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HOLOMORPHIC GERMS ON BANACH SPACES*

by SOO BONG CHAE

Introduction.

Let E and F be complex Banach spaces, U a non-empty open
subset of E and K a compact subset of E. The concept of holomorphy
type 0 between E and F, and the natural locally convex topology
%^ 0 on the space S^ (U ; F) of all holomorphic mappings of a given
holomorphy type 0 from U to F were considered first by L. Nachbin
in his monograph [N6]. Motivated by [N6], we introduce the locally
convex space S^CK ; F) of all germs of holomorphic mappings into F
around K of a given holomorphy type 6 and study its interplay with
XQ (U ; F). If E is infinite dimensional, a study of the locally convex
space S^Q (U ; F) is by no means straightforward.

The organization of the paper is as follows : In the chapter on
preliminaries, we have included statements of basic definitions and
results from [N6] for convenience of reference.

In Chapter 2 the locally convex space S^ (K ; F) is introduced.
Let £> 0 be a real number. We denote by S^gQJ ; F) the vector
subspace of S^Q (U ; F) consisting of those mappings / such that

11/11, = £ £" sup 1——^/001 <°°.
w=o xeu II m! \\Q

Then S^gOJ ; F) is a Banach space with respect to the norm || Hgg .
We define the natural locally convex topology on HCy (K ; F) by consi-
dering ̂ (K ; F) as the inductive limit of Banach spaces S€Q^(U ; F),

(") This paper is a part of the author's dissertation at the University of Rochester.
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aid and encouragement. Research was supported in part by the National
Research Council of Brazil through the Institute de Matematica Pura e Aplicada
(IMPA), Rio de Janeiro.
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for all real numbers e > 0 and open subsets U of E containing K
with respect to the natural linear mapping a^gOJ ; F) -^ 3e^(K ; F)
assigning to each /Eg^gCU ; F) the germ 7 ̂ ^(K ;F) determined
by /. This topology then is equal to the topology obtained by consi-
dering 9€ff(K; F) as the inductive limit ofS^QJiF) endowed with
^L e » ^or a^ ̂ ^ ^bsets U of E containing K with respect to the
natural linear mapping ^(U ; F) -> ^(K ; F).

Bounded sets, compact sets and Cauchy filters in !f€(K , F) and
g^ (K ; F) are characterized in Chapter 3 and Chapter 4 respectively.
In Chapter 4 the Nachbin inequalities play an important role.

The main result is presented in Chapter 6. The following problem
has been considered : When does %^^ = ̂ ,0 on S^QJ ; F) ? The
topology %^ Q is discussed in Chapter 5, which is the projective limit
of the topology on 9€ff(K; F), for all compact subsets K of U with
respect to the linear mapping 3^ (U ; F) -> ^(K ; F). The two topo-
logies are identical for every open subset of E if dim E < °°. If
dim E = °°, then we prove that they are equal for every open subset
of E satisfying the 0-Runge property. Applying this result, we prove
that HCeW ; F) is complete for %^^ if U satisfies the 0-Runge pro-
perty. This has been done by characterizing bounded subsets, compact
subsets and Cauchy filters of ^(K ; F), and proving the completeness
of9e,(K;F).

We also have the following results in Chapter 7. If dim E = oo,
then 96 (U ; F) and 96 (K ; F) are neither Montel, nor Schwartz, nor
nuclear spaces. If E is reflexive and there exists a non-compact m-
linear mapping from E"" to F, then neither 96 (U ; F) nor 9e(K ; F)
is reflexive. In particular, if E is a Hilbert space, then 96 (U ;F) or
96(K ; F) is reflexive if and only if dim E < o°. If E is not reflexive,
then both 96(U ; F) and 3€(K ; F) are not reflexive. If E is separable,
then 3€(V ; F) is bomological if and only if every sequentially conti-
nuous semi-norm on 9€ (U ; F) is continuous.

1. Preliminaries.

For the convenience of the reader, we devote this chapter to
the compilation of several basic facts and definitions in [N6].
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The letters E and F will denote two complex Banach spaces, U
a non-empty open subset of E, K a compact subset of E. By m and
n we mean natural numbers 0, 1, 2 , . . . . The open and closed balls
with center $ and radius p in E are denoted by Bp(^) and B ($),
respectively. For a subset X of E, we set

Bp(X) = ̂  B,(x)

^ = ^x B^ •

For each m K^E; F) represents the Banach space of all conti-
nuous m-linear mappings of ^m into F endowed with the norm

H A H =sup||A(^,...,^)||

where x^ ,. .. , Xy^ are elements in the closed unit ball of E. We
denote by G^E ; F) the vector subspace of ^(^E ; F) consisting of
symmetric w-linear mappings of E'" into F. ffyC^E ; F) is a Banach
space with respect to the induced norm by the norm of ff^E ; F).
We shall let J?(°E ; F) = ̂ (°E; F) = F as a Banach space. A conti-
nuous m-homogeneous polynomial P from E to F is a mapping
P : E -^ F for which there is some A C J^E ; F) such that
P(x) = AJC^ = A(x ,. .. , x) for every x G E, where x is repeated m
times, m ̂  0 ; P(x) = Ax° = A, m = 0. We denote by ^CE ; F)
the Banach space of continuous m-homogeneous polynomials from E
to F endowed with the norm

I I P || =sup||P(x)||

where x are elements in the closed unit ball of E. The mapping
AEJ^EiF) ^ AeQ^EsF), where A(x) = A^, establishes a
vector space isomorphism and a homeomorphism of the first space
onto the second one. A continuous polynomial P from E to F is a
mapping P : E -> F for which there are m and P^Egi^EiF) ,
k = 1,. .. , m, such that P = ?i + • • - + P^ . This representation is
unique. We denote by %(E ; F) the vector space of all continuous
polynomials from E to F.

A power series from E to F about { G E is a series in x E E of
the form

t P^-S)
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where P^ G^E ; F). The P^ are called the coefficients of the power
series. The radius of convergence of a power series about f is the
largest real number r, 0 < r < oo , such that the power series is uni-
formly convergent on every B^({) for 0 < p < r. The power series is
said to be convergent if its radius of convergence is strictly positive.

A mapping /: U -> F is said to be holomorphic on U if, cor-
responding to every ^ E U, there is a convergent power series from E
to F about $,

fW= I P^^-S) .
m=0

The sequence (P^) is then unique at every point $. We refer to this
convergent power series as the Taylor series of / about {. 3S (U : F)
denotes the vector space of all holomorphic mappings from U to F
We set

pm=^.dmf•

Then we have the differential mapping

^f : x E U H- ^/(x) E ̂ CE ; F)

and the differential operator

^ : /E ge(u; F) ^ ^/E^edj; Q^E ; F))
of order m.

Cauchy inequality. Let /ege(U ; F), p > 0 and B^($) C U. Then

l—^/^l^-^ su? IIA^II
1 1 ^ •' II f^ ||jc-^||=p

for every m,
A holomorphy type Q from E to F is a sequence of Banach spaces

^(^E ; F), the norm on each of them denoted by || \\Q , such that
the following conditions hold true :

1) Each S^E ; F) is a vector subspace of ^(^E ; F) ;
2) %0(°E ; F) coincides with %(°E ; F) as a normed vector space ;
3) There is a real number a > 1 for which the following is true :

Given any k, m, k < m, x G E, and P E^^E ; F), we have
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^POOE^EiF) ;

||—^P(JC)| ^a^HPHJIjcir-^ .
" K ' "0

(We call a the holomorphy constant).
It is immediate that each inclusion mapping

<KQ (""£;?) ^SiC^F)

is continuous and || P || < (^ || P \\Q \\ x IF .
A given /E S^U ; F) is said to be of holomorphy type 0 at

$ E U if
1) d'"/(0<= S^E ; F), for every m ;
2) There are real numbers C > 0 and c > 0 such that

—— ^/W || <Ccm, for every m .m! \\Q

Moreover, / is said to be of holomorphy type 6 on U if / is of holo-
morphy type 0 at each point of U. We shall denote by 3€ Q (U ; F) the
vector space of all mappings of holomorphy type 0 on U.

