Annales de l'institut Fourier

James E. Huneycutt Jr. On abstract Stieltjes measure

Annales de l'institut Fourier, tome 21, n 3 (1971), p. 143-154

http://www.numdam.org/item?id=AIF_1971__21_3_143_0
© Annales de l'institut Fourier, 1971, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON A ABSTRACT STIELTJES MEASURE

by James E. HUNEYCUTT, Jr (${ }^{(2)}$

1. Introduction.

In 1955, A. Revuz [4] considered a type of Stieltjes measure defined on analogues of half-open, half-closed intervals in a partially ordered topological space. He states that these functions are finitely additive but his proof has an error. We shall furnish a new proof and extend some of his results to "measures" taking values in a topological abelian group.

2. Preliminaries.

If X is a set and \wp is a non-void collection of subsets of X, then $\mathscr{\mathscr { S } \text { is called a semi-ring provided }}$
i) $\mathrm{A}, \mathrm{B} \in \delta \Rightarrow \mathrm{A} \cap \mathrm{B} \in \odot$,
ii) $\mathrm{A}, \mathrm{B} \in \mathscr{\delta}, \mathrm{A} \subseteq \mathrm{B} \Rightarrow \exists\left\{\mathrm{C}_{i}\right\}_{i=0}^{n} \subseteq \mathscr{\delta}$ such that
$\mathrm{A}=\mathrm{C}_{0} \subseteq \mathrm{C}_{1} \subseteq \ldots \subseteq \mathrm{C}_{n}=\mathrm{B} \quad$ and $\quad \mathrm{C}_{i} \backslash \mathrm{C}_{i-1} \in \S \quad$ for $\quad 1 \leqslant i \leqslant n$. $\mathscr{\delta}$ is a weak semi-ring provided that, in place of ii) we require
iii) $\mathrm{A}, \mathrm{B} \in \wp, \mathrm{A} \subseteq \mathrm{B} \Rightarrow \exists\left\{\mathrm{C}_{i}\right\}_{i=1}^{n}$ such that

$$
\mathrm{B} \backslash \mathrm{~A}=\bigcup_{1}^{n} \mathrm{C}_{i} \quad \text { and } \quad \mathrm{C}_{i} \cap \mathrm{C}_{j}=\varnothing \quad \text { if } \quad i \neq j
$$

$\left.{ }^{(}{ }^{1}\right)$ The results presented in this paper are a part of the author's Ph.D. dissertation, written at the University of North Carolina at Chapel Hill under the direction of Professor B. J. Pettis.

Definition. - Let $\mathfrak{S \subseteq} \subseteq 2^{\mathrm{X}}$ and let \mathcal{J} be a topological abelian group. If $\mu: \circlearrowleft \rightarrow \mathcal{J}$ then
i) μ is 2-additive if $\mathrm{A}, \mathrm{B}, \mathrm{A} \cup \mathrm{B} \in \boldsymbol{\delta}$,
 disjoint sequence in \wp such that $\bigcup_{1}^{n} \mathrm{~A}_{i} \in \Phi$, then $\mu\left(\bigcup_{1}^{n} \mathrm{~A}_{i}\right)=\sum_{1}^{n} \mu\left(\mathrm{~A}_{i}\right)$.
iii) μ is countably additive if whenever $\left\{\mathrm{A}_{i}\right\}_{1}^{\infty}$ is any pairwise disjoint sequence in \circlearrowleft such that $\bigcup_{1} \mathrm{~A}_{i} \in \Im$, then $\sum_{i=1}^{\infty} \mu\left(\mathrm{A}_{i}\right) \rightarrow \mu\left(\bigcup_{1}^{\infty} \mathrm{A}_{i}\right)$. owisevon Netumann [$3,4 \mathrm{p}, 94$] has shom that if is a sempring and

 the sem-tinge is the ebllection of all unions of finite pairwise disjont setsof menters ofsry tively countably) additive function an \mathcal{O} has a unique finlitely (fespeci tively countably) additive extension defined on $\mathcal{R}(\lessdot)$.

The topology for the topological abelian group \mathcal{J} is determined by a family $\left\{\|\cdot\|_{p}: p \in \mathrm{P}\right\}$ of semi-norms

$$
\times 10\left(\|-g\|_{p}=\|g\|_{R 3}\|g+h\|_{p} \leqslant\|g\|_{R}+\|h\|_{p},\|g\|_{p_{2}} \geqslant 0\right)_{n}
$$

Suppose $\mu: \mathscr{S} \rightarrow \mathcal{J}$; then for eaoh \boldsymbol{p} in Piand each subset B of \mathbf{X}; we define

1) $\left(\mu_{R}\right)_{p}(B)=\sup _{\text {dan }}\left\{\|\mu(A)\|_{p}: A \in \mathscr{S}, A \subseteq B\right\}$
2) $\left(\mu_{\mathrm{p}}\right)_{p}(\mathrm{~B})=\sup _{\text {to }}\left\{\left\|\Sigma_{1}^{n} \mu_{\mathrm{B}}\left(\mathrm{A}_{i}\right)\right\|_{p}\right\}$
3) $|\mu|_{p}(\mathrm{~B})=\sup \left\{\Sigma_{n}^{n}\left\|\mu\left(\mathrm{~A}_{i}\right)\right\|_{p}\right\}$,
bovorg ybr-mox disw an a where the supremum in 2) and 3) is taken over all finite, pairwise disjoint sequences in δ whose union is a subset of B .

