
ANNALES DE
L’INSTITUT FOURIER

Université Grenoble Alpes

Les Annales de l’institut Fourier sont membres du
Centre Mersenne pour l’édition scienti�que ouverte
www.centre-mersenne.org

Timothée Marqis
Around the Lie correspondence for complete Kac–Moody
groups and Gabber–Kac simplicity
Tome 69, no 6 (2019), p. 2519-2576.
<http://aif.centre-mersenne.org/item/AIF_2019__69_6_2519_0>

© Association des Annales de l’institut Fourier, 2019,
Certains droits réservés.

Cet article est mis à disposition selon les termes de la licence
Creative Commons attribution – pas de modification 3.0 France.
http://creativecommons.org/licenses/by-nd/3.0/fr/

www.centre-mersenne.org
http://aif.centre-mersenne.org/item/AIF_2019__69_6_2519_0
http://creativecommons.org/licenses/by-nd/3.0/fr/


Ann. Inst. Fourier, Grenoble
69, 6 (2019) 2519-2576

AROUND THE LIE CORRESPONDENCE FOR
COMPLETE KAC–MOODY GROUPS AND

GABBER–KAC SIMPLICITY

by Timothée MARQUIS (*)

Abstract. — Let k be a field and A be a generalised Cartan matrix, and let
GA(k) be the corresponding minimal Kac–Moody group of simply connected type
over k. Consider the completion Gpma

A (k) of GA(k) introduced by O. Mathieu
and G. Rousseau, and let Uma+

A (k) denote the unipotent radical of the Borel sub-
group of Gpma

A (k). In this paper, we exhibit a functorial dependence of the groups
Uma+

A (k) and Gpma
A (k) on their Lie algebra. We also provide several contributions

to fundamental questions in the general theory of maximal Kac–Moody groups:
(non-)Gabber–Kac simplicity over certain finite fields, (non-)density of a minimal
Kac–Moody group in its Mathieu–Rousseau completion, (non-)linearity of maximal
pro-p subgroups, and the isomorphism problem.
Résumé. — Soit GA(k) le groupe de Kac–Moody minimal simplement connexe

associé à un corps k et à une matrice de Cartan généralisée A. On note Gpma
A (k) la

complétion de GA(k) introduite par O. Mathieu et G. Rousseau, et Uma+
A (k) le ra-

dical unipotent du sous-groupe de Borel de Gpma
A (k). Dans cet article, nous mettons

en évidence une dépendance fonctorielle des groupes Uma+
A (k) et Gpma

A (k) en leur
algèbre de Lie. Nous apportons en outre plusieurs contributions à certaines ques-
tions fondamentales de la théorie générale des groupes de Kac–Moody maximaux:
(non-)densité du groupe de Kac–Moody minimal dans sa complétion de Mathieu–
Rousseau, (non-)Gabber–Kac simplicité sur certains corps finis, (non-)linéarité des
sous-groupes pro-p maximaux, et problème d’isomorphisme.

1. Introduction

The main theme of this paper is the correspondence between the proper-
ties of a complete Kac–Moody group and its Lie algebra over an arbitrary
field, with a special emphasis on the case of finite ground fields.

Keywords: Kac–Moody groups, Lie correspondence, Gabber–Kac simplicity, Linearity
problem, Isomorphism problem.
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2520 Timothée MARQUIS

Let A = (aij)i,j∈I be a generalised Cartan matrix (GCM) and let g =
g(A) be the associated Kac–Moody algebra ([11]). Let also GA denote
the corresponding Tits functor of simply connected type, as defined by
J. Tits ([29]). Given a field k, the value of GA over k is called a mini-
mal Kac–Moody group. This terminology is justified by the existence of
larger groups, called maximal or complete Kac–Moody groups, which can
be constructed as completions ĜA(k) of GA(k) with respect to some suit-
able topology. For instance, the completion of the affine Kac–Moody group
SLn(k[t, t−1]) of type Ãn−1 is the maximal Kac–Moody group SLn(k((t))).
Roughly speaking, a minimal Kac–Moody group GA(k) is obtained by

“exponentiating” the real root spaces of the Kac–Moody algebra g, while
completions ĜA(k) of GA(k) are obtained by exponentiating both real and
imaginary root spaces of g. As a result, it becomes easier to make compu-
tations in ĜA(k) rather than in GA(k) (see e.g. [2, Remark 2.8]). Another
motivation to consider maximal Kac–Moody groups rather than minimal
ones is the fact that, when k is a finite field, the groups ĜA(k) form a
prominent family of simple, compactly generated totally disconnected lo-
cally compact groups. Such groups have received considerable attention in
the past years (see [4] for a current state of the art).
Unlike minimal Kac–Moody groups, whose definition is somehow “canon-

ical” (in the sense that the Tits functor GA over the category of fields is
uniquely determined by a small number of axioms generalising in a natu-
ral way properties of semi-simple algebraic groups), maximal Kac–Moody
groups have been constructed in the literature using different approaches.
There are essentially three such constructions of completions of a minimal
Kac–Moody group GA(k), which we now briefly review.
The first approach is geometric. The Rémy–Ronan completion GrrA (k)

of GA(k) ([26]) is the completion of the image of GA(k) in the automor-
phism group Aut(X+) of its associated positive building, where Aut(X+)
is equipped with the topology of uniform convergence on bounded sets.
A slight variant of this construction was introduced by P-E. Caprace and
B. Rémy ([5, §1.2]): the resulting group GcrrA (k) admits GA(k) as a dense
subgroup and GrrA (k) as a quotient.

The second approach is representation-theoretic. The Carbone–Garland
completion GcgλA (k) with dominant integral weight λ ([8]) is the comple-
tion of the image of GA(k) in the automorphism group Aut(Lk(λ)) of an
irreducible λ-highest-weight module Lk(λ) over k. Again, as for GrrA (k),

ANNALES DE L’INSTITUT FOURIER



LIE CORRESPONDENCE FOR KAC–MOODY GROUPS 2521

this construction can be slightly modified to produce a group GcgrA (k) con-
taining GA(k) as a dense subgroup, rather than a quotient of GA(k) ([28,
6.2]).
The third approach is algebraic. It is closer in spirit to the construction

of the Tits functor GA, and produces a (topological) group functor over
the category of Z-algebras, denoted GpmaA , such that GA(k) canonically
embeds in GpmaA (k) for any field k. The group GpmaA (k) was first introduced
by O. Mathieu ([18]) and further developed by G. Rousseau ([28]), and will
be called the Mathieu–Rousseau completion of GA(k). Over k = C, the
group GpmaA (k) coincides with the maximal Kac–Moody group constructed
by S. Kumar ([13, §6.1.6]).
The Mathieu–Rousseau completion of GA(k), which will be used in this

paper, is better suited to the study of finer algebraic properties of Kac–
Moody groups, as for instance illustrated in [16] and [2]. The reason for
this is that the relation between GpmaA (k) and its Kac–Moody algebra g is
more transparent than for the other completions. Our first theorem further
illustrates this statement.
Let g = h ⊕

⊕
α∈∆(A) gα be the root decomposition of g with respect

to its Cartan subalgebra h, with corresponding set of roots ∆(A) (resp.
of positive roots ∆+(A), of positive real roots ∆re

+(A)). Let gZ denote the
standard Z-form of g introduced by J. Tits ([29, §4]) and set gk := gZ⊗Z k.
Set also n+(A) :=

⊕
α∈∆+(A) gα and n+

k (A) := (n+(A) ∩ gZ)⊗Z k. Finally,
let Uma+

A (k) denote the unipotent radical of the positive Borel subgroup of
GpmaA (k): the Lie algebra corresponding to Uma+

A (k) is then some comple-
tion of n+

k (A). Our first theorem exhibits a “functorial dependence” of the
group Uma+

A (k) on its Lie algebra.

Theorem A. — Let k be a field, and let A = (aij)i,j∈I and B =
(bij)i,j∈I be two GCM such that |bij | 6 |aij | for all i, j ∈ I. Then the
following assertions hold:

(1) There exists a surjective Lie algebra homomorphism

π : n+(A)→ n+(B).

(2) π gives rise to a surjective, continuous and open group homomor-
phism

π̂ : Uma+
A (k)→ Uma+

B (k).

A more precise version of Theorem A is given in Section 3.2 below (see
Theorem 3.6).

Now that we have introduced the three constructions of maximal Kac–
Moody groups that can be found in the literature, a very natural question
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2522 Timothée MARQUIS

arises: how do these constructions compare to one another? Or, more opti-
mistically stated: do the geometric, representation-theoretic and algebraic
completions of GA(k) yield isomorphic topological groups? Surprisingly,
the answer to this question is yes in many cases, and conjecturally yes
in almost all cases. However, when the field has positive characteristic p
smaller than MA := maxi 6=j |aij |, things become more subtle.
One obstruction to an affirmative answer in all cases is the fact that

the closure GA(k) of GA(k) in its Mathieu–Rousseau completion GpmaA (k)
might be proper: in [16], we gave for each finite field k an infinite family of
GCM A such that GA(k) 6= GpmaA (k) (see also [28, §6.10] for an example
over k = F2). Here, we exhibit a much wider class of examples.

Proposition B. — Let k = Fq be a finite field, and let A = (aij)i,j∈I
be a GCM. Assume that there exist indices i, j ∈ I such that |aij | > q + 1
and |aji| > 2. Then GA(k) is not dense in GpmaA (k).

We give two completely different proofs of this theorem. The first relies
on Theorem A. The second is more constructive, and provides another
perspective on this non-density phenomenon. The proof of Proposition B
can be found in Section 4 below. Note that GA(k) = GpmaA (k) as soon as
the characteristic of k is zero or bigger than MA (see [28, 6.11]).
On the other hand, G. Rousseau proved that there always exist contin-

uous group homomorphisms GA(k) → GcgrA (k) and GcgrA (k) → GcrrA (k),
which are moreover isomorphisms as soon as char k = 0 and A is sym-
metrisable (see [28, 6.3 and 6.7]). When k is finite, these homomorphisms
are surjective, but the question of their injectivity is open.
Assume that GA(k) = GpmaA (k) and denote by φ : GpmaA (k) → GcrrA (k)

the composition of the two above homomorphisms. The kernel of φ then
coincides with Z ′A∩U

ma+
A (k), where Z ′A denotes the kernel of the GpmaA (k)-

action on its associated building X+. The injectivity of φ thus amounts to
Z ′A ∩ Uma+

A (k) being trivial or, equivalently, to the statement that every
normal subgroup of GpmaA (k) that is contained in Uma+

A (k) must be trivial.
If this is the case, we call GpmaA (k) simple in the sense of the Gabber–Kac
theorem, or simply GK-simple. This terminology is motivated by its Lie
algebra counterpart, stating that, at least in the symmetrisable case, every
(graded) ideal of the Kac–Moody algebra g that is contained in n+(A) must
be trivial: this is an equivalent formulation of the Gabber–Kac theorem(1)

([11, Theorem 9.11]). When char k = 0 and A is symmetrisable, GpmaA (k) is

(1)Here, we define a Kac–Moody algebra using the Serre relations, as in [11, §5.12]
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known to be GK-simple (see [28, Remarque 6.9.1]). However, in the other
cases, the following problem is widely open:

Problem 1.1 (GK-simplicity problem). — Let A be a GCM and let k
be a field. Determine when GpmaA (k) is GK-simple.

To give a feeling for the difficulty of Problem 1.1, note that in charac-
teristic zero (say k = C), the GK-simplicity of GpmaA (k) is equivalent to
the Gabber–Kac theorem for gk (see [17, Remark 8.104(1)]); when A is
not symmetrisable, this latter problem remains, decades after it was first
considered, completely open. As a second application of Theorem A, we
give the first (negative) contribution to Problem 1.1 over finite fields.

Proposition C. — Let k = Fq be a finite field. Consider the GCM A =
( 2 −m
−n 2 ) with m,n > 2 and mn > 4. Assume that m ≡ n ≡ 2 (mod q− 1).

If char k = 2, we moreover assume that at least one of m and n is odd.
Then GpmaA (k) and GA(k) are not GK-simple, that is, Z ′A ∩ U

+
A (k) 6= {1}.

The proof of Proposition C is given in Section 4 (see Proposition 4.9).
Note that the above counter-examples to GK-simplicity all occur for
char k < MA; the hope is that for char k > MA, Problem 1.1 has a positive
answer.
To illustrate why the Lie correspondence is better behaved when char k >

MA, we make the following observations on the pro-p group Uma+
A (k) (for

k a finite field of characteristic p) in the light of some important pro-p
group concepts, such as the Zassenhaus–Jennings–Lazard (ZJL) series (also
known as the series of dimension subgroups, see [9, §11.1]). Given a pro-p
group G with ZJL series (Dn)n>1, the space L =

⊕
n>1Dn/Dn+1 has the

structure of a graded Lie algebra over Fp, called the ZJL Lie algebra of G
(see [9, p. 280]).

Proposition D. — Let A be a GCM and let k be a finite field of
characteristic p > MA. Then the following assertions hold:

(1) The ZJL series of Uma+
A (k) coincides with its lower central series.

(2) The ZJL Lie algebra of Uma+
A (k) is isomorphic to n+

k (A), viewed as
a Lie algebra over Fp.

The proof of Proposition D is given in Section 7 below.
We now present a few more functoriality results, as well as results that

are either applications of Theorem A or provide motivations for the study
of Problem 1.1 (or both) – besides the motivation to clarify the relations
between the different completions of GA(k), and hence to provide a unified
theory of complete Kac–Moody groups.

TOME 69 (2019), FASCICULE 6
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For each positive real root α ∈ ∆re
+(A), we let eα be a Z-basis element of

gα ∩ gZ, and we let ei = eαi , i ∈ I, be the Chevalley generators of n+(A).

Theorem E. — Let k be a field, B a GCM, and let {βi | i ∈ I} be a
linearly independent finite subset of ∆re

+(B) such that βi − βj /∈ ∆(B) for
all i, j ∈ I. Then the following assertions hold:

(1) The matrix A := (βj(β∨i ))i,j∈I is a GCM and the map π : n+(A)→
n+(B) : ei 7→ eβi is a Lie algebra morphism.

(2) π gives rise to a continuous group homomorphism

π̂ : Uma+
A (k)→ Uma+

B (k)

whose kernel is normal in GpmaA (k). In particular, if the group
GpmaA (k) is GK-simple, then π̂ is injective.

(3) The restriction of π̂ to Uma+
A (k) ∩ GA(k) extends to continuous

group homomorphisms

GA(k)→ GB(k) and GA(k)→ GB(k)

with kernels contained in Z ′A.

Here, we view GA(k) and GB(k) as subgroups of their Mathieu–Rousseau
completion (with the induced topology). Note that, in contrast to Theo-
rem E, the surjective map π̂ : Uma+

A (k)→ Uma+
B (k) provided by Theorem A

can typically not be extended to the whole group Gma+
A (k) (or even to

GA(k)) as soon as A 6= B: this is a consequence of the simplicity results
for these groups (see [19], [16] and [28, §6.13]). A more precise version of
Theorem E is given in Section 3.3 below (see Theorem 3.10).
As a third instance of functoriality properties of Kac–Moody groups, we

also establish that every symmetrisable Kac–Moody group GA(k) can be
embedded into some simply laced Kac–Moody group GB(k), that is, such
that the off-diagonal entries of B are either 0 or −1. It is known that any
symmetrisable GCM A admits a simply laced cover, which is a simply laced
GCM B for which there is an embedding g(A)→ g(B) (see [10, §2.4]).

Theorem F. — Let k be a field and A be a GCM. Let B be a simply
laced cover of A, and consider the associated embedding π : g(A)→ g(B).
Then π gives rise to continuous group homomorphisms

GA(k)→ GB(k) and GA(k)→ GB(k)

with kernels contained in Z ′A.

Note that the embeddings of the minimal Kac–Moody groups (mod-
ulo center) provided by Theorem F preserve the corresponding twin BN-
pairs and hence induce embeddings of the corresponding twin buildings.
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As pointed out to us by B. Mühlherr, similar embeddings can be obtained
with a totally different approach (not relying on the Lie algebra), using
the techniques developed in [21] (see also [22]). A more precise version of
Theorem F is given in Section 3.4 below (see Theorem 3.15).
As a second motivation for the study of Problem 1.1 (besides Theo-

rem E(2)), as well as a third application of Theorem A, we present a con-
tribution to the linearity question of Uma+

A (k) for k a finite field. The long-
standing question whether Uma+

A (k) is linear over some field k′ is still open
(see [2, §4.2]). Caprace and Stulemeijer [6] proved that, within the class
of non-discrete, compactly generated, topologically simple totally discon-
nected locally compact groups G (of which the simple Kac–Moody groups
GpmaA (k)/Z ′A for k a finite field are examples), the existence of a linear
open subgroup U of G (in the sense that U has a continuous faithful finite-
dimensional linear representation over a local field) is equivalent to the
linearity of G itself (even more: G is in that case a simple algebraic group
over a local field). The following theorem extends this result in the Kac–
Moody setting, and addresses the above-mentioned linearity problem for
continuous representations over local fields, provided the group GpmaA (k) is
GK-simple (actually, an a priori much weaker version of the GK-simplicity
of GpmaA (k) would be sufficient in this case, see Remark 5.3 below).

Theorem G. — Let A be an indecomposable GCM of non-finite type
and let k be a finite field. Assume that GpmaA (k) is GK-simple and set
G := GpmaA (k)/Z ′A. Then the following assertions are equivalent:

(1) Every compact open subgroup of G is just-infinite (i.e. possesses
only finite proper quotients).

(2) Uma+
A (k) is linear over a local field.

(3) G is a simple algebraic group over a local field.
(4) The matrix A is of affine type.

The proof of Theorem G relies on the paper [6] (which already contains
the implications (2)⇔ (3) and (3)⇒ (1)), and is given in Section 5 below.

