G. F. VINCENT-SMITH Uniform approximation of harmonic functions

Annales de l'institut Fourier, tome 19, nº 2 (1969), p. 339-353 <http://www.numdam.org/item?id=AIF_1969__19_2_339_0>

© Annales de l'institut Fourier, 1969, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 19, 2 (1969), 339-353.

UNIFORM APPROXIMATION OF HARMONIC FUNCTIONS

by G. F. VINCENT-SMITH

Introduction.

Let ω be a bounded open set in Euclidian *n*-space (n > 1), with closure $\overline{\omega}$ and frontier ω^* . Corollary 1 below gives a necessary and sufficient condition that each continuous real-valued function on $\overline{\omega}$ harmonic in ω , may be uniformly approximated on $\overline{\omega}$ by functions harmonic in a neighbourhood of $\overline{\omega}$. The purpose of this paper is to extend corollary 1 to axiomatic potential theory.

Suppose a_p is a sequence of points chosen one from each domain in $\int \overline{\omega}$. Let $\Phi_n^{a_p}$ be the elementary harmonic functions relative to a_p [10, § 1]. Then $\Phi_n^{a_p}$ is a potential of support a_p , $n = 1, 2, \ldots$ If $C(\overline{\omega})$ denotes the space of continuous real-valued functions on $\overline{\omega}$, then following Deny [9], [10, § 4] and de La Pradelle [16], we consider the following linear function spaces:

 $\mathbf{M} = \{ f \in \mathbf{C}(\overline{\omega}) : f \text{ is harmonic in } \omega \};$

 $L = \{ f \in C(\overline{\omega}) : f \text{ extends to a function harmonic in a neighbourhood } U_f \text{ of } \overline{\omega} \};$

 $\mathbf{K} = \{ f \in \mathbf{C}(\overline{\omega}) : f \text{ extends to the difference of two potentials}$ with compact support contained in $\left[\overline{\omega} \right];$

 $J = f \in C(\overline{\omega}) : f$ extends to a function in the linear span of the elementary harmonic functions $\Phi_n^{a_p}$.

Then $J \subset K \subset L \subset M$, and Deny [10, th. 5] proves the following approximation theorem.

THEOREM 1. — J is uniformly dense in M if and only if the sets $\int \omega$ and $\int \overline{\omega}$ are effilé (thin) at the same points.

The points at which $\int \omega$ is not thin [7, ch. VII, § 1] are precisely the regular points of ω^* for the Dirichlet problem [7, ch. VIII, § 6], while the points where $\int \overline{\omega}$ is not thin are precisely the stable points of ω^* for the Dirichlet problem.

Suppose now that ω is a relatively compact open subset of a harmonic space Ω which satisfies Brelot's axioms 1, 2 and 3, and on which there exists a strictly positive potential. Suppose also that the topology of Ω has a countable base of completely determining open sets, that potentials with the same one point support are proportional, and that adjoint potentials with one point support are proportional. De La Pradelle [16, th. 5] proves the following generalisation of theorem 1.

THEOREM 1'. — K is uniformly dense in M if and only if the sets $\int \omega$ and $\int \overline{\omega}$ are thin at the same points.

Deny's proof of theorem 1 consists of showing that the same measures on annihilate J and M, and the same method is used to prove theorem 1'. In this paper the conditions on Ω are relaxed, and the following corollary to theorem 1 is generalised.

COROLLARY 1. — L is uniformly dense in M if and only if every regular point of ω^* is stable.

The proof of corollary 1, using elementary harmonic functions, does not adapt to axiomatic potential theory. In example 2 we give a proof which does generalise. This proof is rather satisfying, since it uses Bauer's characterisation of regular points, and the following generalisation of the Stone-Weierstrass theorem [13, th. 5].

THEOREM 2. — Suppose that X is a compact Hausdorff space, that L is a linear subspace of C(X) which contains the

constant functions, separates the points of X, and has the weak Riesz separation property, and that L is contained in the linear subspace M of C(X). Then L is uniformly dense in M if and only if $\partial_L(X) = \partial_M(X)$.

L is said to have the weak Riesz separation property (R.s.p.) if whenever $\{f_1, f_2, g_1, g_2\} \in L$ with $f_1 \vee f_2 < g_1 \wedge g_2$, there exists $h \in L$ with $f_1 \vee f_2 \leq h \leq g_1 \wedge g_2$. The Choquet boundary of M is denoted $\partial_M(X)$ [15] and Bauer [1, th. 6] shows that in the classical case $\partial_M(\overline{\omega})$ is precisely the set of regular points of ω^* . Brelot [7, ch. VIII, §1] remarks that this remains true when ω is a relatively compact open subset of a harmonic space satisfying Brelot's axioms 1, 2 and 3', and that in this case $\partial_L(\overline{\omega})$ is precisely the set of stable points of ω^* . Using Bauer's results, corollary 1 is an immediate consequence of Theorem 2, both in the classical case, and when ω is a relatively compact open subset of a harmonic space satisfying Brelot's axioms 1, 2 and 3'.

If ω is a relatively compact open subset of one of the harmonic spaces of Boboc and Cornea [4], which are more general than those of Brelot, then the set of regular points of ω^* corresponds not to $\partial_{M}(\overline{\omega})$ but to $\omega^* \cap \partial_{W}(\overline{\omega})$, where $W \in C(\overline{\omega})$ is the min-stable wedge of continuous functions on $\overline{\omega}$ superharmonic in ω . In this case we need a strengthened form of theorem 2, which, together with this characterisation of regular points, has corollary 1 as a direct consequence. This we supply in theorem 4.

