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CONTINUITY OF PLURISUBHARMONIC ENVELOPES
IN NON-ARCHIMEDEAN GEOMETRY

AND TEST IDEALS

by Walter GUBLER, Philipp JELL,
Klaus KÜNNEMANN & Florent MARTIN (*)

With an appendix by José Ignacio BURGOS GIL & Martín
SOMBRA

Abstract. — Let L be an ample line bundle on a smooth projective variety
X over a non-archimedean field K. For a continuous metric on Lan, we show in
the following two cases that the semipositive envelope is a continuous semiposi-
tive metric on Lan and that the non-archimedean Monge–Ampère equation has a
solution. First, we prove it for curves using results of Thuillier. Second, we show
it under the assumption that X is a surface defined geometrically over the func-
tion field of a curve over a perfect field k of positive characteristic. The second case
holds in higher dimensions if we assume resolution of singularities over k. The proof
follows a strategy from Boucksom, Favre and Jonsson, replacing multiplier ideals
by test ideals. Finally, the appendix by Burgos and Sombra provides an example of
a semipositive metric whose retraction is not semipositive. The example is based
on the construction of a toric variety which has two SNC-models which induce the
same skeleton but different retraction maps.
Résumé. — Soit L un fibré en droites sur une variété projective lisse sur un

corps non-archimédien K. Pour une métrique continue sur Lan, on montre dans
les deux cas suivants que l’enveloppe semi-positive est une métrique continue semi-
positive sur Lan et que l’équation de Monge–Ampère non-archimédienne a une
solution. On le montre dans le premier cas pour les courbes en utilisant des résultats
de Thuillier. Dans un deuxième cas, on le montre quand X est une surface définie
géométriquement sur le corps de fonctions d’une courbe sur un corps parfait k
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de caractéristique positive. Le deuxième cas reste valable en dimension supérieure
sous l’hypothèse de ce que nous disposons de résolution de singularités sur k. La
preuve suit une stratégie de Boucksom, Favre et Jonsson, en remplaçant les idéaux
multiplicateurs par des idéaux test. Finalement, l’appendice de Burgos et Sombra
fournit un exemple d’une métrique semi-positive dont la rétraction n’est pas semi-
positive. L’exemple est basé sur la construction d’une variété torique qui a deux
modèles SNC qui induisent le même squelette mais des applications de rétraction
différentes.

1. Introduction

Let L be an ample line bundle on an n-dimensional complex projective
variety X and let µ be a smooth volume form on the associated complex
manifold Xan of total mass degL(X). The Calabi conjecture claims that
there is a smooth semipositive metric ‖ · ‖ on Lan, unique up to positive
multiples, solving the Monge–Ampère equation

(1.1) c1(L, ‖ · ‖)∧n = µ.

This was conjectured by Calabi who proved uniqueness [16, 17] and the
existence part was solved by Yau [51]. In fact, they proved a more general
version in the setting of compact Kähler manifolds, but this will not be
relevant for our paper.
The motivation of this paper is the study of the non-archimedean version

of this conjecture. We consider a non-archimedean field K with valuation
ringK◦. Let L be an ample line bundle on an n-dimensional smooth projec-
tive variety X over K. The line bundle L induces a line bundle Lan on the
analytification Xan of X as a Berkovich non-archimedean analytic space.
In non-archimedean geometry, model metrics on Lan play a similar role as
smooth metrics on line bundles on complex manifolds. We call a model
metric on Lan semipositive if it is induced by a nef model. Zhang [54]
introduced continuous semipositive metrics on Lan as uniform limits of
semipositive model metrics. For such metrics, Chambert-Loir [18] defined
a Monge–Ampère measure c1(L, ‖ · ‖)∧n on Xan which is a positive Radon
measure of total mass degL(X). These measures play an important role
in arithmetic equidistribution results (see [52]). We refer to Section 2 for
details about these notions.
In the non-archimedean Calabi–Yau problem, one looks for continuous

semipositive metrics on Lan solving the Monge–Ampère equation (1.1).
Yuan and Zhang [53] proved that such a metric is unique up to constants.
The existence of a singular semipositive solution was proven in the case of
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curves by Thuillier [50, Cor. 3.4.13]. Liu [42] proved existence of a contin-
uous semipositive solution for totally degenerate abelian varieties A if µ is
a smooth volume form on the canonical skeleton of A.

Next, we describe the fundamental existence result of Boucksom, Favre
and Jonsson [9, 11]. We assume that K is a complete discretely valued field
with valuation ring K◦. We recall that an SNC-model is a regular model of
X such that the special fiber has simple normal crossing support. Bouck-
som, Favre and Jonsson prove in [9, Thm. A] that the non-archimedean
Calabi–Yau problem has a continuous semipositive solution ‖ · ‖ if the fol-
lowing assumptions are satisfied:

(a) The characteristic of the residue field K̃ is zero.
(b) The positive Radon measure µ is supported on the skeleton of a

projective SNC-model of X and satisfies µ(Xan) = degL(X).
(c) The smooth projective variety X is of geometric origin from a 1-

dimensional family over K̃.
The last condition will play an important role in this paper. More generally,
we say that X is of geometric origin from a d-dimensional family over the
field k if there is a codimension 1 point b in a normal variety B over k
such that K◦ is the completion of OB,b and such that X is defined over
the function field k(B). In [13, Thm. D], we have shown that (c) is not
necessary for the existence of a continuous semipositive solution of the
non-archimedean Calabi–Yau problem if we assume (a) and (b).
We will later look for a similar result in equicharacteristic p > 0. To do

so, we have to understand the basic ingredients in the proof of the existence
result of Boucksom, Favre and Jonsson. In [11], the authors develop a global
pluripotential theory on Xan for singular semipositive metrics using the
piecewise linear structure on the skeletons of SNC-models. It is here where
Assumption (a) enters the first time as resolution of singularities is used to
have sufficiently many SNC-models of X at hand. For a continuous metric
‖ · ‖, we define the semipositive envelope P (‖ · ‖) by

(1.2) P (‖ · ‖) := inf
{
‖ · ‖′

∣∣∣∣ ‖ · ‖′ is a semipositive model metric
on Lan such that ‖ · ‖ 6 ‖ · ‖′

}
.

It is absolutely crucial for pluripotential theory to prove that P (‖ · ‖) is
continuous as this is equivalent to the monotone regularization theorem
(see [11, Lemma 8.9]). The monotone regularization theorem is the basis
in [9] to introduce the Monge–Ampère measure, capacity and energy for
singular semipositive metrics. The proof of continuity of P (‖ · ‖) in [11, §8]
uses multiplier ideals on regular projective models. In the proof of the re-
quired properties of multiplier ideals (see [11, Appendix B]), the authors
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use vanishing results which hold only in characteristic zero, and hence As-
sumption (a) plays an important role here as well.
A second important result is the orthogonality property for P (‖ · ‖) given

in [9, Thm. 7.2]. Multiplier ideals occur again in their proof and it is here
where the geometric assumption (c) is used. However, it is shown in [13,
Thm. 6.3.3] that continuity of P (‖ · ‖) is enough to prove the orthogonal-
ity property without assuming (a) or (c). Then the variational method of
Boucksom, Favre and Jonsson can be applied to prove existence of a contin-
uous semipositive solution for the non-archimedean Calabi–Yau problem.
This makes it very clear that continuity of the semipositive envelope

P (‖ · ‖) plays a crucial role in the non-archimedean Calabi–Yau problem.
It is the main object of study in this paper. In Section 2, we will study
the basic properties of a slight generalization of P (‖ · ‖) which is called the
θ-psh envelope for a closed (1, 1)-form θ on X. For the sake of simplicity, we
will restrict our attention in the introduction to the semipositive envelope
P (‖ · ‖), while all the results hold more generally for the θ-psh envelope
assuming that the de Rham class of θ is ample.
In Section 3, we will look at continuity of the semipositive envelope in

the case of a smooth projective curve X over an arbitrary complete non-
archimedean field K. Potential theory on the curve Xan was developed in
Thuillier’s thesis [50]. We will use Thuillier’s results and the slope formula
of Katz, Rabinoff, and Zureick-Brown [34, Thm. 2.6] to prove:

Theorem 1.1. — Let L be an ample line bundle on a smooth projective
curve X over any non-archimedean field K. Then P (‖ · ‖) is a continuous
semipositive metric on Lan for any continuous metric ‖ · ‖ on Lan.

A slightly more general version will be proved in Theorem 3.1. The fol-
lowing is important in the proof: Let L be any line bundle on the smooth
projective curve X. We assume that X has a strictly semistable model X

such that Lan has a model metric ‖ · ‖0 associated to a line bundle on X .
For any metric ‖ · ‖ on Lan, we consider the function ϕ := − log(‖ · ‖/‖ · ‖0).
Let pX : Xan → ∆ be the canonical retraction to the skeleton ∆ associated
to X . Then

(1.3) ‖ · ‖∆ := e−ϕ◦pX ‖ · ‖0

is a metric on Lan which does not depend on the choice of ‖ · ‖0. The
following result is crucial in the proof of Theorem 1.1:
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Proposition 1.2. — Using the hypotheses above, we consider a model
metric ‖ · ‖ of Lan. Then we have the following properties:

(1) The metric ‖ · ‖∆ is a model metric.
(2) There is an equality of measures c1(L, ‖ · ‖∆) = (pX )∗(c1(L, ‖ · ‖)).
(3) If ‖ · ‖ is semipositive, then ‖ · ‖∆ is semipositive and ‖ · ‖∆ 6 ‖ · ‖.

This will be proven in Propositions 3.5 and 3.8. It would make pluripo-
tential theory and the solution of the non-archimedean Calabi–Yau problem
much easier if Proposition 1.2 would also hold in higher dimensions as we
could work more combinatorically on skeletons. It is still true that ‖ · ‖∆ is
a model metric which satisfies ‖ · ‖∆ 6 ‖ · ‖. Burgos and Sombra show in
a two dimensional toric counterexample in the Appendix that ‖ · ‖∆ does
not have to be semipositive.
We show now that Proposition 1.2 is also crucial for the existence of the

solution of the non-archimedean Calabi–Yau problem in the case of curves
arguing as in [10, §9]. By Thuillier [50, Cor. 3.4.13], there is a semiposi-
tive metric ‖ · ‖ solving (1.1), but it might be singular. Here, semipositive
means that the metric is an increasing pointwise limit of semipositive model
metrics of the ample line bundle L. If we assume that the positive Radon
measure µ has support in the skeleton ∆ of a strictly semistable model X

of X, then it follows easily from Proposition 1.2 that ‖ · ‖∆ is a continuous
semipositive metric solving (1.1). Burgos and Sombra show in their coun-
terexample in the Appendix that this does not hold in higher dimensions
either.
To look for solutions of the higher dimensional non-archimedean Monge–

Ampère equation in positive characteristic, we will replace the use of mul-
tiplier ideals by the use of test ideals. Test ideals were introduced by Hara
and Yoshida [30] using a generalization of tight closure theory. In Section 4,
we will gather the necessary facts about test ideals mainly following [45]
and so we work on a smooth variety X over a perfect field k of character-
istic p > 0. Similarly as in the case of multiplier ideals, one can define an
asymptotic test ideal τ(λ‖D‖) of exponent λ ∈ R>0 for a divisor D on X.
Crucial for us is that τ(λ‖D‖) satisfies a subadditivity property and the
following uniform generation property:

Theorem 1.3. — LetX be a projective scheme over a finitely generated
k-algebra R such that X is a smooth n-dimensional variety over k. We
assume that H is an ample and basepoint-free divisor, D is a divisor with
h0(X,O(mD)) 6= 0 for some m ∈ N>0 and E is a divisor such that the
Q-divisor D−λE is nef for some λ ∈ Q>0. Then the sheaf OX(KX/k+E+
dH)⊗OX τ(λ · ‖D‖) is globally generated for all d > n+ 1.
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This was proven by Mustaţă if X is projective over k. As we will later
work over discrete valuation rings, we need the more general version with
X only projective over R. This will be possible in Theorem 4.6 as we can
replace the use of Fujita’s vanishing theorem in Mustaţă’s proof by Keeler’s
generalization.
Now we come to the non-archimedean Calabi–Yau problem in equichar-

acteristic p > 0. For the remaining part of the introduction, we now fix
an n-dimensional smooth projective variety X over a complete discretely
valued field K of characteristic p. To apply the results on test ideals, we
have to require that X is of geometric origin from a d-dimensional family
over a perfect field k. We also fix an ample line bundle L on X.