As a third motivation for the study of Problem 1.1, we also present a
contribution to the isomorphism problem for complete Kac–Moody groups
over finite fields. The isomorphism problem for minimal Kac–Moody groups
has been addressed by P-E. Caprace ([3, Theorem A]). When k is a finite
field, the group GA(k) turns out to contain, in general, very little informa-
tion about A (see [3, Lemma 4.3]). The situation for GpmaA (k) is completely
different (see [16, Theorem E]), and we expect it to be possible to recover
A from GpmaA (k) in all cases. This difference between GA(k) and GpmaA (k)

TOME 69 (2019), FASCICULE 6
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is in fact related to the non-density of GA(k) in GpmaA (k) (see the proof of
Proposition B).
Given a GCM A = (aij)i,j∈I and a subset J ⊆ I, we define the GCM

A|J := (aij)i,j∈J .

Proposition H. — Let k, k′ be finite fields, and let A = (aij)i,j∈I and
B = (bij)i,j∈J be GCM. Assume that p = char k > MA,MB and that all
rank 2 subgroups of GpmaA (k) and GpmaB (k′) are GK-simple.
If α : GpmaA (k)/Z ′A → GpmaB (k′)/Z ′B is an isomorphism of topological

groups, then k ∼= k′, and there exist an inner automorphism γ of
GpmaB (k′)/Z ′B and a bijection σ : I → J such that

(1) γα(Uma+
A|{i,j}(k)) = Uma+

B|{σ(i),σ(j)}
(k′) for all distinct i, j ∈ I.

(2) B|{σ(i),σ(j)} ∈
{(

2 aij
aji 2

)
,
(

2 aji
aij 2

)}
for all distinct i, j ∈ I.

The proof of Proposition H can be found in Section 6 below. Note that
if GpmaA (k) is of rank 2 and if α lifts to an isomorphism α : GpmaA (k) →
GpmaB (k′), then the conclusion of the theorem holds without any GK-
simplicity assumption (see Remark 6.9 below).

Acknowledgement. I am very grateful to Pierre-Emmanuel Caprace
for triggering the research presented in this paper, as well as for his use-
ful comments. I would also like to thank the anonymous referee for their
detailed comments.

2. Preliminaries

Throughout this paper, N denotes the set of nonnegative integers.

2.1. Generalised Cartan matrices

An integral matrix A = (aij)i,j∈I indexed by some finite set I is called
a generalised Cartan matrix (GCM) if it satisfies the following conditions:
(C1) aii = 2 for all i ∈ I;
(C2) aij 6 0 for all i, j ∈ I with i 6= j;
(C3) aij = 0 if and only if aji = 0.

Given two GCM A = (aij)i,j∈I and B = (bij)i,j∈J , we write B 6 A if J ⊆ I
and |bij | 6 |aij | for all i, j ∈ J .
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2.2. Kac–Moody algebras

The general reference for this paragraph is [11, Chapters 1–5] (see also [17,
Part II]).

Let A = (aij)i,j∈I be a GCM and let (h,Π = {αi | i ∈ I},Π∨ = {α∨i |
i ∈ I}) denote a realisation of A, as in [11, §1.1]. Define g̃(A) to be the
complex Lie algebra with generators ei, fi (i ∈ I) and h, and with the
following defining relations:

[ei, fj ] = −δijα∨i (i, j ∈ I),
[h, h′] = 0 (h, h′ ∈ h),
[h, ei] = 〈αi, h〉ei, (i ∈ I, h ∈ h),
[h, fi] = −〈αi, h〉fi (i ∈ I, h ∈ h).

Denote by ñ+ = ñ+(A) (respectively, ñ− = ñ−(A)) the subalgebra of g̃(A)
generated by ei, i ∈ I (respectively, fi, i ∈ I). Then ñ+ (respectively, ñ−)
is freely generated by ei, i ∈ I (respectively, fi, i ∈ I), and one has a
decomposition

g̃(A) = ñ− ⊕ h⊕ ñ+ (direct sum of vector spaces).

Moreover, there is a unique maximal ideal i′ of g̃(A) intersecting h trivially.
It decomposes as

i′ = (i′ ∩ ñ−)⊕ (i′ ∩ ñ+) (direct sum of ideals),

and contains the ideal i of g̃(A) generated by the elements

x+
ij := ad(ei)1+|aij |ej ∈ ñ+ and x−ij := ad(fi)1+|aij |fj ∈ ñ−

for all i, j ∈ I with i 6= j. The Kac–Moody algebra with GCM A is then
the complex Lie algebra

g(A) := g̃(A)/i.
We keep the same notation for the images of ei, fi, h in g(A). The subal-
gebra h of g(A) is called its Cartan subalgebra. The elements ei, fi (i ∈ I)
are called the Chevalley generators of g(A). They respectively generate
the images n+ = n+(A) and n− = n−(A) of ñ+ and ñ− in g(A). The de-
rived Kac–Moody algebra gA := [g(A), g(A)] is generated by the Chevalley
generators of g(A).
Let Q = Q(A) :=

∑
i∈I Zαi denote the free abelian group generated

by the simple roots α1, . . . , αn, and set Q+ = Q+(A) :=
∑
i∈I Nαi and

Q− = Q−(A) := −Q+. Then g(A) admits a Q-gradation. More precisely,

g(A) = n− ⊕ h⊕ n+ =
⊕

α∈Q−\{0}

gα ⊕ h⊕
⊕

α∈Q+\{0}

gα,

TOME 69 (2019), FASCICULE 6



2528 Timothée MARQUIS

where for α ∈ Q+ \ {0} (respectively, α ∈ Q− \ {0}), the root space gα
is the linear span of all elements of the form [ei1 , . . . , eis ] (respectively,
[fi1 , . . . , fis ]) such that αi1 + · · · + αis = α (respectively, = −α). Here we
follow the standard notation

[x1, x2, . . . , xs] := ad(x1) ad(x2) . . . ad(xs−1)(xs).

The set of roots of g(A) is

∆ = ∆(A) :=
{
α ∈ Q \ {0} | gα 6= {0}

}
.

It decomposes as ∆ = ∆+ ∪∆−, where ∆± = ∆±(A) := ∆∩Q± is the set
of positive/negative roots. The subgroup W = W (A) of GL(Q) generated
by the reflections

si : Q→ Q : αj 7→ αj − aijαi
for i ∈ I stabilises ∆. The W -orbit W.{αi | i ∈ I} ⊆ ∆ is called the set of
real roots and is denoted ∆re = ∆re(A). Its complement ∆im = ∆im(A) :=
∆ \∆re is the set of imaginary roots. We furthermore set ∆re

± = ∆re
±(A) :=

∆re ∩∆± and ∆im
± = ∆im

± (A) := ∆im ∩∆±. Given α =
∑
i∈I niαi ∈ Q, we

call ht(α) :=
∑
i∈I ni ∈ Z the height of α. The group W also acts linearly

on Q∨ = Q∨(A) :=
∑
i∈I Zα∨i by

si(α∨j ) = α∨j − ajiα∨i .

Given a real root α = wαi (w ∈ W , i ∈ I), we define the coroot of α as
α∨ := wα∨i ∈ Q∨. Alternatively, α∨ is the unique element of [gα, g−α] with
α(α∨) = 2.

2.3. Integral enveloping algebra

The general references for this paragraph are [29] and [28, Section 2] (see
also [17, Chapter 7]).

Let A = (aij)i,j∈I be a GCM, and consider the corresponding derived
Kac–Moody algebra g = gA. For an element u of the enveloping algebra
UC(g) of g and an s ∈ N, we write

u(s) := u

s! , (adu)(s) := 1
s! (adu)s,

and (
u

s

)
:= 1

s!u(u− 1) . . . (u− s+ 1).

Let U+, U− and U0 be the Z-subalgebras of UC(g) respectively generated by
the elements e(s)

i (i ∈ I, s ∈ N), f (s)
i (i ∈ I, s ∈ N) and

(
h
s

)
(h ∈

∑
i∈I Zα∨i ,
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s ∈ N). Then the Z-subalgebra U = U(A) of UC(g) generated by U+,
U− and U0 is a Z-form of UC(g), called the integral enveloping algebra
of g. It has the structure of a co-invertible Z-bialgebra with respect to the
coproduct∇, co-unit ε, and co-inverse τ , whose restrictions to U+ = U+(A)
are respectively given by

∇e(m)
i =

∑
k+l=m

e
(k)
i ⊗ e

(l)
i , εe

(m)
i = 0 for m > 0

and
τe

(m)
i = (−1)me(m)

i .

The Z-algebra U inherits from UC(g) a natural filtration, as well as a Q-
gradation U =

⊕
α∈Q Uα. We set gZ := g ∩ U and n+

Z = n+
Z (A) := n+ ∩ U .

For α ∈ Q+, we also set (n+
Z )α := n+

Z ∩ gα. For a field k, we similarly write
gk := gZ⊗Z k, n+

k = n+
k (A) := n+

Z ⊗Z k and (n+
k )α := (n+

Z )α⊗Z k, as well as
Uk := U ⊗Z k.
A set of roots Ψ ⊆ ∆+ is called closed if for all α, β ∈ Ψ: α + β ∈

∆+ =⇒ α + β ∈ Ψ. For a closed set Ψ ⊆ ∆+, we let U(Ψ) denote the
Z-subalgebra of U+ generated by all Uα := UC(⊕n>1gnα) ∩ U+ for α ∈ Ψ.
Given a field k, we define the completion Ûk(Ψ) of U(Ψ) over k with respect
to the Q+-gradation as

Ûk(Ψ) =
∏
α∈Q+

(U(Ψ)α ⊗Z k),

where U(Ψ)α := U(Ψ) ∩ Uα. For Ψ = ∆+, we also write Û+
k = Û+

k (A) :=
Ûk(∆+), as well as U+

α := U(∆+)α.
For each i ∈ I, the element

s∗i := exp(ad ei) exp(ad fi) exp(ad ei) ∈ Aut(U)

satisfies s∗i (Uα) = Usi(α) for all α ∈ Q. We denote by W ∗ = W ∗(A) the
subgroup of Aut(U) generated by the s∗i , i ∈ I. There is a surjective group
homomorphism

πW : W ∗ →W : s∗i 7→ si

such that for any w∗ ∈ W ∗ and any i ∈ I, the pair Eα := {w∗ei,−w∗ei}
only depends on the root α := πW (w∗)αi ∈ ∆re, that is, it is the same
for any decomposition α = πW (v∗)αj . Moreover, for any w ∈ W and
any reduced decomposition w = si1si2 . . . sik for w, the element w∗ :=
s∗i1s

∗
i2
. . . s∗ik ∈W

∗ only depends on w, and not on the choice of the reduced
decomposition for w. For each α ∈ ∆re, we make some choice of an element
eα ∈ Eα (with eαi := ei and e−αi := fi for i ∈ I), so that eα = w∗ei for
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some w∗ ∈ W ∗ and i ∈ I with α = πW (w∗)αi. Then {eα} is a Z-basis for
gα ∩ U , and we set

s∗α := exp(ad eα) exp(ad e−α) exp(ad eα) = w∗s∗i (w∗)−1 ∈W ∗.

Lemma 2.1. — The group W acts on U by bialgebras morphisms.

Proof. — Let u ∈ U and i ∈ I. Since the coproduct ∇ is an algebra
morphism, we have

∇(s∗i u) = ∇

 ∑
n1,n2,n3>0

(ad ei)(n1)(ad fi)(n2)(ad ei)(n3)u


=

∑
n1,n2,n3>0

(ad ei ⊗ 1 + 1⊗ ad ei)(n1)(ad fi ⊗ 1

+ 1⊗ ad fi)(n2)(ad ei ⊗ 1 + 1⊗ ad ei)(n3)∇(u)

=
∑

r1,r2,r3>0
s1,s2,s3>0

(
(ad ei)(r1)(ad fi)(r2)(ad ei)(r3)

⊗ (ad ei)(s1)(ad fi)(s2)(ad ei)(s3))∇(u)
= (s∗i ⊗ s∗i )∇(u),

and hence ∇s∗i = (s∗i ⊗ s∗i )∇. Since clearly εs∗i = ε for all i ∈ I, the lemma
follows. �

2.4. Minimal Kac–Moody groups

The general references for this paragraph are [29] and [24, Chapter 9]
(see also [17, Chapter 7]).

Given a GCM A = (aij)i,j∈I , we denote by GA the corresponding Tits
functor of simply connected type. As a group functor over the category
of fields, it is characterised by a small number of properties; one of them
ensures that the complex group GA(C) admits an adjoint action by au-
tomorphisms on the corresponding derived Kac–Moody algebra g = gA.
Minimal Kac–Moody groups are by definition the groups obtained by eval-
uating such Tits functors over a field k.

The minimal Kac–Moody group GA(k) can be constructed by generators
and relations, as follows. For each real root α ∈ ∆re, we let Uα denote the
affine group scheme over Z with Lie algebra gα ∩ gZ = Zeα, and we denote
by xα : Ga

∼→ Uα the isomorphism from the additive group scheme Ga to
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Uα determined by the choice of eα ∈ Eα as a Z-basis element, that is,

xα : Ga(k) = (k,+) ∼→ Uα(k) : r 7→ exp(reα) for any field k.

A pair of roots {α, β} ⊆ ∆re is called prenilpotent if there exist w,w′ ∈W
such that {wα,wβ} ⊆ ∆re

+ and {w′α,w′β} ⊆ ∆re
− . In this case, the interval

[α, β]N := (Nα+ Nβ) ∩∆re

is finite. One then defines a group functor StA, called the Steinberg functor
associated to A, such that for any field k, the group StA(k) is the quotient
of the free product of the real root groups Uγ(k), γ ∈ ∆re, by the relations

(2.1) [xα(r), xβ(s)] =
∏
γ

xγ(Cαβij r
isj)

for any r, s ∈ k and any prenilpotent pair {α, β} ⊆ ∆re,

where γ = iα+jβ runs through ]α, β[N := [α, β]N\{α, β} in some prescribed
order, and where the Cαβij are integral constants (that can be computed)
depending on α, β and on the chosen order on ]α, β[N (see [24, 9.2.2]). The
canonical homomorphisms Uγ(k) → StA(k) turn out to be injective, and
we may thus identify each Uγ(k) with its image in StA(k). There is a
W ∗-action on StA(k), defined for any w∗ ∈W ∗, r ∈ k and γ ∈ ∆re by

w∗(xγ(r)) = w∗(exp(reγ)) := exp(rw∗eγ) = xwγ(εr),

where w := πW (w∗) ∈ W and where ε ∈ {±1} corresponds to the choice
ewγ = εw∗eγ ∈ Ewγ . For any i ∈ I and r ∈ k×, we define the element

s̃i(r) := xαi(r)x−αi(r−1)xαi(r)

of StA(k) and we set s̃i := s̃i(1).
The second step of the construction is to define the split torus scheme

T = TA. Let Λ be the free Z-module whose Z-dual Λ∨ is freely generated
by {α∨i | i ∈ I}. In particular, {αi | i ∈ I} ⊆ Λ, where we view each simple
root αi as a linear functional on

∑
i∈I Cα∨i . For any field k, we set

T(k) := Homgr(Λ, k×) ∼= (k×)|I|.

The torus T(k) is then generated by the elements

rα
∨
i : Λ→ k× : λ 7→ rα

∨
i (λ) := r〈λ,α

∨
i 〉

for r ∈ k× and i ∈ I. There is a W -action on T(k), defined for any i, j ∈ I
and r ∈ k× by

si(rα
∨
j ) = rsi(α

∨
j ) = rα

∨
j −ajiα

∨
i .
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For any field k, the minimal Kac–Moody group GA(k) of simply connected
type is now defined as the quotient of the free product StA(k) ∗ T(k) by
the following relations, where i ∈ I, r ∈ k and t ∈ T(k):

t · xαi(r) · t−1 = xαi(t(αi)r),(2.2)

s̃i · t · s̃−1
i = si(t),(2.3)

s̃i(r−1) = s̃i · rα
∨
i for r 6= 0,(2.4)

s̃i · u · s̃−1
i = s∗i (u) for u ∈ Uγ(k), γ ∈ ∆re.(2.5)

We let U+(k) = U+
A (k) denote the subgroup of GA(k) generated by all

Uα(k) with α ∈ ∆re
+ . The normaliser of U+(k) in GA(k) is the standard

Borel subgroup B+(k) = T(k)nU+(k). The center ZA(k) of GA(k) is given
by

(2.6) ZA(k) =
⋂

g∈GA(k)

gB+(k)g−1 = {t ∈ T(k) | t(αi) = 1 ∀ i ∈ I}.

We let N(k) = NA(k) denote the subgroup of GA(k) generated by T(k)
and by the elements s̃i for i ∈ I. Then the assignment s̃i 7→ si for i ∈ I
induces an isomorphism N(k)/T(k) ∼= W , and (B+(k),N(k)) is a BN-pair
for GA(k).

2.5. Mathieu–Rousseau completions

The general reference for this paragraph is [28] (see also [17, §8.5]).
Let A = (aij)i,j∈I be a GCM. For each closed set Ψ ⊆ ∆+(A) of posi-

tive roots, we let UmaΨ denote the affine group scheme (viewed as a group
functor) whose algebra is the restricted dual Z[UmaΨ ] :=

⊕
α∈NΨ U(Ψ)∗α of

U(Ψ). One can then define real and imaginary root groups U(α) = UA(α) in

Uma+
A := Uma∆+

by setting U(α) := Uma{α} for α ∈ ∆re
+ and U(α) := UmaZ>0α

for α ∈ ∆im
+ .