Let X be a topological space and era weak-semiring of subsets of X and let $\mu: \mathscr{J} \rightarrow \boldsymbol{J}$ be finitely additive.

 such that $\mathrm{A}^{\prime} \subseteq \mathrm{C} \subseteq \mathrm{A} \subseteq o \subseteq \mathrm{~A}^{\prime \prime}$ and $\left(\mu_{\mathrm{R}}\right)_{p}\left(\mathrm{~A}^{\prime \prime \prime} \backslash \mathrm{A}^{\prime \prime}\right)<\varepsilon$.

9i) Similar definitions are made for μ_{D} and | \mid-regularity In a previous paper [1], we have shown that μ_{D}-regular, finitely additive function on a weak semi-ring is countably additive We fote that $|\mu|$-regularity $\Rightarrow \mu_{\mathrm{D}}$-regularity $\Rightarrow \mu_{\mathrm{R}}$-regularity and that, for aring of sets, μ_{D}-regularity is the same as μ_{R}-regularity.

3. The main theorems.

Revuz considered the problem of obtaining countable additivity from finite additivity and $_{\text {der }}$ derived a suitable regularity condition to obtain countable additivity for non-negative real valued functions ([4], p. 208). The "work of this paper generalizes the regularity condition of Revuz so that countable additivity may be obtained from finite additivity in the case of a function with values in a topological abelian group. We also show that an argument of Revuz concerning finite additivity is wrong (Example 3.1) and we give an alternate argument (Theorem 3.2).

Let X be a non-void set and \leqslant a binary relation on X. We shall say that (X, \leqslant) is a conditional lower semilattice provided that
i) \leqslant is reflexive, transitive, and antisymmetric.
ii) If x and y are members of $X_{\text {and thete is some member } z \text { in }}$ X such that $z \leqslant x$ and $z \leqslant y$, then there is a largest (relative to \leqslant) such member of X; we shatl denote stront a member of X by "inf $x y$ ".

We now form our "yntervals" in this set. For any x_{2} in $X C_{-}(x)$ will denote the set of all members y of X such that $y \leqslant x$, and $\mathrm{C}_{+}(x)$ will denote the $\operatorname{set} \mathrm{Of} \mathrm{aH}_{3}$ members y of X such that $x \leqslant y$. For each positive integer n and each $x, u_{1}, u_{2}, \ldots, u_{n}$ in X, let

Revuz ([4], p. 195) has shown that each non-empty set of the form above has a unique representation in which each $u_{i} \leqslant x$ but $u_{i} \not u_{j}$ for $i \neq j$. This form will be called the canonical form. In

$$
\begin{aligned}
& =\left\{y \in X: y \leqslant x \text { but } y \not u_{i y}\right. \\
& \text { for any } i=1,2, \ldots, n\} \text {. }
\end{aligned}
$$

particular when (X, \leqslant) is the real line with the usual ordering, the S^{\prime} s are simply intervals of the form (a, b].

Let \wp denote the collection of all sets of the form $S\left(x ; u_{1}, \ldots u_{n}\right)$. We note that $\Phi \in \mathscr{\varnothing}$ since for any x in $\mathrm{X}, \mathrm{S}(x ; x)=\Phi$.

In the case of the real line with the usual ordering,

$$
\{(a, b]:-\infty<a \leqslant b<\infty\}
$$

forms a semi-ring. Revuz has shown that \wp is a weak semi-ring ([4], p. 199) ; we shall show that \lesssim is actually a semi-ring.

Lemma. - If $\mathrm{S}_{1}=\mathrm{S}\left(x ; v_{1}, v_{2}, \ldots, v_{n}\right)$ and

$$
S_{2}=S\left(x ; v_{2}, \ldots, v_{n},\right. \text { then }
$$

i) $\mathrm{S}_{1} \subseteq \mathrm{~S}_{2}$ and in particular, $\mathrm{S}_{1}=\mathrm{S}_{2} \cap \widetilde{\mathrm{C}-\left(v_{1}\right)}$.
ii) $\mathrm{S}_{2} \backslash \mathrm{~S}_{1}=\mathrm{S}\left(\inf x v_{1} ; v_{2}, v_{3}, \ldots, v_{n}\right)$ or Φ if inf $x v_{1}$ does not exist.