Theorem 1.4. — Under the hypotheses above, we assume that resolu-
tion of singularities holds over k in dimension d+n. Then the semipositive
envelope P (‖ · ‖) of a continuous metric ‖ · ‖ on Lan is a continuous semi-
positive metric on Lan.

For the precise definition about resolution of singularities, we refer to
Definition 6.1. As resolution of singularities is known in dimension 3 over
a perfect field by a result of Cossart and Piltant [20, Thm. p. 1839], The-
orem 1.4 is unconditional if X is a smooth projective surface of geometric
origin from a 1-dimensional family over k.

In Section 7, we will prove Theorem 1.4 in the case when ‖ · ‖ is a model
metric associated to a model which is also defined geometrically over k.
We will follow the proof of Boucksom, Favre, and Jonsson, replacing mul-
tiplier ideals by test ideals. As we use a rather weak notion of resolution
of singularities, a rather subtle point in the argument is necessary in the
proof of Lemma 7.5 which involves a result of Pépin about semi-factorial
models. Theorem 1.4 will be proved in full generality in Section 8 using the
ddc-lemma and basic properties of the semipositive envelope. In fact, we
will prove in Theorem 8.2 a slightly more general result.
If we use additionally that embedded resolution of singularities (see Def-

inition 6.2) holds over k in dimension d + n, then the family of projective
SNC-models will be cofinal in the category of all models of X. We will
see in Section 9 that this and Theorem 1.4 allow us to set up the pluripo-
tential theory from [11] on Xan. By [9, Thm. 7.2] again, the continuity
of P (‖ · ‖) yields that the orthogonality property holds for any continuous
metric on Lan. We will use this in Section 9 to show that the variational
method of Boucksom, Favre and Jonsson proves the following result (see
Theorem 9.3).
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Theorem 1.5. — Let X be an n-dimensional smooth projective variety
of geometric origin from a d-dimensional family over a perfect field k of
characteristic p > 0. We assume that resolution of singularities and embed-
ded resolution of singularities hold over k in dimension d+ n. Let L be an
ample line bundle on X and let µ be a positive Radon measure supported
on the skeleton of a projective SNC-model of X with µ(Xan) = degL(X).
Then the non-archimedean Monge–Ampère equation (1.1) has a continuous
semipositive metric ‖ · ‖ on Lan as a solution.

Cossart and Piltant [19, 20] have shown resolution of singularities and
embedded resolution of singularities in dimension 3 over a perfect field,
hence Theorem 1.5 holds unconditionally for a smooth projective surface
X of geometric origin from a 1-dimensional family over the perfect field k.

Notation and conventions

Let X be a scheme. An ideal in OX is a quasi-coherent ideal sheaf in
OX . A divisor on X is always a Cartier divisor on X. Given m ∈ N we
write X(m) for the set of all p ∈ X where the local ring OX,p has Krull
dimension m. Let k be a field. A variety X over k is an integral k-scheme
X which is separated and of finite type. A curve (resp. surface) is a variety
of dimension one (resp. two).
Throughout this paper (K, | · |) denotes a complete non-archimedean val-

ued field with valuation ring K◦ and residue field K̃. Starting in Section 7
we will assume furthermore that the valuation is discrete and that K has
positive characteristic p > 0. In this case there exists an isomorphism
K◦

∼−→ K̃[[T ]] [44, Thm. 29.7]. Let X be a K-variety. We denote the
analytification of X in the sense of Berkovich [3, Thm. 3.4.1] by Xan.

Acknowledgement

We thank Mattias Jonsson for his valuable comments on a first version,
Matthias Nickel for helpful discussions, and the referee for their useful
remarks.

2. Model metrics, semipositive metrics, and envelopes

Let X be a proper variety over a complete non-archimedean valued field
(K, | · |).
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2.1. — A model of X is given by a proper flat scheme X over S :=
SpecK◦ together with an isomorphism h between X and the generic fiber
Xη of the S-scheme X which we read as an identification.

Given a model X of X there is a canonical surjective reduction map
red: Xan −→ Xs where Xs denotes the special fiber X ⊗K◦ K̃ of X

over S.
Let L be a line bundle on the proper variety X. A model of (X,L) or

briefly a model of L is given by a model (X , h) of X together with a line
bundle L on X and an isomorphism h′ between L and h∗(L |Xη

) which
we read as an identification.
Given a model (X ,L ) of (X,L⊗m) for some m ∈ N>0 there is a unique

metric ‖ · ‖L on Lan over Xan which satisfies the following: Given an open
subset U of X , a frame t of L over U , and a section s of L over U = X∩U

we write s⊗m = ht for some regular function h on U and get ‖s‖ = m
√
|h| on

Uan∩ red−1(Us). Such a metric on Lan is called a model metric determined
on X .

2.2. — A model metric ‖ · ‖ on OXan induces a continuous function

f = − log ‖1‖ : Xan → R.

The space of model functions

D(X) = {f :Xan→ R | f =− log ‖1‖ for some model metric ‖ · ‖ on OXan}

has a natural structure of a Q-vector space. We say that a model function
f = − log ‖1‖ is determined on a model X if the model metric ‖ · ‖ is
determined on X . A vertical divisor D on X determines a model O(D)
of OX and an associated model function ϕD := − log ‖1‖O(D). Such model
functions are called Z-model functions. Let a denote a vertical ideal of
X . Let E denote the exeptional divisor of the blowup of X in a. Then
log |a| := ϕE is called the Z-model function defined by the vertical ideal a.

2.3. — Consider a model X of the proper variety X over K.
The rational vector space N1(X /S)Q is by definition the quotient of
Pic(X )Q := Pic(X )⊗ZQ by the subspace generated by classes of line bun-
dles L such that L ·C = 0 for each closed curve C in the special fiber Xs.
Note that N1(X /S)Q is finite dimensional by applying [39, Prop. IV.1.4] to
Xs. We define N1(X /S) := N1(X /S)Q⊗QR. An element α ∈ N1(X /S)Q
(resp. α ∈ N1(X /S)) is called nef if α · C > 0 for all closed curves C in
Xs. We call a line bundle L on X nef if the class of L in N1(X /S)
is nef.
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CONTINUITY OF PLURISUBHARMONIC ENVELOPES 2339

2.4. — We define Z1,1(X)Q as the direct limit

Z1,1(X)Q := lim−→N1(X /S)Q,(2.1)

where X runs over the isomorphism classes of models of X. The space
of closed (1, 1)-forms on X is defined as Z1,1(X) := Z1,1(X)Q ⊗Q R. Let
L be a line bundle on X. Let ‖ · ‖ be a model metric on Lan which is
determined on X by a model L of L⊗m. We multiply the class of L in
N1(X /S)Q by m−1 which determines a well defined class c1(L, ‖ · ‖) ∈
Z1,1(X)Q ⊆ Z1,1(X) called the curvature form c1(L, ‖ · ‖) of (L, ‖ · ‖). We
have a natural map ddc : D(X)→ Z1,1(X); f 7→ c1(OX , ‖ · ‖triv · e−f ).

A closed (1, 1)-form θ is called semipositive if it is represented by a nef
element θX ∈ N1(X /S) for some model X of X. We say that a model
metric ‖ · ‖ on Lan for a line bundle L on X is semipositive if the same
holds for the curvature form c1(L, ‖ · ‖).

2.5. — For θ ∈ Z1,1(X) we denote by

PSHD(X, θ) = {f ∈ D(X) | θ + ddcf ∈ Z1,1(X) is semipositive}

the set of θ-plurisubharmonic (θ-psh for short) model functions. Recall
from [28, Prop. 3.12] that the set PSHD(X, θ) is stable under the formation
of max.

2.6. — If Y is a proper variety over an arbitrary field k, we denote by
N1(Y )Q the rational vector space Pic(Y ) ⊗ Q modulo numerical equiva-
lence. Similarly, we denote by N1(Y ) = N1(Y )Q⊗QR the real vector space
Pic(Y )⊗R modulo numerical equivalence. A class in N1(Y ) is called ample
if it is an R>0-linear combination of classes induced by ample line bundles
on Y . An element α ∈ N1(Y )Q (resp. α ∈ N1(Y )) is called nef if α ·C > 0
for all closed curves C in Y .

2.7. — The restriction maps

N1(X /S)→ N1(X), [L ] 7→ [L |X ]

induce a linear map { · } : Z1,1(X) −→ N1(X), θ 7→ {θ}. We call {θ} the
de Rham class of θ.

Definition 2.8. — Let X be a projective variety over K and θ ∈
Z1,1(X) with de Rham class {θ} ∈ N1(X). The θ-psh envelope Pθ(u)
of u ∈ C0(Xan) is the function

(2.2)
Pθ(u) : Xan −→ R ∪ {−∞},
Pθ(u)(x) := sup{ϕ(x) |ϕ ∈ PSHD(X, θ) ∧ ϕ 6 u}.

TOME 69 (2019), FASCICULE 5
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Note that Pθ(u) is a real valued function if and only if there exists a θ-psh
model function. For the existence of a θ-psh model function, it is necessary
that the de Rham class {θ} is nef (see [28, 4.8] and [11, Rem. 5.4]). If {θ}
is ample, then there exists always a θ-psh model function and hence Pθ(u)
is a real valued function. If there is no θ-psh function, then Pθ(u) ≡ −∞
by definition.
If the residue characteristic is zero and if the de Rham class {θ} is ample,

our definition of Pθ(u) is by [11, Thm. 8.3 and Lemma 8.9] equivalent to
the definition of Boucksom, Favre, and Jonsson in [11, Def. 8.1].
The next proposition collects elementary properties of envelopes.

Proposition 2.9. — Let u, u′ ∈ C0(Xan) and θ, θ′ ∈ Z1,1(X).
(1) If u 6 u′ then Pθ(u) 6 Pθ(u′).
(2) We have Ptθ+(1−t)θ′(tu+ (1− t)u′) > tPθ(u) + (1− t)Pθ′(u′) for all

t ∈ [0, 1].
(3) We have Pθ(u) + c = Pθ(u+ c) for each c ∈ R.
(4) We have Pθ(u)− v = Pθ+ddcv(u− v) for each v ∈ D(X).
(5) If Pθ(u) 6≡ −∞, then we have supXan |Pθ(u)−Pθ(u′)| 6 supXan |u−

u′|.
(6) If θ is determined on a model X , if the de Rham class {θ} is ample

and if θm → θ in N1(X /S), then Pθm(u) → Pθ(u) uniformly on
Xan.

(7) We have Ptθ(tu) = tPθ(u) for all t ∈ R>0.
(8) Assume Pθ(u) 6≡ −∞. Then the envelope Pθ(u) is continuous if and

only if it is a uniform limit of θ-psh model functions.

Proof. — The proof of Properties (1)–(6) in [11, Prop. 8.2] works in our
setup as well. For (6) it was used that an ample line bundle extends to
an ample line bundle on a sufficiently high model which holds in our more
general setting by [28, Prop. 4.11]. Property (7) is obvious for t ∈ Q>0
and an easy approximation argument then shows (7) in general. We have
seen that θ-psh model functions are closed under max and hence the θ-psh
model functions ϕ 6 u form a directed family. We conclude that (8) follows
from Dini’s Theorem for nets [37, p. 239] and the definition of Pθ(u). �

For the next proposition, we assume for simplicity that the valuation on
K is discrete.

Proposition 2.10. — Let L be an ample line bundle on X, L an
extension to a model X and θ = c1(L, ‖ · ‖L ) ∈ Z1,1(X). For m > 0 let

(2.3) am = Im
(
H0(X ,L ⊗m)⊗K◦ L ⊗−m → OX

)
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be the m-th base ideal of L and ϕm := m−1 log |am|. Then we have ϕm ∈
PSHD(X, θ) and

(2.4) lim
m→∞

ϕm = sup
m∈N

ϕm = Pθ(0)

pointwise on Xan.