The Mathieu–Rousseau completion GpmaA of the Tits functor GA is a
group functor, with the following properties. It contains the split torus
scheme TA, as well as the group functors Uma+

A and NA as subfunctors.
Over a field k, the identification of the real root groups Uα(k) (α ∈ ∆re

+) of
GA(k) with the corresponding real root groups U(α)(k) inGpmaA (k) produces
injections of U+

A (k) in Uma+
A (k) and of GA(k) in GpmaA (k). Again, the nor-

maliser of Uma+
A (k) in GpmaA (k) is the standard Borel subgroup Bma+(k) =

T(k) n Uma+
A (k), and (Bma+(k),N(k)) is a BN-pair for GpmaA (k).
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The group GpmaA (k) is a Hausdorff topological group, with basis of neigh-
bourhoods of the identity the normal subgroups Uman (k) (n ∈ N) of Uma+

A (k)
defined by

Uman = UmaA,n := UmaΨ(n) where Ψ(n) = {α ∈ ∆+ | ht(α) > n}.

It is topologically generated by GA(k), together with the imaginary root
groups U(α)(k), α ∈ ∆im

+ . Unlike the minimal Kac–Moody group GA(k),
the Mathieu–Rousseau completion GpmaA (k) of GA(k) is thus obtained by
not only “exponentiating” the real root spaces of the derived Kac–Moody
algebra g, but also the imaginary root spaces.
The group functor Uma+

A admits a more tractable description in terms
of root groups, which we now briefly review. We call an element x ∈ n+

Z
homogeneous if x ∈ (n+

Z )α for some α ∈ ∆+. In this case, we call deg(x) :=
α the degree of x. Given an homogeneous element x ∈ n+

Z with deg(x) = α,
we call a sequence (x[n])n∈N an exponential sequence for x if it satisfies the
following conditions:
(ES1) x[0] = 1, x[1] = x, and x[n] ∈ Unα for all n ∈ N.
(ES2) x[n] − x(n) has filtration less than n in UC(g(A)) for all n > 0.
(ES3) ∇(x[n]) =

∑
k+l=n x

[k] ⊗ x[l] and ε(x[n]) = 0 for all n > 0.
For a field k and an element λ ∈ k, one can then define the twisted expo-
nential

[exp]λx :=
∑
n>0

λnx[n] ∈ Û+
k .

Note that an exponential sequence (x[n])n∈N for x always exists and is
essentially unique, in the following sense (see [28, §2.9] or [17, Proposi-
tion 8.50]): if (x{n})n∈N is another exponential sequence for x with associ-
ated twisted exponential {exp}x, then for any given choice of exponential
sequences (y[m])m∈N for the homogeneous elements of

⊕
r>2 grαZ, there

exist (uniquely determined) elements xm ∈ gmαZ (m > 2) such that

{exp}x = [exp]x ·
∏
m>2

[exp]xm.

In particular, when α ∈ ∆re
+ , one has x[n] = x(n) = xn/n! for all n ∈ N.

The element [exp]λx satisfies ε([exp]λx) = 1 and is group-like, that is,
∇[exp]λx = [exp]λx⊗̂[exp]λx. It is moreover invertible in Û+

k , with inverse
τ [exp]λx =

∑
n>0 λ

nτx[n].

Remark 2.2. — As we will see, it is also convenient to allow x ∈ gαZ in
the definition of an exponential sequence to be zero, in which case one has
to specify α, so as to make sense of (ES1). In other words, the sequence
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(x[n])n∈N is an exponential sequence for x = 0 viewed as an element of
gαZ if it satisfies the conditions (ES1)–(ES3) for that α. Of course, in that
case, one should rather call

∑
n>0 x

[n]⊗ rn for r in some ring k the twisted
exponential of x associated to (x[n])n∈N and to r, and one should replace
the notation [exp](rx) by some other notation, such as [exp](r, x) (keeping
the notation [exp](x) for

∑
n>0 x

[n]).
By the above uniqueness statement, the exponential sequences (x[n])n∈N

for x = 0 ∈ gαZ (α ∈ ∆+) can be described as follows. Fix a choice
of exponential sequences for the homogeneous elements of

⊕
r>2 grαZ; in

particular, for y = 0 viewed as a homogeneous element of grαZ (r > 2), one
could take [exp]y := 1. Then there exist (uniquely determined) xr ∈ grαZ
(r > 2) such that [exp](x) :=

∑
n>0 x

[n] =
∏
r>2[exp](xr); conversely, any

such product defines an exponential sequence for x = 0 ∈ gαZ.

For each α ∈ ∆+, let Bα be a Z-basis of (n+
Z )α. For α ∈ ∆re

+ , we choose
Bα = {eα}. For a closed subset Ψ ⊆ ∆+, we then call BΨ = BΨ(A) :=⋃
α∈Ψ Bα a standard Z-basis of n+

Z ∩ U(Ψ). The announced description of
Uma+
A is provided by the following proposition.

Proposition 2.3 ([28, Proposition 3.2]). — Let Ψ ⊆ ∆+ be closed and
let k be a field. Then the following hold:

(1) UmaΨ (k) can be identified to the multiplicative subgroup of Ûk(Ψ)
consisting of all group-like elements of Ûk(Ψ) of constant term 1.

(2) Let BΨ be a standard Z-basis of n+
Z ∩ U(Ψ), and choose for each

x ∈ BΨ an exponential sequence. Then UmaΨ (k) ⊆ Ûk(Ψ) consists of
the products ∏

x∈BΨ

[exp]λxx

for λx ∈ k, where the product is taken in any (arbitrary) chosen
order on BΨ. The expression of an element of UmaΨ (k) in the form
of such a product is unique.

In this paper, we will always identify Uma+
A (k) with a subset of Û+

k , as in
Proposition 2.3(1). The conjugation action of the torus T(k) on Uma+

A (k)
is then given by

(2.7) t([exp]x)t−1 = [exp]t(α)x

for all t ∈ T(k) and x ∈ (n+
k )α, α ∈ ∆+. Given i ∈ I, λ ∈ k and α ∈ {±αi},

we also have a conjugation action of expλeα on Uma∆+\{α}(k) given by

(2.8) exp(λeα)u exp(−λeα) =
∑
n>0

(adλeα)(n)u
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for all u ∈ Uma∆+\{α}(k).

Lemma 2.4. — Let i ∈ I, and let x ∈ n+
Z be an homogeneous element of

degree α ∈ ∆+\{αi}. Then for any choice of exponential sequence (x[n])n∈N
for x, the sequence (s∗i x[n])n∈N is an exponential sequence for s∗i x, and we
have

s̃i([exp]x)s̃−1
i = [exp](s∗i x) ∈ Uma+

A (k)
for the corresponding twisted exponentials.

Proof. — We first prove that (s∗i x[n])n∈N is an exponential sequence
for s∗i x. Since s∗i preserves the natural gradation and filtration on U =
U(A) and maps Unα to Unsi(α) (n ∈ N), the axioms (ES1) and (ES2) are
clearly satisfied. Since moreover s∗i acts on U by bialgebra morphisms by
Lemma 2.1, the axiom (ES3) is also satisfied, as desired. The second state-
ment of the lemma follows from (2.8). �

2.6. Gabber–Kac kernel and non-density

The general reference for this paragraph is [28, Section 6] (see also [17,
§8.5–§8.6]).

Let A = (aij)i,j∈I be a GCM and k be a field. The minimal Kac–Moody
group GA(k) acts strongly transitively by simplicial automorphisms on its
positive building X+, associated to the BN-pair (B+(k),N(k)) of GA(k).
(For general background on buildings and BN-pairs, we refer the reader
to [1, Chapter 6]).
The Rémy–Ronan completion GrrA (k) of GA(k) (see [26]) is the com-

pletion of the image of GA(k) in the automorphism group Aut(X+) of
X+, where Aut(X+) is equipped with the topology of uniform convergence
on bounded sets. The BN-pair (Bma+(k),N(k)) of the Mathieu–Rousseau
completion GpmaA (k) of GA(k) yields the same building X+ (possibly with
a larger apartment system). The kernel of the action of GpmaA (k) on X+ is
given by

Z ′A :=
⋂

g∈Gpma
A

(k)

gBma+(k)g−1

and decomposes as Z ′A = ZA · (Z ′A ∩ Uma+
A (k)), where ZA = ZA(k) is the

center of GA(k). We call the intersection Z ′A ∩ Uma+
A (k) the Gabber-Kac

kernel of GpmaA (k), for reasons that will become clear in Section 2.7 below.
It can also be described as

Z ′A ∩ Uma+
A (k) =

⋂
u∈Uma+

A
(k)

uU im+u−1,
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where U im+ := Uma∆im
+

(k) is the imaginary subgroup of Uma+
A (k). Note that

if A is of indefinite type and k is of characteristic zero or is finite, the
quotient GpmaA (k)/Z ′A is simple (see [16] and [28, Theorem 6.19]).
Unlike the Rémy–Ronan completion, the Mathieu–Rousseau completion

GpmaA (k) of GA(k) is, in general, not the completion of GA(k) (in its own
topology). Note however that GA(k) is dense in GpmaA (k) as soon as the
characteristic of k is either zero or bigger than

MA := max
i 6=j
|aij |.

We denote by U+
A (k) (respectively,GA(k)) the completion of U+

A (k) (respec-
tively, GA(k)) in GpmaA (k). The completions GA(k) and GrrA (k) of GA(k)
are strongly related: there is a continuous homomorphism

ϕA : GA(k)→ GrrA (k)

with kernel Z ′A ∩GA(k) = ZA · (Z ′A ∩U
+
A (k)), which is moreover surjective

if k is finite.

2.7. GK-simplicity

The general reference for this paragraph is [28, 6.5] (see also [17, §8.6]).
Let A = (aij)i,j∈I be a GCM and k be a field. By a theorem of Gabber–

Kac (see [11, Proposition 1.7 and Theorem 9.11]), every ideal of the derived
Kac–Moody algebra g = gA intersecting the Cartan subalgebra h trivially
is reduced to {0} (at least when A is symmetrisable). Equivalently, every
graded sub-g-module of g that is contained in n+ is reduced to {0}. The Lie
algebra gk is called simple in the sense of the Gabber–Kac theorem, or sim-
ply GK-simple if every graded sub-Uk-module of gk that is contained in n+

k

is reduced to {0}. Similarly, the Kac–Moody group GpmaA (k) is called GK-
simple if every normal subgroup of GpmaA (k) that is contained in Uma+

A (k)
is reduced to {1}.
It is easy to see that the Lie algebra gk is GK-simple if and only if

for all δ ∈ ∆im
+ , any homogeneous element x ∈ gk of degree δ such that

(ad fi)(s)x = 0 for all i ∈ I and s ∈ N must be zero. By the Gabber–
Kac theorem, gk is GK-simple when A is symmetrisable and char k = 0.
When char k = p > 0, this is not true anymore: for instance, the affine
Kac–Moody algebra gk = slm(k) ⊗k k[t, t−1] is not GK-simple as soon
as p divides m. Note, however, that the corresponding Kac–Moody group
GpmaA (k) = SLm(k((t))) is GK-simple (see [28, Exemple 6.8]).
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Note that GpmaA (k) is GK-simple if and only if its Gabber–Kac kernel
Z ′A ∩ Uma+

A (k) is trivial, that is, if and only if Z ′A = ZA. If gk is GK-
simple and k is infinite, thenGpmaA (k) is GK-simple by [28, Remarque 6.9.1].
In particular, GpmaA (k) is GK-simple as soon as A is symmetrisable and
char k = 0.

3. Functoriality

In this section, given two GCM A and B, we define a family of Lie
algebra maps n+(A) → n+(B), which we call Z-regular, and which give
rise to continuous group homomorphisms Uma+

A (k) → Uma+
B (k) over any

field k. We then give concrete examples of such maps, respectively yielding
surjective and injective exponentials, as in Theorems A and E. Finally, we
show how Theorem F can be deduced using the same lines of proof.

3.1. The exponential of a Z-regular map

Definition 3.1. — Let A = (aij)i,j∈I and B be two GCM. We call a
map π : n+(A) → n+(B) Z-regular if it is a Lie algebra morphism such
that for each i ∈ I, there is some βi ∈ ∆re

+(B) with π(ei) ∈ (n+
Z (B))βi . In

this case, we denote by π : Q(A)→ Q(B) the Z-linear map defined by

π(αi) = βi ∀ i ∈ I.

Theorem 3.2. — Let k be a field, and let A = (aij)i,j∈I and B be two
GCM. Let π : n+(A) → n+(B) be Z-regular. Then there is a continuous
group homomorphism

π̂ : Uma+
A (k)→ Uma+

B (k)

such that for any nonzero homogeneous x ∈ n+
Z (A) and any choice of expo-

nential sequence for x, there is a choice of exponential sequence (π(x)[n])n∈N
for π(x) such that

(3.1) π̂([exp]λx) =
∑
n∈N

λnπ(x)[n] for all λ ∈ k.

Proof. — By assumption, there exist for each i ∈ I some real root βi ∈
∆re

+(B) and some λi ∈ Z such that

π(ei) = λieβi for all i ∈ I.
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Since e(n)
βi
∈ U+(B) for all i ∈ I and n ∈ N, the map UC(n+(A)) →

UC(n+(B)) lifting π at the level of the corresponding enveloping algebras
restricts to an algebra morphism

π1 : U+(A)→ U+(B).

Since W (B) acts on U+(B) by bialgebra morphisms (see Lemma 2.1),
we get

∇Bπ1(e(m)
i ) = λmi ∇Be

(m)
βi

= λmi
∑

r+s=m
e

(r)
βi
⊗ e(s)

βi

= (π1 ⊗ π1)
∑

r+s=m
e

(r)
i ⊗ e

(s)
i = (π1 ⊗ π1)∇Ae(m)

i

for all i ∈ I and m ∈ N, where ∇X denotes the coproduct on U+(X),
X = A,B. Hence ∇Bπ1 = (π1 ⊗ π1)∇A. Similarly, denoting by εX the co-
unit on U+(X), we have εBπ1 = εA, and hence π1 is a bialgebra morphism.

Note also that π1 preserves the natural gradations on U+(A) and U+(B),
in the sense that

(3.2) π1(U+
α (A)) ⊆ U+

π(α)(B) for all α ∈ Q+(A).

In particular, the map

U+(A)⊗Z k → U+(B)⊗Z k

obtained from π1 by extension of scalars can be further extended to a
bialgebra morphism

π2 : Û+
k (A)→ Û+

k (B)
between the corresponding completions. Finally, since π2 preserves the
group-like elements of constant term 1, it restricts to a group homomor-
phism

π̂ : Uma+
A (k)→ Uma+

B (k)
by Proposition 2.3(1).
Let now x ∈ n+

Z (A) be homogeneous of degree α ∈ ∆+(A), and choose
an exponential sequence (x[n])n∈N for x. Then y := π(x) ∈ n+

Z (B) is ho-
mogeneous of degree π(α) ∈ Q+(B). We claim that the sequence (y[n])n∈N
defined by

(3.3) y[n] := π1(x[n]) for all n ∈ N

is an exponential sequence for y (viewed as an element of degree π(α) if
y = 0, cf. Remark 2.2), so that

(3.4) π̂([exp]λx) =
∑
n∈N

λnπ(x)[n] for all λ ∈ k.
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Indeed, y[0] = 1 and y[1] = y by the corresponding properties for x. Since
π1(U+

nα(A)) ⊆ U+
nπ(α)(B) for all n ∈ N, we also have y[n] ∈ U+

nπ(α)(B) for
all n, so that the condition (ES1) is satisfied. Similarly,

y[n] − y(n) = π1(x[n])− π1(x)(n) = π1(x[n] − x(n))

has filtration less than n in UC(g(B)), because π1 preserves the natural
filtrations, yielding (ES2). Finally, (ES3) readily follows from the corre-
sponding property for x and the fact that π1 is a bialgebra morphism.
Note that (3.2) and (3.4), together with Proposition 2.3(2), imply that

(3.5) π̂(UA(α)(k)) ⊆ UB(π(α))(k) for all α ∈ ∆+(A),

where UB(π(α))(k) := {1} if π(α) /∈ ∆+(B) (see also Remark 2.2). Since
ht(π(α))→∞ as ht(α)→∞, α ∈ ∆+(A), we deduce in particular that π̂
is continuous. This concludes the proof of the theorem. �

Definition 3.3. — For a Z-regular map π : n+(A) → n+(B), we have
just proved that the unique continuous map

π̂ : Uma+
A (k)→ Uma+

B (k)

defined on the (topological) generators [exp]λx of Uma+
A (k) by the formu-

las (3.3) and (3.4) (where λ ∈ k, x ∈ n+
Z (A) is a homogeneous element, and

[exp]λx =
∑
n>0 λ

nx[n] a twisted exponential) is a group homomorphism,
which we call the exponential of π.

3.2. Surjective Z-regular maps

Lemma 3.4. — Let A = (aij)i,j∈I be a GCM, and let g(A) = g̃(A)/i
be the associated Kac–Moody algebra. Then i decomposes as a direct sum
of ideals i = i+ ⊕ i−, where i± ⊆ ñ± is generated, as an ideal of the Lie
algebra ñ±, by the elements x±ij , i, j ∈ I.

Proof. — Let i± denote the ideal of ñ± generated by the elements x±ij ,
i, j ∈ I. We claim that [fk, x+

ij ] = 0 for all i, j, k ∈ I. If k 6= i, this is clear.
For k = i, this follows from the formula

[fi, (ad ei)mej ] = m(m− 1− |aij |)(ad ei)m−1ej ,

obtained by an easy induction on m > 0. This implies that i+ is in fact an
ideal in g̃(A), and similarly for i−. In particular, i = i+⊕ i−, as desired. �
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Lemma 3.5. — Let A = (aij)i,j∈I and B = (bij)i,j∈J be two GCM such
that B 6 A. Then the assignment ei 7→ ei if i ∈ J and ei 7→ 0 otherwise
defines a surjective Lie algebra morphism

πAB : n+(A)→ n+(B)

such that π(g(A)α) = g(B)α for all α ∈ Q+(B) =
∑
i∈J Nαi ⊆ Q+(A) =∑

i∈I Nαi. In particular, πAB is Z-regular and

∆+(B) ⊆ ∆+(A).