Q always denotes a holomorphy type from E to F.
The current holomorphy type from E to F is the holomorphy

type Q for which S^E ; F) = ^S^E ; F) for every m as a normed
space. Then a^OJ ; F) = 3€(U ; F).

A semi-norm p on ^^(U ; F) is said to be ported by a compact
subset K of U if corresponding to every real number £ > 0 and open
subset V of U containing K there is a real number c(£, V) > 0 such
that

p(f) < c(e , V) S e- sup I 1 d^x) I
w=0 xeV || m ! \\ff

for every / e9^(U ; F). It is equivalent to saying that a semi-norm
p on 9€ (U ; F) is ported by a compact subset K of U if for every
open subset V of U containing K there corresponds a real number
c(V) > 0 such that

P(/XC(V) sup H/OOII
xeV
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for every f^9€(\J; F). The compact'6-ported topology on ̂ (U ; F)
is defined by the family of semi-norms ported by compact subsets of
U. We denote this topology by ^^ Q .

In the theory of holomorphy type Q other than the current one,
the classical Cauchy inequalities are not valid. As a substitute for
these inequalities the following inequalities are indispensible in the
study of the compact-0-ported topology %^, Q on S^ (U ; F) and the
natural topology on 96^ (K ; F) yet to be defined in the next chapter.

Nachbin inequalities. - Let/e 3^(U ; F), X C U, and B^(X) C U
with p > 0. Then

Z ^ sup |——rf^)| <
m=0 xeBp(X) |j m ! \\Q

< £ (a(p + or sup |[ -^ ^/Oc)!
w^O xeX || W ! \\Q

where a > 1 is the holomorphy constant.
We omit 6 whenever our objects are for the current holomorphy

type.

2. Topology on the spaces SS^K ;F).

In this chapter we define the natural locally convex topology on
the space of holomorphic germs of holomorphy type 6.

2.1. DEFINITION. - Let H(K ;F) be the set of all F-valued map-
pings which are holomorphic on some open subset of E containing K.
Two mappings /^ and /^ in H(K ; F), defined on open subsets V^
and U^ , respectively, are said to be equivalent modulo K if there is
an open subset U of E containing K and contained in both U^ and
U^ such that f^ (x) = /^ (x) for every x in U. Each equivalence class is
referred to as a holomorphic germ on K, or a current holomorphic
germ on K. We denote by / the equivalence class modulo K determined
by /. The quotient space of 96 (K ; F) with respect to this relation
will be denoted by S€(K; F). 9€(K ; F) becomes a vector space over
C if we define
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( / + ^ = ? + ? ;

(x// = x7
for every / and g in H(K ; F) and X E C.

2.2. DEFINITION. - A holomorphic germ J G!f€(K ; F) is said to
be of holomorphy type 6 if there is a representative of / which is of
holomorphy type 0 on some open subset of E containing K. For
simplicity, we call such a germ a 6-holomorphic germ on K. The
vector space of all 0-holomorphic germs on K will be denoted by
^(K;F).

2.3. DEFINITION. — The vector subspace of3e(U;F) consisting
of all bounded holomorphic mappings on U is denoted by ̂ '"(U ; F).
The natural topology on ^^(U ; F) is defined by the norm

/ege°°(u;F) ^ sup H/OOI I .
xe\J

Then ̂ (U ; F) is a Banach space.

2.4. DEFINITION. — Let £ > 0 be a real number. By a^gOJ ;F)
we denote the vector subspace of 96^ (U ; F) consisting of all mappings
/ such that

II 1
\\f\\e = S c^sup ——^/(x) < o o .

w=0 xe\J II W ! Q

The natural topology on ^C^gCU ; F) is defined by the norm given
above. Then the inclusion mapping

ge^(u;F)^ge°°(u;F)
is continuous, and SC^U ; F) is a Banach space.

Let K be a fixed compact subset of E. Corresponding to every
open subset U of E containing K, there exists a natural linear mapping
TV : 9^0 (U ; F) -> ^(K ; F) assigning every /E3^(U ; F) to its
equivalence class / modulo K.

2.5. DEFINITION. - The natural topology on ^(K ; F) is defined
as the inductive limit of the natural topology on 3€ff^(\J ; F), for all
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open subsets U of E containing K and all real numbers £ > 0, i.e.,
the finest locally convex topology onS^OK. ; F) such that the natural
linear mappings Ty: 96^(11;?) -^^(KiF) are continuous for
all open subsets U of E containing K and all real number £ > 0.

2.6. PROPOSITION. — The natural topology on ̂ (K ;F) is equal
to the inductive limit of the compact-Q-ported topology on SC^U ; F),
for all open subsets U of E containing K, -with respect to the linear
mapping Ty.

Proof. - Let % be the natural topology on 3^ (K ; F) and %'
the inductive limit of the topology %^ Q on SC^U ; F), for all open
subsets U of E containing K. Since the inclusion mapping

^6(U;F) ̂  ^(U;F)

is continuous, we have %' C %.
On the other hand, let p be a semi-norm on 9€ Q (K ; F) which

is continuous for %. Then, corresponding to every real number £ > 0
and open subset U of E containing K, there is a real number c(e , U) > 0
such that

p o Ty(/) < c(£ , U) S £w su? I—— dm^) I
w = 0 jceU || m \ \\Q

for every /€E ̂ ^(U ; F). This implies that corresponding to every
real number £ > 0 and open subset V of U (fixed) containing K,
there is a real number c(£ , V) > 0 such that

p o Ty(/) < c(e , V) S ^ sup I -l- ̂ /(x) ||
w=o jcev II m ! \\o

for every /G 3€ff(V ; F). Therefore, p o Ty is a continuous semi-norm
on 3€ff (U ; F). Hence p is continuous for %'.

2.7. PROPOSITION. — The natural topology on ̂ (K ; F) can be
defined as the inductive limit of the topology on 3^Q^(V ; F), where
U runs through a fundamental sequence of open neighborhoods ofK
and e a sequence of positive real numbers converging to 0.

Proof. — Let (U^,) be a fundamental sequence of open neigh-



HOLOMORPHIC GERMS ON BANACH SPACES 115

borhoods of K and (£„) a sequence of positive real numbers converging
to 0. For every open subset U of E containing K and real number
£ > 0, there exist m and n such that U^ C U and £„ < £.

Then the inclusion mappings

^e(U;F) ^3e,g (U;F)i "i
^E(u,;F)^ge^(u,;F)

are continuous. Therefore, the sequence of Banach spaces defines the
natural topology on S^Q (K ; F).

2.8. PROPOSITION. - ̂ (K ;F) is a bomological, barrelled and
(DF)-space.

Proof. — The inductive limit of bomological (respectively, bar-
relled) spaces is also bomological (respectively, barrelled). Therefore,
^(K^F) is both bomological and barrelled. 9e0(K;F) is also a
(DF)-space as a countable inductive limit of (DF)-spaces.

3. Current holomorphic germs.

Attention is now restricted to the space 36(K;F) of current
holomorphic germs on a compact subset K. The natural locally convex
topology on 3€(K ; F) is described, in a simpler way, by means of the
Banach spaces SS^U ; F) rather than the Banach spaces SC^g^F).
We then characterize the bounded subsets, compact subsets, and
Cauchy filters in 9e(K;F) in terms of ^(U ; F) and show that
3e(K ; F) is complete.

3.1. PROPOSITION. — The natural topology on 9€(K; F) is equal
to the inductive limit of the topology on ^"(U ; F), for all open
subsets U of E containing the compact subset K, with respect to the
natural linear mapping 9€°(V ; F) -> 96 (K ; F).

Proof. - For each open subset U of E containing K and each
real number £ > 0, the following inclusion mappings are continuous
for any holomorphy type 6 :
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9^6 (U ; F) ^ ̂ (U ; F) ^ 96 (U ; F) .