Proof. — This is shown as in Step 1 of the proof of [11, Thm. 8.5].
Observe that the arguments which show (2.4) in loc. cit. on the subset of
quasimonomial points give us (2.4) immediately on Xan using our different
definition of the θ-psh envelope. �

Proposition 2.11. — Let K ′/K be a finite normal extension and let
q : X ′ := X ⊗K K ′ → X be the natural projection. For θ ∈ Z1,1(X) and
u ∈ C0(Xan), we have

(2.5) q∗(Pθ(u)) = Pq∗θ(q∗(u)).

Proof. — Splitting the extension K ′/K into a purely inseparable part
and a Galois part, we can reduce to two cases. In the first case of a
purely inseparable extension, the result follows from Lemma 2.13 below.
In the second case of a Galois extension, we can apply the argument of [9,
Lemma A.4]. �

Remark 2.12.
(1) We always equip strictly K-analytic spaces with the G-topology

induced by the strictly K-affinoid domains. We refer to [3, §2.2] for
the notion of a strictly K-affinoid domain and to [4, §1.6] for the
construction of the G-topology.

(2) We recall from [28, Def. 2.8, 2.11] that a piecewise Q-linear function
on a strictly K-analytic space W is a function f : W → R such that
there is a G-covering {Ui}i∈I of W by strictly affinoid domains,
analytic functions γi ∈ O(Ui)× and non-zero mi ∈ N with mif =
− log |γi| on Ui for every i ∈ I. By [28, Rem. 2.6, Prop. 2.10], the
notions of model functions and Q-linear functions agree.

Lemma 2.13. — Let L be a line bundle on X. Let K ′/K be a finite
purely inseparable extension and let q : X ′ := X⊗KK ′ → X be the natural
projection. G-topology induced by the strictly K-affinoid domains. Then
the map (X ′)an → Xan is a homeomorphism and it also identifies the
G-topologies. The map q∗ induces a bijection between the set of model
metrics on L and the set of model metrics on q∗(L). Moreover this bijection
identifies semipositive metrics on L and on q∗(L).
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Proof. — As in Remark 2.12 we use the G-topology induced by the
strictly K-affinoid domains. We first prove that the map q : (X ′)an → Xan

is a homeomorphism and that it also identifies the G-topologies. In fact,
this follows easily from the following claim:
Step 1. — Let V be a strictly affinoid space over K and V ′ := V ⊗̂KK ′.

Then the natural projection q : V ′ → V is a homeomorphism which identi-
fies the G-topologies.
Let pe = [K ′ : K] be the degree of the purely inseparable field extension.

It is clear that for every g ∈ O(V ′), there is f ∈ O(V ) with

(2.6) gp
e

= f ◦ q.

This property easily shows that q : V ′ → V is a homeomorphism which
we read now as an identification. Using that (2.6) holds also for rational
functions g on V ′ and f on V , we see that V and V ′ have the same strictly
rational domains. By the Gerritzen–Grauert theorem [7, Cor. 7.3.5/3], we
deduce the Step 1.
Next we prove the bijective correspondence between the model metrics

on L and on L′. Since L admits a model metric [28, 2.1], it is enough to show
that we have a bijective correspondence between model functions on Xan

and model functions on (X ′)an. By Remark 2.12 we may check the same
correspondence for Q-linear functions. This may then be done G-locally
and hence the correspondence follows from the following step.
Step 2. — Using the same assumptions as in Step 1, the map f 7→ f ◦ q

is an isomorphism from the group of piecewise Q-linear functions on V onto
the group of piecewise Q-linear functions on V ′.
Using the above definition of piecewise Q-linear functions, Step 1

and (2.6) yield easily Step 2.
To deduce the lemma, it remains to check that the identification between

the model metrics on L and L′ preserves semipositivity. This is an easy
consequence of the projection formula applied to finite morphisms between
closed curves in the special fibers of models. �

3. Continuity of plurisubharmonic envelopes on curves

In this section,K is any field endowed with a non-trivial non-archimedean
complete valuation v : K → R with value group Γ ⊂ R. In this section, we
consider a smooth projective curve X over K. The goal is to prove the
following result:
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Theorem 3.1. — If θ is a closed (1, 1)-form on Xan with nef de Rham
class {θ} and if u ∈ C0(Xan), then Pθ(u) is a uniform limit of θ-psh model
functions and thus Pθ(u) is continuous on Xan.

3.2. — As a main tool in the proof, we need strictly semistable models
of X and their canonical skeletons. This construction is due to Berkovich
in [5]. We recall here only the case of a smooth projective curve X over K
for which we can also refer to [50].
A K◦-model X of X as in 2.1 is called strictly semistable if there is

an open covering of X by open subsets U such that there are étale mor-
phisms U → Spec(K◦[x, y]/(xy − ρU )) for some ρU ∈ K◦◦. Applying the
construction in [50, §2.2] to the associated formal scheme X̂ , we get a
canonical skeleton S(X ) ⊆ Xan with a proper strong deformation retrac-
tion τ : Xan → S(X ). The skeleton S(X ) carries a canonical structure of
a metrized graph. We note that the generic fiber of the formal scheme Û
intersects S(X ) in an edge of length v(ρU ). By using the reduction map,
the vertices of S(X ) correspond to the irreducible components of the spe-
cial fiber Xs and the open edges of S(X ) correspond to the singular points
of Xs.

Remark 3.3. — By definition, a strictly semistable model X of X is
proper overK◦. Using thatX is a curve, we will deduce that X is projective
over K◦. Indeed, the special fiber Xs is a proper curve over the residue field
and hence projective. It is easy to construct an effective Cartier divisor D
on X whose support intersects any irreducible component of Xs in a single
closed point. By [41, Exercise 7.5.3], the restriction of D to Xs is ample.
It follows from [25, Cor. 9.6.4] that D is ample and hence X is projective.
Similarly, we can define strictly semistable formal models of Xan. Us-

ing that X is a smooth projective curve, the algebraization theorem of
Grothendieck [24, Thm. 5.4.5] and its generalizations to the non-noetherian
setting [1, Cor. 2.13.9], [22, Prop. I.10.3.2] show that formal completion in-
duces an equivalence of categories between strictly semistable algebraic
models of X and strictly semistable formal models of Xan. Here, we need a
similar argument as above to construct an effective formal Cartier divisor
which restricts to an ample Cartier divisor on the special fiber.

Definition 3.4. — A function f : S(X )→ R is called piecewise linear
if there is a subdivision of S(X ) such that the restriction of f to each edge
of the subdivison is affine. We call such an f integral Γ-affine if there is a
subdivision such that each edge e has length in Γ, such that f |e has integer
slopes, and such that f(v) ∈ Γ for each vertex v of the subdivision.
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Proposition 3.5. — Let X be a strictly semistable model of X and
let f : Xan → R be a function. Then the following properties hold:

(1) If f is a Z-model function, then f |S(X ) is a piecewise linear function
which is integral Γ-affine.

(2) The function f is a Z-model function determined on X if and only
if f = F ◦ τ for some function F : S(X ) → R which is affine on
each edge of S(X ) with integer slopes and with f(v) ∈ Γ for each
vertex v of S(X ).

(3) If G is a piecewise linear function on S(X ) which is integral Γ-
affine, then G ◦ τ is a Z-model function.

Proof. — In the G-topology on Xan induced by the strictly K-affinoid
domains, a Z-model function is given locally by − log |γ| for a rational
function γ on X. Hence (1) follows from [29, Prop. 5.6]. Property (2) was
proven in [27, Prop. B.7] for any dimension.
To prove (3), we choose a subdivision of S(X ) as in Definition 3.4 for

G. As in [2, §3], this subdivison is the skeleton of a strictly semistable
model X ′ dominating X and with the same retraction τ . Then (3) follows
from (2). Note that the quoted papers have the standing assumption that
K is algebraically closed, but it is straightforward to verify that this was
not used for the quoted results. �

3.6. — Now we consider a model function f on Xan. Using the setting of
Proposition 3.5 and (2), we see that f = F ◦τ for a piecewise linear function
F on S(X ) such that mF is integral Γ-affine for some non-zero m ∈ N.
We also assume that θ is a closed (1, 1)-form on Xan which is determined
on our given strictly semistable model X .

We have the following useful characterization for f to be θ-psh in terms
of slopes:

Proposition 3.7. — Under the hypotheses from 3.6, the model func-
tion f is θ-psh if and only if F satisfies for all x ∈ ∆ := S(X )∑

ν∈Tx(∆)

wx(ν)λx,ν(F ) + deg(θ|Cx) > 0,(3.1)

where ν ranges over the set Tx(∆) of outgoing tangent directions at x.
Here, λx,ν(F ) denotes the slope of F at x along ν and we have the weight
wx(ν) := [K̃(pν) : K̃] for the singularity pν of Xs corresponding to the
edge of S(X ) at x in the direction of ν. Moreover, if x is a vertex of S(X ),
then Cx denotes the corresponding irreducible component Cx of Xs and if
x is not a vertex, then deg(θ|Cx) := 0.
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Proof. — If we pass to the completion CK of an algebraic closure of
K, there is a strictly semistable model X ′ dominating X such that f is
determined on X ′. This is proven in [8, §7]. We note that the property θ-psh
holds if and only if the corresponding property holds after base change to
CK . This is a consequence of the projection formula in algebraic intersection
theory. Since the degree is invariant under base change, it follows from [50,
Prop. 2.2.21] that the left hand side of (3.1) is invariant under base change
as well. We conclude that we may assume that K is algebraically closed
and that X = X ′, i.e. f is determined on X . Then (3.1) follows from the
slope formula of Katz, Rabinoff, and Zureick-Brown [34, Thm. 2.6]. �

The next result is crucial for the proof of Theorem 3.1. It is well-known
to the experts, but in our quite general setting we could not find a proof
in the literature (a special case was proven in [27, B.16]). The result is
related to the fact that the retraction from a graph to a subgraph preserves
subharmonicity of functions (see for example [33, §2.5.1] for the case of
trees).

Proposition 3.8. — Let X be a strictly semistable model of X with
canonical retraction τ : Xan → S(X ). Let θ ∈ Z1,1(X) be determined
on X and let ϕ : Xan → R be an arbitrary θ-psh model function. Then
ϕ ◦ τ : Xan → R is a θ-psh model function with ϕ 6 ϕ ◦ τ .

Proof. — It follows from Proposition 3.5 that ϕ ◦ τ is a model function.
To check that ϕ ◦ τ is θ-psh, we may assume K algebraically closed as
we have seen in the proof of Proposition 3.7. Moreover, we have seen that
there is a strictly semistable model X ′ of X dominating X such that f is
determined on X ′. Then

∆ := S(X ) ⊂ ∆′ := S(X ′)

and ϕ ◦ τ is constant along edges of ∆′ which are not contained in ∆. By
Proposition 3.5, there is a piecewise linear function F ′ on ∆′ with ϕ = F ′◦τ ′
for the canonical retraction τ ′ : Xan → ∆′ such thatmF ′ is integral Γ-affine
for a non-zerom ∈ N. Moreover, the function F ′ is affine on the edges of ∆′.
Let F be the restriction of F ′ to ∆. The same arguments as in [11, Prop. 5.7]
show that the θ-psh function ϕ is a uniform limit of functions of the form
1
m log |a| with non-zerom ∈ N and with a vertical fractional ideal sheaf a on
X . By [5, Thm. 5.2(ii)], we deduce that ϕ 6 ϕ ◦ τ . Using the terminology
introduced in Proposition 3.7, for all x ∈ ∆ and v ∈ Tx(∆′) we obtain
λx,ν(F ′) = λx,ν(F ) if v ∈ Tx(∆′) and λx,ν(F ′) 6 0 if ν ∈ Tx(∆′) \ Tx(∆).
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This implies

0 6
∑

ν∈Tx(∆′)

wx(ν)λx,ν(F ′) + deg(θ|Cx)

6
∑

ν∈Tx(∆)

wx(ν)λx,ν(F ) + deg(θ|Cx)

Here this first inequality comes from Proposition 3.7, since ϕ is θ-psh.
Applying Proposition 3.7 again, we conclude that ϕ◦τ = F ◦τ is θ-psh. �

Remark 3.9. — Proposition 3.8 does not hold for higher dimensional va-
rieties. We refer to the Appendix for a toric counterexample in dimension
two by José Burgos and Martín Sombra.