Proof. — The assignment ei 7→ ei if i ∈ J and ei 7→ 0 otherwise defines
a surjective Lie algebra morphism π̃AB : ñ+(A) → ñ+(B), which by hy-
pothesis maps the ideal i+(A) inside the ideal i+(B). In particular, π̃AB
factors through a surjective Lie algebra morphism πAB : n+(A) → n+(B)
by Lemma 3.4. Since g(A)α is spanned by all iterated brackets [ei1 , . . . , eis ]
with αi1 + · · · + αis = α (α ∈ Q+(A)) and similarly for g(B)α, the other
claims follow. �

Theorem 3.6. — Let k be a field. Let A and B be two GCM such that
B 6 A. Let πAB : n+(A)→ n+(B) be the corresponding Z-regular map, as
in Lemma 3.5. Then the following hold:

(1) The exponential π̂AB : Uma+
A (k) → Uma+

B (k) of πAB is surjective,
continuous and open.

(2) For any closed set of roots ΨA ⊆ ∆+(A),

π̂(UmaΨA(k)) = UmaΨA∩∆+(B)(k).

In particular, π̂(UA(α)(k)) = UB(α)(k) for all α ∈ ∆+(A), where
UB(α)(k) := {1} if α /∈ ∆+(B).

Proof. — Recall that, for any closed set of roots ΨA ⊆ ∆+(A), the sub-
group UmaΨA(k) of Uma+

A (k) is topologically generated by the twisted expo-
nentials [exp]λx for λ ∈ k and x ∈ n+

Z (A) a homogeneous element of degree
in ΨA (and similarly for subgroups of Uma+

B (k)). The surjectivity of π̂AB as
well as the second statement of the theorem thus readily follow from (3.1).
In particular, π̂AB(UmaA,n(k)) = UmaB,n(k) for all n ∈ N, and hence πAB is also
open, as desired. �

Corollary 3.7. — Let k be a field. Let A and B be two GCM such
that B 6 A. Then the map π̂AB : Uma+

A (k) → Uma+
B (k) restricts to group

homomorphisms

U+
A (k)→ U+

B (k) and U+
A (k)→ U+

B (k).
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Proof. — By Lemma 3.5, we may identify ∆+(B) with a subset of
∆+(A). Since a root α is real if and only if 2α is not a root by [11, Propo-
sitions 5.1 and 5.5], we deduce that ∆re

+(A) ∩ ∆+(B) ⊆ ∆re
+(B). It then

follows from Theorem 3.6 that π̂AB(UA(α)(k)) ⊆ U+
B (k) for any α ∈ ∆re

+(A),
and hence that π̂AB restricts to a map U+

A (k)→ U+
B (k). The corresponding

statement for the completions follows from the continuity of π̂AB . �

Remark 3.8. — Let A = (aij)i,j∈I and B = (bij)i,j∈I be two GCM such
that B 6 A. Then the restriction U+

A (k) → U+
B (k) of π̂AB provided by

Corollary 3.7 is, in general, not surjective anymore. Indeed, assume for
instance that the matrices A and B are symmetric, and for X ∈ {A,B},
let ( · , · )X denote the bilinear form on Q+(X) introduced in [11, §2.1].
Thus, given α =

∑
i∈I niαi ∈ Q+(A) = Q+(B) with support J := {i ∈

I | ni 6= 0}, we have

(3.6)

(α, α)A =
∑
i,j∈I

ninjaij = 2
∑
i∈I

n2
i −

∑
i6=j

ninj |aij |

6 2
∑
i∈I

n2
i −

∑
i 6=j

ninj |bij | = (α, α)B .

Moreover, if α ∈ ∆+(X), then α ∈ ∆re
+(X) if and only if (α, α)X = 2, while

α ∈ ∆im
+ (X) if and only if (α, α)X 6 0 (see [11, Propositions 3.9 and 5.2]).

In particular, if aij 6= bij for some i, j in the support J of the real root
α ∈ ∆re

+(A), then α /∈ ∆+(B), because (α, α)A < (α, α)B by (3.6). Hence
in that case the real root group UA(α)(k) is in the kernel of π̂AB . For instance,
if A = ( 2 −a

−a 2 ) and B = ( 2 −b
−b 2 ) with b < a, then π̂AB(UAα (k)) = {1} for

all α ∈ ∆re
+(A) \ {α1, α2}. Thus, in that case, π̂AB(U+

A (k)) is the subgroup
of U+

B (k) generated by the real root groups UBα1
(k) and UBα2

(k) associated
to the simple roots.

3.3. Injective Z-regular maps

Lemma 3.9. — Let B be a GCM, and let {βi | i ∈ I} be a finite subset
of ∆re

+(B) such that βi − βj /∈ ∆(B) for all i, j ∈ I. Then the matrix A :=
(βj(β∨i ))i,j∈I is a GCM. Moreover, the assignment ei 7→ eβi , fi 7→ e−βi for
all i ∈ I defines a Lie algebra morphism π : gA → gB .

Proof. — Let π̃ be the Lie algebra morphism from the free complex Lie
algebra on the generators {ei, fi | i ∈ I} to gB defined by the assignment
ei 7→ eβi , fi 7→ e−βi for all i ∈ I. Since βj − βi /∈ ∆(B) for all i, j ∈ I,
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we deduce from [11, Corollary 3.6] that βj(β∨i ) 6 0, so that A is indeed a
GCM. Moreover,

[eβi , e−βj ] = 0 for all i, j ∈ I with i 6= j.

Similarly, since si(βj − βi) = (|βj(β∨i )|+ 1)βi + βj /∈ ∆(B), we have

(ad e±βi)|βj(β
∨
i )|+1e±βj = 0 for all i, j ∈ I with i 6= j.

Finally, the elements β∨i = [e−βi , eβi ] of gB (i ∈ I) satisfy

[β∨i , β∨j ] = 0 and [β∨i , e±βj ] = ±βj(β∨i )e±βj
for all i, j ∈ I. Hence all the defining relations of gA = [g(A), g(A)] (see
Section 2.2) lie in the kernel of π̃, so that π̃ factors through a Lie algebra
morphism π : gA → gB . �

Theorem 3.10. — Let k be a field, B a GCM, and let {βi | i ∈ I} be a
linearly independent finite subset of ∆re

+(B) such that βi−βj /∈ ∆(B) for all
i, j ∈ I. Let A := (βj(β∨i ))i,j∈I be the corresponding GCM, and consider
the Z-regular map π : n+(A) → n+(B) : ei 7→ eβi . Then the following
holds:

(1) The kernel of the exponential π̂ : Uma+
A (k)→ Uma+

B (k) of π is a nor-
mal subgroup of GpmaA (k). In particular, if GpmaA (k) is GK-simple,
then π̂ is injective.

(2) The restriction of π̂ to U+
A (k) extends to continuous group homo-

morphisms

GA(k)→ GB(k) and GA(k)→ GB(k)

with kernels respectively contained in ZA(k) and ZA(k) · (Z ′A ∩
U+
A (k)). Here, we view GA(k) and GB(k) as subgroups of GpmaA (k)

and GpmaB (k) respectively, with the induced topology.

Proof. — By Lemma 3.9, the Z-regular map π extends to a Lie algebra
morphism

gA → gB : ei 7→ eβi , fi 7→ e−βi .

Since e(n)
±βi ∈ U(B) for all i ∈ I and n ∈ N, this then yields a Z-algebra

morphism U(A)→ U(B), which in turn extends to a k-algebra morphism

π1 : Uk(A)→ Uk(B).

Note that the Z-linear map

π : Q(A)→ Q(B) : αi 7→ βi

induced by π is injective because the βi are linearly independent. Set K :=
ker π̂, where π̂ is the exponential of π (see Definition 3.3).
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Choose a Z-basis B of n+
Z (A), as well as exponential sequences for the

elements of B. Choose also exponential sequences for the elements π(x) ∈
n+
Z (B), x ∈ B, as in Theorem 3.2, so that for any y =

∏
x∈B [exp]λxx ∈

Uma+
A (k) we have

π̂(y) =
∏
x∈B

[exp]λxπ(x) ∈ Uma+
B (k).

Thus, if y ∈ K, then for any i ∈ I the component of degree βi of∏
x∈B [exp]λxπ(x) ∈ Û+

k must be zero. Since π is injective and π(ei) =
eβi 6= 0, this implies that λei = 0. Hence K ⊆ Uma∆+\{αi|i∈I}(k).
For each real root α and each r ∈ k×, we set

s∗α(r) := exp(ad reα) exp(ad r−1e−α) exp(ad reα) ∈ Aut(Uk),

so that s∗α = s∗α(1) (cf. Section 2.3). For any i ∈ I and r ∈ k×, any
homogeneous x ∈ n+

k (A) of degree α 6= αi and any choice of exponential
sequence (x[n])n∈N for x, we deduce from (2.8) that

π̂
(
s̃i(r)([exp]x)s̃i(r)−1) = π̂

(∑
n>0

s∗αi(r)x
[n]

)
=
∑
n>0

π1
(
s∗αi(r)x

[n])
=
∑
n>0

s∗βi(r)π1
(
x[n]) = s∗βi(r)

(
π̂([exp]x)

)
.

In particular, s̃i(r)K s̃i(r)−1 ⊆ K for any i ∈ I and r ∈ k×. Since the torus
T(k) is generated by {

s̃−1
i s̃i(r) | i ∈ I, r ∈ k×

}
(see Section 2.4), we deduce that NA(k) ⊆ GpmaA (k) normalises K. As
GpmaA (k) is generated by Uma+

A (k) and NA(k), we conclude that K is a
normal subgroup of GpmaA (k), proving (1).
We now turn to the proof of (2). Let X ∈ {A,B}, and let IX denote

the indexing set of X. Given w ∈ W (X) and a reduced decomposition
w = si1si2 . . . sik for w, we write

w∗ := s∗i1s
∗
i2 . . . s

∗
ik
∈W ∗

and
w̃ := s̃i1 s̃i2 . . . s̃ik ∈ NX(k) ⊆ StX(k).

We recall that w∗ depends only on w. Similarly, the coset w̃TX(k) is
uniquely determined by w. The relations (2.3) and (2.5) in GX(k) respec-
tively imply that

(3.7) w̃ · t · w̃−1 = w(t) for any t ∈ TX(k)
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and

(3.8) w̃ · u · w̃−1 = w∗(u) for any u ∈ StX(k).

Moreover, in view of the relations (2.4), the torus TX(k) is generated by
the elements

(3.9) rα
∨
i = s̃−1

i s̃i(r−1) for all r ∈ k× and i ∈ IX .

For each positive real root γ ∈ ∆re
+(X), we fix some wγ ∈W (X) and some

iγ ∈ IX such that γ = wγαiγ (with the choice wγ = 1 if γ = αi), and we
choose the basis elements eγ ∈ Eγ and e−γ ∈ E−γ so that eγ = w∗γeiγ and
e−γ = w∗γfiγ . To lighten the notation, we will also write wj := wβj ∈W (B)
and σj := iβj for all j ∈ IA, so that

βi = wiασi and e±βi = w∗i e±ασi for all i ∈ IA.

Defining for all γ ∈ ∆re
+(X) the reflection

sγ : Q(X)→ Q(X) : λ 7→ λ− 〈λ, γ∨〉 γ,

we then have sγ = wγsiγw
−1
γ ∈ W (X). We will also view sγ as acting on

the coroot lattice Q∨(X) =
∑
i∈IX Zα∨i by

sγ : Q∨(X)→ Q∨(X) : h 7→ h− 〈γ, h〉 γ∨.

We define the map

π̃ : TA(k) ∗
(
∗

γ∈∆re(A)
Uγ(k)

)
→ GB(k) :

x±αi(r) 7→ x±βi(r),
{
rα
∨
i 7→ π̃(s̃−1

i s̃i(r−1))
x±γ(r) 7→ π̃(w̃γx±αiγ (r)w̃−1

γ )

on the free product of TA(k) with all real root groups Uγ(k), and we prove
that π̃ factors through a group homomorphism GA(k)→ GB(k). Note first
that

(3.10)
π̃(s̃i(r)) = π̃(xαi(r)x−αi(r−1)xαi(r))

= xβi(r)x−βi(r−1)xβi(r) = w∗i (s̃σi(r))

for all r ∈ k× and i ∈ IA. In particular, we deduce from (3.8) that

(3.11) π̃(s̃i) = w∗i (s̃σi) = w̃is̃σiw̃
−1
i ∈ NB(k) for all i ∈ IA.

Hence for any γ ∈ ∆re
+ and r ∈ k, we have

(3.12)
π̃(x±γ(r)) = π̃(w̃γx±αiγ (r)w̃−1

γ )

= w̃πγx±βiγ (r)(w̃πγ )−1 = wπ∗γ (x±βiγ (r)),
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where
w̃πγ := w∗i1(s̃σi1 ) . . . w∗ik(s̃σik ) ∈ NB(k)

and
wπ∗γ := s∗βi1 . . . s

∗
βik
∈W ∗(B)

for some prescribed reduced decomposition wγ = si1 . . . sik of wγ ∈W (A).
Finally, using (3.7), (3.8), (3.9) and (3.10), we see that the restriction of π̃
to TA(k) is given for all r ∈ k× and i ∈ IA by

(3.13)
π̃(rα

∨
i ) = π̃(s̃−1

i s̃i(r−1)) = w∗i (s̃−1
σi s̃σi(r

−1))

= w̃i · rα
∨
σi · w̃−1

i = wi(rα
∨
σi ) = rwiα

∨
σi = rβ

∨
i .

We are now ready to prove that the image by π̃ of the relations (2.1),
(2.2), (2.3), (2.4) and (2.5) defining GA(k) are still satisfied in GB(k). Ob-
serve first that π̃ and π̂ coincide on U+

A (k). Indeed, this follows from (3.12)
and the fact that for any γ ∈ ∆re

+(A) and any r ∈ k,

π̂(xγ(r)) = π̂(exp reγ) = exp rπ(eγ)
= exp rπ1(w∗γeiγ ) = exp rwπ∗γ eβiγ

= wπ∗γ (xβiγ (r)).

In particular, the image by π̃ of the relations (2.1) are satisfied in GB(k)
for any prenilpotent pair {α, β} ⊆ ∆re

+(A) of positive real roots (and hence
also of negative real roots by symmetry). Let now {α, β} ⊆ ∆re(A) be
a prenilpotent pair of roots of opposite sign, say α ∈ ∆re

+(A) and β ∈
∆re
−(A). Then there exists some w ∈ W such that {wα,wβ} ⊆ ∆re

+(A).
Up to modifying ewα and ewβ by their opposite, we may then assume that
weα = ewα and weβ = ewβ (note that {α, β} 6= {wα,wβ} ⊆ ∆re

+(A)).
Hence wwαeiα = ewα and we may thus assume, up to modifying wwα, that
wwαw

−1
α = w. Set

wπ∗ := wπ∗wα(wπ∗α )−1.

Consider the relation

[xα(r), xβ(s)] =
∏
γ

xγ(Cαβij r
isj)

in GA(k) for some r, s ∈ k, where γ = iα + jβ runs, as in (2.1), through
the interval ]α, β[N. For each γ ∈ ]α, β[N, let εγ ∈ {±1} be such that
ewγ = εγw

∗eγ . Note that w
(
]α, β[N

)
= ]wα,wβ[N. We have

[xwα(r), xwβ(s)] = w∗([xα(r), xβ(s)])

= w∗
(∏

γ

xγ(Cαβij r
isj)

)
=
∏
γ

xwγ(εγCαβij r
isj),
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so that Cwα,wβij = εiα+jβC
αβ
ij for all i, j.

It then follows from (3.12) that
π̃([xα(r), xβ(s)])

= π̃((w∗)−1([xwα(r), xwβ(s)])) = (wπ∗)−1π̃([xwα(r), xwβ(s)])

= (wπ∗)−1π̂([xwα(r), xwβ(s)])

= (wπ∗)−1π̂

(∏
γ

xwγ(Cwα,wβij risj)
)

= (wπ∗)−1π̃

(∏
γ

xwγ(εγCαβij r
isj)

)

= (wπ∗)−1π̃w∗

(∏
γ

xγ(Cαβij r
isj)

)
= π̃

(∏
γ

xγ(Cαβij r
isj)

)
,

so that the relations (2.1) are indeed satisfied.
We next check (2.2). Let t = rα

∨
j ∈ TA(k) for some r ∈ k× and some

j ∈ IA, and let s ∈ k and i ∈ IA. We then deduce from (3.13) and the
relations (2.2), (3.7) and (3.8) in GB(k) that

π̃(t · xαi(s) · t−1) = rβ
∨
j w∗i (xασi (s))r

−β∨j

= w∗i
(
rw
−1
i
β∨j xασi (s)r

−w−1
i
β∨j
)

= w∗i
(
xασi (r

〈wiασi ,β
∨
j 〉s)

)
= π̃

(
xαi(r〈βi,β

∨
j 〉s)

)
= π̃(xαi(t(αi)s)).

To check (2.3), let again t = rα
∨
j ∈ TA(k) for some r ∈ k× and some

j ∈ IA, and let i ∈ IA. We then deduce from (3.11), (3.13) and the rela-
tions (2.3) in GB(k) that

π̃(s̃its̃−1
i ) = w∗i

(
s̃σir

w−1
i
β∨j s̃−1

σi

)
= w∗i

(
rsσiw

−1
i
β∨j
)

= rwisσiw
−1
i
β∨j = rsβiβ

∨
j = rβ

∨
j −〈βi,β

∨
j 〉β

∨
i

= π̃
(
rα
∨
j −〈βi,β

∨
j 〉α

∨
i
)

= π̃
(
rsiα

∨
j
)

= π̃(si(t)).

Since (2.4) and (2.5) are an immediate consequence of the definition of
π̃, we conclude that π̃ factors through a group homomorphism

π̃ : GA(k)→ GB(k),

which is continuous because it coincides with the continuous group ho-
momorphism π̂ on U+

A (k). In particular, it extends to a continuous group
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homomorphism π̃ : GA(k) → GB(k) coinciding with π̂ on U+
A (k). It thus

remains to show that ker π̃ ⊆ ZA(k) and ker π̃ ⊆ Z ′A ∩ GA(k) = ZA(k) ·
(Z ′A ∩ U

+
A (k)).