This fact and 2.6 prove the proposition.
Let G be a vector space, (E^^ a family of locally-convex

spaces. Let T\ be a linear mapping from E^ to G for each X € I.
Equip G with the inductive limit topology of E^ with respect to T\
for all X € I . For T\(E^) is a vector subspace of G and the topology
on E^ can be transferred to T\(E^) by taking as neighborhoods in
T\(E^) the images of neighborhoods of E^ by T\. Then G is also
the inductive limit of its vector subspaces T^(E^) with respect to the
inclusion mappings. In the sequel, we consider only one topology on
T^(E^), namely, the transferred one without specification.

3.2. PROPOSITION. - Let X be a subset of 9€(K ; F). The fol-
lowing are equivalent.

a) 9C is bounded in 96 (K ; F).
b) There exist real number C > 0 and c> 0 such that

sup [[^^/(^I^C^
xeK \\m ! 1 1

for every f GfiC, /G /, and m.
c) There exists an open subset U of E containing K such that

X is contained and bounded in Tu9e°°(U ; F).

Proof. — Since the implication c) =^ a) is clear, we prove the
rest.

a) =» b). Let SC be bounded in 96 (K ; F). Then every continuous
semi-norm on 96 (K ;F) will be bounded on X. Let a = (a^) be a
sequence of positive real numbers such that (c^,)1^ -^ °°. We define
a semi-norm p^ on 9€(K ; F) by

paCn- S o^ supl—^/ool
m=0 xeK \\m \ II

/^ /^
where / is a representative of /. It is well-defined since every /€ /
will take the same value on K. For every open subset U of E containing
K, py o Ty is a continuous semi-norm on 9e°°(U ; F) by the Cauchy
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inequalities. Therefore, py is continuous on 3€(K',F). Hence p^ is
bounded on X for every sequence a described above. This implies that
there exist real numbers C > 0 and c > 0 such that

sup ——^/(x) ^Cc^
jceK II m \ II

for every /eSC, /e/, and m.
b) =^ c). Assume that b) holds true. We choose a real number

p > 0 such that pc < 1. Since K is compact, we may cover K with a
finite number of open balls B^ ($„),. .^, B^(^) all centered in K.
LetJJ be the union of these balls. Let J ^X and / a representative
of /. Then the Taylor series of / about { converges uniformly on
Bp(^) whenever $ is a point of K since

S l——dmf(S;)^\\x-^\\m<C/(l-pc)
m=0 \\m \ ||

for x G B({). We define a mapping g : U -> F by

gw= S —^/apec-spm = o m! / 7

if x E Bp({p, for some / = 1,.. ., n. Then ^ is holomorphic on U.
We may assume that / is defined and holomorphic on some open
subset V of U. Thus, f(x) = g(x) for every x E V. Hence g is equi-
valent to / modulo K, i.e., f = /. Furthermore,

sup| |^(jc)| |<C/(l-pc) .
xeV

Therefore, SC is contained and bounded in TyS^CU ; F).

3.3. COROLLARY. - The strong dual X ' ( K ; F) of3€(K ; F) is a
Frechet space.

Proof. — Let (U^) be a fundamental sequence of open neigh-
borhoods of K. Then the natural topology on 3€(K ; F) is the inductive
limit of the topology on 3e°°(U^ ; F), for all m by the same argument
as in 2.7. Let <B^ be the closed unit ball ofa^U^ : F) for every m.
set ^m = TV ^m • Then the family of semi-norms p^ on g^CK ; F),
defined by
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p^(A)= sup I (A, / ) | ,
^ m

generates the strong topology on 96'(K ; F). Therefore, 30'(K ; F) is
metrizable.
^ Let (A^) be a Cauchy sequence in ^ '(KiF). For each
/ E 9e(K ; F), the sequence ((A^ , 7)) is Cauchy in C. Let A be the
pointwise limit of (A^). Then A is continuous and linear. Thus,
Se'd^F) is complete.

3.4. COROLLARY. - The space 9€(K; F) is not metrizable.

Proof. - Suppose that 9€(K,F) is metrizable. Choose f^ in
^^m+i . F)\^°°(U^ ; F) for every w, where (U^) is a fundamental
sequence of open neighborhoods of K such that U^U^.^ . By
Mackey's countability condition (Cf. [H, 2,6]) there exists a sequence
(X^) of positive real numbers such that the sequence (X^7^) is
bounded in 3€ (K ;F). This is absurd because of 3.2.c.

3.5. DEFINITION. - A subset 9C of ^(K ; F) is said to be relati-
vely compact at a point { G K if for every m the set

{^/(S): ?ea:,/E7}
is relatively compact in the Banach space S^E ; F).

3.6. PROPOSITION. - Let SC be a subset of 9€ (K ; F). The fol-
lowing are equivalent.

a) X is relatively compact in 9€(K; F).
b) SC is bounded in 3€(K; F) and relatively compact at every

point of K.
c) There exists an open subset VofE containing K such that X

is contained and relatively compact in the Banach space Ty9e°°(U ; F).

Proof. — The implication c) =» a) is clear.

a) => b). Let 9C be relatively compact in ^(K ; F). Then it is
bounded in 3€(K: F). It remains to show that X is relatively compact
at every point of K. Let $ G K. Then the mapping
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7 € g€(K ; F) -> rf^O) E g^E ; F) ,

where /E /, is well-defined for every m. This is also linear and conti-
nuous since

I I ̂ /O) II < sup ll^/Oc) || .
xeK

Therefore, SC is relatively compact at $.

b) => c). Assume that b) holds true. Since X is bounded in
36(K ; F), by 3.2 there exist real numbers C > 0 and c > 0 such that

sup l d w / ( x ) j < C c w

jceK II m ! II

for every / G X, /G 7, and w. As in the proof b) =» c) of 3.2,
choose a real number p > 0 to be pc < 1. Let U be the union of the
open balls B^(^),. . . , B^(^) all centered in K such that U D K.
Then X is contained and bounded in the Banach space T^SC^W ; F).
To prove that X is relatively compact in TuffOU ; F), it is sufficient
to show that every sequence in X admits a Cauchy subsequence in
TU^^CU ; F). Let £ > 0 be given a real number. Choose an integer
N > 0 sucli that

(*) 2C(pc)N+l/(l -pc)<£/2 .

a? being relatively compact at each point of K, it is relatively compact
at ^ .... ,^. Thus, corresponding to every sequence (f^) in SC, we
can select a subsequence, call it again (/^), with the following pro-
perty : There is an integer M > 0 such that if p and q > M, then

(-) ||——^(^_^)(^
I m \ <£/2(1 4-p + • • • + p1^)

for every fp^Jp , fq ̂  Jq , m = 0,.. . , N, and/ = 1,... ,n. This can
be done by a diagonal process. If x E B^(^.), then by the Taylor series
of fp - fq about .̂ and the inequalities (*) and (**) we have

\\fpW-f^x)\\<e

for every fp E f^ and f^^Jq whenever p and q > M. Therefore, the
subsequence (/^) is a Cauchy sequence in the Banach space
Tuge°°(U;F).
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3.7. COROLLARY. - A subset X of 9€(K ; F) is relatively compact
if and only if the following are true :

a) There exist real numbers C > 0 and c > 0 such that

supl 1 ^/^)!^^
xeK II m ! II

/or every J GSC, /E 7, and m ;
b) TT^r^ exist a real number p> 0 and a finite number of points

Si , . . . , { „ / » K such that pc < 1, the union of B^,),. .. ,B/^)
covers K, a^d 5C is relatively compact at each point ^ , . . . , $ „ .

Proof. — The proof of 3.6 actually shows 3.7.

3.8. PROPOSITION. -Let 9 be a bounded Cauchy filter in 3€(K ; F).
Then there exists an open subset U of E containing K ^c/z rt^r ^ /5
a bounded Cauchy filter in the Banach space T^S^^CU ; F).