In order to strengthen theorem 2 we consider min-stable wedges $\mathscr{G} \subset W$ in C(X), and a geometric simplex (X, \mathscr{G}, L) . In theorem 4 we give a sufficient condition that L be uniformly dense in the space M of continuous W-affine functions on X. This condition is given in terms of the Choquet boundaries $\partial_W(X)$ and $\partial_{\mathscr{G}}(X)$. In lemma 5 a pair of conditions equivalent to this is given. These are of a more analytic nature. Theorem 4 is deduced from proposition 1, which is a characterisation of geometric simplexes. This is proved by repeated use of filtering arguments together with the folowing form of Dini's theorem.

THEOREM 3. — If $\{f_i : i \in I\}$ is an upward filtering family in C(X) and g is an upper bounded upper semicontinuous

function such that $g < \sup \{f_i : i \in I\}$, then $g < f_{i_0}$ for some $i_0 \in I$. $f > 0 \ (\ge 0)$ will mean that $f(x) > 0 \ (\ge 0)$ for all $x \in X$.

A characterisation of geometric simplexes.

Let X be a compact Hausdorff space, and let $\mathcal{G} \subset W$ be min-stable wedges in C(X). If $f \land g \in W$ whenever $f, g \in W$ then W is said to be min-stable. We shall assume that \mathcal{G} contains a function $p \ge 1$ and a function q < -1. The Choquet theory for min-stable wedges has been developed in [11] [5] where proofs of the following results may be found.

The wedge W induces a partial order \prec_w on the positive regular Borel measures on X given by the formula

$$\mu \prec_{\mathbf{W}} \lambda, \qquad \lambda(f) \leq \mu(f) \text{ whenever } f \in \mathbf{W}.$$

A measure which is maximal for \prec_w is said to be W-extremal. A measure μ is W-extremal if and only if

(1)
$$\mu(g) = \inf \{\mu(f) : g < f \in \mathbf{W}\}$$

whenever $g \in -W$ [5, Th. 1.2]. An extended real-valued function g on X is ω -concave if the upper integral $\overline{\int} g d\mu \leq g(x)$ whenever $\varepsilon_x \prec_w \mu$. The function g is W-affine if both g and -g are W-concave. The min-stable wedge of lower bounded extended real-valued lower semicontinuous ω -concave functions on X will be denoted \hat{W} .

LEMMA 1. — [11, Th. 1] [5, Cor. 1.4 d)]. Each $f \in \hat{W}$ is the pointwise supremum of an upward filtering family in W.

A closed subset A of X is a W-face (W-absorbent set [5, § 2], W-extreme set [11, § 2]) if for each $x \in A$

$$\mu(X \setminus A) = 0$$
 whenever $\varepsilon_x \prec_w \mu$.

If A is a W-face and $f \in \hat{W}$ then the function f_A^{∞} , equal to fon A and to $+\infty$ on X\A, belongs to \hat{W} [11, § 2]. The W-faces are ordered by inclusion, and each W-face contains a minimal W-face. The measure ε_x is W-extremal if and only if x belongs to a minimal W-face. The Choquet boundary of W is the union of all minimal W-faces of X, and is denoted $\vartheta_{W}(X)$ [5, § 2]. Each *S*-face is a W-face, so that each minimal *S*-face contains at least one minimal W-face.

LEMMA 2. — [2, Satz 2] [5, Cor. 2.1] A function $f \in \hat{W}$ is positive if and only if it is positive on $\partial_{W}(X)$.

We say that W distinguishes the points $x, y \in X$ if there exists $f, g \in W$ such that

$$f(x)g(y) \neq f(y)g(x).$$

If W contains the constant functions, then W distinguishes xand y if and only if W separates x and y. The subspace $(W-W)/p = \{(f-g)/p: f,g \in W\}$ is a sublattice of C(X)containing the constant functions. (W-W)/p separates points of X if and only if W distinguishes points of X. By Stone's theorem, W-W is uniformly dense in C(X) if and only if W distinguishes points of X. The following lemma is an immediate consequence of [5, Th. 2.1 c)].

LEMMA 3. — W distinguishes $x, y \in \mathfrak{d}_W(X)$ if and only if x and y belong to different minimal W-faces of X.

Example 1. — Let $X = [0, 1] \times [0, 1]$, and let $\mathcal{G} = \{f \in C(X) : y \rightsquigarrow f(x, y) \text{ is convex for each } x, \text{ and } x \rightsquigarrow f(x, y) \text{ is affine with } f(1, y) = 2f(0, y) \text{ for each } y\}$. Then the sets $A = \{(x, 0) : x \in [0, 1]\}$ and $B = \{(x, 1) : x \in [0, 1]\}$ are minimal \mathcal{G} -faces. \mathcal{G} separates, yet does not distinguish the points of A. The Choquet boundary

$$\mathfrak{d}g(\mathbf{X}) = \mathbf{A} \cup \mathbf{B}.$$

The \mathscr{G} -affine functions are the $f \in \mathscr{G}$ which are affine in y for each x.

