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SOME IMBEDDING PROPERTIES
OF HILBERT SUBSPACES
IN TOPOLOGICAL VECTOR SPACES(()

by Eberhard GERLACH

Introduction.

In Chap. III of [3] the writer showed that any proper functional
Hilbert space ¥ of analytic functions on a domain D C C", with re-
producing kernel K(z, ¢), is Hilbert-Schmidt expansible. That is, given
%, a dense Hilbert-Schmidt subspace ® of ¥ was found such that
K(-,$) €d for all { €D. Consequently the generalized eigenvectors
for any selfadjoint operator in & could be regarded as functions on
D, and they were moreover elements of the proper functional Hilbert
space ®* ; one had the ‘‘rigging” ® C& C ®* of &, Showing analy-
ticity of the generalized eigenfunctions [3] (and also [4]) — actually
of all the functions in ®* — then amounted to proving that the
function ¢ = K(-,¢) is analytic not only from D into & but also
from D into .

Subsequently K. Maurin [7] used another approach to the
question of regularity of generalized eigenfunctions. In general,
instead of a rigging ® C ¥ C &* with Hilbert spaces and Hilbert-
Schmidt imbeddings, one may use a nuclear space L which has
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dense and continuous imbedding into % : L C % C L*(?). For instance,
if &(D) is the space of all infinitely differentiable functions on a do-
main D C R” with the usual topology of uniform convergence of all
derivatives on compact subsets of D, and & is a Hilbert subspace of
&(D), the rigging L C& C L* with nuclear L is available, where L*
is the closure of & in & (D) and L = L** ; consequently the genera-
lized eigenfunctions of any selfadjoint operator in & are infinitely
differentiable. If moreover ¥ lies in the nullspace of a (closed) hypoel-
liptic differential operator T —$ CN ={f€&(D) : Tf = 0} — then
also the generalized eigenfunctions ¢ lie in N, i.e. Ty = 0. Maurin
[7] presents results of this type when ¥ is a weighted L2-space con-
tained in &(D), and he formulates them on manifolds ; in the case of
holomorphicity he discusses differential forms as well as functions.
In further work [8] he considers Hilbert spaces of harmonic functions
(in the axiomatic sense of H. Bauer [2]) with an L2-norm over the
boundary and finds that the generalized eigenfunctions are also har-
monic. In [9] he extends the holomorphicity results to functions
defined on complex spaces(3).

From this second approach to the regularity of generalized eigen-
functions and related problems, we may abstract a general procedure
which is presented in section 2 below. Section 3 contains a few sup-
plements to § 9 of [11]. In the final section 4 we state results on
regularity of generalized eigenfunctions. In section 1 we collect the
notations and basic results to be used.

(» In the “general theory of abstract eigenfunction expansions”, rigging by means
- of a nuclear space L has been used by many authors. One advantage of this is
that for a given selfadjoint operator A on a separable Hilbert space €, one
can construct a dense, nuclear subspace L of J€ such that ALCL and A is
continuous on L ; then spectral theory for A can be developed further than
in the general case. From various other points of view, a rigging by Hilbert
spaces seems to be more useful.

(3) The results of [7-9] are formulated for (generalized eigenfunctions of) com-
muting families of bounded normal operators. But they may equally well be
formulated for any commutative von Neumann algebra of operators on the
given Hilbert space € or, equivalently, for any selfadjoint operator in J€
(since any commutative von Neumann algebra is equal to the algebra of
bounded (Borel) functions of some selfadjoint operator A).
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1. Notation and definitions.

Throughout this paper, E will denote a locally convex Hausdorff
topological vector space which is moreover assumed to be boundedly
complete(*). By E* we denote the anti-dual E=F (cf. [11]), con-
sisting of all continuous conjugate-linear functionals on E. The space
E is said to be dually nuclear [10] if E* with the strong topology is
nuclear. In several of our examples we shall make use of the fact
that a nuclear F-space or DF-space is reflexive and dually nuclear
(theorems 12 and 13 in section 4.4 of [10]).

