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SIMULTANEOUS NON-VANISHING FOR DIRICHLET
L-FUNCTIONS

by Raphaël ZACHARIAS

Abstract. — We extend the work of Fouvry, Kowalski and Michel on correla-
tion between Hecke eigenvalues of modular forms and algebraic trace functions in
order to establish an asymptotic formula for a generalized cubic moment of modu-
lar L-functions at the central point s = 1

2 . As an application, we exploit our recent
result on the mollification of the fourth moment of Dirichlet L-functions to derive
that for any pair (ω1, ω2) of multiplicative characters modulo a prime q, there is
a positive proportion of χ (mod q) such that the central values L(χ, 1

2 ), L(χω1,
1
2 )

and L(χω2,
1
2 ) are simultaneously not too small.

Résumé. — Nous généralisons le travail de Fouvry, Kowalski et Michel sur la
corrélation entre les valeurs propres de Hecke de formes modulaires et les fonctions
traces dans le but d’établir une formule asymptotique pour un moment cubique
généralisé de fonctions L au point central s = 1

2 . Comme application, nous exploi-
tons notre résultat récent sur la mollification du quatrième moment des fonctions
L de Dirichlet et déduisons que pour ω1, ω2 deux charactères multiplicatifs modulo
un nombre premier q, il existe une proportion positive de χ (mod q) telle que les
valeurs centrales L(χ, 1

2 ), L(χω1,
1
2 ) et L(χω2,

1
2 ) soient simultanément pas trop

petites.

1. Introduction and statement of results

The zeros of automorphic L-functions on the critical line have received
considerable attention these last years [4, 9, 21, 28, 32]. In particular, at
the central point s = 1

2 , an L-function is expected to vanish only for either
a good reason or a trivial reason. For example, if E is an elliptic curve
defined over Q and L(E, s) is its associated L-function, then according to
the Birch and Swinnerton–Dyer conjecture, L(E, 1

2 ) = 0 if and only if the
group of Q-points E(Q) has positive rank. A trivial reason is for instance

Keywords: Modular forms, L-functions, trace functions, bilinear forms, twisted Kloost-
erman sums.
2010 Mathematics Subject Classification: 11L05, 11L07, 11M06.



1460 Raphaël ZACHARIAS

when the sign of the functional equation is −1, which is the case if the
L-function is attached to an odd Hecke–Maass form.
A typical approach in the study of non- vanishing problems is to consider

a family of L-functions {L(π, 1
2 )} for π varying in some finite set A and try

to give a lower bound for the proportion of π ∈ A such that L(π, 1
2 ) 6= 0

as |A| → ∞. In [20], H. Iwaniec and P. Sarnak examined L(χ, s) at s = 1
2

as χ ranges over all primitive Dirichlet characters modulo q. They proved
that at least 1

3 of the central values L(χ, 1
2 ) are not zero. This proportion

has been slightly improved to 0.3411 by H. M. Bui [3] and finally to 3
8 by

R. Khan and H. T. Ngo [25] with the restriction to prime moduli q.
In [36], P. Michel and J. Vanderkam considered simultaneous non-

vanishing problems : given three distinct Dirichlet characters ω1, ω2, ω3
of fixed modulus D1, D2, D3 (satisfying some technical conditions), they
proved that a positive proportion of Holomorphic primitive Hecke cusp
form f of weight 2, prime level q and trivial nebentypus are such that the
product L(f ⊗ ω1,

1
2 )L(f ⊗ ω2,

1
2 )L(f ⊗ ω3,

1
2 ) is not zero for sufficiently

large q (in terms of D1, D2, D3).
In this paper, we let q > 2 be a prime number, ω1, ω2 be arbitrary

Dirichlet characters of modulus q (1) , D(q) (resp. Dω1,ω2(q)) the set of
primitive characters modulo q (resp. different from ω1, ω2) and f a cuspidal
Hecke eigenform for SL2(Z) (holomorphic or Maass). We are interested in
the distribution of the values of the two families

{
L
(
χ, 1

2
)
L
(
χω1,

1
2
)
L
(
χω2,

1
2
)

: χ ∈ Dω1,ω2(q)
}
,{

L
(
f ⊗ χ, 1

2
)
L
(
χ, 1

2
)

: χ ∈ D(q)
}
,

as q → ∞. Using mollification method, a technique that has made the
success of many of the papers cited above, we show that for both families, a
positive proportion of these central values of character twists is not zero. We
give in fact a more precise statement, saying that they are simultaneously
not too small. These simultaneous non-vanish results require the evaluation
of the two cubic moments

(1.1) T 3(ω1, ω2, `; q) := 1
|Dω1,ω2(q)|

∑
χ (mod q)
χ 6=1,ω1,ω2

χ(`)
2∏
i=0

L
(
χωi,

1
2
)
,

(1)We point out that there is no additional difficulty by considering fixed ω1, ω2 of
conductors D1, D2 < q.

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS NON-VANISHING FOR DIRICHLET L-FUNCTIONS 1461

ω0 being in this paper the trivial character modulo q, and

(1.2) T 3(f, `; q) := 1
|D(q)|

∑
χ (mod q)

χ 6=1

L
(
f ⊗ χ, 1

2
)
L
(
χ, 1

2
)
χ(`),

for ` > 1 an integer coprime with q.
We now state the two main results of this paper :

Theorem 1.1. — Let ε > 0 be a real number. Then there exists an
explicit absolute constant c1 > 0 and Q = Q(ε) > 2 such that for any
prime q > Q and every Dirichlet characters ω1, ω2 modulo q,∣∣∣∣{χ (mod q) :

∣∣L (χωi, 1
2
)∣∣ > 1

log q , i = 0, 1, 2
}∣∣∣∣ > (c1 − ε)(q − 1).