Note that π̃(U+
A (k)) = π̂(U+

A (k)) ⊆ U+
B (k). Similarly, (3.11) and (3.13)

respectively imply that

π̃(NA(k)) ⊆ NB(k) and π̃(TA(k)) ⊆ TB(k).

Let g ∈ ker π̃. The Bruhat decomposition

GA(k) =
⋃̇

w∈W (A)
B+(k)w̃B+(k)

for GA(k) implies that g = b1w̃b2 for some w ∈ W (A) and some b1, b2 ∈
B+(k). Hence

π̃(g) = π̃(b1)π̃(w̃)π̃(b2) = 1,

so that the Bruhat decomposition for GB(k) implies that π̃(w̃) = 1. We
claim that for any reduced decomposition w = si1 . . . sik with k > 1, the
element wπ := sβi1 . . . sβik ∈ W (B) is nontrivial. Indeed, for any i ∈ IA
and λ ∈ Q(A), we have

π(si(λ)) = π(λ)− 〈λ, α∨i 〉βi = π(λ)− 〈π(λ), β∨i 〉βi = sβi(π(λ)).

In particular, π(w(λ)) = wπ(π(λ)) for all λ ∈ Q(A). Since π is injective,
the claim follows.
This shows that w̃ ∈ TA(k), and hence that ker π̃ ⊆ B+(k). Therefore,

ker π̃ ⊆
⋂

h∈GA(k)

hB+(k)h−1 = ZA(k).

The same argument (using the Bruhat decompositions in GpmaA (k) and
GpmaB (k)) yields ker π̃ ⊆ Z ′A, as desired. This concludes the proof of the
theorem. �

Remark 3.11. — Note that the map π̃ : GA(k) → GB(k) provided by
Theorem 3.10 maps ZA(k) into ZB(k). Indeed, recall from (2.6) that
ZA(k) = {t ∈ TA(k) | t(αj) = 1 ∀ j ∈ I} (and similarly for ZB(k)).
Hence, if we write t ∈ TA(k) as a product t =

∏
i∈I r

α∨i
i for some ri ∈ k×,

then t ∈ ZA(k) if and only if
∏
i∈I r

〈αj ,α∨i 〉
i = 1 for all j ∈ I (and similarly

for t ∈ TB(k), with αi replaced by βi). Since 〈αj , α∨i 〉 = 〈βj , β∨i 〉 for all
i, j ∈ I, the claim then follows from (3.13).

In particular, π̃ induces a continuous injective group homomorphism

GA(k)/ZA(k)→ GB(k)/ZB(k).
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Example 3.12. — Let k be a field and let a ∈ N with a > 2. We define
recursively the sequence (an)n∈N by a0 := a and an+1 := an(a2

n − 3). For
each n ∈ N, consider the GCM An = ( 2 −an

−an 2 ). By Theorem 3.6, the
assignment ei 7→ ei, i = 1, 2, defines surjective group homomorphisms

πn : Uma+
An+1

(k)→ Uma+
An

(k).

Similarly, by Theorem 3.10, the assignment ei 7→ eβi , i = 1, 2, where β1 =
s1α2 and β2 = s2α1, defines group homomorphisms

ιn : Uma+
An+1

(k)→ Uma+
An

(k),

which are moreover injective if the corresponding Kac–Moody groups are
GK-simple. Indeed, this follows from the fact that

β1(β∨2 ) = 〈s1α2, s2α
∨
1 〉 = 〈anα1 + α2, α

∨
1 + anα

∨
2 〉

= 3an − a3
n = −an+1,

and similarly for β2(β∨1 ). Thus, we get two projective systems

. . .
πn+1−→ Uma+

An+1
(k) πn−→ Uma+

An
(k) . . . π1−→ Uma+

A1
(k) π0−→ Uma+

A0
(k)

. . .
ιn+1−→ Uma+

An+1
(k) ιn−→ Uma+

An
(k) . . . ι1−→ Uma+

A1
(k) ι0−→ Uma+

A0
(k).

The projective limit of the first system should be, in some sense to be made
precise, the group Uma+

A∞
(k) associated to the matrix A∞ = ( 2 −∞

−∞ 2 ) and
with corresponding Lie algebra n+(A∞) = ñ+ freely generated by e1, e2 (see
also [12, Remark on page 55]). The projective limit of the second system is
trivial.

Remark 3.13. — If B is a GCM of affine type, then every subsystem
{βi | i ∈ I} ⊆ ∆(B) as in Theorem 3.10 yields a GCM A = (βi(β∨j ))i,j∈I
all whose factors are of finite or affine type. For instance, the case a = 2 in
Example 3.12 together with Theorem 3.10 show that for the affine matrix
B = ( 2 −2

−2 2 ), the Kac–Moody group GB(k)/ZB(k) embeds properly into
itself. Note that, at the algebraic level, GB(k) = SL2(k[t, t−1]) and the
maps k[t, t−1] → k[t, t−1] : t 7→ tm (m > 2) provide examples of such
embeddings.
By constrast, as soon as B is of indefinite type, Example 3.12 shows

that there exist GCM A = ( 2 −m
−n 2 ) with m,n arbitrarily large such that

GA(k)/ZA(k) embeds into GB(k)/ZB(k).
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3.4. Simply laced covers

A GCM A is called simply laced if every off-diagonal entry of A is either
0 or −1. Equivalently, A is simply laced if its Dynkin diagram D(A) is a
graph with only simple (unoriented, unlabelled) edges (see [11, §4.7]).
Let A = (aij)i,j∈I be a symmetrisable GCM. A simply laced cover of

A is a simply-laced GCM B whose Dynkin diagram D(B) has ni vertices
α(i,1), . . . , α(i,ni) for each simple root αi ∈ ∆(A) (where the ni are some
positive integers), and such that each α(i,r) is connected in D(B) to exactly
|aji| of the vertices α(j,1), . . . , α(j,nj) for j 6= i, and to none of the other
vertices α(i,s). Such simply laced covers B of A always exist, but are in
general non-unique (if one restricts to those of minimal rank). For more
details about simply laced covers, we refer to [10, §2.4].
Given a simply laced cover B of A as above, we write the indexing set J

of B as the set of couples

J = {(i, j) | i ∈ I, 1 6 j 6 ni}.

In particular, we denote by e(i,j) and e−(i,j) := f(i,j) the Chevalley genera-
tors of gB , by s(i,j) the simple reflections generating W (B), and so on. For
a field k, and elements i ∈ I and r ∈ k, we also set for short

x±(i,·)(r) :=
ni∏
j=1

x±α(i,j)(r) ∈ GB(k),

s̃(i,·)(r) := x(i,·)(r)x−(i,·)(r−1)x(i,·)(r) =
ni∏
j=1

s̃(i,j)(r) ∈ GB(k),

as well as

s(i,·) :=
ni∏
j=1

s(i,j) ∈W (B), s̃(i,·) := s̃(i,·)(1) ∈ NB(k)

and

s∗(i,·) :=
ni∏
j=1

s∗(i,j) ∈W
∗(B).

Note that each of the above four products (indexed by j) consists of pairwise
commuting factors. For i ∈ I, we also set

e±(i,·) :=
ni∑
j=1

e±(i,j) ∈ gB , α(i,·) :=
ni∑
j=1

α(i,j) ∈ Q(B)
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and

α∨(i,·) :=
ni∑
j=1

α∨(i,j) ∈ Q
∨(B).

Then for all i, j ∈ I and m ∈ {1, . . . , nj},

〈α(j,m), α
∨
(i,·)〉 = aij .

The following lemma is extracted from [10, §2.4]; we give here a more
detailed proof.

Lemma 3.14. — Let A = (aij)i,j∈I be a symmetrisable GCM, and let B
be a simply laced cover of A as above. Then the assignment e±αi 7→ e±(i,·)
for i ∈ I defines an injective Lie algebra morphism π : gA → gB .

Proof. — We proceed as in the proof of Lemma 3.9. Let π̃ be the Lie
algebra morphism from the free complex Lie algebra on the generators
{e±αi |i ∈ I} to gB defined by the assignment e±αi 7→ e±(i,·) for i ∈ I.
Since α(j,·) − α(i,·) /∈ ∆(B) for all i, j ∈ I, we have

[e(i,·), e−(j,·)] = 0 for all i, j ∈ I with i 6= j.

Similarly,

(ad e±(i,·))|aij |+1e±(j,·)

=
∑

r1+···+rni=|aij |+1

(
|aij |+ 1
r1, . . . , rni

)
(ad e±(i,1))r1 . . .

(ad e±(i,ni))
rni e±(j,·) = 0

for all i, j ∈ I with i 6= j. Indeed, each homogeneous component of
(ad e±(i,·))|aij |+1e±(j,·) has degree of the form α := ±(αj,m+

∑ni
s=1 rsα(i,s))

for some m ∈ {1, . . . , nj} and some rs ∈ N with
∑ni
s=1 rs = |aij | + 1. On

the other hand, since
s(i,·)α(i,s) = −α(i,s)

and

s(i,·)α(j,m) = α(j,m) −
ni∑
s=1
〈α(j,m), α

∨
(i,s)〉α(i,s) = α(j,m) + α[i]

for some α[i] ∈
∑ni
s=1 Nα(i,s) of height |aij |, we have

s(i,·)α = ±(αj,m + α[i] −
ni∑
s=1

rsα(i,s)) = ±(αj,m + α′[i])

for some α′[i] ∈
∑ni
s=1 Zα(i,s) of height −1. Hence s(i,·)α (and thus also α)

cannot be a root, yielding the claim.
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Finally, the elements α∨(i,·) = [e−(i,·), e(i,·)] of gB (i ∈ I) satisfy

[α∨(i,·), α∨(j,·)] = 0

and

[α∨(i,·), e±(j,·)] =
nj∑
m=1

[α∨(i,·), e±(j,m)] =
nj∑
m=1
±aije±(j,m)

= ±aije±(j,·)

for all i, j ∈ I. Hence all the defining relations of gA = [g(A), g(A)] (see
Section 2.2) lie in the kernel of π̃, so that π̃ factors through a Lie algebra
morphism π : gA → gB .
For the injectivity, note that kerπ intersects the Cartan subalgebra of gA

trivially. Hence kerπ = {0} by the Gabber–Kac theorem (see Section 2.7),
as desired. �

The proof of the following theorem follows the lines of the proof of The-
orems 3.2 and 3.10. We prefer, however, to repeat the arguments, as a
common treatment of these results would necessitate very cumbersome no-
tation.

Theorem 3.15. — Let k be a field and A = (aij)i,j∈I be a symmetris-
able GCM. Let B be a simply laced cover of A, and let π : gA → gB be the
embedding provided by Lemma 3.14. Then the following holds:

(1) There is a continuous group morphism π̂ : Uma+
A (k) → Uma+

B (k)
such that for all r ∈ k, i ∈ I and γ ∈ ∆re

+(A) \ {αi},

π̂(xαi(r)) = x(i,·)(r)

and
π̂(s̃i · xγ(r) · s̃−1

i ) = s̃(i,·) · π̂(xγ(r)) · s̃−1
(i,·).

(2) The restriction of π̂ to U+
A (k) extends to continuous group homo-

morphisms

GA(k)→ GB(k) and GA(k)→ GB(k)

with kernels respectively contained in ZA(k) and ZA(k) · (Z ′A ∩
U+
A (k)). Here, we view GA(k) and GB(k) as subgroups of GpmaA (k)

and GpmaB (k) respectively, with the induced topology.

Proof. — For i ∈ I and a multi-index m = (m1, . . . ,mni) ∈ Nni , we
write

|m| :=
ni∑
j=1

mj and e
(m)
±(i,·) :=

ni∏
j=1

e
(mj)
±(i,j) ∈ U(B).
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Note that the e±(i,j) pairwise commute (for i fixed). Since for any i ∈ I

and n ∈ N,

e
(n)
±(i,·) =

(
ni∑
j=1

e±(i,j)

)(n)

=
∑
|m|=n

e
(m)
±(i,·) ∈ U(B)

and since π(
∑
i∈I Zα∨i ) ⊆

∑
i∈I
∑ni
j=1 Zα∨(i,j), the map UC(gA) → UC(gB)

lifting π at the level of the corresponding enveloping algebras restricts to
an algebra morphism

π1 : U(A)→ U(B).
Moreover, for any i ∈ I and n ∈ N,

∇Bπ1
(
e

(n)
i

)
= ∇Be(n)

(i,·) =
∑
|m|=n

∇Be(m)
(i,·)

=
∑
r+s=n

∑
|r|=r

∑
|s|=s

e
(r)
(i,·) ⊗ e

(s)
(i,·) =

∑
r+s=n

e
(r)
(i,·) ⊗ e

(s)
(i,·)

= (π1 ⊗ π1)∇Ae(n)
i .

Since clearly εBπ1 = εA, we deduce that the restriction of π1 to U+(A) is
a bialgebra morphism.
Note also that π1 preserves the N-gradations on U+(A) and U+(B) in-

duced by ht: Q+ → N. In particular, the map

U+(A)⊗Z k → U+(B)⊗Z k

obtained from π1 by extension of scalars can be further extended to a
bialgebra morphism

π2 : Û+
k (A)→ Û+

k (B)
between the corresponding completions. Finally, since π2 preserves the
group-like elements of constant term 1, it restricts to a group homomor-
phism

π̂ : Uma+
A (k)→ Uma+

B (k)
by Proposition 2.3(1), which is moreover continuous because π2 preserves
the N-gradations on Û+

k (A) and Û+
k (B).

Let now i ∈ I and r ∈ k. By definition,

π̂(xαi(r)) = π2

(∑
n>0

rne
(n)
i

)
=
∑
n>0

rne
(n)
(i,·)

=
∑
n>0

∑
|m|=n

rne
(m)
(i,·) =

ni∏
j=1

exp re(i,j) = x(i,·)(r).
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Moreover, since for any u ∈ U(A),

π1
(
(exp ad e±αi)(u)

)
= π1

(∑
n>0

∑
r+s=n

(−1)re(r)
±αiue

(s)
±αi

)
=
∑
n>0

∑
r+s=n

∑
|r|=r

∑
|s|=s

(−1)re(r)
±(i,·)π1(u)e(s)

±(i,·)

=
(

ni∏
j=1

exp ad e±(i,j)

)
(π1(u)),

so that
π1(s∗i u) = s∗(i,·)π1(u),

we deduce from the relations (2.5) that for any γ ∈ ∆re
+(A) \ {αi},

π̂(s̃i · xγ(r) · s̃−1
i ) = π̂

(∑
n>0

rns∗i e
(n)
γ

)
=
∑
n>0

rnπ1
(
s∗i e

(n)
γ

)
=
∑
n>0

rns∗(i,·)π1
(
e(n)
γ

)
= s∗(i,·)π̂(xγ(r))

= s̃(i,·) · π̂(xγ(r)) · s̃−1
(i,·).

This concludes the proof of (1).
We now turn to the proof of (2). Let X ∈ {A,B}, and let IX denote

the indexing set of X. Given w ∈ W (X) and a reduced decomposition
w = si1si2 . . . sik for w, we write

(3.14)
w∗ := s∗i1s

∗
i2 . . . s

∗
ik
∈W ∗ and

w̃ := s̃i1 s̃i2 . . . s̃ik ∈ NX(k) ⊆ StX(k).

For each positive real root γ ∈ ∆re
+(X), we fix some wγ ∈ W (X) and

some iγ ∈ IX such that γ = wγαiγ (with the choice wγ = 1 if γ = αi), and
we choose the basis elements eγ ∈ Eγ and e−γ ∈ E−γ so that eγ = w∗γeiγ
and e−γ = w∗γfiγ .
We define the map

π̃ : TA(k) ∗
(
∗

γ∈∆re(A)
Uγ(k)

)
→ GB(k) :

x±αi(r) 7→ x±(i,·)(r),
{
rα
∨
i 7→ π̃(s̃−1

i s̃i(r−1))
x±γ(r) 7→ π̃(w̃γx±αiγ (r)w̃−1

γ )

on the free product of TA(k) with all real root groups Uγ(k), and we prove
that π̃ factors through a group homomorphism GA(k)→ GB(k). Note first
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that

(3.15)
π̃(s̃i(r)) = π̃(xαi(r)x−αi(r−1)xαi(r))

= x(i,·)(r)x−(i,·)(r−1)x(i,·)(r) = s̃(i,·)(r)

for all r ∈ k× and i ∈ IA. In particular,

(3.16) π̃(s̃i) = s̃(i,·) ∈ NB(k) for all i ∈ IA.

Hence for any γ ∈ ∆re
+ and r ∈ k, we have

(3.17)
π̃(x±γ(r)) = π̃(w̃γx±αiγ (r)w̃−1

γ ) = w̃πγx±(iγ ,·)(r)(w̃
π
γ )−1

= wπ∗γ (x±(iγ ,·)(r)),

where
w̃πγ := s̃(i1,·) . . . s̃(ik,·) ∈ NB(k)

and
wπ∗γ := s∗(i1,·) . . . s

∗
(ik,·) ∈W

∗(B)
for some prescribed reduced decomposition wγ = si1 . . . sik of wγ ∈W (A).
Finally, using (3.15) and the relations (2.4) in GB(k), we see that the
restriction of π̃ to TA(k) is given for all r ∈ k× and i ∈ IA by

(3.18)

π̃(rα
∨
i ) = π̃(s̃−1

i s̃i(r−1)) = s̃−1
(i,·)s̃(i,·)(r−1)

=
ni∏
j=1

(
s̃−1

(i,j)s̃(i,j)(r−1)
)

=
ni∏
j=1

rα
∨
(i,j) = rα

∨
(i,·) .