LEMMA 4. — If $\mathscr{G} \subset W$ are min-stable wedges in C(X), and if \mathscr{G} contains a positive function p and a negative function q, then the following conditions are equivalent:

(i) For each pair of (disjoint) minimal ω -faces A_1 , A_2 , there exists a pair of (disjoint) \mathscr{G} -faces B_1 , B_2 , such that $A_1 \subset B_1$ and $A_2 \subset B_2$;

(ii) Same statement as (i) but with B₁, B₂ minimal *G*-faces;

(iii) $\vartheta_{\mathbf{w}}(\mathbf{X}) \subset \vartheta_{\mathscr{G}}(\mathbf{X})$ and \mathscr{G} distinguishes points of $\vartheta_{\mathbf{w}}(\mathbf{X})$ which are distinguished by W.

Proof. – (i) ⇒ (ii). Let A be a minimal W-face, and put $G = \bigcap \{F : F \text{ is an } \mathcal{G}\text{-face and } A \subset F\}$. Then G is an $\mathcal{G}\text{-face, and contains a minimal } \mathcal{G}\text{-face } H$. Now H is a W-face and contains a minimal W-face A'. If $A \cap A' = \emptyset$, then there exist disjoint $\mathcal{G}\text{-faces } B$, B' such that $A \in B$ and $A' \in B'$. Then $B \cap G$ is an $\mathcal{G}\text{-face properly contained}$ in G, which contradicts the definition of G. Therefore A = A', so that $G \subset H$ and G is a minimal $\mathcal{G}\text{-face.}$ It follows immediately that if A_1 , A_2 are disjoint minimal W-faces, then $A_1 \subset G_1$ and $A_2 \subset G_2$, where G_1 and G_2 are disjoint minimal $\mathcal{G}\text{-faces.}$

(ii) \Longrightarrow (iii). $\delta_{W}(X) = \bigcup \{A : A \text{ is a minimal W-face}\}$ $\subset \bigcup \{B : B \text{ is a minimal } \mathscr{G}\text{-face}\} = \delta_{\mathscr{G}}(X)$. Suppose W distinguishes x_1 and $x_2 \in \delta_{\omega}(X)$, then by lemma 3 there are disjoint minimal W-faces A_1 and A_2 with $x_1 \in A_1$ and $x_2 \in A_2$. Therefore there are disjoint minimal $\mathscr{G}\text{-faces } B_1, B_2$ with $x_1 \in A_1 \subset B_1$ and $x_2 \in A_2 \subset B_2$, and by lemma 3 \mathscr{G} distinguishes x_1 and x_2 .

(iii) \Longrightarrow (ii) \Longrightarrow (i). If A_1 and A_2 are disjoint minimal W-faces, then the points $x_1 \in A_1$ and $x_2 \in A_2$ are distinguished by W. Therefore x_1 and x_2 are distinguished by \mathcal{G} . Since $x_1, x_2 \in \mathfrak{d}_W(X) \subset \mathfrak{d}_{\mathcal{G}}(X)$ there are disjoint minimal \mathcal{G} -faces B_1, B_2 with $x_1 \in B_1$ and $x_2 \in B_2$. Since A_1 is minimal $A_1 \subset A_1 \cap B_1$, so that $A_1 \subset B_1$. Similarly $A_2 \subset B_2$.

If L and M are linear subspaces of C(X), then we will put

$$\mathfrak{L} = \{f_1 \wedge \cdots \wedge f_r \colon f_i \in \mathcal{L}, \quad i = 1 \dots r\}$$

and

$$\mathfrak{M} = \{f_1 \wedge \cdots \wedge f_r \colon f_i \in \mathbf{M}, \quad i = 1 \dots r\}.$$

Then \mathfrak{L} and \mathfrak{M} are min-stable wedges in C(X) and if the functions in L are \mathscr{G} -affine then $\mathfrak{L} \subset \widehat{\mathscr{G}}$.

Suppose L is a linear subspace of continuous \mathscr{G} -affine functions on X. The triple (X, \mathscr{G}, L) is a geometric simplex if given $f \in -\mathscr{G}$ and $g \in \mathscr{G}$ with f < g, then there exists

 $h \in L$ with $f \leq h \leq g$ [5, § 4]. We have assumed that $p, q \in \mathcal{G}$ with p > 0 and q < 0, so that $\alpha p < q$ for some $\alpha < 0$. If (X, \mathcal{G}, L) is a geometric simplex it follows that L contains an element l > 0.

PROPOSITION 1. — (X, \mathcal{G}, L) is a geometric simplex if and only if L has the weak R.s.p., $\partial_{\mathcal{G}}(X) \subset \partial_{\mathcal{L}}(X)$ and \mathfrak{L} distinguishes points of $\partial_{\mathcal{G}}(X)$ which are distinguished by \mathcal{G} .

Proof. — Let (X, \mathcal{G}, L) be a geometric simplex and suppose that $\{f_1, f_2, g_1, g_2\} \in L$ with $f_1 \vee f_2 < g_1 \wedge g_2$. Since $g_1 \wedge g_2 \in \hat{\mathcal{G}}$ there exists a family $\Lambda = \{h_i \in \mathcal{G} : h_i < g_1 \wedge g_2, i \in I\}$ filtering up to $g_1 \wedge g_2$. By Dini's theorem there exists $h_{i_0} \in \Lambda$ such that $f_1 \vee f_2 < h_{i_0} < g_1 \wedge g_2$. Similarly, there exists $h_{j_0} \in -\mathcal{G}$ such that $f_1 \vee f_2 < h_{j_0} < h_{i_0} < g_1 \wedge g_2$. Since (X, \mathcal{G}, L) is a geometric simplex there exists $h \in L$ such that

$$f_1 \vee f_2 \leqslant h_{j_0} \leqslant h \leqslant h_{i_0} \leqslant g_1 \wedge g_2$$

and L has the weak R.s.p.