Proof :

$$
\text { i) } \begin{aligned}
& \mathrm{S}_{1}=C_{-}(x) \backslash \bigcup_{1}^{n} \mathrm{C}_{-}\left(v_{i}\right)=C_{-}(x) \cap(\overbrace{1}^{n} \widetilde{C_{-}\left(v_{i}\right)}) \\
&\left.=C_{-}(x) \cap\left(\bigcap_{2}^{n} \widetilde{C_{-}\left(v_{i}\right.}\right)\right) \cap \widetilde{C_{-}\left(v_{1}\right)} \\
&\left.=S\left(x ; v_{2}, \ldots, v_{n}\right) \cap \widetilde{C_{-}\left(v_{1}\right)}=S_{2} \cap \widetilde{C_{-}\left(v_{1}\right.}\right) \\
& \text { ii) } \begin{aligned}
S_{2} \backslash S_{1} & \left.=S_{2} \backslash\left[S_{2} \cap \widetilde{C_{-}\left(v_{1}\right)}\right)\right]=S_{2} \backslash\left(\widetilde{C_{-}\left(v_{1}\right)}\right)=S_{2} \cap C_{-}\left(v_{1}\right) \\
& =\left(C_{-}(x) \backslash \bigcup_{2}^{n} C_{-}\left(v_{i}\right)\right) \cap C_{-}\left(v_{1}\right) \\
& =\left(C_{-}(x) \cap C_{-}\left(v_{1}\right)\right) \backslash \bigcup_{2}^{n} C_{-}\left(v_{i}\right) \\
& =\Phi \text { or } S\left(\inf x v_{1} ; v_{2}, v_{3}, \ldots, v_{n}\right) .
\end{aligned}
\end{aligned}
$$

We shall use the preceding lemma to prove
Theorem 3.1. - § is a semi-ring.
Proof. - By a result of Revuz \wp is closed under finite inter-
sections. We must show that if S and S^{*} are in \wp with $S \subseteq S^{*}$, then there is a finite sequence $S_{1}, S_{2}, \ldots, S_{m}$ in \mathscr{S} with

$$
S=S_{0} \subseteq S_{1} \subseteq \ldots \subseteq S_{m+1}=S^{*} \quad \text { and } \quad S_{i} \backslash S_{i-1} \subseteq \odot
$$

for $1 \leqslant i \leqslant m+1$. Suppose $S=S\left(x ; v_{1}, \ldots, v_{m}\right)$ and

$$
\mathrm{S}^{*}=\mathrm{S}\left(x^{*} ; u_{1}, \ldots, u_{n}\right)
$$

with $\mathrm{S} \subseteq \mathrm{S}^{*}$ and S^{*} is in canonical form $\left(u_{i} \leqslant x^{*}\right.$ for $1 \leqslant i \leqslant n$, but $u_{i} \leqslant u_{j}$ if $i \neq j$). If $y \in S$, then $y \in S^{*}$ so y not $\leqslant u_{i}$ for any

$$
i=1,2, \ldots, n ;
$$

thus S can be put into the (not necessarily canonical) form

$$
\mathrm{S}=\mathrm{S}\left(x ; v_{1}, v_{2}, \ldots, v_{m}, u_{1}, \ldots, u_{n}\right)
$$

Now let

$$
\begin{aligned}
& \mathrm{S}_{0}=\mathrm{S}=\mathrm{S}\left(x ; v_{1}, v_{2}, \ldots, v_{m}, u_{1}, \ldots, u_{n}\right) \\
& \mathrm{S}_{1}=\mathrm{S}\left(x ; v_{2}, \ldots, v_{m}, u_{1}, \ldots, u_{n}\right) \\
& \mathrm{S}_{i} \doteqdot \mathrm{~S}\left(x ; v_{i+1}, \ldots, v_{m}, u_{1}, \ldots, u_{n}\right) \\
& \mathrm{S}_{m}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right) .
\end{aligned}
$$

By Lemma 6.2, we have that $\mathrm{S}_{i} \backslash \mathrm{~S}_{i-1} \in 8$ for $1 \leqslant i \leqslant m$; and we also have $S=S_{0} \subseteq S_{1} \subseteq \ldots \subseteq S_{m}$ so we need only show that if $S^{*}=S_{m+1}$, then $S_{m} \subseteq S_{m+1}$ and $S_{m+1} \backslash S_{m} \in 8$. If $y \in S_{m}$, then $y \leqslant x$; since $\mathrm{S} \subseteq \mathrm{S}^{*}$ then $x \in \mathrm{~S}^{*}$ and $x \leqslant x^{*}$; thus $y \leqslant x^{*}$. By definition of S_{m}, if $y \in S_{m}$ then y not $\leqslant u_{i}$ for

$$
1 \leqslant i \leqslant n \quad \text { and so } \quad S_{m} \subseteq S_{m+1}=S^{*}
$$

We also note that $\mathrm{S}_{m}=\left\{y \in \mathrm{X}: y \leqslant x\right.$ but y not $\leqslant u_{i}$ for $1 \leqslant i \leqslant n$ and $\mathrm{S}_{m+1}=\left\{y \in \mathrm{X}: y<x^{*}\right.$ but y not $\leqslant u_{i}$ for $\left.1 \leqslant i \leqslant n\right\}$.

