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SOME IMBEDDING PROPERTIES
OF HILBERT SUBSPACES

IN TOPOLOGICAL VECTOR SPACES (])

by Eberhard GERLACH

Introduction.

In Chap. Ill of [3] the writer showed that any proper functional
Hilbert space ^ of analytic functions on a domain D C C", with re-
producing kernel K(z, ^), is Hilbert-Schmidt expansible. That is, given
^?, a dense Hilbert-Schmidt subspace <I> of ^ was found such that
K ( ° , ? ) € $ for all ?ED. Consequently the generalized eigenvectors
for any selfadjoint operator in ^ could be regarded as functions on
D, and they were moreover elements of the proper functional Hilbert
space <&* ; one had the "rigging" $ C^ C <t>* of ^. Showing analy-
ticity of the generalized eigenfunctions [3] (and also [4]) — actually
of all the functions in <&* — then amounted to proving that the
function ? -> K ( « , ? ) is analytic not only from D into Sf but also
from D into $.

Subsequently K. Maurin [7] used another approach to the
question of regularity of generalized eigenfunctions. In general,
instead of a rigging $ C S< C <&* with Hilbert spaces and Hilbert-
Schmidt imbeddings, one may use a nuclear space L which has
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dense and continuous imbedding into Sf: L C §? C L*(2). For instance,
if §(D) is the space of all infinitely differentiable functions on a do-
main D C R" with the usual topology of uniform convergence of all
derivatives on compact subsets of D, and Sf is a Hilbert subspace of
S(D), the rigging L C S» C L* with nuclear L is available, where L*
is the closure of S' in S(D) and L = L** ; consequently the genera-
lized eigenfunctions of any selfadjoint operator in ^ are infinitely
differentiable. If moreover ̂  lies in the nullspace of a (closed) hypoel-
liptic differential operator T - ^ C N = = { / e g ( D ) : T/=0} - then
also the generalized eigenfunctions <p lie in N, i.e. T<^ = 0. Maurin
[7] presents results of this type when ^ is a weighted L2-space con-
tained in §(D), and he formulates them on manifolds ; in the case of
holomorphicity he discusses differential forms as well as functions.
In further work [8] he considers Hilbert spaces of harmonic functions
(in the axiomatic sense of H. Bauer [2]) with an I^-norm over the
boundary and finds that the generalized eigenfunctions are also har-
monic. In [9] he extends the holomorphicity results to functions
defined on complex spaces(3).

From this second approach to the regularity of generalized eigen-
functions and related problems, we may abstract a general procedure
which is presented in section 2 below. Section 3 contains a few sup-
plements to § 9 of [11]. In the final section 4 we state results on
regularity of generalized eigenfunctions. In section 1 we collect the
notations and basic results to be used.

(2) In the "general theory of abstract eigenfunction expansions", rigging by means
of a nuclear space L has been used by many authors. One advantage of this is
that for a given selfadjoint operator A on a separable Hilbert space ̂  one
can construct a dense, nuclear subspace L of 3€ such that AL C L and A is
continuous on L ; then spectral theory for A can be developed further than
in the general case. From various other points of view, a rigging by Hilbert
spaces seems to be more useful.

(3) The results of [7-9] are formulated for (generalized eigenfunctions of) com-
muting families of bounded normal operators. But they may equally well be
formulated for any commutative von Neumann algebra of operators on the
given Hilbert space 3€ or, equivalently, for any selfadjoint operator in ^6
(since any commutative von Neumann algebra is equal to the algebra of
bounded (Borel) functions of some selfadjoint operator A).
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1. Notation and definitions.

Throughout this paper, E will denote a locally convex Hausdorff
topological vector space which is moreover assumed to be boundedly
complete^). By E* we denote the anti-dual E7 = E' (cf. [11]), con-
sisting of all continuous conjugate-linear functionals on E. The space
E is said to be dually nuclear [10] if E* with the strong topology is
nuclear. In several of our examples we shall make use of the fact
that a nuclear F-space or DF-space is reflexive and dually nuclear
(theorems 12 and 13 in section 4.4 of [10]).