Theorem 1.2. — Let f be a Hecke cusp of level 1 and spectral param-
eter tf satisfying the Ramanujan–Petersson conjecture and let ε > 0. Then
there exists an explicit absolute constant c2 > 0 and Q = Q(ε, tf ) > 2 such
that for any prime q > Q,∣∣∣∣{χ (mod q) :

∣∣L (f ⊗ χ, 1
2
)∣∣ > 1

log(q)2 ,
∣∣L (χ, 1

2
)∣∣ > 1

log q

}∣∣∣∣
is at least (c2 − ε)(q − 1).

The new main ingredient in the proof of Theorems 1.1 and 1.2 is the fol-
lowing result which establishes an asymptotic formula for the moments (1.1)
and (1.2).

Theorem 1.3. — Let q > 2 be a prime number, ω1, ω2 be Dirichlet
characters of modulus q, f a primitive Hecke cusp form of level 1 or q
and trivial nebentypus. Assume that f satisfies the Ramanujan–Petersson
conjecture, then for any ε > 0, we have

T 3(ω1, ω2, `; q) = δ`=1 +O
(
q−

1
64 +ε

)
,(1.3)

T 3(f, `; q) = δ`=1 +O
(
q−

1
52 +ε

)
,(1.4)

where the implied constant only depends on ε > 0 and polynomially on
the Archimedean parameters of f (the weight or the Laplace eigenvalue)
in (1.4).

Remark 1.4. — We have not seen the details, but the case where f is of
level one and ` = 1 has been announced by S. Das and S. Ganguly and it
seems that their method is similar to our.
When f is of level q with non trivial central character, the proof of

Theorem 1.3 is similar but requires a mild extension of [29, Theorem 1.3]

TOME 69 (2019), FASCICULE 4



1462 Raphaël ZACHARIAS

for Kloosterman sums twisted by characters. We will return to this question
in a coming paper.

Remark 1.5. — The asymptotic formula (1.4) is similar to the mixted
cubic moment evaluated by S. Das and R. Khan in [5]

1
q − 1

∑
χ (mod q)

χ 6=1

L
(
f ⊗ χ, 1

2
)
L
(
χ, 1

2
)
.

As the authors explained, the complex conjugation above L(χ, 1/2) was
introduced to avoid difficulties connected to the oscillations of Gauss sums.
What we show here is that this difficulties are resolved using variants of
the methods of [14] [29].
Following a suggestion of the referee, we point out that there is an ad-

vantage in considering the two moments without the complex conjugation.
In this case we obtain a main term only when ` = 1 and this main term
is 1 (in particular independant of q, ωi or f), which greatly facilitates the
average over ` in the mollification method (see Section 7.1).

1.1. Sketch of the proof of Theorem 1.3

After an application of the approximate functional equation to (1.2)
and (1.1), which expresses the central value of automorphic L-functions
as a convergent series, and an average over the characters, we isolate a
main term which appears only if ` = 1 (cf. Section 6.1.1–6.1.3).
The treatment of the error term passes by the analysis of sums of the

shape

(1.5) S(ω1, ω2; q)

= 1
(qN0N1N2)1/2

∑
ni∼Ni
i=0,1,2

ω1(n1)ω2(n2)Kl3(n0n1n2, ω1, ω2, 1; q),

(1.6) C(f ; q) = 1
(qMN)1/2

∑∑
n∼N,m∼M

λf (n)Kl3(nm; q),

where Kl3 is the classical 2-dimensional normalized hyper-Kloosterman
sum, Kl3(ω1, ω2, 1; q) is the twisted version as defined in (3.9), {λf (n)}n>1
are the Hecke eigenvalues of f and N0, N1, N2, N,M are parameters satis-
fying

1 6 Ni, N,M, N0N1N2 6 q
3/2+ε and MN 6 q3/2+ε.

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS NON-VANISHING FOR DIRICHLET L-FUNCTIONS 1463

The ultimate goal is to obtain a bound of the form

S(ω1, ω2; q), C(f ; q) = O
(
q−δ
)
,

for some absolute constant δ > 0. Using Poisson summation in the three
variables in (1.5), or Voronoi formula in the n-variable in (1.6) (followed
by Poisson on m) allows us to get rid of the cases where the product of the
variables is larger than q; namely in Section 6.1.6 and 6.2.4, we prove

S(ω1, ω2; q)� qε
(

q

N0N1N2

)1/2
and C(f ; q)� qε

( q

NM

)1/2
.

Combining these two estimates with the trivial bounds

S(ω1, ω2; q)�
(
N0N1N2

q

)1/2
and C(f ; q)� qε

(
NM

q

)1/2
,

we can assume for the rest of this outline that

N0N1N2 = NM = q.

We treat these sums differently according to the relative size of the various
parameters. If N1 ∼ 1 (say) and M ∼ 1, we exploit the n0, n2-sum (resp.
the n-sum) in (1.5) (resp. in (1.6)) and average trivially over the others.
Grouping n0n2 into a long variable n and we need to analyze roughly∑

n∼q
λω2(n, 0)Kl3(nn1, ω1, ω2; q) and

∑
n∼q

λf (n)Kl3(nm; q),

where for any t ∈ R,

λω2(n, it) =
∑

n0n2=n
ω2(n2)

(
n2

n0

)it
.