Thus, $\mathrm{S}_{m+1} \backslash \mathrm{~S}_{m}=\left\{y \in \mathrm{X}: y \leqslant x^{*}\right.$ but y not $\leqslant x$ and y not $\leqslant u_{i}$

$$
\begin{aligned}
& \text { for } 1 \leqslant i \leqslant n\} \\
= & \mathrm{S}\left(x^{*} ; x, u_{1}, \ldots, u_{n}\right) \in \mathscr{S} .
\end{aligned}
$$

and \lesssim is a semi-ring.
We recall from Chapter II, that one property that a semi-ring has but a weak semi-ring lacks is that a two-additive function is necessarily
finitely additiven/h a previous paper [2], we generated such fanctions on $\{(a, b]:-\infty \mid<a \leqslant b<\infty\}$ fromeabetian group valued functions on the reals. We perform a similar feat in our more abstract setting. Suppose F is a function on X with values in an abelian group \mathcal{J}; we

2) if $S \neq \Phi$ and $S=S\left(x ; u_{1}, \ldots, u_{n}\right)$ in some (not necessarily

$$
\text { (*) } \quad \mu(\mathrm{S})=\mathrm{F}(x)-\Sigma_{1} \mathrm{~F}\left(\inf x u_{i_{1}}\right)+\Sigma_{2} \mathrm{~F}\left(\inf x u_{i_{1}} u_{i_{2}}\right)-\ldots
$$

where $\Sigma_{m} \mathrm{~F}\left(\inf x u_{i_{1}} \ldots u_{i_{m}}\right)$ represents the sum over all distinct sets of m indices $\left\{i_{1}, i_{2}, \ldots, i_{m}\right\}$ and $F\left(\inf x u_{i_{1}} \ldots u_{i_{m}}\right)=0$ if that inf

Revuz ([4], p. 197) has shown that any such real valued function μ is well-defifined ; exactly the same proof carries over for the case in which μ takes values in an abelian group. We note that (*) is simply an extension of the usual modularity law :

$$
\mu(A \cup B)=\mu(A)+\mu(B)-\mu(A \cap B)
$$

Revuz attempts to show as follows that such a function μ is fintely addtive! If'S $\triangle S\left(x, u_{1}, \therefore, u_{n}\right.$ thef x is called the summit of S. Revaz ($[4], \mathrm{p} .201$) defmesta relation < on arbitrary colleet oots of pairwise disjoint members of ${ }^{\text {d }}$ by setting $S_{7}^{2}<\cos _{2}$ if and only if there is some x m S_{1} with x the summitt of S_{2} C He considered $S_{1}, S_{2}, \ldots, S_{n}$ in \odot with $S \stackrel{y}{=} S_{i}^{10 n} \mathscr{S}$ and sought to pick a minimal S_{i} relative to the ordering < ${ }^{2} \mathrm{He}$ asserfed (44 f , p . 201) that this is possible since \ll is reflexiye, antisymmetric, and transitiven Howevers the transitive property does not hold in general and a situation in which we cannot pick such a minimal element is shown in

Example 3.1. - Let (X, \leqslant) Be 错e paitially ordered set determined by the following Hasse diagram where as usual, $n \leqslant m$ provided n is no higher than m and there is an ascending path from n to m. Note that (X, \leqslant) is a conditional lower semifattice -inge \& ai 6 bins

Now we pick $S_{0}, S_{1}, S_{2}, S_{3}$ as follows:

$$
\begin{aligned}
& \mathrm{S}_{0}=\{0\}=\mathrm{S}(0 ; 1,2,3) \\
& \mathrm{S}_{1}=\{1,4,7\}=\mathrm{S}(1 ; 8,10) \text { denoted by } \\
& \mathrm{S}_{2}=\{2,5,8\}=\mathrm{S}(2 ; 9,10) \text { denoted by } \\
& \mathrm{S}_{3}=\{3,6,9\}=\mathrm{S}(3 ; 7,10) \text { denoted by }
\end{aligned}
$$

$S_{1} \ll S_{3}$ since $7 \in S_{1}$ and $7 \leqslant 3=$ summit of $S_{3}, S_{3} \ll S_{2}$ since $9 \in S_{3}$ and $9 \leqslant 2=$ summit of S_{2}, and $S_{2} \ll S_{1}$ since $8 \in S_{2}$ and $8 \leqslant 1=$ summit of S_{1}. Thus, there is no minimal member relative to the order <<.