Proof. — §P being bounded in ^(K ; F), there exist real numbers
C > 0 a n d c > 0 such that

sup I-1- ^/Oc) <€€'"
jceK II m ! II

<"̂  '•̂ /
for every / E §?, /€ /, and m. As in the proof b) =» c) of 3.2 choose
a real number p > 0 such that pc < 1. Let U be the union of the
open balls Bp(^) , . . . , Bp(^) where ^ , . . . , ̂  are suitably chosen
in K such that U D K. Then Si is contained and bounded in the Banach
space TuS^CU ; F). We claim that 3i is a Cauchy filter in Tu9e°°(U ; F).
In fact, let £ > 0 be a given real number. Choose an integer N > 0
such that

(*) 2C(pc)N+l/(l -pc)<£/2 .

^ being a Cauchy filter in 9€(K; F), corresponding to each integer
m = 0,. .. , N, there is a set QL^ € §? such that

(**) supl1^/-^)^)!^^! + ? + • • • -hp^
jceK II m ! II

< /̂ /^, -̂» /-»^

for every / and g in <Sl̂  with /G / and ^ E ^. (SK denotes the in te re-
section of (^o , . . . , QL^ . Then Ct belongs to the filter % I f x E U, i.e.,
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x E B(^.) for some /, then, by the Taylor series off—g about $. and
the inequalities (*) and (**), we have

sup \\f(x)-g(x)\\<e
xeV

for /€= / and g E ̂  where / and ^g are in (S£. Therefore, S» is a Cauchy
filter in the Banach space T^S^W ; F).

3.9. PROPOSITION. — Every bounded subset of 9€(K ; F) is me-
trizable.

Proof. - Let X be a bounded subset of^CK ; F). Then there
exists an open subset U of E containing K such that :

a) 9C is contained and bounded in the Banach space 'T^3€°°(y ;F) ;
b) Every Cauchy filter in SC is a Cauchy filter in the space

Tu^OJ ; F) by 3.8.
On the other hand, the normed topology on Tu9e°°(U ; F) is

finer than the induced one by the natural topology on S€(K; F).
Therefore, every Cauchy filter in the Banach space Tu3e°°(U ; F) is
also a Cauchy filter in H€(K ', F). Therefore, the two topologies are
equivalent on X. Hence, 3C is metrizable.

3.10. PROPOSITION. - The space !J€(K; F) is complete.

Proof. - Since 9€(K; F) is a (DF)-space by 2.8, it is sufficient
to show that 9€(K; F) is quasi-complete. (Cf. [GR, 1.4]). Let SC be a
bounded closed subset ofS^QS. ; F). Then there exists an open subset
U of E containing K such that a) and b) of the proof of 3.9 hold
true. Since the natural linear mapping Ty is continuous, SC is closed
in the Banach space Tu9e°°(U ; F). Therefore, X is complete for the
normed topology of I^SC^^U ; F). On X the two topologies are
equivalent, and hence X is complete in 9€(K ; F).

4. 0-holomorphic germs.

In this chapter, we generalize results obtained in Chapter 3 to
the space S^CK ; F). For each result stated in terms ofSC^W ; F),
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the corresponding statement concerning S^g (U ; F) is also valid. In
the theory of 0-holomorphy type other than the current one, the
classical Cauchy inequalities are not true in general. Therefore, the
proofs adopted in Chapter 3 can not be carried over to this chapter
unless we modify them using the Nachbin inequalities.

We will omit proofs which are obvious modifications of corres-
ponding ones in Chapter 3.

4.1. PROPOSITION. - Let X be a subset o/^C^K ; F). The fol-
lowing are equivalent,

a) X is bounded in S^ (K ; F).
b) There exist real numbers C > 0 and c > 0 such that

sup I——^/(x) || <Ccm

xeK II m ! \\o
f^-> r^/

for every / E5C, /E /, and m,
c) There exist an open subset U of E containing K and a real

number e > 0 such that X is contained and bounded in the Banach
space Tu9€^(U;F).

Proof. — We will show only b) =^ c). Assume that b) holds true.
We choose real numbers p > 0 and £ > 0 such that o(p + £) c < 1.
We cover K with a finite number of open balls B (^),.. . , Bp(^)
all centered in K. Let U be the union of these balls. As in the proof
b) =^ c) of 3.2, for every / € X, there exists a mapping g E 9^ (U ; F)
such that 7 == ?. Thus X is contained in Ty^CU ; F). By 4.1,

S c" sup|——^/(x)| < £ (oCp+e))-supl l1^/^) !
m = 0 xeU H m ! \\Q w=0 xeK II W ' \\Q

<C/(1 - a(p + £ ) c ) < £

for every / G5C, and /E /. Therefore, X is contained and bounded
in the Banach space Tu^C^U ; F).

4.2. COROLLARY. - The strong dualSC^K ; F) o/a^CK ; F) is a
Frechet space.



HOLOMORPHIC GERMS ON BANACH SPACES 123

4.3. COROLLARY. - The space S^ (K ; F) is not metrizable.

4.4. PROPOSITION. - Let X be a subset o/g^CK ; F). The fol-
lowing are equivalent

a) X is relatively compact in ̂ (K ; F).
b) X is bounded in SC^K ; F) and relatively compact at every

point of K.
c) There exist an open subset U of E containing K and a real

number e > 0 such that X is contained and relatively compact in
Tu^(U;F).

Proof. — We will show only b) =^ c). Assume that b) holds tme.
Then there exist real numbers C > 0 and c > 0 such that

sup —— ^/(x) < C c^"
xeK II m ! \\Q

for every / GSC, /€ /, and m. Choose real numbers p > 0 and £ > 0
with a(p 4- c) c < 1. Cover K with a finite number of open balls
B ({-.), / = 1,. . . , n, all centered in K. Let U denote the union of
these balls. Then, X is contained and bounded in the Banach space
Tu^eeC11 > F)- To prove that X is relatively compact in Tu9e0e(U;F),
it is sufficient to show that every sequence in X admits a Cauchy
subsequence in T^S^eOU ; F). Let 6 > 0 be a given real number.
Choose an integer N > 0 such that

(*) 2C(a(p 4- e) cf^Kl - a(p + e) c) < 5/2 .

Since X is relatively compact at every point of K, it is relatively<^>
compact at each ^ . , 7 = 1,. . . , n. Let (/^) be a sequence in X. Then
it is possible to select a subsequence, call it again (/^), with the
following property. There is an integer M > 0 such that if p and
q > M, then

(**) —^^P-^^^PII rn\ p q J \\Q

< 5/2(1 + a(p + £ ) + • • • + (a(p 4- e)f)

for every fp G ̂  , f^ E J^ , m = 0,. .. , N, and / = 2 , . . . , n. If p
and q > M, by the Nachbin inequalities, (*) and (**), we have (where
x=Ui,...,U) :
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S 6- sUpl——<T(^-^) (x) | <
w = o jccu II m \ v q \\Q

<i (a(p+£))'" sup | 1 ^(/./ jwl < 8 .
w=o jcex II m ! " " \\Q

/^f

Therefore, (/^) is a Cauchy subsequence in the space TuffC^gCU ; F).

4.5. COROLLARY. - A subset X o/Se^K ; F) is relatively com-
pact if and only if the following are true :

a) There exist real numbers C > 0 and c > 0 such that

sup -^^/(x) ^^^
xeK 11 m ! \\o.

for every f G5C, /G /, a^d m.

b) There exist real numbers p > 0 a^d c > 0 a^d a finite number
of points $1 ,. . ., ̂  in K ^c/z r/z^r a(p + c) c < 1, the union of
Bp(Si)? • • - ? Bp(^) covers K, a^d SC ^ relatively compact at each
point ^i ,. . . , ̂  .

4.6. PROPOSITION. — £^ ^ be a bounded Cauchy filter in
3^ (K ; F). Then there exist a real number £ > 0 and an open subset
U of E containing K ^c/? ^/za^ ^ ^ a bounded Cauchy filter in
Tu^e(U;F).