In [13] and [14], Fouvry, Kowalski and Michel studied these sums when f
is a fixed cusp form of level 1, λω2(n, it) is replaced by the generalized divi-
sor function dit(n) =

∑
ab=n a

itb−it and a general Frobenius trace function
modulo q instead of Kl3. Our second main result is an extension of their
theorems (see [14, Theorem 1.2] and [13, Theorem 1.15]) for Hecke eigen-
forms (cuspidal or not) of level q with arbitrary central ω. More precisely,
for V a smooth and compactly supported function on R∗+, we consider the
sums

SV (f,K; q) :=
∑
n>1

λf (n)K(n)V
(
n

q

)
,(1.7)

SV (ω, it,K; q) :=
∑
n>1

λω(n, it)K(n)V
(
n

q

)
.(1.8)

TOME 69 (2019), FASCICULE 4



1464 Raphaël ZACHARIAS

We prove in Section 5 :

Theorem 1.6. — Let q > 2 be a prime number, ω a Dirichlet character
of modulus q, f a primitive Hecke cusp form of level q, nebentypus ω and
spectral parameter tf . Let K be an isotypic trace function modulo q of
conductor cond(K) such that its Fourier transform is not ω-exceptional, as
defined in (3.3), (3.5) and (3.16). Let V be a function satisfying V (C,P,Q)
(see Definition (3.1)). Then there exists constants s > 1 and A > 1 such
that

SV (f,K; q)�C,δ (1 + |tf |)Acond(K)sq1−δ(PQ)1/2 (P +Q)1/2
,

SV (ω, it,K; q)�C,δ (1 + |t|)Acond(K)sq1−δ(PQ)1/2 (P +Q)1/2
,

for any δ < 1/16, where A depends on ε and s is absolute.

Therefore, Theorem 1.6 provides the desired power saving (set P =
Q = 1) in the special case where one of the variable is very small in (1.5)
and M ∼ 1 in (1.6).
Assume now that N0, N1, N2 > qη and M > qη for some small real

number η > 0. From now, we need to take care of the different nature
of expressions (1.5) and (1.6). Indeed, for (1.5), the fact of having three
free variables allows us to factorize two of them (say n0n2) in such a way
that N0N2 > q1/2+η. In this case, we can form a bilinear sum and use a
general version of Polyá–Vinogradov (see Theorem 4.2) to obtain a power
saving in the error term. The same method also works for (1.6), as long as
M 6 q1/2−η, because in this case N > q1/2+η, or M > q1/2+η. Hence, the
critical range for the second sum, i.e. when Polyá–Vinogradov is useless,
appears whenM ∼ q1/2 and N ∼ q1/2 and here we apply the general result
of Kowalski, Michel and Sawin concerning bilinear forms involving classical
Kloosterman sums [29, Theorem 1.3].

Acknowledgment. This paper is part of my Phd thesis and I would
like to thank my supervisor Philippe Michel for his valuable advice. I am
also grateful to Satadal Ganguly for its careful reading and its reference to
the paper [5] of S. Das and R. Khan.

2. Background on automorphic forms

In this section, we briefly compile the main results from the theory of
automorphic forms which we shall need in Section 5. Among these are Hecke
eigenbases, multiplicative properties of Hecke eigenvalues, the Kuznetsov
trace formula and the spectral large sieve inequality.

ANNALES DE L’INSTITUT FOURIER
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2.1. Hecke eigenbases

Let N > 1 be an integer, ω a Dirichlet character of modulus N , κ =
1−ω(−1)

2 ∈ {0, 1} and k > 2 satisfying k ≡ κ (mod 2). We denote by
Bk(N,χ) (resp. B(N,χ)) a Hecke basis of the Hilbert space of holomor-
phic cusp forms of weight k (resp. of Maass cusp forms of weight κ) with
respect to the Hecke congruence group Γ0(N) and with nebentypus ω.
The continuous spectrum is continuously spanned by the Eisenstein series
Ea( · , 1/2 + it) where a runs over the singular cusps of Γ0(N).

2.1.1. The Eisenstein series in the special case N = 2q

Let q > 2 be a prime number. For some technical reasons, it is convenient
for the proof of Theorem 1.6 to see the form f of level q as a form of level 2q
(see the beginning of Section 4.1 and Section 5.5 in [14]). For arbitrary level
N , the Eisenstein series Ea( · , 1/2 + it) are usually not eigenfunctions of
the Hecke operators. In the special case where N = 2q, there are exactly
four inequivalent cups for Γ0(2q) which are

a = 1 , 1
2 ,

1
q
,

1
2q ,

see for example [17, Proposition 2.6] and all are singular. The main ad-
vantage in this situation is that these Eisentein series are eigenforms of
the Hecke operators Tn for (n, 2q) = 1. More precisely, if a = 1/v with
v ∈ {1, 2, q, 2q}, then we have for (n, 2q) = 1,

TnEa( · , 1/2 + it) = λa(n, it)Ea( · , 1/2 + it),

with explicitly

(2.1) λa(n, it) =
{∑

ab=n ω(a)
(
a
b

)it if v = q, 2q∑
ab=n ω(b)

(
a
b

)it if v = 1, 2,

see [11, (6.16)–(6.17)].

Remark 2.1. — In the case N = q, there are exactly two inequivalent
cusps a = 1, 1/q and the two Eisenstein series are eigenfunctions of the
Hecke operators Tn for (n, q) = 1 with eigenvalues given by (2.1). Moreover,
they are also Eisenstein series of level 2q after the normalization by 1/

√
3.

TOME 69 (2019), FASCICULE 4



1466 Raphaël ZACHARIAS

2.2. Multiplicative and boundedness properties of Hecke
eigenvalues

Let f be any Hecke eigenform of level N and nebentypus ω and let λf (n)
be the corresponding Hecke eigenvalues for Tn. Then for (nm,N) = 1, we
have

λf (m)λf (n) =
∑

d|(n,m)

ω(d)λf
(nm
d2

)
,(2.2)

λf (n) = ω(n)λf (n).(2.3)

Note that if f is holomorphic, then by the work of Deligne and Serre, we
have the Ramanujan–Petersson conjecture, namely

(2.4) |λf (n)| 6 τ(n).