A Hilbert subspace 3€ of E is a Hilbert space € with continuous
imbedding into E. By a Hilbert-Schmidt subspace K of E we understand
a Hilbert space K with the following property : there exists a Hilbert
subspace g€ of E such that K is a linear subspace of ¥#€ for which
the imbedding K C ¥€ is of Hilbert-Schmidt type. All Hilbert spaces
in this paper are tacitly assumed to be separable.

If 3€ is a Hilbert subspace of E with injection j, and 6 the cano-
nical isomorphism of #¢* onto €, then the (Schwartz) kernel of ¥e
rel. E is the (weakly continuous) map H = jj*, wherej* : E* — ge*
is the adjoint map to j [11].

If X is a set, we denote the space C* of complex valued functions
on X, with the topology of pointwise convergence, by Gy . A proper
functional Hilbert space € on X is simply a Hilbert subspace of Gy .
If S is the Schwartz kernel of 3€ rel. Gy then the (Aronszajn) repro-
ducing kernel A of 3 is given by A(+,x) = S, , where §,, is the
Dirac measure at the point x. The reproducing formula simply says
fx)=(f,A(,x)) for all fEde, x€X. (Cf. §9 of [11]).

Let d€ be a Hilbert space, § a Hilbert subspace of it with injection
j and Schwartz kernel j@j*. Then J =j0j*0~! (more precisely
jegj*()a;l) is selfadjoint in J€ ; its square root ji2 regarded as an
operator ¢ - § is the canonical partial isometry of §€ onto §. We
shall occasionally refer to J as the Hilbert kernel of § rel.g€. The
imbedding j is Hilbert-Schmidt if and only if J is nuclear in €.

(*) “Quasi-complete” in Bourbaki terminology ; every closed bounded subset of
E is complete.
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2. Hilbert subspaces of dually nuclear spaces.

PROPOSITION 1. — Let the space E be dually nuclear, and 8¢ a
Hilbert subspace of E. Then the generalized eigenvectors of any self-
adjoint operator in 3€ lie in E. Consequently, if the elements of E
have a certain property, this property is inherited by the generalized
eigenvectors.

Proof. — Since E is dually nuclear, so is every linear subspace
of E with the induced topology (Proposition 5.1.2 in [10]). Let L be
the closure of &€ in E. Then L* is nuclear and ¥€ dense in L. Hence
the adjoint j* : L* — g€* of the given injection j : 3¢ - L is also
injective. If 6 is the canonical isomorphism €* — J€, we have the
ﬁggng 0,' j‘.

L¥ — 3 — L** 0
with nuclear L*. By Proposition 4.4.11 in [10], every boundedly
complete nuclear or dually nuclear locally convex space is semireflexive.
Thus L** = L and j** = at least algebraically.

Remarks. — 1) As it stands, generalized eigenvectors of self-
adjoint operators in #€, regarded as limits of vectors in #€, exist only
in the topology of L** which may be coarser than that of L.

2) The injection j : € - L is both weakly and strongly conti-
nuous (and dense). To start with, j* is just weakly continuous. Let
& ={j(A) : A bounded in #}, then all sets in & are bounded in L,
and j* is continuous for the topology of & -convergence on L* and
the strong topology on J€* ; hence j* : L} — 3€* (the subscript b
denotes strong topology) is also continuous. Thus all maps in the
rigging (1) are strongly continuous.

The result of Proposition 1 may be improved to a Hilbert-
Schmidt rigging as follows.

THEOREM 2. — Let E be a boundedly complete Hausdorff locally
convex space. Then every Hilbert subspace 8¢ of E for which the
closure L of 3 in E is dually nuclear(®), is a Hilbert-Schmidt subspace

(%) Equivalently : every Hilbert subspace € of E which is dually nuclear in the
topology induced by E.
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of L. Consequently, if ¥ is a Hilbert space with continuous dense
imbeddings 8€ C ¥ C L the first of which is of Hilbert-Schmidt type,
and A any selfadjoint operator in 3€ with spectral measure u, then
walmost all generalized eigenvectors of A are approximated in the
norm of ¥ by elements in 8€.