Proo/ — Since ^ is bounded in Se^KiF), there exist real
numbers C > 0 and c > 0 such that

supl l1^/^) ! <Ccm

xeK II m \ \\Q

for every / G^, /G /, and m. Choose real numbers p > 0 and £ > 0
with o(p + £) c < 1. Let U denote the union of the open balls
which we have defined before in the proof b) =^ c), 4.4. Then ^ is
contained and bounded in T^S^eO^ ^)-

We now show that ^ is a Cauchy filter in Ty^gCU ;F).Let
5 > 0 be a given real number. Choose an integer N > 0 such that

(*) 2C(a(p + e) c^^Kl - a(p +£)c)< 6/2 .
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^ being a Cauchy filter, for each m = 0 , 1 , . . ., N, there corresponds
a set QL^ E S for which

(**) sup —-^(y /)(x)|
xeK II m ! " tt \\Q

< 5/2(1 + a(p + £ ) + • • • + (a(p + e))^

for every /, ^ G (2^ , and /G /, ^ E g\ Let (2 be the intersection of
(Z^ , m = 0 , 1 ,. . . , N. Then QL belongs to the filter ^. By the
Nachbin inequalities, (*) and (**), we have

S ^ supl——d^/ . -^OO <
W = 0 X€\J II W ' \\Q

< Z (a(p+£)r supl-L-^C/-^)^) < 5 ,
w = 0 jceK || m ! \\Q

for every /, ^ G 0 and /E 7, g ̂  ?.
Therefore, ^ is a Cauchy filter in Tu9^g(U ; F).

4.7. PROPOSITION. - £W.y bounded subset o/g^CK ; F) /5 me-
trizable.

4.8. PROPOSITION. - The space S^ (K ; F) is complete.

5. Topologies on the space S^ (U ; F).

If E is finite dimensional, then the natural locally convex topo-
logy on the space 9€(V ; F) is the topology %o induced on it by the
compact-open topology on the space <S (U ; F) of all continuous F-
valued functions on U. If E is infinite dimensional, %Q is not the
natural topology on the space S^U ; F). One of many reasons is that
the differential operator d"^ of order m, for any m = 1, . . . , is not
continuous for the topology %o . Nachbin [N6] has considered the
topology %^ on 3€(V ; F). It is a generalization of the topology %Q .
In fact, %o C ̂  ; %o == ^o; if and ^y if E is finite dimensional, or
F = 0. Let ^Q^ denote the compact-open topology on ̂ (U ; F).
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We have seen that the natural topology on 9€ff(K;F) is the
inductive limit of the topology %^ Q on ^C^L^F), for all open
subsets U of E containing K. In this chapter and the following one,
we will study the topology %^ Q on S^ (U ; F) through the natural
topology on fl^CK ; F), for all compact subsets K of U.

5.1. DEFINITION. — Let U be a fixed open subset of E. The topo-
logy %^ Q on SCff (U ; F) is defined as the projective limit of the natural
topology on S^CK ; F), for all compact subsets K of U, i.e., the
coarsest locally convex topology on S^^U ; F) for which the natural
linear mappings T^ : /ea^QJ ; F) ^ 7E ̂ (K ; F) are continuous.

5.2. DEFINITION. — Corresponding to every compact subset K of
U and every m we have the semi-norm p on S^CU ; F) defined by

?(/)== sup H^/WH,
xeK

for /G g^QJ ; F). The topology ^^ on ^(U ; F) is defined by all
such semi-norms.

5.3. DEFINITION. — Corresponding to every compact subset K of
U and a sequence (a^) of positive real numbers such that (P^yn^1171 "> ^
as m -> o°, we have a semi-norm p on SC^ (U ; F) defined by

II 1 II
P(f)= S ^sup ——rf'/M

w=0 xeK II W ! \\ff

for /G gCff(V ; F). The topology %^ on ^(U ; F) is defined by all
such semi-norms.

5.4. PROPOSITION. - %o^ C%^ C %^ C ̂  C%^ .

Proof. — It is immediate that

^c^c^c^, ;%^c%^

It remains to show that %^ ^ C %^ ^ . Let K be a compact subset of U.
Then the semi-norm p described in 5.3. is defined and continuous on
the Banach space SC^gtV ; F), for all open subsets V of U containing K
and all real numbers £ > 0. Let q be a semi-norm on S^ (K ; F)
defined by
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<?(?) = P(f)
•̂̂  /^/

for / G 9€ff(K ; F) ; /G /. Then <y is well-defined and continuous on
^(K ; F). It is clear that q o T^C/) = ?(/) for every /E ̂ (U ; F).
Therefore, p is continuous onS^QJ ; F) for the topology %^ g , and
hence, %^ C%^ .

5.5. REMARK. - If dim E = oo , then %o £%oo S^o on ̂ (u ' F)
if F ̂  0. =r=

Proof. - Denote by %„ the topology on 9€ (E) determined by
the family of all semi-norms p of the form

?(/)= sup Hd^/OOII
xeK

where K is a compact subset of E and m = 0 , 1 , . . ., n. By the
Hahn-Banach theorem, one can show that the semi-norm q^ on S€(E)
defined by

^(/^II^AO)!!

is continuous for the topology %„ if and only if m < n. Therefore,

^m^m+l for ^^y m •

Suppose that %„ = ̂  . Let (a^) be a sequence of positive real
numbers such (c^,)1^ -> 0 as m -> oo. Then the set

a={/ege(E): 1 ^ll-'d-AO)!^!!
( w = o \\ m\ II )

is a ^-neighborhood of 0. Therefore, there exist a compact subset K
of E, a real number r > 0 and an integer m > 0 such that (K CQL,
where

( % = ( / £ g€(E) : sup —d^/OO < r, 0 < k < m \ .
( xeK II A;! II 1

Set e = j /€ ge(E) : || ̂ L^ rf——AO) j < I/a,,, j .

Then (B C Q, and hence, 6 is a%^-neighborhood ofO. But this is absurd
since ^+1 is not continuous for the topology %^ . Thus, %„ ̂  %^ .



128 SOO BONG CHAE

5.6. PROPOSITION. - The topologies %^ , %^ and ^^ to^
rt^ same family of bounded subsets and the same family of relatively
compact subsets. On each bounded subset, they are equivalent.

Proof. - See [N6, 12 and 13], or 4.1 and 4.3.

5.8. COROLLARY. - Let X be a %^ Q-bounded subset o/S^ (U; F).
Corresponding to every compact subset K of U there exist a real
number £ > 0 and an open subset V o/U such thatX is bounded in
the Banach space 96^ (V ; F).

Proof. — It follows from 4.1.

5.9. PROPOSITION. - The topology ̂  Q is complete.

Proof. - We apply the Corollary to Proposition 3 in [H, 2.11]
here.

Order the family of all compact subsets of U by set inclusion. If
K C J, then the natural inclusion

9e,(J;F) ^ 9e,(K;F)

is continuous. Since 96 ̂ (K ; F) is separated for any compact subset
K of U, it suffices to show that if 7 belongs to every 9^ (K ; F),
for all compact subsets K of U, then / belongs to 9 (̂11 ; F) for
some f^-f. This is clear. Since each 960 (K ; F) is complete by 4.9.
we conclude that 9^(11; F) is complete for %^ Q .

5.10. COROLLARY. - The topologies %„ ̂  and %^ o are ^Ma^-
complete.

Proof. — It is a consequence of 5.6 and 5.9.

6. Runge property.

Classically, in the complex plane C, a compact subset K of U is
said to be U-Runge if the image of 96 (U) under the linear mapping
Tu : 9e(U) -^ 96 (K) is dense in the space 96(K). In this chapter, we
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extend this concept to an arbitrary Banach space E and obtain a
sufficient condition for %^ e = %cj e '

6.1. DEFINITION. - A compact subset K of U is said to be (6 , U)-
Runge if for every real number £ > 0 and open subset V of U con-
taining K, there exist a real number 6 = 6(£, V), 0 < 6 < £, and an
open subset W = W(V , e) of V containing K such that given any /
in 9€ff^(y ; F) there is a sequence (/^) in Se^V ; F) 0 30^ (W ; F)
converging to/in the sense of S^g (W ; F). U is said to satisfy 6-Runge
property if every compact subset of U is contained in some (6 , U)-
Runge compact subset of U.