A Hilbert subspace 96 of E is a Hilbert space 96 with continuous
imbedding into E. By a Hilbert-Schmidt subspace 3^0 of E we understand
a Hilbert space 9K; with the following property : there exists a Hilbert
subspace 96 of E such that SK. is a linear subspace of 96 for which
the imbedding 9<;C96 is of Hilbert-Schmidt type. All Hilbert spaces
in this paper are tacitly assumed to be separable.

If 96 is a Hilbert subspace of E with injection 7, and 6 the cano-
nical isomorphism of 96* onto 96, then the (Schwartz) kernel of 96
rel. E is the (weakly continuous) map H = / O f * , where/* : E* -> 96 *
is the adjoint map to 7 [11].

If X is a set, we denote the space Cx of complex valued functions
on X, with the topology of pointwise convergence, by G^. A proper
functional Hilbert space 96 on X is simply a Hilbert subspace of G^.
If S is the Schwartz kernel of 96 rel. G^ then the (Aronszafn) repro-
ducing kernel A of 96 is given by A(« ,x) = S6^ , where 6^ is the
Dirac measure at the point x. The reproducing formula simply says
f(x) = ( / , A ( o , x ) ) for all/e96, xEX. (Cf. § 9 of [11]).

Let 96 be a Hilbert space, % a Hilbert subspace of it with injection
/ and Schwartz kernel f 6 { * . Then 3 = f 9 { * 6 ~ 1 (more precisely
7^7*^e1) is selfadjoint in 96 ; its square root J172 regarded as an
operator 96 -> § is the canonical partial isometry of 96 onto §. We
shall occasionally refer to J as the Hilbert kernel of g rel. 96. The
imbedding 7 is Hilbert-Schmidt if and only if J is nuclear in 96.

(4) "Quasi-complete" in Bourbaki terminology ; every closed bounded subset of
E is complete.
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2. Hilbert subspaces of dually nuclear spaces.

PROPOSITION 1. — Let the space E be dually nuclear, and 9S a
Hilbert subspace of E. Then the generalized eigenvectors of any self-
adjoint operator in 3€ lie in E. Consequently, if the elements of E
have a certain property, this property is inherited by the generalized
eigenvectors,

Proof. — Since E is dually nuclear, so is every linear subspace
of E with the induced topology (Proposition 5.1.2 in [10]). Let L be
the closure of 9€ in E. Then L* is nuclear and 3€ dense in L. Hence
the adjoint /* : L* -> 3€* of the given injection j : 3€ ^ L is also
injective. If 6 is the canonical isomorphism 9C* -> 9€, we have the
riggingc~c' *- of* .»•

L* ——> 96 ——> L** (1)

with nuclear L*. By Proposition 4.4.11 in [10], every boundedly
complete nuclear or dually nuclear locally convex space is semireflexive.
Thus L** == L and/** = / at least algebraically.

Remarks. — 1) As it stands, generalized eigenvectors of self-
adjoint operators in 9€, regarded as limits of vectors in 9€, exist only
in the topology of L** which may be coarser than that of L.

2) The injection / : 36 -> L is both weakly and strongly conti-
nuous (and dense). To start with, /'* is just weakly continuous. Let
OL =={ / (A) : A bounded in 9€}, then all sets in QL are bounded in L,
and /* is continuous for the topology of OL -convergence on L* and
the strong topology on 9C* ; hence /* : L* -> 9€* (the subscript b
denotes strong topology) is also continuous. Thus all maps in the
rigging (1) are strongly continuous.

The result of Proposition 1 may be improved to a Hilbert-
Schmidt rigging as follows.

THEOREM 2. — Let E be a boundedly complete Hausdorff locally
convex space. Then every Hilbert subspace 9€ of E for which the
closure L of9€ in E is dually nuclear^5), is a Hilbert-Schmidt subspace

(5) Equivalently : every Hilbert subspace 9C of E which is dually nuclear in the
topology induced by E.
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of L. Consequently, if ^ is a Hilbert space with continuous dense
imbeddings 3€ C ̂  C L the first of which is of Hilbert-Schmidt type,
and A any selfadjoint operator in 9€ with spectral measure ^ then
pralmost all generalized eigenvectors of A are approximated in the
norm of ̂  by elements in St€,

Proof. - Let 96 be a Hilbert subspace of E, L its closure in E,
and 7 the imbedding of 96 into L. Then the adjoint/* is an injection
of the nuclear space L* into 3€* which is strongly continuous (Remark
2) above). By a fundamental property of nuclear spaces, this conti-
nuous map /* may be factored through another Hilbert space $,