The following special case of model functions is crucial for the proof of
Theorem 3.1. Especially for model functions, we can say much more about
the envelope.

Proposition 3.10. — Let θ be a closed (1, 1)-form with nef de Rham
class {θ} on the smooth projective curve X over K and let f : Xan → R be
a model function. We assume that θ and f are determined on the strictly
semistable model X of X. Let τ : Xan → S(X ) be the canonical retraction
to the skeleton. Then the following properties hold:

(1) There is F : S(X ) → R which is affine on each edge and with
Pθ(f) = F ◦ τ .

(2) If Γ ⊂ Q and if θ ∈ Z1,1(X)Q, then Pθ(f) is a θ-psh model function
which is determined on X .

Proof.
Step 1. — By Proposition 2.9(4), we have

Pθ(f) = Pθ+ddcf (0) + f.

Hence replacing θ by θ + ddcf and f by 0, we can assume that f = 0 by
Proposition 3.5(2).
Step 2. — Let ∆ := S(X ) denote the skeleton of X . By Propositions 3.5

and 3.8, we get that

(3.2) Pθ(0) = sup
F∈A

F ◦ τ

for the set A of non-positive piecewise linear functions F on ∆ such that
mF is integral Γ-affine for some m ∈ N>0 and such that F ◦ τ is θ-psh.
Note that the piecewise linear functions are not assumed to be affine on
the edges of ∆. Since X is a smooth projective curve and the de Rham
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class {θ} is nef, it is clear that A is non-empty. We introduce the function
F0 : ∆→ R defined by

F0 := sup
F∈A

F.

By (3.2), we get that Pθ(0) = F0 ◦τ . Hence we can reduce (1) to prove that
F0 is affine on each edge of ∆.
Step 3. — For F ∈ A, let L(F ) : ∆ → R be the function which is

affine on the edges of ∆ and which agrees with F on the set V of vertices
of ∆. As F 6 0, we deduce immediately L(F ) 6 0. Since F ◦ τ is θ-
psh, Proposition 3.7 shows that F is convex on each edge of ∆ and hence
F 6 L(F ).
By passing from F to L(F ), the slopes do not decrease in the vertices

and using that F ◦ τ is θ-psh, it follows from Proposition 3.7 that L(F ) ◦ τ
is θ-psh as well.
The slopes of the function L(F ) might be non-rational. However, we can

approximate the slopes of L(F ) in a rational way at any vertex and thus
for any ε > 0 we find a piecewise linear function Lε(F ) on ∆ such that

(i) Lε(F ) agrees with F on V .
(ii) Lε(F ) has rational slopes.
(iii) Lε(F ) is convex on the edges of ∆.
(iv) Lε(F ) > F .
(v) sup |Lε(F )− L(F )| < ε

We claim that Lε(F ) ∈ A. It follows from (ii) that mLε(F ) is integral
Γ-affine for somem ∈ N>0. Since F and L(F ) agree on V , it is clear from (i)
and (iii) that Lε(F ) 6 L(F ) 6 0. To show that Lε(F ) ◦ τ is θ-psh, we use
the slope criterion from Proposition 3.7. Note that (3.1) is fulfilled in the
interior of each edge of ∆ by (iii). In a vertex of ∆, the inequality (3.1)
is satisfied by using the corresponding inequality for F , (i) and (iv). This
proves Lε(F ) ∈ A. As a consequence we find

F0 = sup
F∈A

F = sup
F∈A

Lε(F ) = sup
F∈A

L(F ).(3.3)

Step 4. — We claim F0 = L(F0). First note that since the max of convex
functions in convex, F0 is convex on each edge of ∆, thus F0 6 L(F0).

We pick an ε > 0. For any v ∈ V , there is fv ∈ A with fv(v) > L(F0)(v)−
ε. It follows from [28, Prop. 3.12] that the maximum of two θ-psh model
functions is again a θ-psh model function. Using 2.5, we conclude that A
is closed under the operation max. Thus L(max{fv | v ∈ V }) ∈ A is in
ε-distance to L(F0) at every vertex of ∆ and hence at every point of ∆. As
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ε > 0 can be chosen arbitrarily small, (3.3) yields L(F0) 6 F0 and hence
we get Step 4. Note that Step 4 proves (1).
Step 5. — In the case Γ ⊂ Q, we have L(F ) ∈ A for F ∈ A. Indeed, we

note that in this special case the edges have rational lengths and F takes
rational values at V . We deduce from Proposition 3.5 that L(F ) ◦ τ is a
model function. Let B be the set of F ∈ A such that F is affine on every
edge of ∆. For F ∈ A we thus have L(F ) ∈ B which shows via (3.3) that
we might restrict the sup to B in the definition of F0. Recall that V is
the set of vertices of ∆. Since the edge lengths of ∆ are rational, the map
Ψ: B → RV defined by Ψ(F ) = (F (v))v∈V identifies B with the rational
points of a rational polyhedron in RV defined by the linear inequalities of
Proposition 3.7. Note that by affineness on the edges, we need to check the
slope inequalities only at the vertices. If a rational linear form ϕ is bounded
from above on a rational polyhedron P , then ϕ|P achieves its maximum in
a rational point. Hence there exists G ∈ B such that∑

v∈V
G(v) = max

F∈B

(∑
v∈V

F (v)
)
.(3.4)

We claim that G = F0. Considering F ∈ B, we get max(G,F ) ∈ A by
Step 4 and hence H ′ := L(max(G,F )) ∈ B. Hence H ′ > G, H ′ > F and
H ′ ∈ B. But by (3.4) we deduce that for v ∈ V we have H ′(v) = G(v).
Since functions in B are determined by their values on V , we have H ′ = G.
Hence G > F , whence G = F0. It follows that Pθ(0) = F0 ◦ τ = G ◦ τ is a
θ-psh function proving (2). �

Proof of Theorem 3.1. — By Proposition 2.9(8) it is enough to prove
the continuity of Pθ(u). By the semistable reduction theorem [8, §7], there
is a finite field extension K ′/K such that X ′ := X ⊗K K ′ has a strictly
semistable model X ′ with θ′ := q∗θ determined on X ′, where q : X ′ → X

is the canonical map. It follows from Proposition 3.10 that Pθ′(u ◦ q) is
continuous. We know from Lemma 2.11 that

Pθ′(u ◦ q) = q∗(Pθ(u)).

By [3, Prop. 1.3.5], the topological space of Xan is the quotient of (X ′)an by
the automorphism group of K ′/K. We conclude that Pθ(u) is continuous.

�

In the following, we consider an ample line bundle L on the projective
smooth curve X over K. Recall that we have defined the semipositive en-
velope P (‖ · ‖) of a continuous metric ‖ · ‖ on Lan in (1.2).
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Corollary 3.11. — Assume that Γ ⊂ Q. Let ‖ · ‖ be a model metric
on L. Then P (‖ · ‖) is a semipositive model metric on L.

Proof. — By definition, we have P (‖·‖) = ‖·‖e−Pθ(0) for θ := c1(L, ‖·‖),
hence the claim follows from Proposition 3.10. �

From now on, we assume that K is discretely valued. The goal is to
prove some rationality results for the non-archimedean volumes on the
line bundle L of the smooth projective curve X over K. Non-archimedean
volumes vol(L, ‖ · ‖1, ‖ · ‖2) with respect to continuous metrics ‖ · ‖1, ‖ · ‖2
on Lan are analogues of volumes vol(L) in algebraic geometry. We refer
to [13, Def. 4.1.2] for the precise definition. By the Riemann–Roch theorem,
vol(L) ∈ Q in the special case of curves. We will show a similar result about
non-archimedean volumes.

Corollary 3.12. — Let K be a field endowed with a complete discrete
valuation with value group Γ ⊂ Q. Let ‖ · ‖1 and ‖ · ‖2 be two model met-
rics on the line bundle L of the smooth projective curve X over K. Then
vol(L, ‖ · ‖1, ‖ · ‖2) ∈ Q.

Proof. — If deg(L) 6 0, then it is clear from the definition that

vol(L, ‖ · ‖1, ‖ · ‖2) = 0.

So we may assume that L is ample. We need the energy E(L, ‖ · ‖1, ‖ · ‖2)
with respect to continuous semipositive metrics ‖ · ‖1, ‖ · ‖2 on Lan intro-
duced in [13, Def. 2.4.4]. By Corollary 3.11, the envelopes P (‖ · ‖1) and
P (‖ · ‖2) are semipositive model metrics on Lan. In particular, they are
continuous and hence it follows from [13, Cor. 6.2.2] that

vol(L, ‖ · ‖1, ‖ · ‖2) = E(L,P (‖ · ‖1), P (‖ · ‖2)).

In the case of semipositive model metrics associated to line bundles L1,L2
on a K◦-model X , our assumption Γ ⊂ Q yields that the energy is de-
fined as a Q-linear combination of intersection numbers of the line bundles
L1,L2 on X proving the claim. �

Remark 3.13. — When dim(X) > 3, there are varieties with line bun-
dles L such that vol(L) is irrational (see [21, Example 2.2] or [40, Exam-
ple 2.3.8]). Hence with our definition and normalization of non-archimedean
volumes, we get for a model metric ‖ · ‖ that

vol(L, ‖ · ‖, eλ‖ · ‖) = vol(L)λ

which produces irrational non-archimedean volumes. The following natural
questions remain open:
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(1) What happens if X is a variety of dimension two? Are non-archime-
dean volumes rational? Note that by Zariski decomposition, vol(L)
is rational then (see for instance [40, Cor. 2.3.22]).

(2) If we normalize our non-archimedean volumes by vol(L), can we
find an example of some model metrics ‖ · ‖ and ‖ · ‖′ with irrational
vol(L, ‖ · ‖, ‖ · ‖′)? The idea is to avoid the trivial example above.

4. Asymptotic test ideals

We recall definitions and some basic properties from the theory of gener-
alized and asymptotic test ideals developed in [6, §2] and [45, §3]. We refer
to [48] for a more comprehensive overview of the theory of test ideals. Let
X be a smooth variety over a perfect field k of characteristic p > 0. Let
F : X → X denote the Frobenius morphism which is induced by the p-th
power ring morphism on affine subsets. Write

ωX/k = det ΩX/k = OX(KX/k)

for some canonical divisor KX/k on X.
Let a be an ideal in OX and e ∈ N>0. There is a unique ideal a[pe] in

OX such that for every open affine U in X the ideal a[pe](U) in OX(U) is
generated by {upe |u ∈ a(U)}. We have [6, bottom of p. 44]

(4.1) a(U) = {a ∈ OX(U) | ap
e

∈ a[pe](U)}

We recall the following facts from [45, p. 540]: There is a canonical trace
map Tr: F∗(ωX/k)→ ωX/k whose construction can be based on the Cartier
isomorphism [35, Thm. (7.2) and Eq. (7.2.3)]. Mustaţă gives an explicit
description of the trace map [45, top of p. 540]. Given e ∈ N>0 there is
an iterated trace map Tre : F e∗ (ωX/k) → ωX/k. For an ideal a in OX there
exists a unique ideal a[1/pe] in OX with

(4.2) Tre(F e∗ (a · ωX/k)) = a[1/pe] · ωX/k.

This definition of a[1/pe] is compatible with [6, Def. 2.2]. Hence we have

(4.3)
(
a[pe])[1/pe] = a ⊆

(
a[1/pe])[pe]

by [6, Lemma 2.4(iv)].

Definition 4.1 ([6, Def. 2.9]). — Given an ideal a in OX and λ ∈ R>0
one defines the test ideal of a of exponent λ to be

τ(aλ) :=
⋃

e∈N>0

(
adλp

ee
)[1/pe]
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where given r ∈ R we write dre for the smallest integer > r.

Remark 4.2.

(1) Observe that we have τ(aλ) = (adλpee)[1/pe] for large e ∈ N as X is
noetherian. The equality

(4.4) τ((am)λ) = τ(aλm)

for m ∈ N shows that the notation in Definition 4.1 is compatible
with taking powers of ideals [6, Cor. 2.15]. We have τ(aλ) ⊆ τ(bλ)
for ideals a ⊆ b in OX [6, Prop. 2.11(i)].