Even though Revuz's proof is incorrect, we do get finite additivity for such a function μ. In view of Von Neumann's work and the fact that \wp is a semi-ring, we need only prove that μ is 2 -additive and a relatively trivial modification of Revuz's proof accomplishes this.

For the remainder of the chapter, we shall assume that X is a topological space and (X, \leqslant) is a conditional lower semilattice and we shall be interested in the following relationships between the order and the topology :
$\mathrm{X}_{a}:$ Each $\mathrm{C}_{-}(\boldsymbol{x})$ is closed and the closure of each member of \curvearrowright is countably compact.
X_{b} : inf is continuous from the right in the sense that one of the following must hold for each x and y in X :
i) If $w=\inf x y$ and V is a neighborhood of w, then there exists V_{x} and V_{y} neighborhoods of x and y respectively such that if $x^{\prime} \in \mathrm{V}_{x}$ with $x \leqslant x^{\prime}$ and $y^{\prime} \in \mathrm{V}_{y}$ with $y \leqslant y^{\prime}$, then inf $x^{\prime} y^{\prime} \in \mathrm{V}$.
ii) If inf $x y$ does not exist, then there exist neighborhoods $\mathrm{V}_{\boldsymbol{x}}$ and V_{y} of x and y respectively such that if $x^{\prime} \in \mathrm{V}_{x}$ with $x \leqslant x^{\prime}$ and $y^{\prime} \in \mathrm{V}_{y}$ with $y \leqslant y^{\prime}$ then $\inf x^{\prime} y^{\prime}$ does not exist.
X_{c} : If $x \in \mathrm{C}_{-}(y)$ then for each neighborhood V_{x} of x, there exists z in $\mathrm{V}_{x} \cap \mathrm{C}_{+}(x) \cap \mathrm{C}_{-}(y)$ such that $\mathrm{C}_{-}(x) \subseteq\left\{\mathrm{C}_{-}(z)\right\}^{\text {int }}$ where the interior is relative to the subspace topology of $\mathrm{C}_{-}(y)$.

The meanings of X_{a} and X_{b} are clear, but X_{c} may require an illustration. Let (X, \leqslant) be the real line with the usual topology and the usual ordering. Let $x \leqslant \mathrm{Y}$ and $\varepsilon>0$. If $x=y$ then

$$
(-\infty, x]=(-\infty, y]
$$

and the interior of $(-\infty, x]$ relative to the subspace topology of $\mathbf{C}_{-}(y)$ is $(-\infty, x]$. Thus the z whose existence is asserted in \mathbf{X}_{c} is just x. Now if $x \not y y$, then there is some z strictly between x and y so $z \in \mathrm{C}_{+}(x) \cap \mathrm{C}_{-}(y)$ and $\mathrm{C}_{-}(x)-(-\infty, x]-(-\infty, z)=\mathrm{C}_{-}(z)^{\text {int }}$.

In Chapter II, we have seen that an additive set function which is μ_{D}-regular on $\{(a, b]: a, b \in \mathrm{R}\}$ is countably additive. Now for each (a, b] with $a<b$, let c and d be numbers such that $a<c \leqslant b<d$. Then $(c, b] \subseteq[c, b] \subseteq(a, b] \subseteq(a, d) \subseteq(a, d]$ and for regularity, it is sufficient that $(a, d] \backslash(c, b]$ be "small". Now

$$
(a, d] \backslash(c, b]=(a, c] \cup(b, d]=(a, b] \Delta(c, d]
$$

where Δ denotes the symmetric difference. Thus, for regularity, we may require that each member $(a, b]$ be "approximated from the right" by some member (c, d]. To the end of generalizing this regularity for use in our more abstract setting we first of all obtain an approximation notion and then consider "approximation from the right".

Recalling the definitions of Chapter II, we define

$$
\left(\mathrm{V}_{\mathrm{F}}\right)_{p}\left(\mathrm{~S}\left(x ; u_{1}, \ldots, u_{m}\right)\right)=\sup \left\{\sum_{1}^{n}\left\|\mu\left(\mathrm{~S}_{i}\right)\right\|_{p}\right\}
$$

$$
\left(\mathrm{DV}_{\mathrm{F}}\right)_{p}\left(\mathrm{~S}\left(x ; u_{1}, \ldots, u_{m}\right)\right)=\sup \left\{\left\|\sum_{1}^{n} \mu\left(\mathrm{~S}_{i}\right)\right\|_{p}\right\}
$$