L* ^ $ -^ gg* and/* = J<A so that J is Hilbert-Schmidt. We know
that/*L* = L* is dense in 96 *. Hence <&, ^ and J may be chosen so
that J is a dense injection of $ into 9€*. Set ^ = $* in the chain of
dense continuous imbeddings

L* ^ $ -^ge* ^ ge ^ $* ^ L ,

where J* is Hilbert-Schmidt. The Hilbert-Schmidt rigging
QJ J»^ ^ ge -> ^* = ̂

may now be used to do spectral theory in 9€,

3. Hilbert subspaces in spaces of smooth functions.

Let X be a set now and E continuously imbedded in Gx . IfHC is
a Hilbert subspace of E, then HC must trivially have a reproducing
kernel. For instance the Hilbert spaces of harmonic functions, consi-
dered in [8], have reproducing kernels.

Conversely one may pose the following question. Let 3C be a
Hilbert subspace of Gx , with reproducing kernel A, and suppose E
is continuously imbedded in G^ . Under what conditions on A is 3€
also a Hilbert subspace of E ? When is S€ compactly imbedded in E ?
Necessary as well as sufficient conditions were given by L. Schwartz
[11] in a number of concrete cases. In particular we mention the
following (Propositions 24 and 25 in [11]).
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i) X is a locally compact Hausdorff space and E the space
C° (X) of all continuous functions on X, with the topology of uniform
convergence on compacts.

ii) X is a domain in Euclidean R" and E the space C'"(X) of
functions possessing continuous derivatives of all orders < m, with the
topology of uniform convergence on compacts for all these deriva-
tives ; 1 < m < °°.
We shall make use of these propositions (pp. 191-201 in [11]) and
provide some supplements to them.

Let X and E be as in i) or ii) above, and let N be a closed subspace
of E. Then the proper functional Hilbert space 3€ on X, with repro-
ducing kernel A, is a Hilbert subspace of N if and only if it is a Hilbert
subspace of E and in addition A( • , x) G N for all x € X. In particular,
if X is a domain in C^ = R2^ and N(CC°(X)) the space QL(X) of
holomorphic functions on X — or more generally in any R", the
nullspace of a hypoelliptic linear differential operator with constant
coefficients — Proposition 24 of [ 11 ] yields a complete description of
Hilbert subspaces of N. Similarly, if X is locally compact and N is a
harmonic space on X (in the sense of [2]), we obtain a characterization
of Hilbert subspaces of this harmonic space. (In all these examples N
is a nuclear Frechet space and hence dually nuclear).

In the case ii), for any linear differential operator P with C°°-
coefficients and order < m, it turns out that P^A^ ,x)€3e for all
x E X (the subscript 2 indicates that the derivatives are applied to
the second set^ of variables of A), and Ph(x) = (h , P^A(' , x))^ for
h^:3€ where P is obtained from P by taking the complex conjugate
of all coefficients (cf. p. 199-200 in [11]). As it stands, this is the
result of applying P to the function x -> A(- ,x) in either the point-
wise or distribution sense. It will be useful to have the derivatives
D^A(- , x) of A (as limits of the corresponding difference expressions)
existing in the norm of 9€, and also the functions x -> D^A(- ,x )
continuous in the norm offfC, \p \ < m. To this end one may use the
results of [11] (p. 199-201, as well as Proposition 9 ter (p. 152),
bearing in mind that if J3 is a Banach space and E = C^X) as described
above, (B§e E = (0 ®e E = (^(X , OS) is the space of functions X ~> (K
which possess continuous derivatives of all orders < m in the norm of
tf3, endowed with the topology of uniform norm-convergence of all
these derivatives on compacts in X). For our purposes we are interested
in direct proofs for strong derivatives of A(-,;c).
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Our basic tool is the proof of Proposition 4 in [4]. By imitating
that proof we obtain the following.

PROPOSITION 3. - Let tf3 be a Banach space with dual (or anti-
dual) (Kf and X a domain in R" ; 1 < m < oo. // ̂  : X -> <%' is any
function which belongs to (^"(X) weak*, i.e. x ~> </, <^(x) > is in
^(x) for all /E(B, then ^EC^^X , <B'). The same holds with
both ^ and C'""1 replaced by C°, as well as C^ (real-analytic
functions).