(2) Choose e such that τ(a) = (a[pe])[1/pe]. For any ideal b in OX such
that a[pe] ⊆ b[pe] we get a ⊆ b from (4.1). Hence (4.3) implies

(4.5) a ⊆ τ(a).

Let a• be graded sequence of ideals in OX , i.e. a family (am)m∈N>0 of
ideals in OX such that am · an ⊆ am+n for all m,n ∈ N>0 and am 6= (0) for
some m > 0.

Definition 4.3. — [45, p. 541] Choose λ ∈ R>0. Define the asymptotic
test ideal of exponent λ as

τ(aλ•) :=
⋃
m∈N

τ(aλ/mm ).

Remark 4.4.

(1) We have τ(aλ•) = τ(aλ/mm ) for suitable m ∈ N which are divisible
enough [45, p. 541].

(2) For all m ∈ N we have [45, p. 541, l. 4]

(4.6) τ(am) ⊆ τ(am• ).

(3) For all natural numbers m ∈ N we have the Subadditivity Prop-
erty [45, Prop. 3.1(ii)]

(4.7) τ(amλ• ) ⊆ τ(aλ•)m.

Definition 4.5. — Let D be a divisor on X with h0(X,OX(mD)) 6= 0
for some m > 0. Define the asymptotic test ideal of exponent λ ∈ R>0
associated with X and D as

τ(λ · ‖D‖) := τ(aλ•)

where a• denotes the graded sequence of base ideals for D, i.e. am is the
image of the natural map

H0(X,O(mD))⊗k OX(−mD)→ OX .
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If D is a Q-divisor such that h0(X,OX(mD)) 6= 0 for some positive integer
m such that mD is a usual divisor then we put τ(λ · ‖D‖) := τ(λ/r · ‖rD‖)
for some r ∈ N such that rD has integral coefficients.

We finish with a slight generalization of Mustaţă’s uniform generation
property [45, Thm. 4.1]. Observe that in loc. cit. it is required that the
variety X is projective over the ground field k.

Theorem 4.6. — Let R be a k-algebra of finite type over a perfect field
k of characteristic p > 0. Let X be an integral scheme of dimension n which
is projective over the spectrum of R and smooth over k. Let D, E, and H
be divisors on X and λ ∈ Q>0 such that

(1) OX(H) is an ample, globally generated line bundle,
(2) h0(X,OX(mD)) > 0 for some m > 0, and
(3) the Q-divisor E − λD is nef.

Then the sheaf OX(KX/k +E + dH)⊗OX τ(λ · ‖D‖) is globally generated
for all d > n+ 1.

Proof. — We literally follow Mustaţă’s proof with two modifications.
The proof requires Mumford’s theorem on Castelnuovo–Mumford regu-
larity for the projective scheme X over R which holds also in this more
general setting [12, 20.4.13]. Furthermore we replace the use of Fujita’s
vanishing theorem to the sheaves Fj := OX (KX/k + Tj), j = 1, . . . , r and
the ample divisor (d− i)H by an application of Keeler’s generalization [36,
Thm. 1.5]. �

5. Descent for model functions

Let K denote a complete discretely valued field with valuation ring K◦.
Let R be a discrete valuation subring of K◦ whose completion is K◦. Then
K is the completion of the field of fractions F of R. In this section we show
that all model functions on analytifications of varieties over K are already
defined over R.
An R-model of a projective variety over F is defined completely analo-

gously to the complete case treated in 2.1.

Definition 5.1. — Let X be a projective variety over K. We say that
a model function ϕ : Xan → R is defined over R if there exists a projective
variety Y over F , with an isomorphism Y ⊗F K ' X, an R-model Y of Y ,
a vertical divisor D0 on Y such that ϕ = 1

mϕD where m ∈ N>0 and D is
the vertical divisor on Y ⊗R K◦ obtained by pullback from D0. Likewise
we define the notion of a vertical ideal sheaf defined over R.
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Here is the announced descent result.

Proposition 5.2. — Let Y be a projective variety over F and let X :=
Y ⊗F K.

(1) Any K◦-model of X is dominated by the base change of a projective
R-model of Y to K◦.

(2) If a projective K◦-model X of X dominates Y ⊗R K◦ for a pro-
jective R-model Y of Y , then X ' Y ′ ⊗R K◦ for a projective
R-model Y ′ of Y dominating Y .

(3) Every model function on Xan is defined over R.

Proof. — To prove (1), we pick any projective R-model Y of Y . By [43,
Lemma 2.2], there is a blowing up π : X ′ → Y ⊗R K◦ such that X ′

dominates X . Since π is a projective morphism, X ′ is a projective K◦-
model dominating X . Hence (1) follows from (2).

To prove (2), we note that the morphism X → Y ⊗R K◦ is a blowing
up morphism along a vertical closed subscheme Z of Y ⊗R K◦ (see [41,
Thm. 8.1.24]). Since the ideal sheaf of Z contains a power of the uniformizer
of R, we may define it over R and hence the same is true for the blowing
up morphism and for X proving (2).
To prove (3), we may assume that the model function is associated to a

vertical Cartier divisor D. Replacing D by D + div(λ) for a suitable non-
zero λ ∈ R and using (1) and (2), we may assume that D is an effective
Cartier divisor on a projective R-model Y of Y . As in (2), we see that the
ideal sheaf of D is defined by the ideal sheaf of a Cartier divisor D0 defined
over R proving (3). �

6. Resolution of singularities

For our applications, we need that regular projective models are cofinal
in the categroy of models which makes it necessary to assume resolution of
singularities in a certain dimension.

Definition 6.1. — Let k be a field. We say that resolution of singular-
ities holds over k in dimension n if for every quasi-projective variety Y over
k of dimension n there exists a regular variety Ỹ over k and a projective
morphism Ỹ → Y which is an isomorphism over the regular locus of Y .

To transfer results from [11, 9] to our context, it is essential to show that
projective models are dominated by SNC-models. In order to this we are
going to use the following assumption.
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Definition 6.2. — We say that embedded resolution of singularities in
dimensionm holds over a field k if for every quasi-projective regular variety
Y over k of dimension m and every proper closed subset Z of Y , there is a
projective morphism π : Y ′ → Y of quasi-projective regular varieties over
k such that the set π−1(Z) is the support of a normal crossing divisor and
such that π is an isomorphism over Y \ Z.

Hironaka has shown that resolution of singularities and embedded reso-
lution of singularities holds over a field of characteristic zero in any dimen-
sion. Resolution of singularities holds over arbitrary fields in dimension one
(Dedekind, M. Noether, Riemann) and in dimension two (Abhyankar, Lip-
man). Cossart and Piltant have proven that resolution of singularities and
embedded resolution of singularities hold in dimension three over perfect
fields.

Theorem 6.3 (Cossart–Piltant). — Resolution of singularities and em-
bedded resolution of singularities hold in dimension three over any perfect
field.

Proof. — This is shown in [20, Thm. on p. 1839] and [19, Prop. 4.1]. �

7. Uniform convergence to the envelope of the zero
function

Let K be a complete discretely valued field of positive characteristic
p > 0. Let X be a smooth projective variety over K, L an ample line
bundle on X, and (X ,L ) a model of (X,L) over K◦. For m ∈ N>0 let am
denote the m-th base ideal of L as in (2.3). For a scheme B, we recall our
convention B(1) = {p ∈ B | dimOB,p = 1}.

Assumption 7.1. — There exist a normal affine variety B over a perfect
field k, a codimension one point b ∈ B(1), a projective regular integral
scheme XB over B, and line bundles LB and AB over XB such that there
exist

(i) a flat morphism h : SpecK◦ → SpecOB,b → B,
(ii) an isomorphism XB ⊗B SpecK◦ ∼→X ,
(iii) an isomorphism h∗LB

∼→ L over the isomorphism in (ii),
(iv) and an isomorphism AB |XB,η

∼→ LB |XB,η
where η is the generic

point of B and the line bundle AB on XB is ample.
Usually we read all the isomorphisms above as identifications.
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Note that all relevant information in Assumption 7.1 is over the discrete
valuation ring OB,b. The next remark makes this statement precise and
gives an equivalent local way to formulate this assumption.

Remark 7.2. — Suppose that X and L are defined over a subring R of
K◦ by a line bundle LR on a projective regular integral scheme XR over R.
We assume furthermore that R is a discrete valuation ring which is defined
geometrically by a d-dimensional normal variety B over a field k, i.e. there
exist b ∈ B(1) and an isomorphism h : R ∼→ OB,b. We read the isomorphism
h as an identification. Then Assumption 7.1 is equivalent to the existence of
data (R, k,B, b, h,XR,LR) as above assuming furthermore that the field
k is perfect and the restriction of LR to the generic fiber XR,η over R
extends to an ample line bundle AR on XR.

One direction of the equivalence is clear by base change from B to
SpecOB,b. On the other hand, replacing B by an open affine neighbourhood
of b, it is clear by [25, Cor. 9.6.4] that AR extends to an ample line bun-
dle AB on a projective integral scheme XB over B and that LR extends
to a line bundle LB on XB . Since the regular locus of XB is open [23,
Cor. 12.52] and since the fiber of XB over b is contained in the regular
locus, we may assume that XB is also regular by shrinking B again.

Theorem 7.3. — Let θ be defined by the line bundle L . If the pair
(X ,L ) satisfies Assumption 7.1, then (m−1 log |am|)m∈N>0 is a sequence
of θ-psh model functions which converges uniformly on Xan to Pθ(0).

If the fieldK has equicharacteristic zero, this result was proven by Bouck-
som, Favre, and Jonsson [11, Thm. 8.5] without Assumption 7.1. We will
follow their strategy of proof replacing the use of multiplier ideals by the
use of test ideals. The required results about test ideals are gathered in
Section 4.

Proof. — We start with the observation that we have

(7.1) Γ(XB ,L
⊗m
B ) 6= 0

for some m > 0. In fact we have

Γ(XB ,L
⊗m
B )⊗R K

∼−→ Γ(X,L⊗m) 6= 0

by flat base change and the ampleness of L for some m > 0.
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We have a cartesian diagram

X

��

g // XB

�� ##
SpecK◦ h // B // Spec k.

We observe that XB is a smooth variety over the perfect field k and write

aB,m = Im
(
H0(XB ,L

⊗m
B )⊗k L ⊗−mB → OXB

)
for the m-th base ideal of LB . Consider the ideal g−1(aB,m) · OX in OX

generated by g−1(aB,m). We have g−1(aB,m) · OX = g∗aB,m as g is flat.
Sections of am are locally of the form s · t−1 where s ∈ Γ(X ,L ⊗m) is
a global section and t is a local section of L ⊗m. Flat base change [31,
Prop. III.9.3] gives

H0(X ,L ⊗m) = H0(XB ,L
⊗m
B )⊗R K◦.