6.2. PROPOSITION. — For the current type 0, a compact subset K
of U is (Q , U)-Runge if and only if for every open subset V of U
containing K, there exists an open subset W of V containing K such
that given any /ESC00^ ; F) there is a sequence (/^) in

geaj^nar'cwiF)
converging to f in the sense o/S^^W ; F).

Proof. — Let K be a (0 , U)-Runge compact subset of U and V
an open subset of U containing K. Let v > 0 be a real number such that
By(K) C V. Choose real numbers p > 0 and c > 0 with a ( p + £ ) < ! / ,
where a is the holomorphy constant. Set V = B^(K). Then V C V.
By Nachbin inequalities and Cauchy inequalities we have

i ^w sup l 1^ /^ ) !
w=0 jceV I I m \ "

< Z (0(? + £)F SUp l l 1 ^/^)
w=0 xeK 1 1 m \ I'

<!:r°^r sup ii/wiK-
w=o L ^ J ^pW

for every /E ge°°(V ; F), i.e., ST^V ; F) C ̂ (V ; F). Corresponding
to £ and V, there exist a real number 8, 0 < 6 < £, and an open
subset W of K such that given an /e a^gCV'; F), in particular, given
any /G ge°°(V ; F), there is a sequence (/^) in ge(U ; F) 0 ffe^ (W ; F)
converging to / in the sense of S^g (W ; F), and hence, in the sense of
^(W ; F) since ̂ (W ; F) CS^W ; F) continuously.
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Conversely, let V and £ > 0 be given as in 6.1. Corresponding to
V, there exists an open subset W o f V such that given any f€.Se°°(y;F),
in particular, given any /^^^(ViF), there is a sequence (/^) in
3^(U ; F) ng^W ; F) converging to / in the sense of ge°°(W ; F).
Let v > 0 be such that By(K) C W. Choose real numbers p > 0 and
6 > 0 with o(p 4- 8) < v. Then the sequence (/^) is in S^CW' ; F)
where W = B^(K). Now

S ek ^P l—^^m-f)^
fc=0 jccW' II ̂  ' II

< S (o(p + 6))^ sup I — rf\/^ - /) (x) I
^=0 xeK \\ K '- II

^ r^cp + s)"!^
< S — — — — — • sup ||(/^-/)(jc)||-^0

k=0 L ^ J Jcew

as m -> o°. Therefore, K is (0 , U)-Runge.

6.3. PROPOSITION. - Let K be a (Q , V)'Runge compact subset of
U. r/z^^ the image of HCy (U ; F) under the linear mapping

Tu:ge^(u;F) ->ge,(K;F)
Z5 rf^A!5^ in Q^Q (K ; F).

Proof. - We showjhat the image of ^(U ; F) mSC^K ; F) is
sequentially dense. Let/G 9^(10 ; F). Then there exist a real number
£ > 0 and an open subset V of U containing K such that a represen-
tative of /, say /, comes from S^g (V ; F). Corresponding to e and V,
by 6.1. there exist a real number 8, 0 < 6 < £, and an open subset
W of V such that for the mapping /, there is a sequence (f^) in
g^(U;F)nge^(W;F) converging to / in the^senseofffe^W^).
Therefore, the sequence (/yy,) converges to / in 96 ̂ (K ; F) where
7m = ^(^w) for every m. Thus the image ofS^Cl^F) under Ty is
sequentially dense in S^OK ; F).

6.5. PROPOSITION. - If V satisfies the Q-Runge property then
cs^ Q "^TT Q on the ̂ ^ ^e (u ;F)-
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Proof. - We need to show that %^ Q C %^ ^ . Since U satisfies
0-Runge property, the topology ̂  ̂  on 9 (̂11 ;'F) is determined by
the family of all semi-norms on HCy (U ; F) ported by (0 , U)-Runge
compact subsets of U. Therefore, it is sufficient to consider only
(Q , U)-Runge compact subsets of U in this proof.

Let K be a (6 , U)-Runge compact subset ofU. Let/Ege^K ; F).
Then there exist a real number £t > 0 and an open subset V of U
containing K such that a representative of 7, say /, comes from
9^6 (V ; F). Since K is (Q , U)-Runge, corresponding to £ and V, there
exist a real number 6, 0 < 6 < £, and an open subset W of V con-
taining K such that for the mapping /, there is a sequence (/^) in
^(U ; F) nSe^(W ; F) converging to / in the sense of3e^(W ; F).
Let p be an arbitrary semi-norm on 9€ Q (U ; F) ported by K. Then
there exists a real number c(8 , W) > 0 such that

\PW-PW\<P(fm-fnX

<c(6,W) ^ ^ sup I—d^-/,) Oc) | .
k=Q xeW || K ' \\o

Therefore, limp(f^) exists as m -^ °°.
Define a semi-norm q on ^^(K ;F) by

q(f) = ̂  p(f^)

if / EffC^K ; F) is such that a representative of / is the limit of a
sequence (/„,) in 9^ (U ; F) 0 96^ (W ; F) in the sense of 96^ (W ; F).
It is easy to check that q is a well-defined semi-norm onS^K ; F).

To show that the semi-norm p is continuous onS^^U ; F) for
the topology % ̂  ^ , it is sufficient to show that q is continuous on
^(K;F) since *

P(/)=^(TK(/)) , /E^(U;F) .

By 2.8, it suffices to show that q is sequentially continuous.
/-h/

Let (/„,) be a sequence in SC^K ; F) converging to 0. By 4.6,
there exist a real number £ > 0 and an open subset V of U con-
taining K such that (/^) is contained and converges to 0 in Ty^e^ F)
For each m choose f^ G a^gCV ; F) with /^ G 7^ . Then the sequence
(/^) converges to 0 in S^eCV ; F)- 8y 6.1, corresponding to £ and
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V, there exist a real number 6, 0 < 6 < e, and an open subset W of
V containing K such that, for each m there is a sequence (/ ) in
^(U ; F) 03^ (W ; F) converging to /,, in the sense ofS^o (W"- F)

m ff{) \ y /•

t^or each w choose an integer m(n) > m satisfying the following :

^ i^^llr.^^-^^^ll^^'
(**) I <7(/J -?(/„.,„.(„)) I < 1/m .

Since (/„.) converges to 0 in 9e^(W;F), by (*), the sequence
^fm,m(n)) converges to 0 in SC^CW ; F).

Therefore,
A. P^m(n)) = 0 .

This proves that q is sequentially continuous on the space S^ (K ; F).
The preceding proposition has the following application.

6.5. PROPOSITION. - If V satisfies the 6-Runge property then
Se^U ; F) is complete for %^ .

Proof. - Use 6.5. and 5.9.
Most of the important open subsets satisfy the 0-Runge property.

All balanced open sets are in this type. We also conjecture that every
open subset satisfies the 0-Runge property. It is not answered in the
literature whether or not every open subset in C" satisfies the 0-Runge
property for the current holomorphy type 9.