Proposition 3 also remains true if both C^ and C^ -1 are replaced
by C^", where C^^X) denotes the space of all functions in C^X)
whose derivatives of order m are Holder continuous with exponent a.
(The exponent a E ] 0 , 1 ] may even vary on different compacts
K C X). To obtain this, one uses the following simple result.

LEMMA 4. - Let {X , d} be a compact metric space, (B' the dual
of some Banach space, and ^ : X -> (&1 Holder continuous with
exponent a in the weak* topology ofS^. Then ̂  is a-Holder continuous
in the norm o/<B'.

Proof. — By hypothesis there exist constants C. so that for
each /G tf3, | < /, ̂ (x) - ̂ >(y) > \ < C^d(f(x , y) or

^x) - ^p(y)
\ ̂  J » "a""——"~ -^ I ̂  t/^.

d "(^ , ̂ ) /

for all x ¥= ^ in X. The uniform boundedness theorem then provides
a constant C so that

\\^x)-^y)\\<Cd\x,y)
for all x, y.

As we are interested in triples of Hilbert spaces

^ C ^ C ^ C E C G x

for the purpose of spectral theory in S^, we would like to find the
reproducing kernel of 9€ belonging to some regularity class, in the
stronger norm of the space $. The following lemma is the first step.

LEMMA 5. — Let 3€ be any Hilbert subspace of G^ , with repro-
ducing kernel A, and $ a Hilbert subspace of3€ with dense imbedding ;
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thus there are the dense continuous imbeddings ^CSCC^*, the
pairing of $ and $* realized via the scalar product of3€. Then
A(- , x) E $ /br all x ^ X if and only if also 4>* is a Hilbert subspace
of Gx . When this is the case, the reproducing kernel of $* taken in
$ is precisely A ( » , •), and for any subset Y of X on which every
<^e$* is bounded, the function x -^ ||A(° ,.x')||^ is bounded on Y.

Proof. — Suppose A(*, x) G $ for all x' G X. Then we may iden-
tify each <^e$* with a function x -> ^(x) = (<p , A ( o , x))^*^ (the
correspondence <p -> y is clearly injective), and

IWl<MI^I|A(o,;c)||^

for each fixed jc. Hence <&* is a proper functional Hilbert space on X.
Conversely, let <&* be a Hilbert subspace of G^ . Then its repro-

ducing kernel C taken in $, say, is expressed by

^00 =(^,C( . ,x))^^=(^,C( . ,^))^ ,

but for all / in the dense subspace 3C of $* we have

/Oc)=(/ ,A(. ,x))^ .

Thus C = A and A( •, x) E $ for all x C X.
Finally, let ̂  be a proper functional Hilbert space as described,

and let Y C X be such that each <^E $* is bounded on Y,

M Y . ^ > 1^001= l(<P,A(.,;c))^J , x € Y .

By the uniform boundedness theorem there is a constant My such
that || A( • , x) \\^ < My for all x C Y.

COROLLARY. - In the case i) above, ifH€ is a Hilbert subspace of
E = C°(X), then $* is a Hilbert subspace of E = C°(X) if and only
if the function x -> || A ( » , x) ||̂  is bounded on each compact subset
ofX.

Remarks. - 1) When 9€ is a Hilbert subspace of E = C°(X),
there is in general no guarantee for existence of a (dense) Hilbert
subspace $ of 36 (preferably with Hilbert-Schmidt imbedding) for
which also $* C E. The results of § 2 show that such 4> can be
found at least whenever !f€ with the topology induced by E = C°(X)
is dually nuclear.
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2) We shall leave aside consideration of questions similar to those
in Lemma 5 in cases when $ is a Hilbert subspace of 9€ not dense in
9C, or when one has Hilbert subspaces $ C ̂  C 3€ of 3C, each dense
in !)€., but $ a closed subspace of ^.

PROPOSITION 6. - Z^r X be a domain in R", and E ow o/ the
following spaces : (^(X) (1 < m < oo), C^^X), C^X), C^(X), wf^
^ usual topology(6). Le^ H€ be a Hilbert subspace of E awd $ a
ctew^ Hilbert subspace of 9€ with continuous imbeddings

$cgec$*cE .
Then the reproducing kernel A(« ,x) of S€ belongs to E in the norm
of $, more precisely, the function x -^ A ( » , x) G $ ̂  of class C"'-1,
0'"'°, C00 or real-analytic, respectively, in the norm topology of <&.