Hence the formation of base ideals is compatible with base change, i.e. we
have

(7.2) am = g−1(aB,m) · OX = g∗aB,m

for all m ∈ N>0.
The family aB,• = (aB,m)m>0 defines a graded sequence of ideals in the

sense of Section 4. Let bB,m := τ(amB,•) denote the associated asymptotic
test ideal of exponent m. Motivated by (7.2) we define

bm := g−1bB,m · OX = g∗bB,m

as the ideal in OX generated by bB,m. These ideals have the following
properties:

(i) We have am ⊂ bm for all m ∈ N>0.
(ii) We have bml ⊂ blm for all l,m ∈ N>0.
(iii) There is m0 > 0 such that A⊗m0⊗L ⊗m⊗bm is globally generated

for all m > 0.
Properties (i) and (ii) follow from the corresponding properties of aB,m and
bB,m mentioned in (4.5), (4.6), and (4.7) if we observe (7.2).
Property (iii) is a consequence of the generalization of Mustaţă’s uniform

generation property given in Theorem 4.6. Write LB = O(D) for some
divisor D on XB and choose a divisor H on XB such that O(H) is ample
and globally generated. Fix d > dim XB and a canonical divisor KXB/k on
the smooth k-variety XB . As AB is ample we find some m0 ∈ N such that
A⊗m0
B ⊗ O(−KX/k − dH) is globally generated. Given m ∈ N>0 we put
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E := mD. Since LB satisfies (7.1), for any m ∈ N>0 we may use E := mD

and λ := m in Theorem 4.6 to see that the sheaf

O(KXB/k + dH)⊗L ⊗mB ⊗ bB,m

is globally generated. As a consequence, our choice of m0 implies that
A⊗m0
B ⊗L ⊗mB ⊗bB,m is globally generated. Base change to K◦ proves (iii).
Now we follow the proof of [11, Thm. 8.5]. Step 1 of loc. cit. holds not

only on quasi-monomial points of Xan, but pointwise on the whole Xan

using Proposition 2.10 and our different definition of Pθ(0). Then Step 2
of loc. cit. works in our setting using properties (i), (ii), and (iii) above.
The only difference is that all inequalities hold immediately on Xan and
not only on the quasi-monomial points of Xan. �

Corollary 7.4. — LetX be a smooth n-dimensional projective variety
over K with a closed (1, 1)-form θ. Let L be a line bundle on a K◦-model
X of X defining θ and with L = L |X ample. We assume that (X ,L ) is
the base change of (XR,LR) for a line bundle LR of a projective integral
scheme XR over a subring R of K◦ and that R is a discrete valuation ring
defined geometrically by a d-dimensional normal variety B over a perfect
field k (as in Remark 7.2). If resolution of singularities holds over k in
dimension d + n, then Pθ(0) is a uniform limit of θ-psh model functions
and hence Pθ(0) is continuous on Xan.

Proof. — It follows from our assumptions that X is base change of the
generic fiber XR,η of XR/R to K. Since X is smooth, we conclude that
XR,η is smooth as well [25, Cor. 17.7.3]. By Proposition 2.9(7), it is enough
to prove the claim for any positive multiple of θ. Using this and Lemma 7.5
below, we see that by passing to dominant models, we may assume that
XR is regular and that the restriction of LR to XR,η extends to an ample
line bundle on XR. By Remark 7.2, these conditions are equivalent to
Assumption 7.1 and hence the claim follows from Theorem 7.3. �

Lemma 7.5. — Let R be a discrete valuation ring which is defined ge-
ometrically by a d-dimensional normal variety B over the field k (as in
Remark 7.2). Let XR be a projective integral scheme over R with n-
dimensional regular generic fiber X ′ := XR,η. We assume that resolution of
singularities holds over k in dimension d+n. Then for any ample line bun-
dle L′ on X ′, there exists m ∈ N>0 and an ample extension L ′R of (L′)⊗m
to a regular R-model X ′

R of X ′ with a projective morphism X ′
R → XR

over R extending the identity on X ′.
Proof. — The proof proceeds in three steps. First, we use a result of

Lütkebohmert about vertical blowing ups to show that L′ may be assumed
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to extend to an ample line bundle H on XR. In a second step, we show
that XR may be also assumed to be semi-factorial by a theorem of Pépin.
In a third step, we use resolution of singularities to construct our desired
regular model X ′

R.
Step 1. — Replacing L′ by a positive tensor power, we may assume that

L′ has an ample extension HR to a projective R-model YR. There is a
blow up π : ZR → YR in an ideal sheaf J supported in the special fiber
of YR such that the identity on X ′ extends to a morphism ZR →XR [43,
Lemma 2.2]. Then π−1(J ) = OZR/YR(1) and hence there is ` ∈ N>0 such
that π∗(H ⊗`)⊗OZR/YR(1) is ample [31, Prop. II.7.10]. We conclude that
by replacing XR by ZR and by passing to a positive tensor power of L′,
we may assume that L′ has an ample extension HR to XR. This completes
the first step.
Step 2. — By a result of Pépin [47, Thm. 3.1], there is a blowing-up

morphism π′ : Z ′R →XR centered in the special fiber of XR such that Z ′R
is semi-factorial. The latter means that every line bundle on the generic
fiber Z ′R,η of Z ′R over R extends to a line bundle on Z ′R. Similarly as in
the first step, we may assume that a positive tensor power of L′ extends to
an ample line bundle on Z ′R. Replacing XR by Z ′R and L′ by this positive
tensor power, we get the second step.
Step 3. — We may assume that B is affine. Using R = OB,b for some

b ∈ B(1), it is clear that XR extends to a projective integral scheme XB

over B. By using resolution of singularities over k in dimension d+n, there
is a regular integral scheme X ′

B and a projective morphism ϕB : X ′
B →XB

which is an isomorphism over the regular locus of XB . SinceX ′ is contained
in the regular locus of XB , we conclude that ϕB maps the generic fiber
X ′
B,η of X ′

B over B isomorphically onto X ′ = XB,η. As usual, we read
this isomorphism as an identification. Then we get an induced projective
morphism

ϕR : X ′
R := X ′

B ×B Spec(R) −→XR

extending the identity on X ′. The same argument as in the first step gives
m ∈ N>0 such that

L ′R := ϕ∗R(H ⊗m
R )⊗OX ′

R
/XR

(1)

is an ample line bundle on X ′
R. Let F be the restriction of OX ′

R
/XR

(1)
to X ′

R,η = XR,η = X ′. Then L ′R is a model of (L′)⊗m ⊗ F . To prove the
lemma, we have to ensure that F may be assumed to be OX′ . To do so,
we use that XR is semi-factorial to extend F to a line bundle FB on XR.
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Then we may replace OX ′
R
/XR

(1) by OX ′
R
/XR

(1) ⊗ ϕ∗R(F−1) to deduce
the claim. �

8. Continuity of the envelope

We present consequences of our application of test ideals in the last sub-
section under the assumption that we have resolution of singularities. As
in Section 7 let K be a complete discretely valued field of positive charac-
teristic p > 0. Let X be a smooth projective variety over K of dimension
n. Consider θ ∈ Z1,1(X) with ample de Rham class {θ} ∈ N1(X).

Definition 8.1. — We say that X is of geometric origin from a d-
dimensional family over a field k if there exist a normal d-dimensional
variety B over k, a point b ∈ B(1) of codimension one and a projective
variety Y over K ′ = k(B) such that

(1) there exists an isomorphism ÔB,b
∼→ K◦ of rings where ÔB,b denotes

the completion of the discrete valuation ring R := OB,b,
(2) an isomorphism Y ⊗K′K ' X overK withK ′ → K induced by (1).

Usually, we read these isomorphisms as identifications. Moreover, if L is
a line bundle (resp. if θ is a closed (1, 1)-form) on X, we say that (X,L)
(resp. (X, θ)) is of geometric origin from a d-dimensional family over a field
k if the above conditions are satisfied and if we can also find a line bundle
L′ on Y inducing L by the base change K/K ′ (resp. a line bundle LR on
an R-model XR of Y inducing θ by the base change K◦/R).

We can now formulate our main result about the continuity of the enve-
lope:

Theorem 8.2. — Let X be a smooth n-dimensional projective variety
over K of geometric origin from a d-dimensional family over a perfect field
k. Assume that resolution of singularities holds over k in dimension d+ n.
If θ is a closed (1, 1)-form on X with ample de Rham class {θ} and if
u ∈ C0(Xan), then Pθ(u) is a uniform limit of θ-psh model functions and
thus Pθ(u) is continuous on Xan.

Using resolution of singularities in dimension three over a perfect field
proven by Cossart–Piltant (see Theorem 6.3), we get the following appli-
cation:

Corollary 8.3. — Let X be a smooth projective surface over K of
geometric origin from a 1-dimensional family over a perfect field k. Then
the conclusion of Theorem 8.2 holds unconditionally.
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We will prove Theorem 8.2 in several steps. First, we prove it in a com-
pletely geometric situation:

Lemma 8.4. — If we assume additionally that (X, θ) is of geometric
origin from a d-dimensional family over a perfect field k, then Theorem 8.2
holds.

Proof. — Recall that the space of model functions D(X) is dense in
C0(Xan) for the topology of uniform convergence [26, Thm. 7.12]. Hence
we may assume that u ∈ D(X) by Proposition 2.9(5). Observe that by
Proposition 2.9(7), we may replace (θ, u) by a suitable multiple. Hence we
may assume without loss of generality that the model function u is defined
by a vertical divisor on a K◦-model X ′. It is clear that we can choose X ′

dominating the geometric model X = XR⊗RK◦ of θ from Definition 8.1.
It follows from Proposition 5.2(1) that we may assume X = X ′. By
Proposition 2.9(4) we get

(8.1) Pθ(u) = Pθ+ddcu(0) + u.

By construction, the class θ+ ddcu is induced by a line bundle on XR and
hence Corollary 7.4 yields that Pθ+ddcu(0) is a uniform limit of (θ+ ddcu)-
psh model functions ϕi. Then Pθ(u) is the uniform limit of the sequence of
θ-psh functions ϕi + u by (8.1). �

In the lemma above we have proven Theorem 8.2 under the additional as-
sumption that the (1, 1)-form θ is defined geometrically. In the next lemma,
we relax this assumption a bit only assuming that the de Rham class of θ
is defined geometrically.

Lemma 8.5. — If we assume additionally that the de Rham class {θ}
is induced by an ample line bundle L on X such that (X,L) is of geo-
metric origin from a d-dimensional family over the perfect field k, then
Theorem 8.2 holds.

Proof. — By Proposition 2.9(6), we may assume that θ ∈ Z1,1(X)Q. By
Proposition 2.9(7), we may replace L by a positive tensor power and θ by
the corresponding multiple, and so we may assume that L is very ample. In
the notation of Definition 8.1, the assumption that (X,L) is of geometric
origin means that L is the pull-back of a line bundle L′ on the projective
variety Y over K ′ = k(B). It follows easily from [31, Prop. III.9.3] and [25,
Prop. 2.7.1(xii)] that L′ is very ample. Then L′ extends to a very ample
line bundle on a projective R-model of Y for the discrete valuation ring
R = OB,b from Definition 8.1. By base change to K◦, we conclude that
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there is a closed (1, 1)-form θ′ on Xan with de Rham class {θ′} = {θ} such
that (X, θ′) is of geometric origin from a d-dimensional family over k.

By the ddc-lemma in [11, Thm. 4.3] (see also the second author’s the-
sis [32, Thm. 4.2.7] for generalizations) and using the rationality assump-
tion on θ from the beginning of the proof, there is v ∈ D(X) such that
θ′ = θ + ddcv. It follows from Proposition 2.9(4) that

Pθ(u)− v = Pθ+ddcv(u− v) = Pθ′(u− v).

By Lemma 8.4, the function Pθ′(u−v) is a uniform limit of θ′-psh functions.
Adding v, we get the claim for Pθ(u). �

To prove Theorem 8.2 in full generality, the idea is to reduce to the above
geometric situation by a similar trick as in [9, Appendix A].

Proof of Theorem 8.2. — We note first that by Proposition 2.9(8) the
property that Pθ(u) is a uniform limit of θ-psh model functions is equivalent
to the property that it is a continuous function. LetK ′/K be a finite normal
extension and denote by q : X ′ := X ⊗K K ′ → X the natural projection.
Let θ′ = q∗θ ∈ Z1,1(X ′). Then by Lemma 2.11 we have that

q∗Pθ(u) = Pθ′(q∗u).