The same bound is of course trivial in the special case N = 2q or q and the
Eisenstein series are eigenfunctions with eigenvalues given by (2.1). In the
case of a Maass cusp form f , the best result is due to Kim and Sarnak [26]
and it is given by

(2.5) |λf (n)| 6 τ(n)nθ , θ = 7
64 ,

with an analogous bound for the spectral parameter

(2.6) |=m(tf )| 6 θ,

where 1/4 + t2f is the Laplace eigenvalue of f . However, the conjecture is
true on average, in the sense that for every X > 1,

(2.7)
∑
n6X

|λf (n)|2 � (N(1 + |tf |))εX,

with an implied constant depending only on ε [11, Proposition 19.6]. We
will also need later similar bound for the fourth-power on average and it
is enough for our purpose to restrict to prime numbers p not dividing the
level N

(2.8)
∑
p6X

(p,N)=1

|λf (p)|4 � (XN(1 + |tf |))εX,

for any ε > 0 and the constant only depends on ε. This bound is a con-
sequence of the automorphy of the symmetric square Sym2f and Rankin–
Selberg theory (see for example [35]).

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS NON-VANISHING FOR DIRICHLET L-FUNCTIONS 1467

2.3. Hecke eigenvalues and Fourier coefficients

Let f be a modular form. For z = x + iy ∈ H, we write the Fourier
expansion as

f(z) =
∞∑
n=1

ρf (n)n
k−1

2 e(nz) for f ∈ Bk(N,ω),

f(z) =
∑
n 6=0

ρf (n)|n|−1/2W |n|
n
κ
2 ,itf

(4π|n|y)e(nx), for f ∈ B(N,ω),

where Wα,β is a Whittaker function, as defined in [11, Section 4]. For an
Eisenstein series Ea(z, 1/2 + it), we write

Ea(z, 1/2 + it) = c1,a(t)y1/2+it + c2,a(t)y1/2−it

+
∑
n 6=0

ρa(n, it)|n|−1/2W |n|
n
κ
2 ,it

(4π|n|y)e(nx).

When f is a Hecke eigenform, there is a closed relation between the Fourier
coefficients and the Hecke eigenvalues λf (n) ; for (m,N) = 1 and n > 1,
one has

(2.9) λf (n)ρf (n) =
∑

d|(m,n)

ω(d)ρf
(mn
d2

)
.

In particular, for all (m, q) = 1,

(2.10) λf (m)ρf (1) = ρf (m).

If f is primitive, the relations (2.9) and (2.10) are valid for every m > 1.
We will also need lower bounds for the first coefficient ρf (1) ; we have for
any ε > 0

(2.11) |ρf (1)|2 �ε


cosh(πtf )

N(1+|tf |)κ(N+|tf |)ε if f ∈ B(N,ω)
(4π)k−1

(k−1)!N1+εkε if f ∈ Bk(N,ω),

see [11, (6.22), (7.16)] and [34, Lemma 2.2 and (2.23)]. For an Eisenstein
series Ea( · , 1/2 + it), we have

(2.12) |ρa(1, it)|2 � cosh(πt)
N(1 + |t|)κ(log(N + |t|))2 ,

see [11, (6.23), (7.15)].

TOME 69 (2019), FASCICULE 4
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2.4. Summation formula, trace formula and the spectral large
sieve inequality

2.4.1. Voronoi summation formula

We state a version of Voronoi summation formula for the cuspidal case.
For our purpose, it is enough to restrict to modular form of prime level q.

Proposition 2.2. — Let q > 2 be a prime number, ω a Dirichlet char-
acter of modulus q and f a primitive Hecke cusp form of level q and neben-
typus ω with associated Hecke eigenvalues (λf (n))n>1. Given an integer
a coprime with q and g : R∗+ → C a smooth and compactly supported
function, we set

V(f, a; q) :=
∑
n>1

λf (n)e
(
an

q

)
g(n).

Then

(2.13) V(f, a; q) = ω(a)
q

∑
±

∑
n>1

λf (n)e
(
∓an
q

)
g±

(
n

q2

)
,

where
g±(y) =

∫ ∞
0

g(x)J±(4π√xy) dx,

with
J+(x) = 2πikJk−1(x) , J−(x) = 0

if f is holomorphic of weight k and

J+(x) = − π

sin(πitf )
(
J2itf (x)− J−2itf (x)

)
,

J−(x) = εf4 cos(πitf )K2itf (x)

if f is a Maass form of parity εf ∈ {−1,+1} and spectral parameter tf .

Proof. — The proof is contained in [30, Appendix A.3–A.4] and also [35,
Lemma 2.3.1] for the holomorphic case. �

Finally, we consider the decay properties of the Bessel transforms g±
(see [1, Lemma 2.4]).

Lemma 2.3. — Let g : R∗+ → C be a smooth and compactly supported
function satisfying

(2.14) xig(i)(x)�i,ε q
εi

ANNALES DE L’INSTITUT FOURIER
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for any ε > 0 and j > 0. In the non-holomorphic case set ϑ = <e(itf ),
otherwise set ϑ = 0. Then for any ε > 0, for any i, j > 0 and all y > 0, we
have

yjg
(j)
± (y)�i,j,ε

(1 + y)j/2(
1 + (yq−ε)1/2

)i (1 + y−2ϑ−ε) .