where in each case the supremum is taken over all finite, pairwisedisjoint sequences of members of whose union is in $\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right)$. These will be called the variation and the Dunford variation, respectively, of F . We note that these definitions are made so that

$$
|\mu|_{p}(s)=\left(\mathrm{V}_{\mathrm{F}}\right)_{p}(\mathrm{~S}) \quad \text { and } \quad\left(\mu_{\mathrm{D}}\right)_{p}(\mathrm{~S})=\left(\mathrm{DV}_{\mathrm{F}}\right)_{p}(\mathrm{~S})
$$

for each S in and each p in P.
For a regularity condition, we shall consider
$\mathrm{X}_{d}:$ If $\mathrm{S}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right) \in \mathscr{S}, \varepsilon>0$, and $p \in \mathrm{P}$, then there exist neighborhoods V_{x} of x and V_{i} of $u_{i}(1<i<n)$ such that whenever $x^{\prime} \in \mathrm{V}_{x} \cap \mathrm{C}_{+}(x), u_{i}^{\prime} \in \mathrm{V}_{i} \cap \mathrm{C}_{+}\left(u_{i}\right)(1 \leqslant i \leqslant n)$, then we have $\left(\mu_{\mathrm{D}}\right)_{p}\left(\mathrm{~S} \Delta \mathrm{~S}^{\prime}\right)<\varepsilon$ where $\mathrm{S}^{\prime}=\mathrm{S}\left(x^{\prime} ; u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)$.
X_{d}^{\prime} : Same as X_{d} but with μ_{D} replaced by $|\mu|$.
We note that $\mathrm{X}_{\boldsymbol{d}}^{\prime}$ implies $\mathrm{X}_{\boldsymbol{d}}$.
Lemma. - Let $\mathrm{X}=\mathrm{C}_{-}(y)$ for some y and suppose $\mathrm{X}_{a}, \mathrm{X}_{c}$, and X_{d} are satisfied by $(\mathrm{X},<)$. Then μ is countably additive on $\mathscr{£}$.

Proof. - Let \mathcal{U} be the collection of open sets of X and \mathcal{C}, the collection of closed countably compact sets of X. We shall show that μ is μ_{D}-regular and thus μ will be countably additive.
i) "inner regularity": Let $\mathrm{S}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right), p \in \mathrm{P}$ and $\varepsilon>0$; then since X satisfies X_{c}, for each neighborhood V_{i} of u_{i}, we can find v_{i} such that $v_{i} \in \mathrm{~V}_{i} \cap \mathrm{C}_{+}\left(u_{i}\right)$ and $\mathrm{C}_{-}\left(u_{i}\right) \subseteq\left(\mathrm{C}_{-}\left(v_{i}\right)\right)^{\text {int }}$. Now we have that $\overline{\mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(v_{i}\right)} \subseteq \mathrm{C}_{-}(x) \backslash\left(\mathrm{C}\left(v_{i}\right)\right)^{\text {int }} \subseteq \mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(u_{i}\right)$. Thus, $\mathrm{S}_{1}=\mathrm{S}\left(x ; v_{i}, \ldots, v_{n}\right)=\mathrm{C}_{-}(x) \backslash \bigcup_{1}^{n} \mathrm{C}_{-}\left(v_{i}\right)=\bigcap_{1}^{n}\left(\mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(v_{i}\right)\right)$, then
$\overline{\mathrm{S}_{1}}=\bigcap_{1}^{n} \overline{\left(\mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(v_{i}\right)\right)} \subseteq \bigcap_{1}^{n} \overline{\left(\mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(v_{i}\right)\right.} \subseteq \bigcap_{1}^{n}\left(\mathrm{C}_{-}(x) \backslash \mathrm{C}_{-}\left(u_{i}\right)\right)=\mathrm{S}$.
Therefore $\mathrm{S}_{1} \subseteq \overline{\mathrm{~S}}_{1} \subseteq \mathrm{~S}$ and $\overline{\mathrm{S}_{1}}$ is countably compact by X_{a}. Now by X_{d}, we may pick the neighborhoods $\mathrm{V}_{i}(1 \leqslant i \leqslant n)$ such that $\left(\mu_{\mathrm{D}}\right)_{p}\left(\mathrm{~S}_{1} \Delta \mathrm{~S}\right)<\varepsilon / 2$. Since $\mathrm{S}_{1} \Delta \mathrm{~S}=\mathrm{S} / \mathrm{S}_{1}$ whenever $\mathrm{S}_{1} \subseteq \mathrm{~S}$, we have that $\left(\mu_{D}\right)_{p}\left(S \backslash S_{1}\right)<\varepsilon / 2$.
ii) "outer regularity": Let $\mathrm{S}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right)$ be in canonical form, $p \in \mathrm{P}$ and $\varepsilon>0$; since X satisfies X_{c}, for each neighborhood V_{x} of x, there is a z in $\mathrm{V}_{x} \cap \mathrm{C}_{+}(x)$ such that $\left.\mathrm{C}_{-}(x)\right) \subseteq\left(\mathrm{C}_{-}(z)^{\text {int }}\right.$. Let $\mathrm{S}_{2}=\mathrm{S}\left(z ; u_{1}, \ldots, u_{n}\right)$. Now $\mathrm{S} \subseteq \mathrm{S}_{2}^{\text {int }} \subseteq \mathrm{S}_{2}$ since
$\mathrm{S}_{2}^{\text {int }}=\left(\mathrm{C}_{-}(z) \backslash \bigcup_{1}^{n} \mathrm{C}_{-}\left(u_{i}\right)\right)^{\text {int }}=\left(\mathrm{C}_{-}(z)^{\text {int }} \backslash \bigcup_{1}^{n} \mathrm{C}_{-}\left(u_{i}\right) \supseteq \mathrm{C}_{-}(x) \backslash \bigcup_{1}^{n} \mathrm{C}_{-}\left(u_{i}\right)\right.$.
By $\mathrm{X}_{d}, \mathrm{~V}_{x}$ can be picked so that $\left(\mu_{\mathrm{D}}\right)_{p}\left(\mathrm{~S}_{2} \Delta \mathrm{~S}\right)<\varepsilon / 2$; since