We are now ready to prove that the image by π̃ of the relations (2.1),
(2.2), (2.3), (2.4) and (2.5) defining GA(k) are still satisfied in GB(k).
Observe first that π̃ and π̂ coincide on U+

A (k) by (3.16) and the first state-
ment of the theorem. In particular, the image by π̃ of the relations (2.1)
are satisfied in GB(k) for any prenilpotent pair {α, β} ⊆ ∆re

+(A) of pos-
itive real roots (and hence also of negative real roots by symmetry). Let
now {α, β} ⊆ ∆re(A) be a prenilpotent pair of roots of opposite sign,
say α ∈ ∆re

+(A) and β ∈ ∆re
−(A). Then there exists some w ∈ W such

that {wα,wβ} ⊆ ∆re
+(A). Up to modifying ewα and ewβ by their oppo-

site, we may then assume that weα = ewα and weβ = ewβ (note that
{α, β} 6= {wα,wβ} ⊆ ∆re

+(A)). Hence wwαeiα = ewα and we may thus
assume, up to modifying wwα, that wwαw−1

α = w. Set

wπ∗ := wπ∗wα(wπ∗α )−1.

Consider the relation

[xα(r), xβ(s)] =
∏
γ

xγ(Cαβij r
isj)
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in GA(k) for some r, s ∈ k, where γ = iα + jβ runs, as in (2.1), through
the interval ]α, β[N. For each γ ∈ ]α, β[N, let εγ ∈ {±1} be such that
ewγ = εγw

∗eγ . Note that w
(
]α, β[N

)
= ]wα,wβ[N. We have

[xwα(r), xwβ(s)] = w∗([xα(r), xβ(s)]) = w∗

(∏
γ

xγ(Cαβij r
isj)

)
=
∏
γ

xwγ(εγCαβij r
isj),

so that Cwα,wβij = εiα+jβC
αβ
ij for all i, j. It then follows from (3.17) that

π̃([xα(r), xβ(s)])

= π̃((w∗)−1([xwα(r), xwβ(s)])) = (wπ∗)−1π̃([xwα(r), xwβ(s)])

= (wπ∗)−1π̂([xwα(r), xwβ(s)])

= (wπ∗)−1π̂

(∏
γ

xwγ(Cwα,wβij risj)
)

= (wπ∗)−1π̃

(∏
γ

xwγ(εγCαβij r
isj)

)

= (wπ∗)−1π̃w∗

(∏
γ

xγ(Cαβij r
isj)

)
= π̃

(∏
γ

xγ(Cαβij r
isj)

)
,

so that the relations (2.1) are indeed satisfied.
We next check (2.2). Let t = rα

∨
j ∈ TA(k) for some r ∈ k× and some

j ∈ IA, and let s ∈ k and i ∈ IA. We then deduce from (3.18) and the
relations (2.2) in GB(k) that

π̃(t · xαi(s) · t−1) = rα
∨
(j,·)x(i,·)(s)r−α

∨
(j,·) =

ni∏
m=1

(
rα
∨
(j,·)x(i,m)(s)r−α

∨
(j,·)
)

=
ni∏
m=1

x(i,m)
(
r〈α(i,m),α

∨
(j,·)〉s

)
=

ni∏
m=1

x(i,m)(rajis)

= x(i,·)(t(αi)s) = π̃(xαi(t(αi)s)).
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To check (2.3), let again t = rα
∨
j ∈ TA(k) for some r ∈ k× and some

j ∈ IA, and let i ∈ IA. We then deduce from (3.16), (3.18) and the rela-
tions (2.3) in GB(k) that

π̃(s̃its̃−1
i ) = s̃(i,·)r

α∨(j,·) s̃−1
(i,·) = s(i,·)(rα

∨
(j,·)) = rs(i,·)(α

∨
(j,·))

= rα
∨
(j,·)−

∑ni

m=1
〈α(i,m),α

∨
(j,·)〉α

∨
(i,m) = rα

∨
(j,·)−ajiα

∨
(i,·)

= π̃
(
rα
∨
j −ajiα

∨
i
)

= π̃(rsi(α
∨
j ))

= π̃(si(t)).

Since (2.4) and (2.5) are an immediate consequence of the definition of
π̃, we conclude that π̃ factors through a group homomorphism

π̃ : GA(k)→ GB(k),

which is continuous because it coincides with the continuous group ho-
momorphism π̂ on U+

A (k). In particular, it extends to a continuous group
homomorphism π̃ : GA(k) → GB(k) coinciding with π̂ on U+

A (k). It thus
remains to show that ker π̃ ⊆ ZA(k) and ker π̃ ⊆ Z ′A ∩ GA(k) = ZA(k) ·
(Z ′A ∩ U

+
A (k)).

Note that π̃(U+
A (k)) = π̂(U+

A (k)) ⊆ U+
B (k). Similarly, (3.16) and (3.18)

respectively imply that

π̃(NA(k)) ⊆ NB(k) and π̃(TA(k)) ⊆ TB(k).

Let g ∈ ker π̃. The Bruhat decomposition

GA(k) =
⋃̇

w∈W (A)
B+(k)w̃B+(k)

for GA(k) implies that g = b1w̃b2 for some w ∈ W (A) and some b1, b2 ∈
B+(k). Hence

π̃(g) = π̃(b1)π̃(w̃)π̃(b2) = 1,
so that the Bruhat decomposition for GB(k) implies that π̃(w̃) = 1. We
claim that for any reduced decomposition w = si1 . . . sik with k > 1, the
element wπ := s(i1,·) . . . s(ik,·) ∈ W (B) is nontrivial. Indeed, define the
Z-linear map

π : Q∨(A)→ Q∨(B) : α∨i 7→ α∨(i,·).

Then for any i, j ∈ IA, we have

s(i,·)(π(α∨j )) = s(i,·)(α∨(j,·)) = α∨(j,·) −
ni∑
m=1
〈α(i,m), α

∨
(j,·)〉α

∨
(i,m)

= α∨(j,·) − ajiα
∨
(i,·) = π(si(α∨j ))
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and hence π(si(h)) = s(i,·)(π(h)) for any i ∈ I and h ∈ Q∨(A). In particu-
lar, π(w(h)) = wπ(π(h)) for all h ∈ Q∨(A). Since π is injective, the claim
follows.
This shows that w̃ ∈ TA(k), and hence that ker π̃ ⊆ B+(k). Therefore,

ker π̃ ⊆
⋂

h∈GA(k)

hB+(k)h−1 = ZA(k).

The same argument (using the Bruhat decompositions in GpmaA (k) and
GpmaB (k)) yields ker π̃ ⊆ Z ′A, as desired. This concludes the proof of the
theorem. �

Remark 3.16. — Proceeding exactly as in Remark 3.11, we see that the
map π̃ : GA(k) → GB(k) provided by Theorem 3.15 maps ZA(k) into
ZB(k) by (3.18), and hence induces a continuous injective group homo-
morphism

GA(k)/ZA(k)→ GB(k)/ZB(k).

4. Non-density and Gabber–Kac simplicity

This section is devoted to the proof of Propositions B and C.

Proposition 4.1. — Let k be a field and let B be a GCM. Assume
that U+

B (k) is not dense in Uma+
B (k). Then U+

A (k) is not dense in Uma+
A (k)

for all GCM A such that B 6 A.

Proof. — By Corollary 3.7, the surjective group homomorphism
π̂AB : Uma+

A (k) → Uma+
B (k) provided by Theorem 3.6 restricts to a group

homomorphism U+
A (k) → U+

B (k). Thus, if U+
A (k) were dense in Uma+

A (k),
we would conclude that

U+
B (k) ⊇ π̂AB(U+

A (k)) = π̂AB(Uma+
A (k)) = Uma+

B (k),

and hence that U+
B (k) = Uma+

B (k), yielding the desired contradiction. �

Lemma 4.2. — Let k be a field and A be a GCM. Then U+
A (k) is dense

in Uma+
A (k) if and only if the minimal Kac–Moody group GA(k) is dense

in its Mathieu–Rousseau completion GpmaA (k).

Proof. — This follows from the fact that GpmaA (k) is generated by
Uma+
A (k) and GA(k) and that U+

A (k) = Uma+
A (k) ∩ GA(k) (see [28,

3.16]). �

The following lemma is a slight generalisation of [16, Lemma 5.4].
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Lemma 4.3. — Let k be a field, and let A = ( 2 −m
−n 2 ) be a GCM such

that mn > 4. If char k = 2, we moreover assume that at least one of m and
n is odd and > 3. Then the imaginary subgroup U im+ of Uma+

A (k) is not
contained in Z ′A.

Proof. — Assume for a contradiction that U im+ is contained in Z ′A.
Note first that

(4.1) U im+ =
⋂
w∈W

w̃Uma+
A (k)w̃−1,

where w̃ is as in (3.14) (see also [17, Definition 7.58]): indeed, the inclu-
sion ⊆ readily follows from Lemma 2.4 and the fact that W stabilises ∆im

+
(see [11, Theorem 5.4]). Conversely, if g ∈ Uma+

A (k)\U im+, then by Propo-
sition 2.3(2) we can write g as a product g =

∏
x∈B∆+

[exp]λxx for some
λx ∈ k such that λy 6= 0 for some y with deg(y) ∈ ∆re

+ . In particular, by
Lemma 2.4, we find some v ∈W such that ṽgṽ−1 = xαi(r)h for some i ∈ I,
some nonzero r ∈ k, and some h ∈ Uma2 (k). Hence w̃gw̃−1 /∈ Uma+

A (k) for
w := siv ∈W , proving the reverse inclusion.
As Z ′A = ZA ·(Z ′A∩U

ma+
A (k)) and as Z ′A∩U

ma+
A (k) is normal in GpmaA (k)

by [28, Proposition 6.4], we deduce that U im+ = Z ′A∩U
ma+
A (k) is a normal

subgroup of GpmaA (k). We now exhibit some imaginary root δ ∈ ∆im
+ , some

simple root αi, and some element x ∈ (n+
k )δ such that δ−αi ∈ ∆re

+ and such
that ad(fi)x is nonzero in n+

k . This will show that the element exp(fi) ∈
U(−αi)(k) ⊆ GpmaA (k) conjugates the element [exp]x ∈ U(δ)(k) ⊆ U im+

outside U im+ (see (2.8)), yielding the desired contradiction.
Set p = char k. By hypothesis, mn > 4. Up to interchanging m and n, we

may then assume that n > 3. If p = 2, we may moreover assume that n is
odd. Set β := s1(α2) = α2 +mα1 ∈ ∆re

+ and γ := s2(α1) = α1 +nα2 ∈ ∆re
+ ,

so that

〈γ, α∨1 〉 = 〈β, α∨2 〉 = 2−mn, 〈γ, α∨2 〉 = n, 〈β, α∨1 〉 = m,

and
〈γ, β∨〉 = n(3−mn).

Assume first that p does not divide 2−mn or that p = 0. Set δ := α1 + γ.
Then δ ∈ ∆im

+ because δ(α∨1 ) = 4 − mn < 0 and δ(α∨2 ) = 0 (see [11,
Lemma 5.3]). Set also x := [e1, eγ ] ∈ n+

k . Since γ − α1 = nα2 /∈ ∆, we
deduce that

[f1, x] = 〈γ, α∨1 〉 · eγ = (2−mn) · eγ 6= 0 in n+
k ,

as desired.
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Assume next that p divides 2−mn. Since n is odd if p = 2, this implies
that p does not divide n(3 −mn). Set δ := s1(β + γ) = α2 + s1(γ). Note
that if m > 2, then

〈s1(δ), α∨1 〉 = m+ 2−mn 6 2− 2m < 0

and
〈s1(δ), α∨2 〉 = 2−mn+ n 6 2− n < 0,

while if m = 1, so that n > 5, then

〈s2s1(δ), α∨1 〉 = 〈s1(δ), α∨1 + α∨2 〉 = 5− n 6 0

and
〈s2s1(δ), α∨2 〉 = −〈s1(δ), α∨2 〉 = −2 < 0.

Hence δ ∈ ∆im
+ by [11, Theorem 5.4]. Set x := [e2, eγ′ ] ∈ n+

k , where γ′ =
s1(γ) ∈ ∆re

+ . Since γ − β = −(m − 1)α1 + (n − 1)α2 /∈ ∆ and hence also
γ′ − α2 = s1(γ − β) /∈ ∆, we deduce that

[f2, x] = 〈γ′, α∨2 〉 · eγ′ = 〈γ, β∨〉 · eγ′ = n(3−mn) · eγ′ 6= 0 in n+
k ,

as desired. �

We record the following more precise version of [16, Theorem E].

Proposition 4.4. — Let k = Fq be a finite field. Consider the GCM
A1 = ( 2 −2

−2 2 ) and A2 = ( 2 −m
−n 2 ) with m,n > 2 and mn > 4. Assume that

m ≡ n ≡ 2 (mod q − 1). If char k = 2, we moreover assume that at least
one of m and n is odd. Then the minimal Kac–Moody groups GA1(Fq)
and GA2(Fq) are isomorphic as abstract groups, but the simple quotients
GpmaA1

(Fq)/Z ′A1
and GpmaA2

(Fq)/Z ′A2
of the corresponding Mathieu–Rousseau

completions are not isomorphic as topological groups.

Proof. — The proof of [16, Theorem E] on p. 725 of loc. cit. applies ver-
batim, with the same notation [note: that proof uses Lemma 5.3 in [16]; for
the convenience of the reader, we provide below (see Lemma 4.5) a more
detailed proof of that lemma]. The only difference is that [16, Lemma 5.4],
which is used to conclude the proof, must be replaced by its generalisation,
Lemma 4.3 above (hence the extra assumption in characteristic 2). �

Lemma 4.5. — Let k = Fq be a finite field. Consider the GCM A =
( 2 −m
−n 2 ) and B = ( 2 −m′

−n′ 2 ) with m,m′, n, n′ > 2. Assume moreover that
m ≡ m′ (mod q−1) and n ≡ n′ (mod q−1). Then the minimal Kac–Moody
groups GA(k) and GB(k) are isomorphic as abstract groups, and the cor-
responding Rémy–Ronan completions GrrA (Fq) and GrrB (Fq) are isomorphic
as topological groups.
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Proof. — We can identify the Weyl groups W (A) and W (B) (both iso-
morphic to the infinite dihedral group), and hence also the corresponding
sets of real roots ∆re(A) and ∆re(B). Moreover, since A and B do not
have any −1 entry, it follows from [20, §3] that the commutation rela-
tions (2.1) are all trivial, and hence one can identify the Steinberg functors
StA and StB . Let us fix this identification StA

∼→ StB as follows (we
add a superscript A or B to the usual notations, to distinguish between
the objects related to the GCM A or B). For X ∈ {A,B}, each real root
α ∈ ∆re

+(X) can be uniquely written as α = wααi for some wα ∈ W (X)
and i ∈ I = {1, 2}. We then choose the sign of eX±α in the double basis EXα
by setting

eXα := w∗αe
X
i and eX−α := w∗αf

X
i ,

where w∗α is as in (3.14) (see also [17, Definition 7.58]), and we define the
corresponding parametrisations xX±α : k → UX±α : r 7→ exp(re±α) of the real
root groups accordingly. The identification StA

∼→ StB is now obtained by
mapping xAα to xBα for each α ∈ ∆re(A) = ∆re(B).
Similarly, identifying the coroots associated to A and B, we obtain an

identification of the tori TA(k) ∼→ TB(k) mapping rα∨i ∈ TA(k) (r ∈ k×,
i ∈ I) to the corresponding element of TB(k). This yields an isomorphism
ϕ : StA(k)∗TA(k)→ StB(k)∗TB(k), and to see it induces an isomorphism
GA(k) → GB(k), we only have to show that the relations (2.2)–(2.5) are
the same in StA(k) ∗ TA(k) and StB(k) ∗ TB(k).

For the relations (2.4), this is clear by construction. For the relations (2.2)
and (2.3), this follows from the fact that

(4.2) rm = rm
′

and rn = rn
′

for all r ∈ k.

Finally, for the relations (2.5), let i ∈ I, α ∈ ∆re and r ∈ k, and let us check
that s̃i ·xAα (r) · s̃−1

i · (s∗i xAα (r))−1 is mapped to s̃i ·xBα (r) · s̃−1
i · (s∗i xBα (r))−1

under ϕ, or else that

(4.3) ϕ(s∗i xAα (r)) = s∗i x
B
α (r).

We may assume that α ∈ ∆re
+ (the case α ∈ ∆re

− being symmetric). Let
X ∈ {A,B}. If α = αi, then s∗i x

X
α (r) = xX−αi(r), yielding (4.3) in that

case. Assume now that α ∈ ∆re
+ \ {αi}. By definition, xXα (r) = exp(reXα ) =

exp(r · w∗αeXj ) = w∗αx
X
αj (r) for some j ∈ I (determined by α). If `(siwα) =

`(wα)+1 (where ` : W → N is the word length onW = W (X) with respect
to the generating set {s1, s2}), then s∗iw

∗
α = (siwα)∗ = w∗siα, and hence

s∗i x
X
α (r) = xXsiα(r), yielding (4.3) in that case. Finally, suppose `(siwα) =

`(wα)−1. Then w∗α = s∗i · (siwα)∗, and hence s∗i xXα (r) = (s∗i )2 ·xXsiα(r). On
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the other hand, by [17, Proposition 4.18(6)], we have

(s∗i )2 · xXsiα(r) = xXsiα((−1)〈siα,α
∨
i 〉r) = xXsiα((−1)〈α,α

∨
i 〉r).

It thus remains to check that (−1)〈α,α∨i 〉 yields the same element of k,
regardless of whether α is viewed as a root of ∆re

+(A) or of ∆re
+(B). But

if α = αj is a simple root, this follows from (4.2), and in general, this
follows from an easy induction on `(wα) using the fact that 〈sjα, α∨i 〉 =
〈α, α∨i 〉 − 〈α, α∨j 〉 · 〈αj , α∨i 〉.
We have thus shown that the map ϕ induces an isomorphism φ : GA(k)→

GB(k). On the other hand, note that φ identifies the (positive) BN-pairs of
GA(k) and GB(k) (see Section 2.6), and hence also induces an isomorphism
of topological groups between the corresponding Rémy–Ronan completions,
yielding the lemma. �

Finally, we prove a slight generalisation of [16, Corollary F].