2.4.2. The Petersson formula

For k > 2 an integer such that k ≡ κ (mod 2), the Petersson trace for-
mula expresses an average of product of Fourier coefficients over Bk(N,ω)
in terms of sums of Kloosterman sums (see [18, Theorem 9.6] and [19,
Proposition 14.5]) : for any integers n,m > 0, we have

(2.15) (k − 2)!
(4π)k−1

∑
g∈Bk(N,ω)

ρg(n)ρg(m) = δ(m,n) + ∆N,k(m,n),

where

∆N,k(m,n) := 2πi−k
∑
N |c

1
c
Sω(m,n; c)Jk−1

(
4π
√
mn

c

)
,

and the Kloosterman sum Sω(m,n; c) is defined by

Sω(m,n; c) =
∑

d (mod c)
(d,c)=1

ω(d)e
(
md+ nd

c

)
.

2.4.3. The Kuznetsov formula

Let φ : R+ → C be a smooth function satisfying φ(0) = φ′(0) = 0 and
φ(j)(x) �ε (1 + x)−2−ε for 0 6 j 6 3 and every ε > 0. For κ ∈ {0, 1}, we
define the two Bessel transforms

φ̇(k) = ik
∫ ∞

0
Jk−1(x)φ(x)dx

x
,

φ̃(t) = itκ

2 sinh(πt)

∫ ∞
0

(J2it(x)− (−1)κJ−2it(x))φ(x)dx
x
.

TOME 69 (2019), FASCICULE 4
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Then for every integers m,n > 0, we have the following spectral decompo-
sition of the Kloosterman sums,

(2.16)
∑∑
k≡κmod 2

k>κ
g∈Bk(N,ω)

φ̇(k) (k − 1)!
π(4π)k−1 ρg(m)ρg(n)

+
∑

g∈B(N,ω)

φ̃(tg)
4π

cosh(πtg)
ρg(m)ρg(n)

+
∑

a singular

∫ ∞
0

φ̃(t) 1
cosh(πt)ρa(m, it)ρa(n, it) dt = ∆N,φ(m,n),

where
∆N,φ(m,n) =

∑
N |c

1
c
Sω(m,n; c)φ

(
4π
√
mn

c

)
,

see [18, Theorem 9.4 and 9.8].

2.4.4. The spectral large sieve inequality

Lemma 2.4. — Let N > 1 be an integer and ω a Dirichlet character of
modulus N whose conductor is odd and squarefree. Then for any m,n ∈ Z
and N |c, we have the Weil bound

|Sω(m,n; c)| 6 τ(c)(m,n, c)1/2c1/2.

Proof. — The proof is a consequence of the twisted multiplicativity of
Kloosterman sums and [27, Propositions 9.7 and 9.8]. �

Proposition 2.5. — Let N > 1 be an integer, ω a Dirichlet character
of modulus N with squarefree and odd conductor and κ ∈ {0, 1} such
that ω(−1) = (−1)κ. Let T > 1,M > 1/2 and (am)M<m62M a sequence of
complex numbers. Then for any ε > 0, each of the following three quantities

∑
κ<k6T

k≡κ (mod 2)

Γ(k)
∑

g∈Bk(N,ω)

∣∣∣∣∣∣
∑

M<m62M
amρg(m)

∣∣∣∣∣∣
2

,

∑
g∈B(N,ω)
|tg|6T

(1 + |tg|)κ

cosh(πtg)

∣∣∣∣∣∣
∑

M<m62M
amρg(m)

∣∣∣∣∣∣
2

,

∑
a singular

∫ T

−T

(1 + |t|)κ

cosh(πt)

∣∣∣∣∣∣
∑

M<m62M
amρa(m, t)

∣∣∣∣∣∣
2

,
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is bounded, up to a constant depending only on ε, by

(2.17)
(
T 2 + M1+ε

N

) ∑
M<m62M

|am|2.

Proof. — This result has been proved in [8, Proposition 4.7], except that
the bound (2.17) is replaced by

(
T 2 + c(ω)1/2M1+εN−1) ‖am‖2

2, where c(ω)
is the conductor of ω. The extra factor c(ω) in the proof of this Proposi-
tion appears in [8, Lemma 4.6, (4.20)] and is a consequence of the general
estimation [27, Theorem 9.3]

Sω(m,n; c)� τ(c)O(1)(m,n, c)1/2(c(ω)c)1/2.

By the hypothesis on the conductor of ω (that it is squarefree), we can apply
Lemma 2.4 whose consequence is the cancellation of the factor c(ω)1/2 in [8,
Lemma 4.6, (4.20)] and the rest of the proof is completely similar. �

2.5. L-functions and functional equations

2.5.1. Dirichlet L-functions

Let χ be a non-principal Dirichlet character of modulus q > 2 with q

prime, κ ∈ {0, 1} satisfying χ(−1) = (−1)κ and define the complete L-
function

Λ(χ, s) := qs/2L∞(χ, s)L(χ, s),
where

(2.18) L∞(χ, s) := π−s/2Γ
(
s+ κ

2

)
.

It is well known that Λ(χ, s) admits an analytic continuation to the whole
complex plane and satisfies the functional equation (cf. [19, Theorem 4.15])

(2.19) Λ(χ, s) = iκε(χ)Λ(χ, 1− s),

where ε(χ) is the normalized Gauss sum defined by

(2.20) ε(χ) := 1
q1/2

∑
x∈F×q

χ(x)e
(
x

q

)
.