Proof — Let 3€ be a Hilbert subspace of E, L its closure in E,
and j the imbedding of & into L. Then the adjoint j* is an injection
of the nuclear space L} into #€* which is strongly continuous (Remark
2) above). By a fundamental property of nuclear spaces, this conti-
nuous map j* may be factored through another Hilbert space @,

Ly %o S ger and j* = Jy, so that J is Hilbert-Schmidt. We know
that j*L* = L* is dense in J€*. Hence ®, v and J may be chosen so
that J is a dense injection of ® into J€*. Set ¥ = ®* in the chain of
dense continuous imbeddings

1*> oS5 s v,
where J* is Hilbert-Schmidt. The Hilbert-Schmidt rigging
oVl or=w

may now be used to do spectral theory in &€.

3. Hilbert subspaces in spaces of smooth functions.

Let X be a set now and E continuously imbedded in Gy . If 3€ is
a Hilbert subspace of E, then #€ must trivially have a reproducing
kernel. For instance the Hilbert spaces of harmonic functions, consi-
dered in [8], have reproducing kernels.

Conversely one may pose the following question. Let € be a
Hilbert subspace of Gy, with reproducing kernel A, and suppose E
is continuously imbedded in Gy . Under what conditions on A is 3¢
also a Hilbert subspace of E ? When is #€ compactly imbedded in E ?
Necessary as well as sufficient conditions were given by L. Schwartz
[11] in a number of concrete cases. In particular we mention the
following (Propositions 24 and 25 in [11]).
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i) X is a locally compact Hausdorff space and E the space
C°(X) of all continuous functions on X, with the topology of uniform
convergence on compacts.

ii) X is a domain in Euclidean R" and E the space C™(X) of
functions possessing continuous derivatives of all orders < m, with the
topology of uniform convergence on compacts for all these deriva-
tives ; 1 < m < oo,

We shall make use of these propositions (pp. 191-201 in [11]) and
provide some supplements to them.

Let X and E be as in i) or ii) above, and let N be a closed subspace
of E. Then the proper functional Hilbert space € on X, with repro-
ducing kernel A, is a Hilbert subspace of N if and only if it is a Hilbert
subspace of E and in addition A(-, x) € N for all x € X. In particular,
if X is a domain in C* = R?* and N(C C°(X)) the space &(X) of
holomorphic functions on X — or more generally in any R”, the
nullspace of a hypoelliptic linear differential operator with constant
coefficients — Proposition 24 of [11] yields a complete description of
Hilbert subspaces of N. Similarly, if X is locally compact and N is a
harmonic space on X (in the sense of [2]), we obtain a characterization
of Hilbert subspaces of this harmonic space. (In all these examples N
is a nuclear Fréchet space and hence dually nuclear).

In the case ii), for any linear differential operator P with C™-
coefficients and order < m, it turns out that P,A(-, x) € € for all
x € X (the subscript 2 indicates that the derivatives are applied to
the second set of variables of A), and ﬁh(x) = (h,P,A(-, X)), for
h €Y where P is obtained from P by taking the complex conjugate
of all coefficients (cf. p. 199-200 in [11]). As it stands, this is the
result of applying P to the function x = A(-, x) in either the point-
wise or distribution sense. It will be useful to have the derivatives
D?A(-,x) of A (as limits of the corresponding difference expressions)
existing in the norm of #€, and also the functions x - D4A(-, x)
continuous in the norm of 3, |p| < m. To this end one may use the
results of [11] (p. 199-201, as well as Proposition 9 ter (p. 152),
bearing in mind that if 63 is a Banach space and E = C™(X) as described
above, B8 E = B&E = C™(X, B) is the space of functions X - @B
which possess continuous derivatives of all orders < m in the norm of
@, endowed with the topology of uniform norm-convergence of all
these derivatives on compacts in X). For our purposes we are interested
in direct proofs for strong derivatives of A(-, x).
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Our basic tool is the proof of Proposition 4 in [4]. By imitating
that proof we obtain the following.

PROPOSITION 3. — Let B be a Banach space with dual (or anti-
dual) B' and X a domain in R" ;1 <m <o . Ifp:X = B isany
function which belongs to C™(X) weak®, ie. x > <f, p(x) > isin
C™(x) for all fEB, then ¢ €C™" Y (X, ®B). The same holds with
both C™ and C™~' replaced by C=, as well as C* (real-analytic
functions).