7. Miscellaneous results.

In contrast with the finite dimensional theory, the spaces of
holomorphic mappings and germs on infinite dimensional Banach
spaces do not satisfy many nice properties in the general theory of
locally convex spaces. In this chapter we examine the spaces 3€ (U)
and 3€(K) for the following properties : Montel ; Schwartz ; nuclear ;
reflexive ; Mackey convergence. We also give a necessary and sufficient
condition that the space 90 (U) be bomological. We assume the
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^o.nee t̂& 6(f (XoinpiSt, ̂ de^carid înMgr̂ r'polylwmî w^ be
ifourtd An^[Gr]rand [B^ ^Mmosv^oq ^^y-m'^^oA-rn VMWVUV.) movu^

All results concerning the '&pac(?^(^I^ arj'^h^e^^^b
any locally convex topology %, %^ C^C/g^ . Accordingly, on
the space^fK^^we^fe^taeP^^irid^^ iBmit^bf the^ff^ology
% on S€ff(U ; F), for all open subsets U of E containing K.
^.v^^H^r.^.o ^u'ioU\T^^1) ̂  (>i}% "<o (U}% -• ^•ornzo^o^^ ..cj'

7.1. PROPOSITION. - 77^ 5^2^ ̂ ^^^^i^ms^l
subspace o/S^^CU ; F).
boftob zji n^n? .<;^?3i3qoiq ^z^dl^o SfiO f'^figsl^c- (U)3^ "11 •••- ^oo^0

î.) ?^ .̂ ̂ Îgt ̂ tefe'yf^etf^ti^ln^^&e^^a1}!^ nEap î̂
ggo^aiiFR ^•i.%'l/^giopy^oib ofit "ii v}no bns ti zsni^qoiq ^^rn '10
Ino^nj^'u; '-•m'.?^ srf'T .iB^^^filo w.. yonobniL'^ o.fiT .,b^vo"?q ai Yji^cn^n odt

rp/ y.. _ 1 .̂N î̂ Jp^ .n0<:?1^0q0'<q Qd! ^^^OTq

m !

^^ T^^^rftfî ou^^^Nhe^^paioiy^. TSe î̂ fiî A clipping
^( t̂ip^ ̂ ,̂̂  Î is^ye îfiu6m.̂ lre^
mapping c" > H rnib '̂  '<^0 l^^ ̂  ^.nx^V^^

^^(^iF) ^ ^(U;F) -^Sg^^.F)
.^i/qzd^z b^ol^ ^nl ^)dj ,.svixo?1yi sl (a.)^'K) (U}3€, 'i! - ^oo^.

ir̂ ihu^^^Sî  P^^^^PCJ) -fo^eveiy P^m^]^^^)^ till
w !. ..nsc|

^ffiP^.ff^^^N^^^h111?^1^ W^i^^pA^ flence,
^^^E^FN î!cl^ed-N)SS^•M^(H ̂ ,,® 3..̂  d,.o.e .dt
^ jB^hPe^e^^F^ija^nntfae^eqm^ trio4dlQ)<i£

4etenmn^di<N ^^oy^ist^lofiB'aloisiie.iirhus ^efcanicciitside^^t^E^^)
as a vector subspace offfe^K ; F). The inclusion mapping no? km

;r\^^g;iFr^^^^'

is also continuous. W^^lsy^ive^th^^ft^
^d b^nD^b

7.2. PROPOSITION.. -^fh^ B^S^ spaW^Q^E ;F) ^ a cto^rf
subspace ofSe^K ; F). evfid ^

. (^-T^);^ ^ ^^^^ ̂

7.3. COROLLARY. — T^h^^u^l^ E'. ̂  ̂  /5' fl closed subspace of
9e(U) a^ Se(K). ' ' /r " < ^

wil sw wo^ .([SX JO] hm. [IH .0] .13)
Proof. - E' = AE ; C) = ̂ (E ; C) == Q^E ; F). (Cf. [G]).
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7.4. COROLLARY. - The Banach space %^. ('"E ; F) o/ all conti-
nuous compact m-homogeneous polynomials from E to F f5 a c/o^d
subspace of 30(1] ; F) flwd 96 (K ; F).

^•oo/ - ̂ .(^ ; F) is a closed subspace of ̂ E ; F).

7.5. PROPOSITION. - ge(U) or 9€(K) is either Montel, or Schwartz,
or nuclear if and only if dim E < oo.

Proof. - If ae(U) satisfies one of these properties, then its closed
subspace E' satisfies the same property. A normed space satisfies one
of these properties if and only if the dimension is finite. Therefore,
the necessity is proved. The sufficiency is classical. The same argument
proves the proposition for 9€(K).

7.6. PROPOSITION. - // E is not reflexive, then neither 9€(V)
nor 3€(K) is reflexive. If E is a Hilbert space, then 96(U) or 96 (K) is
reflexive if and only if dim E < oo.

Proof. - Ifa^U) orae(K) is reflexive, then the closed subspace
E' is also reflexive. Therefore, E is reflexive. This proves the first
part.

If E is a Hilbert space and 3€(\J) or 9€(K) is reflexive, then
the Banach space S^E) is reflexive for every w. Let ̂ ^E) and
S^E) be the Banachspaces of continuous nuclear and integral m-
homogeneous polynomials on E respectively. By the Borel transfor-
mation

defined by

we have

: Tese^E/ H- TG^E') ;
TE^C^E/ ^ TES^E')

1^)=^^), <^GE' ,

S^E)' ̂ ^E') ;

S^E/ ^ ̂ CE1) .

(Cf. [G, III] and [Dl, 3.2]). Now we have
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^CEY ^ %!('"£') ^ ̂ NC^) .

a^E'V ^ ̂ CE") c^ ^CEY' = S^E)

for every w. Put E = E". Then we obtain

^CE) ̂ a^E).
If E is infinite dimensional, the identity mapping on E is not

compact, that is, there is a noncompact continuous 2-linear mapping
on E since J^E) ==^(E ;E') and E = E'. Thus, neither 3€ (U) nor
9€(K) is reflexive. If E is finite dimensional, then both 9€(V) and
3€(K) are Montel, and hence reflexive.

Proposition 7.6. does not seem to be true for Banach spaces. We
give a possible counter-example, a Banach space E which is reflexive
and infinite dimensional such that every continuous w-linear mapping
on E is compact. (Compare with the preceding proof).

Let p and q be reals such that 1 < q < p < oo ; (l/p) 4. (i/q) = i^
Let E = /p, the Banach space of complex sequences (x^) satisfying

S W<°°'
m^O

Then, E is an infinite dimensional reflexive Banach space. Furthermore,
j^E) = K^E). This fact can be shown easily by induction on m
using the following : every continuous linear mapping from /p to /r

is compact if 1 < r < p < oo (Cf. [P, Theorem 1 ] or [R, Theorem A2]);
E is separable ; TGJ^E) if and only if T : E -> e^-^E) is
compact.

7.7. PROPOSITION.- 96(U ; F) is bomological for %, %o C% C%^ ^
if and only if dim E < oo.

Proof. — % and %^ share the same bounded subsets.
We do not know when ^(U ; F) is bomological for %^ in general.

This is a problem yet to be solved. We conjecture that 3€(U) is bor-
nological for %^ if E is separable. A necessary and sufficient condition
for (36(11),%^) to be bomological is given in 7.11. Recently S.
Dineen has shown that 0€(r), %J is not bomological (Cf. [D4]).
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7.8. PROPOSITION.; ̂ ^^llwe^^pi^^Hj^ rAc Afocfe^
convergence condition for the natural topoloev(-D^ --.- '(.:r:L% —! ("d^ J^F1)^

Proof. - Let (^) b^^segu^c^^iifl^^K., g)]6qn^rgwt,lo?a
Then there exist a real number £ > 0 and an open subset U of E
containing K such that th^4e^uAi^e^' detained and converges to 0
in Tu^ (U ; F) by 4.6, Since every nwtfkable locally convex space
MiW tft8 ^^^^^e^n^cdficiS^ ^ )

^mw^-^^^ ̂ m ̂
7.9. COROLLARY. - jy(f^M ^^ ,̂liB^^^7.9. COROLLARY. - ̂ (^^a^S^^,^^^

^^^I?^>^g/^%^ ̂  fA^^^fe^b^rf^^^o/U
ffim^m ^myn&mbww^o^hd a^w^i^W ^mt&im^
^S^W^tff^^-^ zuouniJdoo •••n.y^ li.ilJ iiop^ l^no^n^rnib 3tinnfu bna

.(tocnq^fnb^o'rrq odj jjri.Jiw^iBq.fnoip .rj^qnio^ •d a no

.! - (vU) + (^^o ̂ ^ ̂ l̂ll̂ i ̂ ^ l̂l̂ TAns n^J
^rrj.blts^ ( x) s^Di^;yo3<- x^amo:) 1,j ooucz ifofcHBH orh ^l ̂  3 j^.l

/Or some sequence (\^) of positive real numbers converging to oo.