$$
S_{2} \Delta S=S_{2} \backslash S
$$

whenever $S \subseteq S_{2}$, we have that $\left(\mu_{D}\right)_{p}\left(S_{2} \backslash S\right)<\varepsilon / 2$.
Now from i) and ii) we may conclude that for each S in \wp, each $p \in \mathrm{P}$, and each $\varepsilon>0$, there exist $\mathrm{S}_{1}, \mathrm{~S}_{2}$ in $\odot, \mathrm{C}\left(=\mathrm{S}_{1}\right)$ countably compact, and $U\left(=S_{2}^{\text {int }}\right)$ open such that $S_{1} \subseteq \overline{S_{1}} \subseteq S \subseteq S_{2}^{\text {int }} \subseteq S_{2}$ and $\left(\mu_{D}\right)_{p}\left(S_{2} \backslash S_{1}\right) \leqslant\left(\mu_{D}\right)_{p}\left(S_{2} \backslash S\right)+\left(\mu_{D}\right)_{p}\left(S \backslash S_{1}\right)<\varepsilon$. Thus μ is μ_{D} regular and so μ is countably additive.

Theorem 3.2. - Let X be a topological space and (X, \leqslant) a conditional lower semilattice. If $\mathrm{X}_{a}, \mathrm{X}_{c}$, and X_{d} are satisfied, then μ is countably additive on 厅.

Proof. - Let $\left\{S_{i}\right\}_{1}^{\infty}$ be a pairwise disjoint sequence of members of δ such that $\bigcup_{1}^{\infty} \mathrm{S}_{i}=\mathrm{S} \in \mathscr{S}$. Let $\mathrm{S}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right)$, then $\mathrm{S}_{i} \subseteq \mathrm{~S} \subseteq \mathrm{C}_{-}(x)$ for $1 \leqslant i<\infty$. If $\mathrm{X}^{\prime}=\mathrm{C}_{-}(x)$, then $\left(\mathrm{X}^{\prime}, \leqslant\right)$ satisfies $\mathrm{X}_{a}, \mathrm{X}_{c}$, and X_{d}. Thus, by the preceding lemma, μ is countably additive on $\mathscr{S} \cap 2^{X^{\prime}}$ and so $\sum_{1}^{n} \mu\left(\mathrm{~S}_{i}\right) \rightarrow \mu(S)$. Therefore, μ is countably additive on \mathfrak{S}. \square

Since $\mathrm{X}_{\boldsymbol{d}}^{\prime}$ implies $\mathrm{X}_{\boldsymbol{d}}$, we obtain the following
Corollary 3.2.1. - Let X be a topological space and $(\mathrm{X}, \leqslant) a$ conditional lower semilattice. If $\mathrm{X}_{a}, \mathrm{X}_{c}$, and X_{d}^{\prime} are satisfied, then μ is countably additive on \wp.

As an additional corollary, we also obtain Revuz' original result below in Theorem 3.3 ([4], p. 208).

We shall say that a function F defined on X and taking values in the topological space Y is continuous from the right at x in X
provided that for each neighborhood U of $\mathrm{F}(x)$, there is a neighborhood V of x such that $\mathrm{F}\left(x^{\prime}\right) \in \mathrm{U}$ whenever $x^{\prime} \in \mathrm{V} \cap \mathrm{C}_{+}(x)$.