Proposition 3 also remains true if both C™ and C™ ~! are replaced
by C™'*, where C™*%(X) denotes the space of all functions in C™(X)
whose derivatives of order m are Holder continuous with exponent a.
(The exponent o €]0,1] may even vary on different compacts
K C X). To obtain this, one uses the following simple result.

LeEmMMA 4. — Let {X,d)} be a compact metric space, B' the dual
of some Banach space, and ¢ : X - B' Holder continuous with
exponent o in the weak* topology of B'. Then ¢ is a-Holder continuous
in the norm of ®'.

Proof. — By hypothesis there exist constants Cf so that for
each fFE®, |<f,p(x) — p(») > < Cpd“(x, y) or

o(x) — o(»)
d%x,y)

for all x # y in X. The uniform boundedness theorem then provides
a constant C so that

lex) — oM < Cd%(x, )

for all x, y.

As we are interested in triples of Hilbert spaces
® C Y C d* CECGy

for the purpose of spectral theory in €, we would like to find the
reproducing kernel of ¥€ belonging to some regularity class, in the
stronger norm of the space ®. The following lemma is the first step.

LEMMA 5. — Let 3¢ be any Hilbert subspace of Gy , with repro-
ducing kernel A, and ® a Hilbert subspace of € with dense imbedding ;
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thus there are the dense continuous imbeddings ® C3€ C ®*, the
pairing of ® and ®* realized via the scalar product of 3. Then
A(-,x) €D for all x €X if and only if also ®* is a Hilbert subspace
of Gy . When this is the case, the reproducing kernel of ®* taken in
® is precisely A(-, ), and for any subset Y of X on which every
¢ € ®* is bounded, the function x = ||A(-,x) |l is bounded on Y.

Proof. — Suppose A(-, x) €® for all x € X. Then we may iden-
tify each ¢ € ®* with a function x = @(x) = (9, A(s, X))gs, o (the
correspondence ¢ = @ is clearly injective), and

1P I < ll@llge NACe, X) g
for each fixed x. Hence ®* is a proper functional Hilbert space on X.
Conversely, let ®* be a Hilbert subspace of Gy . Then its repro-
ducing kernel C taken in &, say, is expressed by
P(¥) = (0 ,CC, X)ge o = (9, C(+, X)), ,
but for all f in the dense subspace J€ of ®* we have

F&x) =(f,A(,x), .
Thus C = A and A(-,x)€ ® for all x € X.

Finally, let ®* be a proper functional Hilbert space as described,
and let Y C X be such that each ¢ € ®* is bounded on Y,

My, > 10| = 1@, AC,X))er 5|, XEY .

By the uniform boundedness theorem there is a constant My such
that [|[A(s,x)llp <My forall xEY.

COROLLARY. — In the case i) above, if 3€ is a Hilbert subspace of
E = C°(X), then ®* is a Hilbert subspace of E = C°(X) if and only
if the function x = ||A(+, x) e is bounded on each compact subset
of X.

Remarks. — 1) When %€ is a Hilbert subspace of E = C°(X),
there is in general no guarantee for existence of a (dense) Hilbert
subspace ® of J€ (preferably with Hilbert-Schmidt imbedding) for
which also ®* CE. The results of § 2 show that such ® can be
found at least whenever #€ with the topology induced by E = C°(X)
is dually nuclear.
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2) We shall leave aside consideration of questions similar to those
in Lemma 5 in cases when @ is a Hilbert subspace of € not dense in
€, or when one has Hilbert subspaces ® C ¥ C € of J€, each dense
in ¢, but ® a closed subspace of W¥.

PROPOSITION 6. — Let X be a domain in R”, and E one of the
following spaces : C"(X) (1 < m < =), C""*(X), C*(X), C*(X), with
the usual topology(5). Let 3€ be a Hilbert subspace of E and ® a
dense Hilbert subspace of 3€ with continuous imbeddings

PCHCIP*CE .