Using (2.19), we can express the central value of a Dirichlet L-function as
a convergent series (see [19, Theorem 5.3]) and thus, extend in an easy way
the proof to a product of three L-functions.
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Lemma 2.6. — Let χ, ω1, ω2 be Dirichlet characters such that χ 6=
ω0, ω1, ω2. If κ (resp κ1, κ2) ∈ {0, 1} are such that χ(−1) = (−1)κ (resp
ω1(−1) = (−1)κ1 , ω2(−1) = (−1)κ2), then we have

2∏
i=0

L
(
χωi,

1
2
)

=
∑∑∑
n0,n1,n2>1

χ(n0n1n2)χ1(n1)χ2(n2)
(n0n1n2)1/2 Vχ

(
n0n1n2

q3/2

)
+ χ(−1)iκ+κ1+κ2ε(χ)ε(χω1)ε(χω2)

×
∑∑∑
n0,n1,n2>1

χ(n0n1n2)χ1(n1)χ2(n2)
(n0n1n2)1/2 Vχ

(
n0n1n2

q3/2

)
,

where

(2.21) Vχ(x) := 1
2πi

∫
(2)

2∏
i=0

L∞
(
χωi,

1
2 + s

)
L∞

(
χωi,

1
2
) x−sQ(s)ds

s
,

for some entire and even function Q(s) with exponential decay in vertical
strips and satisfying Q(0) = 1.

Remark 2.7. — For given ω1, ω2, the function Vχ depends on χ only
through its parity. Shifting the s-contour to the right in (2.21) and we see
that for x > 1 and any A > 0, we have the estimation

Vχ(x)�A x
−A.

Now moving the s-line to <e(s) = − 1
2 + ε, we pass a simple pole at s = 0

of residu 1 and thus, we obtain for x 6 1

Vχ(x) = 1 +Oε

(
x1/2−ε

)
.

2.5.2. Twisted L-functions

Let q > 2 be a prime number, ω a Dirichlet character of modulus q and
f a primitive Hecke cusp of level q and nebentypus ω. For χ a non trivial
character modulo q, we can construct the twisted modular form f ⊗ χ

whose n-th Fourier coefficient is given by ρf (n)χ(n). This form is a Hecke
eigenform of level q2 with nebentypus ωχ2 and eigenvalues λf (n)χ(n) for
(n, q) = 1 (see [17, Chapter 7]). The following proposition says when f ⊗χ
stills a primitive form and derive the functional equation of the associated
L-function (see for example [15] and [16]).

Proposition 2.8. — Let q > 2 be a prime number, f, ω and χ as above
and assume further that χ 6= ω0, ω. Then the twisted modular form f⊗χ is
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a primitive Hecke cusp form of level q2 and nebentypus χ2ω with associated
Hecke eigenvalues χ(n)λf (n) for every n > 1. If

(2.22) L(f ⊗ χ, s) :=
∞∑
n=1

λf (n)χ(n)
ns

, <e(s) > 1

is its associated L-function, then there exists a factor L∞(f ⊗ χ, s) such
that the product

Λ(f ⊗ χ, s) := qsL∞(f ⊗ χ, s)L(f ⊗ χ, s)

extends holomorphically to C and satisfies the functional equation

(2.23) Λ(f ⊗ χ, s) = ε∞(f, χ)ε(f ⊗ χ)Λ(f ⊗ χ, 1− s),

where ε(f ⊗ χ) = ε(χ)ε(ωχ), ε(χ), ε(ωχ) are defined by (2.20) and the
infinite factors ε∞(f, χ) and L∞(f ⊗ χ, s) satisfy |ε∞(f, χ)| = 1 and both
depends on χ only trough its parity.

Remark 2.9. — The infinite factor presents as a product of Gamma func-
tions

L∞(f ⊗ χ, s) = π−sΓ
(
s− µ1,f⊗χ

2

)
Γ
(
s− µ2,f⊗χ

2

)
,

where µi,f⊗χ are the local parameters at the infinite place (encodes the
weight in the holomorphic setting or the Laplace eigenvalue if f is a Maass
form) and we recall that they depend on χ at most trough its parity. In
any case, a consequence of the work of Kim and Sarnak [26] toward the
Ramanujan–Petersson conjecture is that

(2.24) <e(µi,f⊗χ) 6 7
64 .

We finally state the analogous of Lemma 2.6 for the product L(f ⊗
χ, s)L(χ, s) on the critical point s = 1/2 (see [35, Section 1.3.2] for the
general result).

Proposition 2.10. — Let q > 2 be a prime number, ω a Dirichlet
character of modulus q and f a primitive Hecke cusp form of level q and
nebentypus ω with associated Hecke eigenvalues λf (n) for all n > 1. Then
for every character χ modulo q such that χ 6= ω0, ω, χ(−1) = (−1)κ with
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κ ∈ {0, 1}, we have

(2.25) L
(
f ⊗ χ, 1

2
)
L
(
χ, 1

2
)

=
∑∑
n,m>1

λf (n)χ(n)χ(m)
(nm)1/2 Vf,χ

(
nm

q3/2

)

+ iκε∞(f, χ)ε(f ⊗ χ)ε(χ)
∑∑
n,m>1

λf (n)χ(n)χ(m)
(nm)1/2 Vf,χ

(
nm

q3/2

)
,

where

(2.26) Vf,χ(x) := 1
2πi

∫
(2)

L∞
(
f ⊗ χ, s+ 1

2
)
L∞

(
χ, s+ 1

2
)

L∞
(
f ⊗ χ, 1

2
)
L∞

(
χ, 1

2
) x−sP (s)ds

s
,

for some suitable entire even function P (s) with exponential decay in ver-
tical strips and satisfying P (0) = 1.

Remark 2.11. — Shifting the s-contour on the right in (2.26) and we
obtain that for every x > 1 and any A > 0,

Vf,χ(x)�A x
−A.