Suppose $x_i \in \mathfrak{dg}(\mathbf{X})$, i = 1, 2, and $f_j \in -\mathfrak{A}$, j = 1, 2. Then $f_j \in -\overline{\mathfrak{F}}$ and by (1)

(2)
$$\begin{aligned} f_j(x_i) &= \inf \{h(x_i): f_j < h \in \mathcal{G}\}, \\ &= \inf \{g(x_i): g \in \mathcal{L}, f_j < g < h \in \mathcal{G}\}, \end{aligned}$$

since (X, \mathcal{G}, L) is a geometric simplex. Therefore $x_i \in \mathfrak{d}_{\mathfrak{L}}(X)$, and $\mathfrak{d}_{\mathfrak{G}}(X) \subset \mathfrak{d}_{\mathfrak{G}}(X)$. If $\varepsilon > 0$ then by (2) there exists g_1 , $g_2 \in L$ such hat

$$|g_j(x_i) - f_j(x_i)| < \varepsilon, \quad i, j = 1, 2.$$

If f_1 and f_2 distinguish x_1 and x_2 , and ε is small enough, then g_1 and g_2 distinguish x_1 and x_2 , and the conditions of the proposition are necessary.

Suppose that (X, \mathcal{G}, L) satisfies the given conditions, and that $f \in -\mathcal{G}, g \in \mathcal{G}$ with f < g. If A is a minimal \mathcal{G} -face, then by lemma 4 A is contained in a minimal \mathcal{G} -face B. If α is the smallest real number such that $\alpha l \ge f$ on B, then

D = {
$$x \in B$$
 : $(\alpha l - f)(x) = 0$ } = { $x \in X$: $(\alpha l - f) \stackrel{\infty}{_B} (x) = 0$ }

G. F. VINCENT-SMITH

is a \mathscr{G} -face [5, prop. 2.2]. D contains a minimal \mathscr{G} -face A', and by lemma 4, A = A'. Similarly

$$\mathbf{A} \subset \{x \in \mathbf{B}: (g - \beta l)(x) = 0\},\$$

where β is the greatest real number such that $\beta l \leq g$ on B. Since *l* is strictly positive, $\alpha < \beta$, and if $\alpha < \gamma < \beta$, then $f < \gamma l < g$ on B. By lemma 1, the function $(\gamma l)_{B}^{\infty}$ is the supremum of an increasing filtering family $\{f_i \in \mathcal{L} : i \in I\}$. Since $f < (\gamma l)_{B}^{\infty}$, it follows from Dini's theorem that $f < f_{i_0} (= h_1 \land \cdots \land h_n : h_r \in L, r = 1, \ldots, n)$ for some $i_0 \in I$. Therefore there exists $h \in L$ with f < h on X and h < g on B.

Suppose that $f < h_1 \wedge h_2$ with $h_1, h_2 \in L$. Since L has the weak R.s.p. and contains a positive function, the family $\{k \in L : k < h_1 \wedge h_2\}$ filters up. Therefore

$$k = \sup \{k' \in \mathcal{I} : k' < h_1 \wedge h_2\} = \sup \{k \in \mathcal{L} : k < h_1 \wedge h_2\}.$$

Thus k is the supremum of a filtering family of continuous \mathfrak{L} -affine functions and is therefore \mathfrak{L} -affine and lower semicontinuous. Therefore $\bar{k} \in \hat{\mathscr{G}}$. It follows from (1) that $\bar{k} = h_1 \wedge h_2$ on $\mathfrak{d}_{\mathscr{L}}(x)$. Since $\mathfrak{d}_{\mathscr{G}}(X) \subset \mathfrak{d}_{\mathscr{L}}(X)$, the function $\bar{k} - f$ is strictly positive on $\mathfrak{d}_{\mathscr{G}}(X)$. By lemma 2, $\bar{k} > f$. By Dini's theorem there exists $h \in L$ such that $f < h < h_1 \wedge h_2$, and the family $\mathfrak{F} = \{h \in L : f < h \text{ is filtering down.}\}$

Therefore the function $\underline{h} = \inf \{h \in L : f < h\}$ is upper semicontinuous \mathfrak{L} -affine and \mathfrak{I} -affine. If A is a minimal \mathfrak{I} -face, then there exists $h \in \mathfrak{I}$ with h < g on A. Therefore $\underline{h} < g$ on $\mathfrak{d}_{\mathfrak{I}}(X)$, and by lemma 2, $\underline{h} < g$. By Dini's theorem there exists $h \in L$ such that f < h < g. Therefore (X, \mathfrak{I}, L) is a geometric simplex.

We may now extend the density theorem in [13].

THEOREM 4. — Suppose that $\mathcal{G} \subset W$ are min-stable wedges in C(X), and that \mathcal{G} contains a positive function p and a negative function q. Let $M = \{f \in C(X) : f \text{ is W-affine}\}$ and let $L \subset C(X)$ be a linear subspace of \mathcal{G} -affine functions. If (X, \mathcal{G}, L) is a geometric simplex and if $\partial_W(X) \subset \partial_{\mathcal{G}}(X)$ and if \mathcal{G} distinguishes points of $\partial_W(X)$ which are distinguished by W, then L is uniformly dense in M.