It follows from [3, Prop. 1.3.5] that Xan is as a topological space equal to
the quotient of (X ′)an by the automorphism group of K ′/K. We conclude
that Pθ(u) is continuous if and only if Pθ′(q∗u) is continuous.
Hence we can replace K by a finite normal extension. Adapting the same

argument as in [9, Lemma A.7] to characteristic p, there exists a finite
normal extension K ′/K and a function field F of transcendence degree d
over k with K ′ as completion as in Definiton 8.1 such that X ′ := X ⊗K K ′
is the base change of a projective variety Y over F with N1(Y/F )Q →
N1(X ′/K ′)Q surjective. Replacing K ′ by K, we can assume that there is
Y as above with a surjective map

(8.2) N1(Y/F )Q → N1(X/K)Q

induced by the natural projection X → Y . To prove continuity of Pθ(u), we
may assume that the de Rham class {θ} is in N1(X)Q by using an approxi-
mation argument based on Proposition 2.9(6). We conclude from surjectiv-
ity in (8.2) that there is a non-zero m ∈ N such that {mθ} is induced by a
line bundle L with (X,L) of geometric origin from a d-dimensional family
over k (in fact from Y ). By Proposition 2.9(7), we have Pθ(u) = 1

mPmθ(mu)
and hence continuity follows from Lemma 8.5. �
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9. The Monge–Ampère equation

Let K be a field endowed with a complete discrete absolute value. Bouck-
som, Favre, and Jonsson have shown in [11, 9] that the Monge–Ampère
equation for a Radon measure supported on the skeleton of a smooth pro-
jective variety over K has a solution if the variety is of geometric origin
from a one-dimensional family over a field of characteristic zero. In this
section, we will explain that the same is true in characteristic p > 0 if we
assume resolution of singularities (see Section 6 for precise definitions).
In the following, we work under the following assumptions:
(A1) The n-dimensional smooth projective variety X over K is of geo-

metric origin from a d-dimensional family over a perfect field k of
characteristic p > 0.

(A2) Resolution of singularities holds over k in dimension d+ n.
(A3) Embedded resolution of singularities holds over k in dimension d+n.
Note that assumptions (A2) and (A3) are unconditional for n = 2 and

d = 1 by Theorem 6.3 of Cossart and Piltant. For the following, it is crucial
to have in mind that models ofX can be defined geometrically which follows
from Proposition 5.2.
To transfer the results from [11, 9], it is essential to note that every

projective K◦-model of X is dominated by a projective SNC-model of X.
To see this, we note first that we may assume that the given K◦-model is of
geometric origin over the perfect field k by Proposition 5.2. Using resolution
of singularities in dimension d+n similarly as in the third step of the proof
of Lemma 7.5, we deduce that there is a regular projective scheme XR

over R as in Definition 8.1 dominating the given model. Applying in the
same way embedded resolution of singularities in dimension d + n to the
non-smooth fibers of XR over R, we may assume that the singular fibers of
XR have the same support as a strict normal crossing divisor. Then base
change to K◦ yields the claim as base change of the discrete valuation ring
OB,b to its completion K◦ preserves regularity [49, Tag 0BG4] and strict
normal crossing support.
Having sufficiently many projective SNC-models of X at hand, the den-

sity results of skeletons in Xan given in [11, §3] also hold in our case of
equicharacteristic p. Given a closed (1, 1)-form θ with ample de Rham class
{θ}, the notion of θ-psh functions on Xan introduced in [11, §7] keeps the
same properties in our case. In fact, the results of [11, §1–7] and their proofs
carry over to our setting.
Note that we have already proven the continuity of the θ-psh envelope in

Theorem 8.2, which is the analogue of [11, Thm. 8.3], by using test ideals
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instead of multiplier ideals. For u ∈ C0(Xan), we recall from 2.8 that we
have used a different definition of the θ-psh envelope Pθ(u) than in [11,
Def. 8.1]. Both definitions agree in the equicharacteristic zero situation
by [11, Thm. 8.3 and Lemma 8.9]. If the characteristic of K is positive
and the Assumptions (A1)–(A3) hold then we have explained above how
to define θ-psh functions. We claim now that in this case both definitions
of the envelope agree as well. Indeed, it follows from [11, Lemma 8.4] that
the definitions agree on quasi-monomial points of Xan. For any x ∈ Xan,
we consider the net pX (x) with X ranging over all SNC models of X.
By [11, Cor. 3.9], this net of quasi-monomial points converges to x. It
follows from continuity that the net Pθ(u)(pX (x)) converges to Pθ(u)(x)
for our definition of the envelope. By [11, Thm. 7.11, Prop. 8.2(i)], the same
convergence holds for their envelope and hence both definitions agree.
This yields now in the same way as in [11, Thm. 8.7] that the following

monotone regularization holds:

Corollary 9.1. — Under the assumptions (A1)–(A3), let θ be a closed
(1, 1)-form on Xan with ample de Rham class. Then every θ-psh function
on Xan is the pointwise limit of a decreasing net of θ-psh model functions
on Xan.

In [9, §3], the monotone regularization is the basic ingredient to generalize
the Monge–Ampère operator from θ-psh model functions to bounded θ-
psh functions and hence it applies also to our setting leading to the same
results as in [9, §3]. For a bounded θ-psh function ϕ, we denote by MAθ(ϕ)
the associated Monge–Ampère measure on Xan. The definitions, results
and arguments from [9, §4–6] carry over without change. In particular, we
may choose a decreasing sequence of θ-psh model functions on Xan in the
monotone regularization from Corollary 9.1 similarly as in [9, Prop. 4.7].
A crucial step is now to prove the following orthogonality property:

Theorem 9.2. — Under the assumptions (A1)–(A3), let θ be a closed
(1, 1)-form on Xan with ample de Rham class. Then for every continuous
function f on Xan with θ-psh envelope Pθ(f), we have the orthogonality
property ∫

Xan
(f − Pθ(f)) MAθ(Pθ(f)) = 0.

Proof. — Using Proposition 2.9(6) and the continuity of the Monge–
Ampère measure given in [9, Thm. 3.1], we may assume that θ ∈ Z1,1(X)Q.
Using Proposition 2.9(7), we may assume that θ is induced by a line bundle
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of a model of X. Then the claim follows from [13, Thm. 6.3.2] as Pθ(f) is
continuous by Theorem 8.2. �

As a consequence of the orthogonality property, we get differentiability
of E◦Pθ as in [9, Thm. 7.2] where E is the energy from [9, §6]. We have now
all ingredients available to solve the following Monge–Ampère equation.

Theorem 9.3. — Under the assumptions (A1)–(A3), let θ be a closed
(1, 1)-form on Xan with ample de Rham class {θ} and let µ be a positive
Radon measure on Xan of mass {θ}n supported on the skeleton of a pro-
jective SNC-model. Then there is a continuous θ-psh function ϕ on Xan

such that MAθ(ϕ) = µ and ϕ is unique up to additive constants.

Proof. — It was shown in [9, §8.1] that uniqueness follows from a result
of Yuan and Zhang in [53]. To prove existence of a θ-psh solution ϕ, we
use the variational method of Boucksom, Favre, and Jonsson. The basic
tools needed here are upper semicontinuity of the energy [9, Prop. 6.2], the
compactness theorem [11, Thm. 7.10], and the differentiability of E ◦ Pθ.
As explained above, all these results are available in our setting. It remains
to see that ϕ is continuous and this is done by estimates in the spirit of
Kolodziej as in [9, §8.3]. �

Appendix. The skeleton and the retraction in the toric
case (by José Ignacio Burgos Gil and Martín Sombra)

In this appendix we give a combinatorial description of the skeleton as-
sociated to a toric model of a toric variety, and of the corresponding re-
traction. We will use this description to show an example of two models of
the same variety that have the same skeleton but different retractions. In
turn this will give a counterexample to a higher dimensional extension of
Proposition 3.8.

Let (K, | · |) be a complete non-archimedean discretely valued field, K◦
the valuation ring, k the residue field, and S = Spec(K◦). Let $ be a
uniformizer of K◦ and write

λK = − log |$|.

Let X be a smooth projective variety over K of dimension n and Xan the
associated Berkovich analytic space. Let X be an SNC model of X over S,
that is an SNC projective scheme X over S with generic fiber X such that
the special fiber, which is not assumed to be reduced, agrees as a closed
subset with a simple normal crossing divisor D of X . To the model X
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we can associate a skeleton ∆X ⊂ Xan and a retraction pX : Xan → ∆X ,
see [11, §3] for details.
Let L be an ample line bundle on X and L a nef model of L on X .

Let θ be the semipositive (1, 1)-form in the class of L corresponding to the
model L . Let µ be a positive Radon measure on Xan with support in ∆X

such that µ(Xan) = degL(X). The Monge–Ampère equation looks for a
θ-psh function ϕ on Xan such that

(A.1) (ddcϕ+ θ)∧n = µ.

With the generality we are discussing in this paragraph, there is not yet a
definition of the class of θ-psh functions with all the properties of classical
pluripotential theory, but every good definition of this class should include
the class of θ-psh model functions as introduced in 2.5.

The following question is natural and in case of being true would be
of great help to solve the Monge–Ampère equation in positive and mixed
characteristic.

Question A.1. — With the previous hypotheses, is it true that any
solution ϕ to the Monge–Ampère equation (A.1) satisfies

(A.2) ϕ = ϕ ◦ pX ?

We will see that this question has a negative answer by exhibiting a
counterexample in the context of toric varieties. In fact, that this question
has a negative answer is related with Proposition 3.8 not being true in
higher dimension. To this aim, we will consider a smooth projective variety
X of dimension 2 and two models X and X ′ that have the same skeleton

∆ = ∆X = ∆X ′

but with different retractions pX 6= pX ′ . We will fix a semipositive (1, 1)-
form θ that is realized in both models and construct two model functions
ϕ and ϕ′ on Xan satisfying

ϕ 6= ϕ′, ϕ |∆ = ϕ′ |∆,(A.3)
ϕ = ϕ ◦ pX , ϕ′ = ϕ′ ◦ pX ′ .(A.4)

As a consequence of these properties, we deduce that ϕ = ϕ′ ◦ pX and
that ϕ′ = ϕ ◦ pX ′ . Moreover ϕ′ will be a θ-psh model function while the
model function ϕ will not be θ-psh. Let µ := (ddcϕ′ + θ)∧2. This is a posi-
tive measure with support on ∆ and ϕ′ is a solution of the corresponding
Monge–Ampère equation. Since

ϕ′ 6= ϕ = ϕ′ ◦ pX ,
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we see that ϕ′ is a counterexample to Question A.1 for the model X .
Moreover, if Proposition 3.8 were true in dimension 2, then ϕ = ϕ′ ◦ pX

would be a θ-psh model function, but it is not.
We place ourselves in the framework and notation of [15]. The results

below will make explicit the skeleton and the retraction associated to a
toric SNC model of a toric variety.

Let T ' Gnm be a split torus over K. We denote by

M = Hom(T,Gm), N = Hom(Gm,T),

the lattices of characters and one-parameter subgroups of T. Then M =
N∨. We also denote NR = N ⊗ R and MR = M ⊗ R. The pairing between
u ∈ NR and x ∈MR is denoted by 〈x, u〉.
Let now X be a proper toric variety over K and X a proper toric model

of X over S. Then X is described by a complete fan Σ in NR and X is
described by a complete SCR-polyhedral complex Π in NR whose recession
fan satisfies rec(Π) = Σ [15, Thm. 3.5.4].
There is a map ζK : NR → Tan that sends u ∈ NR to the seminorm on

K[M ] given by ∣∣∣∣∣ ∑
m∈M

αmχ
m

∣∣∣∣∣ = max
m
|αm|e−λK〈m,u〉.

This is a particular case of the map denoted by θσ in [15, Prop.-Def. 4.2.12]
composed with the homothety of ratio λK .
There is also a map valK : Tan → NR that sends a point p ∈ Tan to the

point valK(p) ∈ NR determined by

〈m, valK(p)〉 = − 1
λK

log |χm(p)|,

see [15, §4.1]. From the definition, it follows that valK ◦ ζK = IdNR .
To each polyhedron Λ ∈ Π there is associated an orbit O(Λ) for the

action of Tk on the special fiber Xs [15, §3.5]. We denote by ξΛ the generic
point of O(Λ).
The relation of the map valK with the reduction map is given by [15,

Cor. 4.5.2]: a point p ∈ Tan satisfies red(p) ∈ O(Λ) if and only if valK(p) ∈
relint(Λ). The relation of ζK with the reduction map is given by the next
result.

Lemma A.2. — Let Λ ∈ Π. If u lies in the relative interior of Λ, then
red(ζK(u)) = ξΛ.

Proof. — We use the notation of [15, §3.5]. In particular, we write Ñ =
N ⊕ Z and M̃ = M ⊕ Z. Let σ be the cone of Ñ generated by the set
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{(x, 1) |x ∈ Λ} and write M̃Λ = M̃ ∩ σ∨, where σ∨ is the dual cone of σ.
Let XΛ be the affine toric scheme associated to Λ. The ring of functions of
XΛ is

K◦[XΛ] = K◦[M̃Λ]/(χ(0,1) −$).