By (2.24), moving the s-line to <e(s) = −1/4, we catch a simple pole at
s = 0 of residue 1 and thus

Vf,χ(x) = 1 +O(x1/4) for 0 < x 6 1.

3. `-adic twists of modular forms

In this section, we fix q > 2 a prime number, ω a Dirichlet character
modulo q, f a primitive Hecke cusp form of level q and nebentypus ω and
we denote by {λf (n)}n>1 the Hecke eigenvalues of f . For any t ∈ R, we
also define the twisted divisor function λω(n, it) by

(3.1) λω(n, it) :=
∑
ab=n

ω(a)
(a
b

)it
,

which, for (n, q) = 1, appears as Hecke eigenvalues of Eisenstein series
Ea( · , 1/2 + it) of level q and nebentypus ω for a suitable choice of cusp a

(cf. Section 2.1.1 and (2.1)).
As announced in Section 1.1, for K : Z −→ C a q-periodic function, a

crucial step in the proof of Theorem 1.3 requires non trivial estimates for
sums of the shape

(3.2) SV (f,K; q) =
∑
n>1

λf (n)K(n)V
(
n

q

)
,
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(3.3) SV (ω, it,K; q) =
∑
n>1

λω(n, it)K(n)V
(
n

q

)
,

where V is a smooth a compactly supported function on R∗+. Assuming
that |K(n)| 6M for every n ∈ Z, we obtain by Cauchy–Schwarz inequality
and (2.7),

(3.4) SV (ω, it,K; q),SV (f,K; q)�Mq1+ε,

with an implied constant depending only on V and the spectral parameter
tf and this bound can be seen as the trivial one. Theorem 1.6 improves
on (3.4) with a power saving in the q-aspect, namely

SV (ω, it,K; q),SV (f,K; q)� q1− 1
16 +ε,

for any ε > 0 and with an implied constant depending on ε, V, tf (or t)
and controlled by some invariant of K, called the conductor (see Defini-
tion (3.5)). As in [14, Definition 1.1], we make the following definition about
the test function V .

Definition 3.1 (Condition V (C,P,Q)). — Let P > 0 and Q > 1 be
real numbers and let C = (Cν)ν>0 be a sequence of non-negative real num-
bers. A smooth compactly supported function V on R satisfies Condition
(V (C,P,Q)) if

(1) The support of V is contained in the dyadic interval [P, 2P ];
(2) For all x > 0 and all integer ν > 0, we have the inequality∣∣∣xνV (ν)(x)

∣∣∣ 6 CνQν .
In practice, the test function V is not compactly supported, but rather

in the Schwartz class. We give here a simple Corollary of Theorem 1.6.

Corollary 3.2. — Let q > 2 be a prime number, f, ω andK as in The-
orem 1.6. Let Q > 1, C = (Cν)ν a sequence of non-negative real numbers
and V a smooth function on R with the property that for any A > 0,

(3.5) V (x)�A
1

(1 + |x|)A and
∣∣∣xνV (ν)(x)

∣∣∣ 6 CνQν , ν > 0.

Then for every X > 0 and every ε > 0, we have∑
n>1

λf (n)K(n)V
( n
X

)
�C,ε (qX)ε(1 + |tf |)Acond(K)sXQ2

(
1 + q

X

)1/2
q−1/16,
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∑
n>1

λω(n, it)K(n)V
( n
X

)
�C,ε (qX)ε(1 + |t|)Acond(K)sXQ2

(
1 + q

X

)1/2
q−1/16,

Proof. — We consider the cuspidal case since the other is completely
similar. Applying a partition of unity to [1,∞) leads to the decomposition∑

n>1
λf (n)K(n)V

( n
X

)
=
∑
N

∑
n>1

λf (n)K(n)V
( n
X

)
W
( n
N

)
,

where W is a smooth and compactly supported function on (1/2, 2) sat-
isfying |xjW (j)(x)| 6 c̃j for some sequence c̃ = (c̃j) of non-negative real
numbers and N runs over real numbers of the form 2i with i > 0. Since V
has fast decay at infinity, we can focus on the contribution of 1 6 N 6 qεX
at the cost of an error of size O(q−10), (say). Hence, we just need to bound
O(log(qX)) sums of the form∑

n>1
λf (n)K(n)V

( n
X

)
W
( n
N

)
.

By Mellin inversion formula, we have for any ε > 0∑
n>1

λf (n)K(n)V
( n
X

)
W
( n
N

)

= 1
2πi

∫
(ε)

(
X

N

)s
Ṽ (s)

∑
n>1

λf (n)K(n)Ws

( n
N

) ds,

where the function Ws(x) := x−sW (x) satisfies

(3.6) xjW (j)
s (x)�

c̃,j
(1 + |s|)j .

For fixed s with <e(s) = ε, we apply Theorem 1.6 to the inner sum with
the function V (x) = Ws(xq/N) which satisfies condition V (C̃,N/q, 1 + |s|)
for some C̃ depending on c̃, obtaining the bound

(1 + |tf |)Acond(K)sq 1
2−

1
16 +ε

(
X

N

)ε
×
∫

(ε)
|Ṽ (s)|(N(1 + |s|))1/2

(
N

q
+ 1 + |s|

)1/2
ds.

Using the fact that the Mellin transform Ṽ (s) satisfies

Ṽ (s)�
(

Q

1 + |s|

)B
,
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for every B > 0 with an implied constant depending on B and <e(s), we
see that we can restrict the integral to |s| 6 qεQ. Hence replacing 1 + |s|
by its maximal value, maximizing over N 6 qεX and average trivially over
|s| 6 qεQ in the integral yields the desire result. �

3.1. Trace functions of `-adic sheaves

The functions to which we will apply Theorem 1.6 are called trace func-
tions modulo q, which we now define formally.