Proof. — It follows from proposition 1 that $\vartheta_{\mathbf{W}}(\mathbf{X}) \subset \vartheta_{\mathscr{Q}}(\mathbf{X})$ and that \mathscr{L} distinguishes points of $\vartheta_{\mathbf{W}}(\mathbf{X})$ distinguished by W. Therefore $(\mathbf{X}, \mathbf{W}, \mathbf{L})$ is a geometric simplex. If $f \in \mathbf{M}$ and $\varepsilon > 0$, then by lemma 1 and by Dini's theorem there exist $h \in -\mathbf{W}, k \in \mathbf{W}$ such that

$$f + \varepsilon q < h < k < f + \varepsilon p.$$

Since (X, ω, L) is a geometric simplex, there exists $g \in L$ such that $f + \varepsilon q < h \leq g \leq k < f + \varepsilon p$, and L is uniformly dense in M.

Suppose that $L \subset M$ are linear subspaces of C(X) containing the constant functions, and that L has the weak R.s.p. Then \mathfrak{L} and \mathfrak{M} are min-stable wedges, $\mathfrak{d}_{\mathfrak{A}}(X) = \mathfrak{d}_{L}(X)$ the Choquet boundary of L, and $\mathfrak{d}_{\mathfrak{IR}}(X) = \mathfrak{d}_{\mathfrak{M}}(X)$, the Choquet boundary of M [15], and (X, \mathfrak{L}, L) is a geometric simplex. Since L contains the constant functions, points are distinguished by \mathfrak{L} (resp. \mathfrak{M}) if and only if they are separated by L (resp. M). We have therefore the following corollary to theorem 4.

COROLLARY 1. — [13, cor. to th. 5]. If $\mathfrak{d}_{L}(X) = \mathfrak{d}_{M}(X)$ and L separates the points of $\mathfrak{d}_{M}(X)$ which are separated by M, then L is uniformly dense in M.

We may replace the conditions in proposition 1 and theorem by a pair of conditions very similar to those used by D. A. Edwards [12].

Suppose we are given wedges W_0 and \mathscr{G}_0 such that the min-stable wedges $\{f_1 \land \cdots \land f_r : f_i \in \omega_0, i = 1, \ldots, r\}$ and $\{f_1 \land \cdots \land f_r : f_i \in \mathscr{G}_0, i = 1, \ldots, r\}$ are uniformly dense in W and \mathscr{G} respectively. For example, in corollary 1 we could take $M = W_0$ and $L = \mathscr{G}_0$. Since \mathscr{G} contains a positive element it follows that \mathscr{G}_0 contains a positive element which we may take as p. We consider the following conditions:

(a) If $x \in \mathfrak{d}_{W}(X)$, $\varepsilon > 0$ and $f_{1}, f_{2} \in \mathscr{G}_{0}$, then there exists $g \in -\mathscr{G}$ such that $g < f_{1} \wedge f_{2}$ and $f_{1} \wedge f_{2}(x) < g(x) + \varepsilon$.

(a') Same as (a), but with $g \in -\mathcal{G}_0$.

(b) If x_1 and $x_2 \in \mathfrak{d}_W(X)$, $\varepsilon > 0$ and $0 < f \in W_0$, then there exists $g \in \mathscr{G}_0$ such that $|f(x_i) - g(x_i)| < \varepsilon$, i = 1, 2.

Suppose that \mathscr{G}_0 satisfies condition (a). Then there exists $\{h_1, \ldots, h_n\} \subset -\mathscr{G}_0$ such that $g \leq h_1 \vee \cdots \vee h_n < f_1 \wedge f_2$.

Then $h_i < f_1 \wedge f_2$ and $f_1 \wedge f_2(x) < h_i(x) + \varepsilon$ for some *i* with $1 \le i \le n$. Therefore (a) implies (a') and since (a') implies (a), the two conditions are equivalent.

LEMMA 5. — $\partial_{\mathbf{W}}(\mathbf{X}) \subset \partial_{\mathcal{G}}(\mathbf{X})$ if and only if $\mathcal{G}_{\mathbf{0}}$ satisfies condition (a).

Proof. — It follows from (1) that $x \in \partial_{\mathscr{G}}(X)$ if and only if whenever $f \in \mathscr{G}$ there exists $g \in -\mathscr{G}$ with g < f and $f(x) < g(x) + \varepsilon$. Therefore the condition is necessary.

If \mathscr{G}_0 satisfies condition (a) then it satisfies (a'). Consider $x \in \mathfrak{d}_W(X), \varepsilon > 0$ and $f \in \mathscr{G}$. If $\delta > 0$ choose $\{f_i, \ldots, f_n\} \subset \mathscr{G}$. such that $|f - f_1 \land \cdots \land f_n| < \delta$. Let

$$c = \min \{f_i(x): i = 1, \ldots, n\}.$$

By condition (a') there exists $k \in \mathcal{G}_0$ such that k(x) = -cand $\{g_1, \ldots, g_n\} \subset -\mathcal{G}_0$ such that

$$g_i < (f_i + k) \wedge 0, \qquad g_i(x) > - \epsilon/n, \quad i = 1, \dots, n$$

Then

$$g_0 = \Sigma\{g_i: i = 1, \ldots, n\} < (f_1 + k) \land \cdots \land (f_n + k) = f_1 \land \cdots \land f_n + k,$$

and $g_0(x) > -\varepsilon$. Therefore $g_0 - k = h \in -\mathscr{G}_0$ and $h < f_1 \land \cdots \land f_n < f + \delta$ with $h(x) > c - \varepsilon > f(x) - \delta - \varepsilon$. Choosing δ such that $\delta(1 + p(x)) < \varepsilon$ and then putting $g = h - \delta p$ it follows that g < f and $g(x) > f(x) - 2\varepsilon$. It follows from (1) that $x \in \delta g(X)$ and that $\delta_W(X) \subset \delta g(X)$.