^ Proof. ^ Let K be a compact ̂ bsgt^f U. Consider the sequence
(/„,) where f^ = T^f^). Then it converges to 0 in ^(K ; F). Apply
^j^a^a-AS ^toaQbtainr^tiafe^d.esye^ fb^ri^romlb Qtin.Ilni. na ?i 3 ,n:)(-!T
-m ao fK'.H'^jjbai. yd viiz.'̂  nworig ^d n&o toat gldT ^H^)^ = (.:Î ) ,̂
^ o] ^O^OPR(̂ ^TON.Î ^ &^^om^Y^^/e^8%^^)3^
^^fff^A^,tf l̂»^e^ (COTOKriS î J:J) co > ̂  > ^ > ! 1i t3.Gqr.no3 m
^ (.H^""':)^ - H • T ii ^no br^ "h (3 ̂ •^31 , yidsiaq^ ?i 3

Proof. - Let (/^) be a sequence in ^(U ; F) convergtegW^
for %. Since % and %^ have the same family of convergent sequences,
it s^^to^^^^t^^^^e^ wnbers
^ n . ^ ^ ^ a s m ^ o o , such that X^ ̂ >0^^ ̂  ^r.fo^^<

Let ^ € U. Then, by 7.9, there is an open subset V of U con-
taining { sucfc<thatb^bmjod ww rmj- ffi^h ,,^ br^ ^ - • • '\fw<\
^t^ ru ̂ y w iB^a^^^W ^̂ i"(?SM ff:;Q^ wo'-d. ^on oi.) ^W

-'••iod ?! (U)3^ tLri:] ^•lu.lobjno^ ^W .b^'/loa 3d o? jrv n-oido-rq c ^ <;lin'
§ffi^{H^f^B?r^^f^^^^bARdA^
^•SHeho^^t ;[[.r m n^y^ ci lB:,)^oiornod ed oj r.5^ (U)3^) ?ot
-d^e) V^t^^V^^K^^veiy K1 ^^^, ("''Vi^iS; jai-i! .n-̂ .dz zarf (ncniC!
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-^o'.A % <H ̂ JWVy^y .Mw^- ̂  ^ .̂1 - ^ornzcno^l . 1 r j
^o UV^MW^Z '^o^V'^o^ ^M'u^^m -<;w^ '̂  '̂ o b :̂; 'y ^^o^on

c) Um sup H./^OOII -> 0 for every fc.moumuuyj ^ r^i; ?J)%w">-«» ^y
In^T^yno') ^±)i,T4 5di to Df^bn^qsbni adj zz^r./zib ^w vll^;i.i''l
By induction on k, we choos^^^)c3nehi||b^trm<fc)j^ ̂ & 11010'and)
.•.£5-i .1 ii n^n jsrulyi£:)s .̂s^^y|p<^^ .̂|z [l,:H>:m.H .c zi H "tl
-t^i.qinoo 9f0 w'i l^o^^d .1 (a:)^ n^ri1]" 4 1 ^ ^ . ? I' JO I 33) ^aqmoo
f^1'^ % ̂ (̂ )1 ̂  -^^o^^^ ^•cnnia.-nid.l̂ H ^d ̂  ^oloqol n-.qo
doinw (3)3 a:.Bqz l&:jgo!ornod B 'I'o 3'^£q6di,sz bozolo ^ a^ ui)SB Zijrff

il ifm<m(l),^3' lo'l h.ui.golon'iod ?on zi

vaoioqo:? 3(ij ^1 io l^i^vif^^^^^-y^^^)^-1 ^ t^
oori^M'i^v-.oo Y5>J3B.I^ acn z^i'^flsz rbiiiw ^jBq.-' Ifioi.goion^od'-ii.oi.^ ^ Zi J^
For each compact subset K of U, there is an integer n sygfeilthst
K C Vfe . , - for every k.,lf m> m(k -^ n\
Yarn ^£03 [.B î̂ olol'nod s j£d.j woria ii>w oiqrn.KX^ §.fuwon,o'< ^rH
'̂ll ̂ ĵ l̂lW .̂feupoil-Hî ^^^^ ^^^M s.dl -n.i:y.3 -Km

-^l^loqot k^ybo^q ^rffX^tw D wobn^ ow li ^c'sq? !a3%u]'''rnod is ai D
-ornod ode -u zaoBqa iBO^ok^i^^twoij^q y^^fl^^y^*-*^
^rnqqhm ^no-oJ-Qno s od T t^J jnoioa^^^y^M^M. 3fi! vd .b'jigol
^l^d^lU^ i^^^i^^ni^a 1ajs^qoeD')?_[i£^'!o ^!- './ft o^no I I , 0] mcnlfbt ^V6/y fc. This sho^s that A_/^ -^u as w -̂  00.w w vd 0 m (^x.) •30f^tjp3- B andoU
Thus 96(11) satisfies the Mackey convergence condition.

The Mackey convergeheei c^rid^itioftWd the bomological property
^^WQ^dgRe^eijit^qrjca^s.x \o ^hu-ub-ioc:,) d:t^ ^rlj ai .̂j o^nw
H<w&w?p 4:̂ ) t̂ v^ t̂o^^w^p metABte l̂ inyTciMv^xp^^ 1̂
bQh^oî ^m^^ ê̂ l̂ efê ooft̂ ^^^
We generalize this fact in the folloxvittgtWy v^iwatly ^©^^k^b^
ra^d 5pace satisfying the Mackey convergence condition is bomolo-
gical if and only if every sequentially continuous semi-norm is con-
tinuous.

ymAMDOije.m
Proof. — The necessity is obvious. We show the sufficiency. Let

p be a semi-norm which is bounded on bounded sets. Since the
M^ey ciQ r̂̂ ĉ̂ ôBd^^^^ r̂u^^
converging to 0, jtbg^^^^^^%(̂ ^ajba^^ ^ <»
as m ^ 0°, such that X^^ -» 0 as m -> 00. Therefore, there is a
r^nî B^^^yî 'thaf̂ ^^J^^
tially continu^^i^fi^^ntind^ )A >l :J ^lom
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7.11. PROPOSITION, - Let E be separable. Then 9€(V ; F) is bar-
nological if and only if every sequentially continuous semi-norm on
9€(V ; F) is continuous.

Finally we discuss the independence of the Mackey convergent
condition and the bomological property.

If E is a Banach space of nonmeasurable cardinal, then it is real-
compact. (Cf. [GJ, 15.24]). Then <°(E) is bomological for the compact-
open topology ^Q by Nachbin-Shirota theorem. (Cf. [N2, 29] or [Nl]).
Thus 9€(E) is a closed subspace of a bomological space <S(E) which
is not bomological for %^.

Let E be separable. Then 9C (U) with respect to the topology
%„ is a non-bornological space which satisfies the Mackey convergence
condition.

The following example will show that a bomological space may
not satisfy the Mackey convergence condition. Let G = R10'11. Then
G is a bomological space if we endow G with the product topology
since a nonmeasurable product of bomological spaces is also bomo-
logical by the Mackey-Ulam theorem. Let T be a one-to-one mapping
from [0,1] onto the set of all sequences of positive real numbers.
Define a sequence (x^) in G by

[^]^=[T(a)],,

where [x]^ is the c^-th coordinate of x and [T(a)]^ is the w-th term
of the sequence T(a) for a € [0,1 ]. Then it is clear that (x^) converges
to 0 in G, and there is no sequence of positive real numbers X^ for
which (\^;c^) converges to 0 in G.
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[¥3j Ao^^T»iE^^ ̂ î Ao^te^^^ ̂ P^B^^ f^pt^s,ibo^j
^ncMnnot^S^te^ ĵ̂ 3^^fe^
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