Then the reproducing kernel A(-,x) of 3€ belongs to E in the norm
of ®, more precisely, the function x > A(-,x) € ® is of class cm-1
C™:% C™ or real-analytic, respectively, in the norm topology of ®.

The proof is immediate from Proposition 3.

So far we could not prove continuity of the function x = A(-, x)
or existence and continuity of its m-th order derivatives, respectively,
in the norm topology when #CC"(X) and m =0 or 1 S m < oo,
We now attend to these cases.

When E = C°(X) where X is locally compact, and d€ is a Hilbert
subspace of E, then #€ is compactly imbedded in E if and only if the
reproducing kernel function x = A(-,x) is continuous with respect
to the norm of & (proof of Proposition 24 in [11]). Similarly, if
& C 3¢ C ®* C C°(X), then ®* has compact imbedding in C°(X) if

.and only if x > A(+,x) € ® is continuous for the norm of &é. In
particular this is the case when 9€ (or ®*) is dually nuclear in the
topology induced by C°(X).

We turn to the remaining case, C"(X) with 1 < m < oo,

PROPOSITION 7. — Let the chain of Hilbert subspaces

vCdCldCp*Cvu*

(®) On the space C*(X) of real-analytic functions on X we use the inductive or
projective topology ; these two agree in our case and make C*(X) a complete
nuclear and dually nuclear space. Cf. Theorem 1.2 in [6] ; in Martineau’s
notation we are dealing with H,,x(C") =H p'x(C") = C“(X). Proposition 4 of
[4] amounts to saying that, if the proper functional Banach space @& is linearly
contained in C“(X), it is also continuously imbedded.
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of C™(X) be given, with the imbedding ¥ C ® compact. Then the
function x = A(+,x) (A the reproducing kernel for the given chain)
is of class C™(X) in the norm of ®.

Proof. — For any |p| < m, the derivatives D} A(-,x) exist in
the weak sense, and for each f€ ¥*, (f, DYA(-,x)) = D? f(x) is the
limit of the corresponding difference expressions. Thus the difference
expressions for D A(-, x) converge in the weak topology of ¥, and
as the imbedding ¥ C & is compact, they converge to D5 A(-,x) in
the norm of $. Similarly it is seen that x > DJ A(-, x) is continuous
with respect to the norm of .

4. Regularity properties of generalized eigenfunctions.

PROPOSITION 8. — Let X be a domain in R" and P any linear
differential operator with real (for simplicity) coefficients which are
of class C* or real-analytic, and 3€ a Hilbert subspace of E = C*(X)
or E = C¥(X), respectively. If Pf =0 for all fEYC, then for any
Hilbert space & densely imbedded in 3 with ® C 96C &* CE,
(P,A(e,x) = 0 and hence) Py = 0 for all p € D*.

Proof. — Pf=10 for all f&€ 8 implies P, A(-,x) = 0. But as
P, A(-,x) exists in the norm of ®, we may transfer derivatives and
find Pyo(x) = Py, A(-, x))q;.,,,, =(p,P,A(-, x))d,.’q, =0 for all
pEP* xeX.

Remarks. — 1) This proposition extends to the case “Pf(x) = 0
for all x € Y” for any subset Y of X.

2) An altemative proof of Proposition 8 would proceed as follows.
The operator P is continuous on E, and its restriction to J€ is a
closed operator in #€ (note that for arbitrarily fixed ¢ € E, the function
@(x) f(x) with fEJ may fail to be in J€). P has closed nullspace N
in E, and hence ¥ C N implies &* C N.

As a corollary to all the foregoing considerations, the theorem
below now follows at once. It was announced, without proof, by
N. Aronszajn [1].
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THEOREM 9. — Let X be a domain in R" and € a proper func-
tional Hilbert space of functions of class C” [real-analytic, or complex
analytic with R” = C™ and 2m = n). Then for any selfadjoint operator
A in Y€ with spectral measure p, p-almost all generalized eigenfunctions
of A are also of class C* [real or complex analytic, respectively].
Moreover, if all functions in 8€ satisfy some linear differential equations
with coefficients of class C* [with real or complex analytic coefficients],
then the generalized eigenfunctions satisfy the same equations.
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