LEMMA 6. — $\vartheta_{\mathbf{W}}(\mathbf{X}) \subset \vartheta_{\mathcal{G}}(\mathbf{X})$ and \mathscr{G} distinguishes points of $\vartheta_{\mathbf{W}}(\mathbf{X})$ which are distinguished by W if and only if \mathscr{G}_0 and \mathbf{W}_0 satisfy conditions (a) and (b).

Proof. — If W distinguishes the points x_1 and x_2 of $\mathfrak{d}_W(X)$, then there exists $f \in W$ such that

$$f(x_1)p(x_2) \neq f(x_2)p(x_1).$$

Since $p \in W$, we may assume that f > 0. If \mathscr{G}_0 satisfies condition (b) and $\varepsilon < 0$, then there exists $g \in \mathscr{G}_0$ such that $|g(x_i) - f(x_i)| < \varepsilon$, i = 1, 2. If ε is small enough, then $g(x_1)p(x_2) \neq g(x_2)p(x_1)$, and \mathscr{G} distinguishes x_1 and x_2 .

If \mathscr{G}_0 also satisfies condition (a) then $\mathfrak{d}_W(X) \subset \mathfrak{d}_{\mathscr{G}}(X)$, by lemma 4.

Conversely, suppose that $x_1, x_2 \subset \mathfrak{d}_W(X), \varepsilon > 0$ and $0 < f \in W_0$. We consider the following cases:

(i) $f(x_1)p(x_2) = f(x_2)p(x_1)$. Choose real c such that $cp(x_1) = f(x_1)$ and $cp(x_2) = f(x_2)$. Then $cp = g \in \mathcal{G}_0$ and $|f(x_i) - g(x_i)| = 0 < \varepsilon, \ i = 1, \ 2.$

(ii) $f(x_1)p(x_2) < f(x_2)p(x_1)$. If $\partial_W(X) \subset \partial_{\mathcal{G}}(X)$ and \mathcal{G} distinguishes points of $\vartheta_{\mathbf{W}}(\mathbf{X})$ distinguished by W, then \mathscr{G} distinguishes x_1 and x_2 , and x_1 belongs to a minimal \mathcal{G} -face A. Then the function $0^{\infty}_{A} \in \hat{\mathcal{G}}$. It follows from lemma 1 that there exists $k \in \mathcal{G}$ such that $k(x_1) < 0$ and $k(x_2) > 0$. Since \mathscr{G}_0 is a wedge containing p, there exists $h \in \mathscr{G}_0$ such that $h(x_1) = 0$ and $h(x_2) > 0$. Define $g \in \mathcal{G}_0$ by the formula

$$g = \frac{f(x_1)}{p(x_1)} p + \frac{f(x_2)p(x_1) - f(x_1)p(x_2)}{f(x_1)h(x_2)} h$$

Then $|f(x_i) - g(x_i)| = 0 < \varepsilon$, i = 1, 2, and W_0 and \mathscr{G}_0 satisfy the conditions (a) and (b).

Application to axiomatic potential theory.

Let ω be an open relatively compact MP subset [4, § 2] of a harmonic space which satisfies one of the axiomatic systems [4, H_0 , ..., H_4] [3, A_1 , ..., A_3]. Let

 $W = \{ f \in C(\overline{\omega}) : f \text{ is superharmonic in } \omega \},\$

 $\mathscr{G} = \{ f \in C(\overline{\omega}) : f \text{ extends to a function superharmonic in } \}$ an open neighbourhood U_f of $\overline{\omega}$,

and define L and M as in the introduction. Then $\mathcal{G} \subset W$ are min-stable wedges in $C(\overline{\omega})$, M is the space of continuous W-affine functions, and L is the space of conitnuous \mathcal{G} -affine functions on $\overline{\omega}$. We suppose that \mathscr{G} contains a positive function p and a negative function q, and distinguishes points of ω^* .

LEMMA 7. — If A is a minimal W-face of $\overline{\omega}$, then A $\cap \omega^* \neq \emptyset$.

Proof. — The function O_A belongs to \hat{W} and is therefore hyperharmonic [4, § 1]. Suppose A $\cap \omega^* = \emptyset$, then $0_A^{\infty} - p$

is non-negative on $\omega \setminus A$, and for any point $x_0 \in \omega^*$, lim inf $\{(0_A^{\infty} - p)(x) : x \to x_0\} = \infty$. Since ω is an MP set, $0_A^{\infty} - p > 0$ and therefore $A = \emptyset$. Therefore $A \cap \omega^* \neq \emptyset$.

