential subalgebra which consists of limits of uniformly bounded functions in the Royden algebra $M(R)$ with compact supports which converge uniformly in compact subsets and in the

Dirichlet norm. The sequence $\left\{h_{m}\right\}$ converges to zero uniformly on compact subsets of R and $\mathrm{D}_{\mathrm{R}}\left(h_{m}\right) \rightarrow 0$ as $m \rightarrow \infty$ (cf. Sario-SchifferGlasner [8]). Since

$$
\mathrm{D}_{\mathrm{R}}\left(\Gamma f-h_{m}\right)=\mathrm{D}_{\mathrm{R}}\left(v_{m}\right)=\iint_{\mathrm{R} \times \mathrm{R}} g_{m}(x, y) f(x) f(y) d x d y,
$$

we have

$$
\lim _{m \rightarrow \infty} \mathrm{D}_{\mathrm{R}}\left(\Gamma f-h_{m}\right)=\iint_{\mathrm{R} \times \mathrm{R}} g(x, y) f(x) f(y) d x d y
$$

In view of

$$
\left|\sqrt{\mathrm{D}_{\mathrm{R}}(\Gamma f)}-\sqrt{\mathrm{D}_{\mathrm{R}}\left(\Gamma f-h_{m}\right)}\right| \leqslant \sqrt{\mathrm{D}_{\mathrm{R}}\left(h_{m}\right)} \rightarrow 0
$$

we conclude that

$$
\mathrm{D}_{\mathrm{R}}(\Gamma f)=\iint_{\mathrm{R} \times \mathrm{R}} g(x, y) f(x) f(y) d x d y
$$

9. Let $W C C_{\Delta}(R)$ be the family of all biharmonic functions $u \in \mathrm{WBB}_{\Delta}(\mathrm{R})$ such that u and Δu are Dirichlet-finite.

By virtue of the above theorem we have a counterpart of Theorem 4 :

Theorem. - The decomposition

$$
\mathrm{WCC}_{\Delta}(\mathrm{R})=\mathrm{HBD}(\mathrm{R}) \oplus \Gamma \mathrm{HBD}(\mathrm{R})
$$

is valid.

Corollary. - For any $m \geqslant 1$, $\operatorname{dim} \mathrm{WCC}_{\Delta}(\mathrm{R})=2 m$ if and only if the cardinality of the Royden harmonic boundary Δ_{M} of R is m.

Let $\mathrm{MM}_{\Delta}(\mathrm{R})=\{f \in \mathrm{M}(\mathrm{R}) \mid \Delta f \in \mathrm{M}(\mathrm{R})\}$ and

$$
\mathrm{M}_{\delta} \mathrm{M}_{\delta \Delta}(\mathrm{R})=\left\{g \in \mathrm{M}_{\delta}(\mathrm{R}) \mid \Delta g \in \mathrm{M}_{\delta}(\mathrm{R})\right\}
$$

As in Theorem 5 we have :
Theorem. $-\mathrm{MM}_{\Delta}(\mathrm{R})=\mathrm{WCC}_{\Delta}(\mathrm{R})+\mathrm{M}_{\delta} \mathrm{M}_{\delta \Delta}(\mathrm{R})$.
We remark that the integral representation of $W_{C C}$-functions along Δ_{M} is also valid, and that a characterization of WCC_{Δ}-minimal functions, similar to that in Theorem 7, can be given in terms of the Royden harmonic boundary.

BIBLIOGRAPHY

[1] S. Bergman and M. Schiffer, Kernel functions and elliptic differential equations in mathematical physics, Academic Press, New York, (1953), 432 p.
[2] C. Constaninescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, (1963), 244 p.
[3] P.R. Garabedian, Partial differential equations, Wiley, New York, (1964), 672 p.
[4] M. Nakai and L. Sario, Biharmonic classification of Riemannian manifolds, (to appear).
[5] M. Nakai and L. Sario, Quasiharmonic classification of Riemannian manifolds, (to appear).
[6] G. De Rham, Variétés différentiables, Hermann, Paris, (1960), 196 p.
[7] L. Sario - M. Nakal, Classification theory of Riemann surfaces, Springer, (1970), 446 p.
[8] L. Sario - M. Schiffer - M. Glasner, The span and principal functions in Riemannian spaces, J. Analyse Math. 15 (1965), 115-134.
[9] I.N. Vekua, New methods for solving elliptic equations, NorthHolland, Amsterdam, (1967), 358 p.

Manuscrit reçu le 7 novembre 1970
L. Sario

Department of Mathematics University of California Los Angeles, California 90024
Y.K. Kwon

Department of Mathematics
University of Texas
Austin, Texas 78712
B. Walsh

Department of Mathematics
Rutgers University
New Brunswick N.J. 08903 (USA)

[^0]: The first two authors were supported by the U.S. Army Research Office-Durham, Grant DA-ARO-D-31-124-70-G7 ; the third author, by NSF-GP-21 182.