The orbit O(Λ) is a closed subscheme of XΛ. If u ∈ relint(Λ), the ideal of
O(Λ) is the ideal generated by the monomials χ(m,l) with (m, l) ∈ M̃Λ and
〈m,u〉+ l > 0.
The generic fiber of XΛ is the affine toric variety

Xrec(Λ) = Spec(K[Mrec(Λ)]).

The natural inclusion K◦[XΛ] ⊂ K[Mrec(Λ)] is given by χ(m,l) 7→ $lχm.
Any point p ∈ Xan

rec(Λ) determines a seminorm on K◦[XΛ]. The set of points
of Xan

rec(Λ) whose reduction belongs to XΛ is

C = {p ∈ Xan
rec(Λ) | |f(p)| 6 1, ∀ f ∈ K◦[XΛ]}.

Given a point p ∈ C, then red(p) is the point corresponding to the prime
ideal

qp = {f ∈ K◦[XΛ] | |f(p)| < 1}.

Every f ∈ K◦[XΛ] can be written as a sum

f =
∑

(m,l)∈M̃Λ

α(m,l)χ
(m,l),

with |α(m,l)| = 0, 1 and only a finite number of coefficients α(m,l) different
from zero.
By the definition of ζK ,

qζK(u) =
{∑

α(m,l)χ
(m,l) ∈ K◦[XΛ]

∣∣∣ |$|le−λK〈m,u〉 < 1
}

=
{∑

α(m,l)χ
(m,l) ∈ K◦[XΛ]

∣∣∣ 〈m,u〉+ l > 0
}
.

Since u ∈ relint(Λ), we deduce that qζK(u) is the ideal of O(Λ) and therefore
red(ζK(u)) = ξΛ. �

We add now to X the condition of being regular, which is equivalent
to Σ being unimodular, and to X the condition of being an SNC model.
By [38, Chap. IV, §3.I item d)], X is regular if and only if the rational fan
in NR × R>0 generated by Π× {1} is unimodular. In this case, the model
is always an SNC model. On the other hand, by [14, Example 3.6.11] the
model will be strictly semistable (SNC with reduced special fiber) if, in
addition, all the vertices are lattice points.
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Since a unimodular fan is necessarily simplicial, for each polyhedron Λ ∈
Π, of dimension t, we can write

(A.5) Λ = conv(p0, . . . , ps) + cone(vs+1, . . . , vt),

where s 6 t, pi are points of NR and vi are vectors on the tangent space to
NR at a point, that we identify with NR.
We define the combinatorial skeleton as

∆Π =
⋃

Λ∈Π
Λ bounded

Λ.

There is a combinatorial retraction pΠ : NR → ∆Π defined as follows. Let
u ∈ NR and let Λ ∈ Π be a polyhedron of dimension t with u ∈ Λ. Write Λ
as in equation (A.5). Therefore u can be written uniquely as

(A.6) u =
s∑
i=0

aipi +
t∑

j=s+1
λjvj ,

with ai, λj > 0, and
∑
ai = 1. Then

pΠ(u) =
s∑
i=0

aipi.

Remark A.3. — The fan Σ determines a compactification NΣ of NR as
in [15, §4.1] such that the retraction pΠ can be extended to a continuous
map NΣ → ∆Π.

The following result explicites the skeleton and retraction associated to
the model X .

Theorem A.4. — With the previous hypotheses, the skeleton ∆X ⊂
Xan is given by

∆X = ζK(∆Π).
The restriction to Tan of the retraction pX is the composition

pX |Tan= ζK ◦ pΠ ◦ valK .

Proof. — We start by recalling the construction of ∆X and pX from [11].
Note that, in loc. cit. the residue field k is of characteristic zero, but once
we assume that the model X is an SNC model, using the results of [46,
§3.1] it is possible to extend the presentation of [11] to the case of positive
and mixed characteristic.
Let Div0(X ) be the group of vertical Cartier divisors on X . Denote

Div0(X )R = Div0(X ) ⊗ R and let Div0(X )∗R be the dual. As explained
in Remark 2.2, each D ∈ Div0(X ) determines a model function ϕD. The
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map D 7→ ϕD is linear in D and can be extended by linearity to a map
Div0(X )R → C0(Xan).
There is a map evX : Xan → Div0(X )∗R determined by

(A.7) 〈D, evX (x)〉 = ϕD(x).

Let D1, . . . , D` be the components of the special fiber Xs. Each Di, i =
1, . . . , `, determines a divisorial point xi ∈ Xan and we denote by ei =
evX (xi). For each J ⊂ {1, . . . , `} we write DJ =

⋂
j∈J Dj and σJ =

conv(ej , j ∈ J). Then the abstract skeleton of X is

∆abs
X =

⋃
J⊂{1,...,`}
DJ 6=∅

σJ ⊂ Div0(X )∗R.

By [11, Thm. 3.1], the image of evX is ∆abs
X and there exists a unique

function embX : ∆abs
X → Xan such that

(i) evX ◦ embX = Id∆abs
X

;
(ii) for each s ∈ ∆abs

X , if s ∈ relint(σJ), then red(embX (s)) = ξDJ ,
where ξDJ is the generic point of DJ .

Then the skeleton and the retraction are given by

∆X = embX (∆abs
X ) and pX = embX ◦ evX .

We now go back to the regular toric case. In particular, X is a toric
smooth projective variety over K and X is a toric projective SNC model.
Then all the divisors of Div0(X ) are toric divisors. Therefore, for D ∈
Div0(X )R, the function ϕD is invariant under the action of the compact
torus S = val−1

K (0). The restriction of ϕD to Tan factorizes as

(A.8) ϕD |Tan= −φD ◦ valK ,

where φD is the function from [15, Def. 4.3.6] corresponding to the trivial
line bundle OX with the metric determined by D and the section 1.

We now define evΠ : NR → Div0(X )∗ by

〈D, evΠ(u)〉 = −φD(u).

By construction, the restriction of evΠ to each polyhedron Λ ∈ Π is affine.
Moreover, using (A.7) and (A.8) we deduce that

(A.9) evX |Tan= evΠ ◦ valK .

As before let D1, . . . , D` be the components of the special fiber Xs and
xi the divisorial point determined by Di. Then the set of vertices of Π is
Π0 = {u1, . . . , u`}, where ui = valK(xi). Therefore evΠ(ui) = ei. Since
evΠ is affine in each polyhedron of Π we deduce that the image of evΠ is

TOME 69 (2019), FASCICULE 5



2370 W. Gubler, P. Jell, K. Künnemann & F. Martin

∆abs
X and that evΠ determines a homeomorphism ∆Π → ∆abs

X . We define
embΠ : ∆abs

Π → NR as the composition of the inverse of this homeomor-
phism with the inclusion ∆Π ↪→ NR. Using equation (A.9) and Lemma A.2
one can check that ζK ◦ embΠ satisfies the conditions (i) and (ii) that char-
acterize embX . Therefore

(A.10) embX = ζK ◦ embΠ .

We next claim that pΠ = embΠ ◦ evΠ . Indeed, for every D ∈ Div0(X ),
since D is a model of the trivial vector bundle, we know that rec(φD) is
the zero function. Therefore, writing any u ∈ Λ ∈ Π is as in (A.6), one can
show that

φD = φD ◦ pΠ.

This implies that evΠ = evΠ ◦ pΠ. By construction embΠ ◦ evΠ is the iden-
tity in the image of pΠ. Therefore

(A.11) embΠ ◦ evΠ = embΠ ◦ evΠ ◦pΠ = pΠ.

Using equations (A.11) (A.10) and (A.9) we deduce that

∆X = embX (∆abs
X ) = ζK(embΠ(∆abs

X )) = ζK(∆Π)

and

pX |Tan = embX ◦ evX |Tan = ζK ◦ embΠ ◦ evΠ ◦ valK = ζK ◦ pΠ ◦ valK
concluding the proof. �

Figure A.1. Subdivisions corresponding to the toric models X

and X ′.

Consider the toric variety X = P2
K . Let P2

S be the projective space over
S, and let (x0 : x1 : x2) be homogeneous coordinates of the special fiber
P2
k. Consider the model X of X obtained by blowing up P2

S at the line
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x2 = 0 inside the special fiber and then blowing up the strict transform
of the line x1 = 0. The SCR-polyhedral subdivision Π associated to this
model is depicted in the left side of figure A.1. Consider also the model
X ′ of X obtained as before, switching x1 and x2. The SCR-polyhedral
subdivision Π′ associated to this new model is depicted in the right side
of figure A.1. Both toric schemes X and X ′ are SNC models (even more,
they are strictly semistable models) of P2

K .
The skeleton associated to both models is the simplex

∆ = conv((0, 0), (1, 0), (0, 1))

and both retractions pΠ and pΠ′ are also depicted on the same figure. For
instance the retraction pΠ sends every point of σ2 to the point (1, 0), while
the same retraction restricted to the polyhedron σ1 is the horizontal projec-
tion onto the segment (0, 1)(1, 0) along the direction (−1, 0). By contrast,
the retraction pΠ′ sends both cones σ′1 and σ′2 to the point (1, 0).
Consider the divisor D of P2

K given by the line at infinity and the divisor
D of P2

S given by the closure of D. Let L = OP2
K

(D) and L = OP2
S
(D).

Then L is a model of L in P2
S and can be pulled back to both X and X ′.

Let θ be the closed (1, 1)-form defined by this model.
Let Ψ: NR → R be the function

Ψ(u, v) = min(u, v, 0).

This is the function that determines the toric divisor D.
By [15, Thm. 4.8.1], the space of all continuous θ-psh functions on Xan

that are invariant under the action of the compact torus S can be identified
with the set of all bounded functions f : NR → R such that Ψ+f is concave.
This identification sends f : NR → R to the unique continuous function
ϕ : Xan → R such that ϕ |Tan= −f ◦ valK .

Let g : ∆→ R the affine function that has the value 1 at the point (1, 0)
and the value 0 at the points (0, 0) and (0, 1) and put

f = g ◦ pΠ, f ′ = g ◦ pΠ′ .

One easily verifies that

Ψ + f ′ = min(1, 1 + v, u)

which is concave. On the other hand, the restriction of Ψ + f to σ3 is 0
while its restriction to σ1 is 1− v, hence Ψ + f is not concave.
Let ϕ′ be the continuous function on Xan whose restriction to Tan is

−f ′ ◦ valK . It is a model θ-psh function. The function −f ◦ valK also
extends to a model function ϕ on Xan but it is not θ-psh because f is not
concave [15, Thm. 3.7.1(2)].

TOME 69 (2019), FASCICULE 5



2372 W. Gubler, P. Jell, K. Künnemann & F. Martin

We now write
µ = (ddcϕ′ + θ)∧2.

By [15, Thm. 4.7.4] the measure µ is the atomic measure with support in
ζK((1, 0)) with total mass one. Hence its support is contained in ∆ = ∆X .

Summing up, µ is a measure with support in ∆ = ∆X , the θ-psh function
ϕ′ is a solution of the corresponding Monge–Ampère equation but ϕ′ 6=
ϕ′ ◦ pX showing that the answer to Question A.1 is negative. Moreover
ϕ = ϕ′ ◦ pX is not θ-psh, showing that Proposition 3.8 does not extend to
dimension > 2.
Consider now a common refinement of the subdivisions corresponding to

the toric models X and X ′ and such that the corresponding toric model
X ′′ is SNC. Then the skeleton ∆X ′′ will be strictly bigger than ∆. In par-
ticular ∆X ′′ contains the unit square 0 6 u, v 6 1. It can be shown that
ϕ′ = ϕ′ ◦ pX ′′ . Thus even if the solutions of the Monge–Ampère equation
do not factor through the retraction corresponding to the model X , they
factor through the retraction associated to a refined model. Mattias Jon-
sson asked us if one can hope this phenomenon to hold in general. More
concretely, one can ask the following question.

Question A.5. — With the same hypotheses as in Question A.1, is
it true that there exists a morphism of models X ′ → X such that any
solution ϕ of the Monge–Ampère equation (A.1) satisfies

(A.12) ϕ = ϕ ◦ pX ′?
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