We now recall the definitions and some properties of regular and stable points of ω^* . If $f \in C(\omega^*)$ put $\Phi_f^{\omega} = \{ v : v \text{ is hyperharmonic in } \omega$ and

$$\liminf \{ v(x): x \in \omega, x \to x_0 \} \ge f(x_0), x \in \omega^* \},$$

put $\overline{\mathrm{H}}_{f}^{\omega} = \inf \{ \nu : \nu \in \Phi_{f}^{\omega} \}$, and put $\underline{\mathrm{H}}_{f}^{\omega} = -\overline{\mathrm{H}}_{(-f)}^{\omega}$. Since $(\mathscr{G} - \mathscr{G})|_{\omega^{*}}$ is uniformly dense in $\mathrm{C}(\omega^{*})$ it may be shown as in [7, ch. VIII, § 3] [14] [3, Satz 24], that $\underline{\mathrm{H}}_{f}^{\omega} = \overline{\mathrm{H}}_{f}^{\omega} = \mathrm{H}_{f}^{\omega}$ whenever $f \in \mathrm{C}(\omega^{*})$. Moreover $f \rightsquigarrow \mathrm{H}_{f}$ is a linear map from $\mathrm{C}(\omega^{*})$ to the bounded continuous functions on ω , which is continuous for the supremum norms. A point $x_{0} \in \omega^{*}$ is regular if $\lim \{\mathrm{H}_{f}(x) : x \in \omega, x \to x_{0}\} = f(x_{0})$ whenever $f \in \mathrm{C}(\omega^{*})$. Since $(\mathscr{G} - \mathscr{G})|_{\omega^{*}}$ is dense in $\mathrm{C}(\omega^{*})$ and the map $f \rightsquigarrow \mathrm{H}_{f}^{\omega}$ is continuous, x_{0} is regular if and only if $\lim \{\mathrm{H}_{f}^{\omega}(x) : x \in \omega, x \to x_{0}\} = f(x_{0})$ whenever $f \in -\mathscr{G}|_{\omega^{*}}$.

If $f \in C(\omega^*)$ then put $\Psi_f^{\omega} = \{ v : v \text{ is hyperharmonic in a neighbourhood of } \overline{\omega} \text{ and }$

$$\liminf \{\nu(x): x \in \int \overline{\omega}, x \to x_0\} \ge f(x_0)\},\$$

put $\overline{K}_{f}^{\omega} = \inf \{ v : v \in \Psi_{f}^{\omega} \}$ and put $\underline{K}_{f}^{\omega} = -\overline{K}_{(-f)}^{\omega}$. As in [6, § 2] it may be shown that $\underline{K}_{f}^{\omega} = \overline{K}_{f}^{\omega} = K_{f}^{\omega}$, a continuous function on $\overline{\omega}$, harmonic in ω , whenever $f \in C(\omega^{*})$. The map $f \dashrightarrow K_{f}^{\omega}$ is a linear map from $C(\omega^{*})$ to $C(\overline{\omega})$ continuous for the supremum norms. If $f(x) = K_{f}^{\omega}(x)$ whenever $f \in C(\omega^{*})$ then x is a stable point of ω^{*} . As with regular points, x is stable if and only if $f(x) = K_{f}^{\omega}(x)$ whenever $f \in -\mathcal{G}|_{\omega^{*}}$.

Suppose that $\mathbf{F} \in -\mathcal{G}$, and let $\overline{\mathbf{F}}$ be a continuous subharmonic function defined on an open neighbourhood $U_{\mathbf{F}}$ of $\overline{\omega}$, which equals \mathbf{F} on $\overline{\omega}$. If $\overline{\omega} = \bigcap \{\omega_i : i \in \mathbf{I}\}$ the intersection of a decreasing filtering family of open subsets of $U_{\mathbf{F}}$, then (by an abuse of language) $\{\mathbf{H}_{\mathbf{F}}^{\omega_i} : i \in \mathbf{I}\}$ is a decreasing filtering family in L, and $\mathbf{K}_{\mathbf{F}} = \inf \{\mathbf{H}_{\mathbf{F}}^{\omega_i} : i \in \mathbf{I}\}$ [6, § 2]. If $x_0 \in \omega^*$ is stable, then

$$\mathbf{F}(x_0) = \inf \{ \mathbf{H}_{\mathbf{F}}^{\omega_i}(x_0) : i \in \mathbf{I} \} \ge \inf \{ h(x_0) : \mathbf{F} < h \in \mathcal{G} \},\$$

so that $x_0 \in \partial g(\overline{\omega})$ by (1). Conversely, if $x_0 \in \partial g(\overline{\omega}) \cap \omega^*$ and $F \in -\mathcal{G}$, $G \in \mathcal{G}$ with F < G, then $\overline{F}|_{\omega_i} < \overline{G}|_{\omega_i}$ for some $i \in I$. Therefore $F < H_{\mathbf{F}}^{\omega_i} < G$ on. Therefore $(\overline{\omega}, \mathcal{G}, L)$ is a geometric simplex [11, prop. 5] [5, p. 521]. It follows that $F(x_0) = \inf g(x_0) : F < g \in \mathcal{G} \ge \inf \{H_{\mathbf{F}}^{\omega_i}(x_0) : i \in I\} \ge F(x_0)$. Therefore x_0 is stable and the following lemma holds.

LEMMA 7. — The set of stable points of ω^* is precisely $\partial g(\overline{\omega}) \cap \omega^*$.

Example 2. — The classical case. Let ω be a bounded open subset of \mathbb{R}^n , n > 1. The affine functions on \mathbb{R}^n are harmonic, $\partial_{M}(\overline{\omega})$ is precisely the set of regular points of ω^* , while $\partial_{L}(\overline{\omega})$ is precisely the set of stable points of ω^* . Since L contains the constant functions, separates the points of $\overline{\omega}$, and has the weak R.s.p., the following theorem is an immediate consequence of theorem 2.

THEOREM 5. — L is uniformly dense in M if and only if every regular point of X is stable.

We now return to the general case.

THEOREM 6. — If every regular point of ω^* is stable, then L is uniformly dense in M.