Lemma. - Suppose X is a topological space and (X, \leqslant) is a conditional lower semilattice. If (X, \leqslant) satisfies X_{a} and X_{c} and if $\mathrm{F}: \mathrm{X} \rightarrow \mathrm{R}$ is such that
i) μ is non-negative.
ii) F is continuous from the right on X ,
then if X_{b} is satisfied, so is X_{d}.
Proof. - Notice that under the condition that μ is non-negative we have $\mu_{D}\left(S_{1} \backslash S_{2}\right)=\mu\left(S_{1}\right)-\mu\left(S_{2}\right)$ if $S_{2} \subseteq S_{1}$. Let

$$
\mathrm{S}=\mathrm{S}\left(x ; u_{1}, \ldots, u_{n}\right)
$$

and $\varepsilon<0$. Now F and inf are continuous from the right on X, so for each u_{i}, there is a neighborhood V_{i} of u_{i} such that if

$$
v_{i} \in V_{i} \cap \mathrm{C}_{+}\left(u_{i}\right) \cap \mathrm{C}_{-}(x)
$$

then $0 \leqslant \mathrm{~F}\left(u_{i}\right)-\mathrm{F}\left(v_{i}\right) \leqslant \varepsilon / 2 n$. Also, there is a neighborhood V of x such that if $x^{\prime} \in \mathrm{V} \cap \mathrm{C}_{+}(x)$, then $0 \leqslant \mathrm{~F}\left(x^{\prime}\right)-\mathrm{F}(x)<\varepsilon / 2$. Now let $\mathrm{S}^{*}=\mathrm{S}\left(x ; v_{1}, \ldots, v_{n}\right)$; then $\mathrm{S} \backslash \mathrm{S}^{*} \subseteq \bigcup_{1}^{n} \mathrm{~S}\left(v_{i} ; u_{i}\right)$ and so

$$
\begin{aligned}
& \mu_{\mathrm{D}}\left(\mathrm{~S} \backslash \mathrm{~S}^{*}\right) \leqslant \sum_{1}^{n} \mu_{\mathrm{D}}\left(\mathrm{~S}\left(v_{i} ; u_{i}\right)\right)=\sum_{1}^{n} \mu\left(\mathrm{~S}\left(v_{i} ; u_{i}\right)\right)= \\
&=\sum_{1}^{n} \mathrm{~F}\left(v_{i}\right)-\mathrm{F}\left(u_{i}\right)<\varepsilon / 2
\end{aligned}
$$

Also, $\mathrm{S}^{*} \backslash \mathrm{~S}=\mathrm{S}\left(x^{\prime} ; x\right)$ and

$$
\mu_{\mathrm{D}}\left(\mathrm{~S}^{*} \backslash \mathrm{~S}\right)=\mu_{\mathrm{D}}\left(\mathrm{~S}\left(x^{\prime} ; x\right)\right)=\mu\left(\mathrm{S}\left(x^{\prime} ; x\right)\right)=\mathrm{F}\left(x^{\prime}\right)-\mathrm{F}(x)<\varepsilon / 2
$$

Thus $\mu_{\mathrm{D}}\left(\mathrm{S} \Delta \mathrm{S}^{*}\right) \leqslant \mu_{\mathrm{D}}\left(\mathrm{S} \backslash \mathrm{S}^{*}\right)+\mu_{\mathrm{D}}\left(\mathrm{S}^{*} \backslash \mathrm{~S}\right)<\varepsilon / 2+\varepsilon / 2=\varepsilon$ and X_{d} is satisfied. \square

Combining the preceding lemma with Theorem 3.2, we obtain the main result of Revuz in this area.

Theorem 3.3. - Let X be a topological space and (X, \leqslant) be a conditional lower semilattice. If (X, \leqslant) satisfies $\mathrm{X}_{a}, \mathrm{X}_{b}$, and X_{c} and
$\mathrm{F}: \mathrm{X} \rightarrow \mathrm{R}$ is such that μ is non-negative and F is continuous from the right on X , then μ is countably additive on $₫$.

BIBLIOGRAPHY

[1] J.E. Huneycutt, Jr., Extensions of abstract valued set functions, Transactions of the American Mathematical Society, vol. 141 (1969), 505-513.
[2] J.E. Huneycutt, Jr., Regularity of set functions and functions of bounded variations on the line, Revue Roumaine de Mathématiques Pures et Appliquées, vol. 14, (1969), nº 8, 1113 1119.
[3] Jr. Von Neumann, Functional Operators, Vol. I ; Measures and Integrals, Princeton University Press, Princeton, 1950.
[4] A. Revuz, Fonctions croissantes et mesures sur les espaces topologiques ordonnés, Annales de l'Institut Fourier, vol. 6 (1955, 1956).

Manuscrit reçu le 13 Novembre 1970
James E. Huneycutt, Jr. North Carolina State University Raleigh. North Carolina (USA)