Lemma 4.6. — Let k = Fq be a finite field. Consider the GCM A =
( 2 −m
−n 2 ) with m,n > 2 and mn > 4. Assume that m ≡ n ≡ 2 (mod q− 1).

If char k = 2, we moreover assume that at least one of m and n is odd.
Then U+

A (Fq) is not dense in Uma+
A (Fq).

Proof. — Set A1 = ( 2 −2
−2 2 ) and A2 = A. For i = 1, 2, we also set Gi :=

GAi(Fq), Ĝi := GpmaAi
(Fq), and Z ′i := Z ′Ai . It follows from Proposition 4.4

that G1 and G2 are isomorphic as abstract groups, whereas Ĝ1/Z
′
1 and

Ĝ2/Z
′
2 are not isomorphic as topological groups. Note also that the Rémy–

Ronan completions GrrA1
(Fq) of G1 and GrrA2

(Fq) of G2 are isomorphic as
topological groups by Lemma 4.5. Finally, we may assume without loss
of generality that G1 is dense in Ĝ1, for otherwise U+

A1
(Fq) would not be

dense in Uma+
A1

(Fq) by Lemma 4.2, so that the conclusion of the lemma
would immediately follow from Proposition 4.1.
Assume for a contradiction that U+

A (Fq) is dense in Uma+
A (Fq). Then

G2 is dense in Ĝ2 by Lemma 4.2. Hence the continuous surjective group
homomorphisms ϕAi : Ĝi → GrrAi(Fq), i = 1, 2, induce isomorphisms

Ĝ1/Z
′
1
∼= GrrA1

(Fq) ∼= GrrA2
(Fq) ∼= Ĝ2/Z

′
2

of topological groups, yielding the desired contradiction. �

Theorem 4.7. — Let k = Fq be a finite field, and let A = (aij)i,j∈I be
a GCM. Assume that there exist indices i, j ∈ I such that |aij | > q+ 1 and
|aji| > 2. Then U+

A (k) is not dense in Uma+
A (k).
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Proof. — Consider the GCM B = ( 2 −m
−n 2 ) with m = q + 1 and n = 2.

Then U+
B (k) is not dense in Uma+

B (k) by Lemma 4.6. Since B 6 ( 2 aij
aji 2 )

or B 6 ( 2 aji
aij 2 ), the conclusion then follows from Proposition 4.1. �

We now give a completely different proof of Theorem 4.7, which provides
another perspective on this non-density phenomenon.

Proposition 4.8. — Let k = Fq be a finite field, and let A = (aij)i,j∈I
be a GCM. Fix distinct i, j ∈ I, and let g ∈ Uma+

A (k) ⊆ Û+
k be one of the

twisted exponentials [exp][ei, ej ] or [exp](ad ei)(q)ej .

(1) If |aij | > q, then g /∈ [Uma+
A (k),Uma+

A (k)].
(2) If moreover |aij | > q + 1 and |aji| > 2, then g /∈ U+

A (k).

Proof. — As usual, we realise Uma+
A (k) inside Û+

k . Assume that |aij | > q.
We claim that for any element h =

∑
α∈Q+

hα ∈ V := [Uma+
A (k),Uma+

A (k)],
where hα ∈ U+

α ⊗Z k for all α ∈ Q+, the homogeneous components hαi+αj
and hqαi+αj are either both zero or both nonzero.
Set

Ψ = Q+ \ {mαi + nαj ∈ Q+ | 0 6 m 6 q, 0 6 n 6 1}
and

Û+
Ψ :=

∏
α∈Ψ

(U+
α ⊗Z k) ⊆ Û+

k .

Note that Û+
Ψ is an ideal of the k-algebra Û+

k . To prove the claim, we will
compute modulo Û+

Ψ .
Any element of Uma+

A (k) is congruent modulo Û+
Ψ to an element of the

form

gλ := expλei ·
q∏
s=0

[exp]λs(ad ei)(s)ej

≡ expλei · (1 + x(λ)) mod Û+
Ψ

for some tuple λ := (λ, λ0, . . . , λq) ∈ kq+2, where

x(λ) :=
q∑
s=0

λs(ad ei)(s)ej .

Using the identity (see for instance [15, Lemma 4.9])

expµei · x(λ) · exp(−µei) = (exp adµei)x(λ)

=
q∑
s=0

∑
t>0

λsµ
t

(
s+ t

t

)
(ad ei)(s+t)ej
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and the fact that(
[exp]λs(ad ei)(s)ej

)−1 ≡ 1− λs(ad ei)(s)ej mod Û+
Ψ ,

we may now compute, for two tuples λ and µ in kq+2 as above, that

[gλ, gµ] ≡ expλei · (1 + x(λ)) · expµei · (1 + x(µ)) · (1− x(λ))
· exp(−λei) · (1− x(µ)) · exp(−µei)

≡ 1 + (exp adλei)x(λ) + (exp ad(λ+ µ)ei)(x(µ)− x(λ))
− (exp adµei)x(µ)

≡ 1 +
q∑
s=1

Cs(λ, µ) · (ad ei)(s)ej mod Û+
Ψ

for some polynomials Cs ∈ k[λ, λ0, . . . , λq, µ, µ0, . . . , µq] satisfying

C1(λ, µ) = λµ0 − µλ0 = λqµ0 − µqλ0 = Cq(λ, µ).

Here we used the fact that
(
q
t

)
= 0 in k unless t = 0 or t = q.

Let now h =
∑
α∈Q+

hα ∈ V . Then h is congruent modulo Û+
Ψ to a

(finite) product of elements of the form [gλ, gµ] as above, say

h ≡
∏
r

[gλr , gµr ] ≡ 1 +
∑
r

([gλr , gµr ]− 1) mod Û+
Ψ

for some tuples λr, µr in kq+2. The above discussion then implies that there
is some c ∈ k such that

hαi+αj = c[ei, ej ] and hqαi+αj = c(ad ei)(q)ej ,

proving our claim. This shows in particular that g /∈ V + Û+
Ψ . Since 1 + Û+

Ψ
contains the open subgroup Umaq+2(k), so that in particular V Umaq+2(k) ⊆
V + Û+

Ψ , we deduce that g /∈ V , proving (1).
Assume now that |aij | > q + 1 and |aji| > 2. In particular, the only real

roots not in Ψ are the simple roots αi and αj (see [11, Chapter 5]). Assume
for a contradiction that g ∈ U+

A (k). Then

g ≡ exp(λei) exp(µej) mod V + Û+
Ψ

for some λ, µ ∈ k. Since V + Û+
Ψ ⊆ 1 + Û+

>2, where

Û+
>2 :=

∏
ht(α)>2

(U+
α ⊗Z k) ⊆ Û+

k ,

the components of degree αi and αj of exp(λei) exp(µej) must be zero, so
that λ = µ = 0. Hence g ∈ V + Û+

Ψ . But this contradicts the first part of
the proof, yielding (2). �
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As pointed out to us by Pierre-Emmanuel Caprace, the methods of this
section can also be used to show that Kac–Moody groups GpmaA (k) (or even
GA(k)) are in general not GK-simple if char k 6MA.

Proposition 4.9. — Let k = Fq be a finite field. Consider the GCM
A = ( 2 −m

−n 2 ) withm,n > 2 andmn > 4. Assume thatm ≡ n ≡ 2 (mod q−
1). If char k = 2, we moreover assume that at least one of m and n is odd.
Then GpmaA (k) and GA(k) are not GK-simple, that is, Z ′A ∩ U

+
A (k) 6= {1}.

Proof. — Consider the (affine) GCM B = ( 2 −2
−2 2 ). Note first that the

hypotheses of Lemma 4.5 are satisfied. Hence, as noted in the proof of this
lemma, there is an isomorphism of the Rémy–Ronan completions GrrA (k)
of GA(k) and GrrB (k) of GB(k) that preserves the corresponding BN-pair
structures. In particular, the Rémy–Ronan completions Urr+A (k) ⊆ GrrA (k)
of U+

A (k) and Urr+B (k) ⊆ GrrB (k) of U+
B (k) are isomorphic.

Assume for a contradiction that Z ′A ∩ U
+
A (k) = {1}. Then the surjective

homomorphism ϕA : U+
A (k) → Urr+A (k) (see Section 2.6) is an isomor-

phism, so that U+
A (k) ∼= Urr+A (k) ∼= Urr+B (k). On the other hand, it follows

from [27] (and the fact that GrrB (k) ∼= PSL2(k((t)))) that Urr+B (k) is just-
infinite: every proper quotient of Urr+B (k) is finite. But Corollary 3.7 pro-
vides a map πAB : U+

A (k)→ U+
B (k) with nontrivial kernel: in fact, kerπAB

is even infinite, as it contains all real root groups in U+
A (k) associated to

positive real roots α = xα1 +yα2 with x, y > 2 (i.e., by [11, Exercises 5.25–
5.27], the element α is a positive real root in both ∆re

+(A) and ∆re
+(B) if

and only if nx2 −mnxy + my2 ∈ {m,n} and |x − y| = 1, which is easily
seen to have no positive integral solutions (x, y) other than (x, y) = (1, 2) if
n = 2 and (x, y) = (2, 1) if m = 2. One then concludes as in Remark 3.8).
Moreover, πAB has infinite image, as πAB(U+

A (k)) contains the subgroup
of U+

B (k) generated by the simple root groups. Hence U+
A (k) cannot be

just-infinite, a contradiction. �

5. Non-linearity

This section is devoted to the proof of Theorem G. For earlier contribu-
tions to the linearity problem for the group Uma+

A (k) over a finite field k,
we refer to [2, §4.2] (see also [6]).
We recall that a GCM A = (aij)i,j∈I is called indecomposable if, up to

a permutation of the index set I, it does not admit any nontrivial block-
diagonal decomposition A = (A1 0

0 A2
). Indecomposable GCM are either of
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finite, affine or indefinite type (see [11, Chapter 4]). If A is of indefinite type
and all proper submatrices of A (corresponding to proper subdiagrams of
the Dynkin diagram of A) are of finite type, then A is moreover said to be
of compact hyperbolic type.

Lemma 5.1. — Let A be a GCM of compact hyperbolic type. Then
there exists some B 6 A such that B is of affine type.

Proof. — We use the notation of [11, §4.8] for the parametrisation of
affine GCM. If A is of rank 2, then one can take for B the GCM of affine
type A(1)

1 or A(2)
2 . If the Dynkin diagram of A is a cycle of length `+ 1 for

some ` > 2, then one can take for B the GCM of affine type A(1)
` . Assume

now that the Dynkin diagram of A is not a cycle and that A is of rank at
least 3. Then A must correspond to one of the 7 Dynkin diagrams H(3)

100,
H

(3)
106, H

(3)
101, H

(3)
105, H

(3)
114, H

(3)
115 and H(3)

116 from [7, Section 7]. One can then
respectively choose B to be affine of type D(3)

4 , G(1)
2 , D(3)

4 , G(1)
2 , D(3)

4 , D(3)
4

and G(1)
2 . �

Using the results of [6], we can now prove our non-linearity theorem.

Theorem 5.2. — Let A be an indecomposable GCM of non-finite type
and let k be a finite field. Assume that GpmaA (k) is GK-simple and set
G := GpmaA (k)/Z ′A. Then the following assertions are equivalent:

(1) Every compact open subgroup of G is just-infinite (i.e. possesses
only finite proper quotients).

(2) Uma+
A (k) is linear over a local field.

(3) G is a simple algebraic group over a local field.
(4) The matrix A is of affine type.

Proof. — Note that the GK-simplicity assumption on GpmaA (k) allows to
view Uma+

A (k) (rather than a quotient of Uma+
A (k)) as a subgroup of the

simple group G.
The implications (4) ⇒ (3) ⇒ (2) are clear. Since G is a non-discrete,

compactly generated, topologically simple, totally disconnected locally
compact group (see, for instance, [4, Appendix A]) and since Uma+

A (k)
is an open compact subgroup of G, the implication (2) ⇒ (3) follows
from [6, Corollary 1.4], while the implication (3) ⇒ (1) follows from [6,
Theorem 2.6]. We are thus left with the proof of (1)⇒ (4).
Assume thus that Uma+

A (k) is just-infinite, and suppose for a contradic-
tion that A is of indefinite type. Assume first that A = (aij)i,j∈I has a
proper submatrix (aij)i,j∈J of non-finite type. Consider the closed sets of
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positive roots

ΨJ := ∆+(A) ∩
⊕
j∈J

Nαj and ΨI\J := ∆+(A) \ΨJ .

Note that ΨI\J is an ideal in ∆+(A), in the sense that α + β ∈ ΨI\J for
all α ∈ ∆+(A) and β ∈ ΨI\J such that α + β ∈ ∆+(A). It then follows
from [28, Lemme 3.3(c)] that UmaΨI\J (k) is normal in Uma+

A (k) and that

Uma+
A (k)/UmaΨI\J (k) ∼= UmaΨJ (k)

is infinite, contradicting (1).
We may thus assume that A is of compact hyperbolic type. By Lem-

ma 5.1, there exists a matrix B of affine type such that B 6 A. It then
follows from Theorem 3.6 that there is a surjective map π̂AB : Uma+

A (k)→
Uma+
B (k). This again yields an infinite quotient

Uma+
A (k)/K ∼= Uma+

B (k)

of Uma+
A (k) for K := ker π̂AB , in contradiction with (1). This concludes the

proof of the theorem. �

Remark 5.3. — Note that, up to replacing Uma+
A (k) by the quotient

Uma+
A (k)/Z where Z := Z ′A ∩ Uma+

A (k) in the statement of Theorem 5.2,
the GK-simplicity assumption on GpmaA (k) can be substantially weakened.
Indeed, the only issue that may arise in the above proof of Theorem 5.2 if
we replace Uma+

A (k) by its quotient Uma+
A (k)/Z is that for A of compact

hyperbolic type, the implication (1)⇒ (4) would require to ensure that the
map

Uma+
A (k)/Z → Uma+

B (k)/π̂AB(Z)
induced by π̂AB has still infinite image. In other words, we need to know
that KZ is not open in Uma+

A (k) where K := ker π̂AB , which is a priori
much weaker than the GK-simplicity assumption Z = {1}.

6. On the isomorphism problem

This section is devoted to the proof of Proposition H. Let A = (aij)i,j∈I
be a GCM, and let k be a field. Set γ1(Uma+

A (k)) := Uma+
A (k), and for each

n > 1, define recursively

γn+1(Uma+
A (k)) := [Uma+

A (k), γn(Uma+
A (k))],

that is, γn+1(Uma+
A (k)) is the closure in Uma+

A (k) of the commutator sub-
group [Uma+

A (k), γn(Uma+
A (k))].
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Remark 6.1. — If k is a finite field of characteristic p > MA, then
Uma+
A (k) is a finitely generated pro-p group by [2, §2.2]. It then follows

from [9, Exercise 1.17] that
(
γn(Uma+

A (k))
)
n>1 coincides with the lower

central series of Uma+
A (k).

The proof of the following proposition is an adaptation of the proof of [28,
Proposition 6.11] (see also [2, §2.2]).

Proposition 6.2. — Let A = (aij)i,j∈I be a GCM and let k be a field.
Assume that char k = 0 or that char k > MA. Then γn(Uma+

A (k)) = UmaA,n(k)
for all n > 1.

Proof. — To lighten the notation, we set Uma+ = Uma+
A (k) and Uman =

UmaA,n(k). Given some n > 1, it follows from [28, proof of Proposition 6.11]
that

Umam ⊆ [Uma+, Uman ] · Umam+1 for all m > n+ 1.
Indeed, in the notation of loc. cit., G. Rousseau proves that for any given
g ∈ Umam , there exists some i ∈ I and some h ∈ Umam−1 such that g ≡
[exp ei, h] mod Umam+1, yielding the claim. By definition of the topology on
Uma+, we deduce that Uman+1 ⊆ [Uma+, Uman ] for all n > 1. Since the reverse
inclusion holds as well by [28, Lemme 3.3], so that

Uman+1 = [Uma+, Uman ] for all n > 1,

the proposition follows from an easy induction on n. �

Remark 6.3. — If k = Fq is finite and such that |aij | > q for some i, j ∈ I,
Proposition 4.8 shows that the conclusion of Proposition 6.2 does not hold
anymore, i.e. γ2(Uma+

A (k)) is properly contained in UmaA,2(k).

We now apply the above observations to the study of the isomorphism
problem for Mathieu–Rousseau completions of Kac–Moody groups over
finite fields. We first record some known facts about complete Kac–Moody
groups allowing to recognise specific subgroups from the topological group
structure.

For this, we will need to define Kac–Moody groups in a slightly more
general context, by considering arbitrary Kac–Moody root data (see for
instance [28, §1.1] or [17, §7.3]).

To simplify the notation, we have so far considered Kac–Moody root data
D of simply connected type, as we are mainly interested in the structure
of the subgroup Uma+

A , which only depends on the GCM A and not on
a specific choice of D. For D = (I, A,Λ, (ci)i∈I , (hi)i∈I) arbitrary with
associated GCM A = (aij)i,j∈I , we denote by GpmaD the Mathieu–Rousseau
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completion of the Tits functor GD of type D (see [28, §3.19]), and by Z ′D
the kernel of the action of GpmaD on its associated building.
The additional information provided by D is encoded in the torus scheme

TD. We denote as before by Bma+
D = TD n Uma+

A the standard Borel
subgroup of GpmaD . Given a subset J ⊆ I, we let Pma+

D (J) denote the
standard parabolic subgroup of GpmaD of type J (see [28, §3.10]). We also set

D(J) := (J,A|J ,Λ, (ci)i∈J , (hi)i∈J)

where A|J = (aij)i,j∈J and ∆+(J) := ∆+ ∩
⊕

j∈J Zαj .