Proof. — Suppose x_i belongs to the minimal W-face A_i , i = 1, 2. Since \mathscr{G} distinguishes points of ω^* it follows from lemma 3, that $A_i \cap \omega^*$ is a one point set $\{y_i\}$. If $F \in -\mathscr{G}$ and $f = F|_{\omega^*}$ then inf $\{G : G \in \omega, F < G\} \ge H_f^{\omega} \ge F$ on ω . Since $y_i \in \mathfrak{d}_W(\overline{\omega})$, $F(y_i) = \inf \{G(y_i) : G \in W, F < G\}$. Therefore $\lim \{H_f(x) : x \in \omega, x \to y_i\} = f(y_i)$, and y_i is regular. Therefore y_i is stable. By lemma 7 there exist minimal \mathscr{G} -faces B_i , with $y_i \in B_i$, i = 1, 2. Since $A_i \cap B_i \neq \emptyset$ and A_i is minimal, $A_i \subset B_i$. Therefore $\mathfrak{d}_W(\overline{\omega}) \subset \mathfrak{d}_{\mathscr{G}}(\overline{\omega})$. If ω distinguishes x_1 and x_2 then by lemma 3 ω distinguishes y_1 and y_2 , and $y_1 \neq y_2$. Therefore \mathscr{G} distinguishes y_1 and y_2 so that $B_1 \neq B_2$, and \mathscr{G} distinguishes x_1 and x_2 . It follows from theorem 4 that L is uniformly dense in M.

Boboc and Cornea [5, th. 4.3], with the additional hypothesis that ω is weakly determining, show that $(\overline{\omega}, W, M)$ is a

geometric simplex, and that the set of regular points of ω^* is precisely $\vartheta_{\mathbf{w}}(\overline{\omega}) \cap \omega^*$. In this case we have a complete generalisation of theorem 5 to axiomatic potential theory.

COROLLARY 2. — If ω is weakly determining, then L is uniformly dense in M if and only if every regular point of ω^* is stable.

Proof. — If x is a regular point of $\overline{\omega}$ then $x \in \delta_{\omega}(\overline{\omega})$ [5, th. 4.3]. (ω , W, M) is a geometric simplex so by proposition 1, $x \in \delta_{M}(\overline{\omega})$. If L is dense in M, then \pounds -faces are \mathfrak{M} -faces, and x belongs to a minimal \pounds -face A. Since ($\overline{\omega}, \vartheta, L$) is a geometric simplex, it follows from proposition 1 and lemma 4 that A contains a unique minimal ϑ -face B and a unique minimal W-face C. Therefore $x \in \mathbb{C} \subset \mathbb{B}$, so that $x \in \delta_{\vartheta}(\overline{\omega})$ and x is stable by lemma 7. The corollary is now an immediate consequence of theorem 6.

BIBLIOGRAPHY

- H. BAUER, Frontière de Šilov et problème de Dirichlet, Sem. Brelot Choquet Deny, 3^e année, (1958-59).
- [2] H. BAUER, Minimalstellen von Functionen und Extremalpunkt II, Archiv der Math. 11, (1960), 200-203.
- [3] H. BAUER, Axiomatische Behandlung des Dirichletschen Problem fur elliptische und parabolische Differentialgleichungen, Math. Ann., 146 (1962) 1-59.
- [4] N. BOBOC, C. CONSTANTINESCU and A. CORNEA, Axiomatic theory of harmonic functions. Non negative superharmonic functions, Ann. Inst. Fourier, Grenoble, 15 (1965) 283-312.
- [5] N. BOBOC and A. CORNEA, Convex cones of lower semicontinuous functions, Rev. Roum. Math. Pures et Appl. 13 (1967) 471-525.
- [6] M. BRELOT, Sur l'approximation et la convergence dans la théorie des fonctions harmoniques ou holomorphes, Bull. Soc. Math. France, 73 (1945) 55-70.
- [7] M. BRELOT, Éléments de la théorie classique du potential, 2^e éd. (1961) Centre de documentation universitaire, Paris.
- [8] M. BRELOT, Axiomatique des fonctions harmoniques, Séminaire de mathématiques supérieures, Montréal (1965).
- [9] J. DENY, Sur l'approximation des fonctions harmoniques, Bull. Soc. Math. France, 73 (1945) 71-73.
- [10] J. DENY, Systèmes totaux de fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 1 (1949) 103-113.

- [11] D. A. EDWARDS, Minimum-stable wedges of semicontinuous functions, Math. Scand. 19 (1966) 15-26.
- [12] D. A. EDWARDS, On uniform approximation of affine functions on a compact convex set, Quart J. Math. Oxford (2), 20 (1969), 139-42.
- [13] D. A. EDWARDS and G. F. VINCENT-SMITH, A Weierstrass-Stone theorem for Choquet simplexes, Ann. Inst. Fourier, Grenoble, 18 (1968) 261-282.
- [14] R. M. HERVÉ, Développements sur une théorie axiomatique des fonctions surharmoniques, C.R. Acad. Sci. Paris, 248 (1959) 179-181.
- [15] R. R. PHELPS, Lectures on Choquet's theorem, van Nostrand, Princeton N. J. (1966).
- [16] A. de la PRADELLE, Approximation et caractère de quasi-analyticité dans la théorie axiomatique des fonctions harmoniques, Ann. Inst. Fourier, Grenoble, 17 (1967) 383-399.

Manuscrit reçu le 9 juin 1969.

G. F. VINCENT-SMITH, Mathematical Institute, O X I 3LB, 24-29 S[‡] Giles, Oxford (Angleterre).