The proof is immediate from Proposition 3.
So far we could not prove continuity of the function x -> A( •, x)

or existence and continuity of its w-th order derivatives, respectively,
in the norm topology when 9€ C C^X) and w = 0 o r l < w < < » .
We now attend to these cases.

When E = C°(X) where X is locally compact, and 96 is a Hilbert
subspace of E, then 3C is compactly imbedded in E if and only if the
reproducing kernel function x -> A(° ,x) is continuous with respect
to the norm of 9€ (proof of Proposition 24 in [11 ]). Similarly, if
$ C gee $* C C°(X), then $* has compact imbedding in C°(X) if
and only if x -> A (* ,x )G$ is continuous for the norm of $. In
particular this is the case when 9€ (or $*) is dually nuclear in the
topology induced by C°(X).

We turn to the remaining case, C^X) with 1 < m < °°.

PROPOSITION 7. — Let the chain of Hilbert subspaces

^c$cgec$*c^*

(6) On the space C^(X) of real-analytic functions on X we use the inductive or
projective topology ; these two agree in our case and make C^(X) a complete
nuclear and dually nuclear space. Cf. Theorem 1.2 in [6] ; in Martineau's
notation we are dealingwith H/ x(C") = Hp x(C") = C^X). Proposition 4 of
[4] amounts to saying that, if trie proper functional Banach space (B is linearly
contained in C^CX), it is also continuously imbedded.
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of (^"(X) ^ given, with the imbedding ^ C $ compact. Then the
function x ^ A(» ,x) (A rt^ reproducing kernel for the given chain)
is of class C^X) in the norm of <&.

Proof. — For any |p| <*n, the derivatives D^A(- ,x ) exist in
the weak sense, and for each/E ^*, (/, D^A(- ,^)) = D^Qc) is the
limit of the corresponding difference expressions. Thus the difference
expressions for D^A(o ,x) converge in the weak topology of ^, and
as the imbedding ^ C $ is compact, they converge to D^ A(- ,x) in
the norm of 4>. Similarly it is seen that x -^ D^A(- ,x) is continuous
with respect to the norm of $.

4. Regularity properties of generalized eigenfunctions.

PROPOSITION 8. — Let X be a domain in R" and P any linear
differential operator with real (for simplicity) coefficients which are
of class C00 or real-analytic, and 96 a Hilbert subspace of E = Cao(X)
or E = C^CX), respectively. If P/= 0 /or a// /e9e, rt^ /or an^
Hilbert space <3> densely imbedded in H€ with <t> C a^C <1>* C E,
(P^ A( - , ;c) == 0 and hence) P<^ = 0 /or all ^ € $*.

A-oo/ - P/= 0 for all /€ 90 implies P^AO ,x) = 0. But as
P^A(» ,x ) exists in the norm of $, we may transfer derivatives and
find P^) =(P<p ,A( . , x ) )^^=(<p ,P2A( . , x ) )^^==0 for all
(^E$*, xex.

Remarks. - 1) This proposition extends to the case "P/Cv) = 0
for all x G Y" for any subset Y of X.

2) An alternative proof of Proposition 8 would proceed as follows.
The operator P is continuous on E, and its restriction to 96 is a
closed operator in 96 (note that for arbitrarily fixed ̂  E E, the function
^p(x)f(x) with /G96 may fail to be in 96). P has closed nullspace N
in E, and hence 3C C N implies $* C N.

As a corollary to all the foregoing considerations, the theorem
below now follows at once. It was announced, without proof, by
N. Aronszajn [1].
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THEOREM 9. — Let X be a domain in R" and 9€ a proper func-
tional Hilbert space of functions of class C°° [real-analytic, or complex
analytic wth R" = C1" and 2m = n]. Then for any self adjoint operator
A in 9€ with spectral measure ^, ^-almost all generalized eigenfunctions
of A are also of class C°° [real or complex analytic, respectively}.
Moreover, if all functions in 9€ satisfy some linear differential equations
with coefficients of class C°° [with real or complex analytic coefficients},
then the generalized eigen functions satisfy the same equations.
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