Lemma 6.4. — Let D be a Kac–Moody root datum with associated
GCM A = (aij)i,j∈I and let k be a finite field of characteristic p. Then the
following hold:

(1) If GpmaD (k) contains an open pro-q subgroup for some prime q, then
q = p.

(2) Every maximal pro-p subgroup of GpmaD (k) is conjugate to Uma+
A (k).

(3) The normaliser of Uma+
A (k) in GpmaD (k) is the standard Borel sub-

group Bma+
D (k).

(4) The subgroups of GpmaD (k) containing Bma+
D (k) are precisely the

standard parabolic subgroups of GpmaD (k).
(5) For any subset J ⊂ I, one has a Levi decomposition Pma+

D (J) =
GpmaD(J) n Uma∆+\∆+(J). Moreover,⋂

g∈Pma+
D (J)

gUma+
A (k)g−1 = (Z ′D(J) ∩ Uma∆+(J)(k)) n Uma∆+\∆+(J)(k).

Proof. — To prove (1), let V be an open pro-q subgroup of GpmaD (k).
Then V ′ := V ∩ Uma+

A (k) is open in V , hence an open pro-q subgroup
of Uma+

A (k) (see e.g. [9, Proposition 1.11(i)]). Since Uma+
A (k) is pro-p, the

same argument implies that V ′ is pro-p, and hence q = p.
The second statement follows from [25, 1.B.2] (see also [2, Section 2]).

The statements (3) and (4) are standard (see e.g. [1, Theorem 6.43]). The
Levi decomposition in (5) follows from [28, 3.10].

Let us now prove the identity in (5). Since Uma∆+\∆+(J)(k) is normal in
Pma+
D (J) (see the above Levi decomposition) and since Z ′D(J) ∩ U

ma
∆+(J)(k)

is the Gabber–Kac kernel of GpmaD(J) (hence is conjugate under any element
of Pma+

D (J) = GpmaD(J)nUma∆+\∆+(J) to an element of Uma+
A (k)), the inclusion

from right to left is clear. Conversely, since the Gabber–Kac kernel Z ′D(J)∩
Uma∆+(J)(k) is the largest normal subgroup of GpmaD(J) that is contained in
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Uma∆+(J)(k), the image of
⋂
g∈Pma+

D (J) gU
ma+
A (k)g−1 under the quotient map

Uma+
A (k) = Uma∆+(J)(k) n Uma∆+\∆+(J)(k)→ Uma∆+(J)(k)

(see [28, Lemme 3.3(c)]) is contained in Z ′D(J) ∩U
ma
∆+(J)(k), as desired. �

To lighten the notation, we will write H/Z ′A := H/(H ∩ Z ′A) for any
subgroup H of GpmaA (k).

Lemma 6.5. — Let D,D′ be Kac–Moody root data with associated
GCM A = (aij)i,j∈I and A′ = (a′ij)i,j∈I′ , respectively. Let also k, k′ be
finite fields. If α : GpmaD (k)/Z ′D → GpmaD′ (k′)/Z ′D′ is an isomorphism of
topological groups, then k ∼= k′ and there exist an inner automorphism
γ of GpmaD′ (k′)/Z ′D′ and a bijection σ : I → I ′ such that

γα(Uma+
A|{i,j}(k)/Z ′D) = Uma+

A′|{σ(i),σ(j)}
(k′)/Z ′D′

for all distinct i, j ∈ I.

Proof. — By Lemma 6.4(1) and (2), there exists an inner automorphism
γ of GpmaD′ (k′)/Z ′D′ such that γα maps Uma+

A (k)/Z ′D to Uma+
A′ (k′)/Z ′D′ .

Then γα maps Bma+
D (k)/Z ′D to Bma+

D′ (k′)/Z ′D′ by Lemma 6.4(3). Hence
Lemma 6.4(4) implies that γα maps maximal chains of standard para-
bolic subgroups in GpmaD (k)/Z ′D to maximal chains of standard parabolic
subgroups in GpmaD′ (k′)/Z ′D′ . In particular, |I| = |I ′| and there exists a
bijection σ : I → I ′ such that

γα(Pma+
D ({i})/Z ′D) = Pma+

D′ ({σ(i)})/Z ′D′ for all i ∈ I.

Hence
γα(Pma+

D ({i, j})/Z ′D) = Pma+
D′ ({σ(i), σ(j)})/Z ′D′

for all i, j ∈ I. It then follows from Lemma 6.4(5) that

γα(Uma∆+\∆+({i,j})(k)/Z ′D) = Uma∆+\∆+({σ(i),σ(j)})(k′)/Z ′D′

and hence that

γα(Uma∆+({i,j})(k)/Z ′D) = Uma∆+({σ(i),σ(j)})(k′)/Z ′D′

for all i, j ∈ I because

Uma+
A = Uma∆+(J)(k) n Uma∆+\∆+(J)(k) for all J ⊆ I,

and similarly for Uma+
A′ . As Uma∆+({i,j})(k) = Uma+

A|{i,j}(k), it thus remains to
prove that k ∼= k′.

Since each panel of the building X+ of GpmaD (k)/Z ′D (respectively, X ′+
of GpmaD′ (k′)/Z ′D′) is of cardinality |k| + 1 (respectively, |k′| + 1)(see for
instance [1, Chapter 7]), and since X+ = X ′+ (as simplicial complexes)
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by the above discussion, we deduce that |k| = |k′| =: q, and hence that
k ∼= Fq ∼= k′. This concludes the proof of the lemma. �

Remark 6.6. — In the notation of Lemma 6.5, if α lifts to an isomorphism
α : GpmaD (k)→ GpmaD′ (k′) and if GpmaD (k) is of rank 2 (that is, |I| = 2), then
Lemma 6.4(1) and (2) implies that

γα(Uma+
A (k)) = Uma+

A′ (k′)

for some inner automorphism γ of GpmaD′ (k′).

Lemma 6.7. — Let A = (aij)i,j∈I and B = (bij)i,j∈I be GCM indexed
by I and let k be a finite field with p = char k > MA,MB . Assume that the
groups Uma+

A (k) and Uma+
B (k) are isomorphic. Then the following hold:

(1)
∑

ht(α)=n dim g(A)α =
∑

ht(α)=n dim g(B)α for all n > 1.
(2) If I = {i, j}, then B = ( 2 aij

aji 2 ) or B = ( 2 aji
aij 2 ).

Proof. — Let α : Uma+
A (k)→ Uma+

B (k) be an isomorphism. Then α maps
UmaA,n(k) to UmaB,n(k) for each n > 1 by Proposition 6.2, and hence induces
isomorphisms of the quotients

UmaA,n(k)/UmaA,n+1(k) ∼= UmaB,n(k)/UmaB,n+1(k) for all n > 1.

In turn, this yields isomorphisms of the additive groups⊕
ht(α)=n

n+
k (A)α ∼=

⊕
ht(α)=n

n+
k (B)α

by [28, Lemme 3.3(e)]. Hence (1) follows from the fact that if dn(A) =∑
ht(α)=n dim g(A)α, then |k|dn(A) is the cardinality of

⊕
ht(α)=n n

+
k (A)α.

Assume now that I = {i, j}. For X ∈ {A,B}, let i+(X) be the ideal
of the free Lie algebra ñ+(X) generated by the Serre relations x+

ij(X) =
ad(ei)1+|Xij |ej and x+

ji(X) = ad(ej)1+|Xji|ei. For each n > 1, let also
ñ+
n (X) denote the subspace of elements of ñ+(X) of total degree n, that

is, the linear span of all brackets of the form [ei1 , . . . , ein ] (is ∈ I). In
particular, since i+(X) is graded,

ñ+
n (X)/i+n (X) = n+

n (X) for all n > 1

as vector spaces, where i+n (X) := i+(X) ∩ ñ+
n (X) and n+

n (X) :=⊕
ht(α)=n n

+(X)α. The above discussion now implies that

dim i+n (A) = dim ñ+
n (A)− dim n+

n (A) = dim ñ+
n (B)− dim n+

n (B)
= dim i+n (B) for all n > 1.
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If |aij | = |aji| = m, then dim i+n (A) = 0 for all n 6 m + 1, while
dim i+m+2(A) = 2. The corresponding assertion for B then implies that
|bij | = |bji| = m, proving (2) in this case.
Assume now that aij 6= aji, saym= |aij | < |aji|=m′. Then dim i+n (A) =

0 for all n 6 m + 1, while dim i+m+2(A) = 1. Again, the corresponding
assertion for B implies that m = |bij | < |bji| or that m = |bji| < |bij |.
Say m = |bij | < |bji| = m′′. For X ∈ {A,B}, let i+ij(X) denote the ideal
of ñ+(X) generated by x+

ij(X) = ad(ei)1+mej . Assume for a contradiction
that m′ 6= m′′, say m′ < m′′ (the case m′ > m′′ being similar). Then

dim i+m′+2(A) = dim(i+ij(A) ∩ ñ+
m′+2(A)) + 1

= dim(i+ij(B) ∩ ñ+
m′+2(B)) + 1

= dim i+m′+2(B) + 1,

yielding the desired contradiction. This concludes the proof of (2). �

Theorem 6.8. — Let k, k′ be finite fields, and A = (aij)i,j∈I and B =
(bij)i,j∈J be GCM. Assume that p = char k > MA,MB and that all rank 2
subgroups of GpmaA (k) and GpmaB (k′) are GK-simple.
If α : GpmaA (k)/Z ′A → GpmaB (k′)/Z ′B is an isomorphism of topological

groups, then k ∼= k′, and there exist an inner automorphism γ of
GpmaB (k′)/Z ′B and a bijection σ : I → J such that

(1) γα(Uma+
A|{i,j}(k)) = Uma+

B|{σ(i),σ(j)}
(k′) for all distinct i, j ∈ I.

(2) B|{σ(i),σ(j)} ∈
{

( 2 aij
aji 2 ), ( 2 aji

aij 2 )
}
for all distinct i, j ∈ I.

Proof. — Since all rank 2 subgroups of GpmaA (k) and GpmaB (k′) are GK-
simple by assumption, (1) follows from Lemma 6.5 and (2) follows from
Lemma 6.7. �

Remark 6.9. — In the notation of Theorem 6.8, if α lifts to an isomor-
phism α : GpmaA (k) → GpmaB (k′) and if GpmaA (k) is of rank 2, then the
conclusion of Theorem 6.8 holds without any GK-simplicity assumption
using Remark 6.6 and Lemma 6.7.

We conclude this section with two further observations on the isomor-
phism problem, using the results from the previous sections.

Lemma 6.10. — Let A = (aij)i,j∈I and B = (bij)i,j∈I be GCM, and
let k = Fq with char k = p. If MA < p and MB > q, then Uma+

A (k) and
Uma+
B (k) are not isomorphic.
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Proof. — By Proposition 6.2, the quotient of Uma+
A (k) by its commutator

subgroup has cardinality q|I|. On the other hand, it follows from Propo-
sition 4.8 that the quotient of Uma+

A (k) by its commutator subgroup has
cardinality strictly larger than q|I|. This proves the claim. �

Proposition 6.11. — Let A = (aij)i,j∈I and B = (bij)i,j∈I be GCM
with B 6 A, and let k be a finite field with char k > MA. If Uma+

A (k) and
Uma+
B (k) are isomorphic, then B = A.

Proof. — Since Uma+
A (k) is a finitely generated residually finite prop-p

group by [2, §2.2], it is Hopfian, in the sense that every surjective homomor-
phism from Uma+

A (k) to itself is an isomorphism (see Lemma 6.12 below).
Assume now for a contradiction that B 6= A. Then by Theorem 3.6, there
is a surjective group homomorphism π̂AB : Uma+

A (k)→ Uma+
B (k) with non-

trivial kernel. Hence Uma+
A (k) and Uma+

B (k) cannot be isomorphic, for this
would contradict the fact that Uma+

A (k) is Hopfian. �

The following lemma and its proof are a straightforward adaptation
of [14, Theorem 4.10].

Lemma 6.12. — Let G be a finitely generated residually finite pro-p
group. Then G is Hopfian, i.e. every surjective homomorphism G → G is
an isomorphism.

Proof. — Let θ : G → G be a surjective homomorphism, and let K be
the kernel of θ. Let n ∈ N∗. By [9, Proposition 1.6 and Theorem 1.17],
there are only finitely many subgroups of G of index n, say M1, . . . ,Mr.
Then the subgroups Li := θ−1(Mi) (i = 1, . . . , r) are pairwise distinct and
of index n in G. Thus {M1, . . . ,Mr} = {L1, . . . , Lr}. In particular,

K ⊆
r⋂
i=1

Li =
r⋂
i=1

Mi,

and since n was arbitrary, we deduce that K is contained in the intersection
of all finite-index subgroups of G. Since G is residually finite, this implies
that K = {1}, as desired. �

Remark 6.13. — Lemma 6.12 also holds when G is a finitely generated
residually finite profinite group. Indeed, the main result of [23] (which re-
lies on the classification of finite simple groups) asserts that finite-index
subgroups of a finitely generated profinite group G are automatically open,
and hence G has only finitely many subgroups of index n for any given
n ∈ N∗ by [9, Proposition 1.6]. The proof of Lemma 6.12 thus also holds in
that case.
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7. Zassenhaus–Jennings–Lazard series

This section is devoted to the proof of Proposition D. The general refer-
ence for this section is [9, Chapter 11].

Given a group G, as well as some positive natural number n, we write
Gn for the subgroup of G generated by the elements of the form gn, g ∈ G.
We also let γn(G) denote the lower central series of G:

γ1(G) = G and γn+1(G) = [G, γn(G)] for all n > 1.

[Here, we consider lower central series in the category of abstract groups;
as noticed in Remark 6.1, when G is a finitely generated pro-p group, this
coincides with the lower central series defined at the beginning of Section 6.]
Let k = Fq be a finite field of characteristic p, let A be a GCM, and

set G := Uma+
A (k). Then G is a prop-p group. Set Γn = γn(G), and let

Dn = Dn(G) be the series of characteristic subgroups of G defined by
D1 := G and for n > 1,

Dn := Dp
n∗ ·

∏
i+j=n

[
Di, Dj

]
,

where n∗ := dn/pe is the least integer r such that pr > n. The series
(Dn)n>1 is called the Zassenhaus–Jennings–Lazard series of G. The sub-
groups Dn are also called the dimension subgroups of G.
For each n > 1, the quotient Ln := Dn/Dn+1 is an elementary abelian

p-group. We view it as a vector space over Fp and write the group operation
additively. Then

L :=
∞⊕
n=1

Ln

is a graded Lie algebra over Fp for the Lie bracket

(x, y) := [x, y]Di+j+1 ∈ Li+j ,

where x = xDi+1 ∈ Li and y = yDj+1 ∈ Lj (see [9, p. 280]). It is called the
Zassenhaus–Jennings–Lazard Lie algebra of G. Note that the p-operation

[p] : Li → Lpi : x = xDi+1 7→ x[p] := xpDpi+1

extends to a p-operation on L, turning L into a restricted Lie algebra ([9,
Theorem 12.8]).

Lemma 7.1. — Uman (k)p ⊆ Umanp (k) for all n > 1.

Proof. — We realise as usual Uma+
A (k) inside Û+

k . For each m > 1, we set

Û+
>m :=

∏
ht(α)>m

(U+
α ⊗Z k) ⊆ Û+

k .
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Let g ∈ Uman (k). Then g = 1 + x for some x ∈ Û+
>n, and hence

gp = (1 + x)p = 1 + xp ∈ 1 + Û+
>np.

In particular, gp ∈ Umanp (k), as desired. �

Lemma 7.2. — Γn 6 Dn 6 Uman (k) for all n > 1.
Proof. — The first inclusion follows by induction on n, since Γ1 = G =

D1 and since if Γn ⊆ Dn, then

Γn+1 = [G,Γn] ⊆ [D1, Dn] ⊆ Dn+1.

Since
[
Umai (k),Umaj (k)

]
⊆ Umai+j(k) for all i, j > 1 by [28, Lemme 3.3],

the second inclusion follows from Lemma 7.1 and the fact that (Dn)n>1
is the fastest descending series with D1 = G such that Dp

i 6 Dpi and
[Di, Dj ] 6 Di+j for all i, j > 1. �

Corollary 7.3. — Assume that p > MA. Then Γn = Dn = Uman (k)
for all n > 1.
Proof. — The equality Γn = Uman (k) follows from Remark 6.1 and Propo-

sition 6.2. The lemma then follows from Lemma 7.2. �

For each n > 1, set (n+
k )n :=

⊕
ht(α)=n (n+

k )α. Then the quotient
Ln(Uma+

A (k)) := Uman (k)/Uman+1(k) is isomorphic to the additive group of
(n+
k )n by [28, Lemme 3.3(e)]. We view it as an Fp-vector space and write

the group operation additively. Set

L(Uma+
A (k)) :=

∞⊕
n=1

Ln(Uma+
A (k)),

which we endow with the graded Lie algebra structure given by the Lie
bracket

(x, y) := [x, y]Umai+j+1(k)
for x = xUmai+1(k) ∈ Li(Uma+

A (k)) and y = yUmaj+1(k) ∈ Lj(Uma+
A (k)).

Lemma 7.4. — Let k be a finite field of characteristic p. The map n+
k →

L(Uma+
A (k)) mapping a homogeneous element x ∈ n+

k with ht(deg(x)) = n

to ([exp]x)Uman+1(k) defines an isomorphism of Lie algebras over Fp.
Proof. — This readily follows from the fact that if x, y ∈ n+

k are homo-
geneous with ht(deg(x)) = i and ht(deg(y)) = j, then[

[exp]x, [exp]y
]
≡ [exp][x, y] modUmai+j+1(k). �

Corollary 7.5. — If p > MA, then L = L(Uma+
A (k)) ∼= n+

k as Lie
algebras over Fp.
Proof. — This follows from Corollary 7.3 and Lemma 7.4. �
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