Let q be a prime number and ` 6= q be an auxiliary prime. To any
constructible Q`-sheaf F on A1

Fq and any point x ∈ A1
Fq , we have a linear

action of a geometric Frobenius Fx acting on a finite dimensional Q`-vector
space Fx. We can thus consider the trace Tr(Fx|Fx). Because this trace
takes value in Q`, we also fix a field isomorphism

ι : Q`
'−→ C,

and we consider functions of the shape

(3.7) K(x) = ι (Tr(Fx|Fx)) ,

as defined in [24, (7.3.7)].

Definition 3.3 (Trace sheaves).

(1) A constructible Q`-sheaf F on A1
Fq is called a trace sheaf if it

is a middle extension sheaf (in the sens of [12, Section 1]) whose
restriction on any non empty open subset U ⊂ A1

Fq where F is lisse
is pointwise pure of weight zero.

(2) A trace sheaf is called a Fouriertrace sheaf if in addition, it is a
Fourier sheaf in the sense of [23, Definition 8.2.2].

(3) We say that F is an isotypic trace sheaf if it is a Fourier trace sheaf
and if for every non empty open subset U as in (1), the associated
`-adic representation

π1(U ⊗Fq Fq, η) −→ GL(Fη),

of the geometric etale fondamental group is an isotypic representa-
tion [23, Chapter 2]. We define similarly an irreducible trace sheaf.

Definition 3.4. — Let q be a prime number. A function K : Fq −→
C is called a trace function (resp. Fourier trace function, isotypic trace
function) if there exists a trace sheaf (resp Fourier trace sheaf, isotypic
trace sheaf) F such that K is given by (3.7).
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There is an important invariant which measure the complexity of a trace
function which we define now.

Definition 3.5 (Conductor). — Let F be a constructible Q`-sheaf on
A1

Fq with n(F) singularities in P1
Fq . The conductor of F is the integer

defined by

cond(F) := rank(F) + n(F) +
∑

x∈P1
Fq

Swanx(F),

where Swanx(F) = 0 if F is lisse at x (see for example [22, Section 4.6]). If
K is a trace function, the conductor cond(K) ofK is the smallest conductor
of a trace sheaf F with trace function K.

Let F be a trace sheaf with associated trace function K : Fq → C.
The normalized Fourier transform of K, denoted by K̂ or FT(K), is the
function on Fq defined by

K̂(y) := 1
q1/2

∑
x∈Fq

K(x)e
(
xy

q

)
.

When F is a Fourier sheaf, there is a deep interpretation of the Fourier
transform at the level of sheaves who was discovered by Deligne and de-
veloped by Laumon, specially in [31]. To be precise, there exists a Fourier
sheaf G whose conductor satisfies

(3.8) cond(G) 6 10 cond(F)2,

and with the property that

ι (Tr (Fx|Gx)) = −K̂(x).

Moreover, the sheaf G is geometrically isotypic (resp. geometrically irre-
ducible) if and only if F has this property [14, Lemma 8.1].

3.1.1. Kloosterman sheaves

Let k > 2 be an integer, ω1, . . . , ωk be multiplicative characters on F×q .
The twisted rank k Kloosterman sum Klk(ω1, . . . , ωk; q) is the function on
F×q defined by

(3.9) Klk(a, ω1, . . . , ωk; q)

:= 1
q
k−1

2

∑
x1,...,xk∈F×q
x1···xk=a

ω1(x1) · · ·ωk(xk)e
(
x1 + · · ·+ xk

q

)
,
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for every a ∈ F×q . If ω1 = · · · = ωk = 1, we write Klk(a; q) instead of
Klk(a, 1, . . . , 1 : q). The main result is the existence of Kloosterman sheaves
and it is due to Deligne [23, Theorem 4.1.1].

Theorem 3.6 (Kloosterman sheaves). — For every prime ` 6= q, there
exists a constructible Q`-sheaf on A1

Fq , denoted by K`k(ω1, . . . , ωk; q) (or
simply K`), of rank k satisfying the following properties :

(1) For every a ∈ F×q , we have the equality

ι (Tr (Fa|(K`)a)) = (−1)k−1Klk(a, ω1, . . . , ωk; q);

(2) K` is geometrically irreducible, lisse on Gm,Fq and pointwise pure
of weight zero;

(3) K` has wild ramification at ∞ with Swan∞(K`) = 1, tamely rami-
fied at 0 and has conductor k + 3.

In other words, since the rank is > 2, K` is an irreducible trace sheaf in
the sense of Definition 3.3(3).

Corollary 3.7. — For every a ∈ F×q , we have the sharp bound

(3.10) |Klk(a, ω1, . . . , ωk; q)| 6 k.

It will be convenient in Section 6, specially because of the Poisson sum-
mation and Fourier inversion formula, to present Kl as a Fourier transform
of a function defined in Fq. For this, we let

Kl1(a, ω1; q) := ω1(a)e
(
a

q

)
,

and we see that for any k > 2 and a ∈ F×q , Klk(a, ω1, . . . , ωk; q) is given by
the formula

(3.11) Klk(a, ω1, . . . , ωk; q)

= ωk(a)FT
(

Fq 3 x 7→ ωk(x)Kk−1(x, ω1, . . . , ωk−1; q)
)

(a),

where the function Kk−1 is defined by

(3.12) Kk−1(x, ω1, . . . , ωk−1; q) :=
{

Klk−1(x, ω1, . . . , ωk−1; q) if x ∈ F×q ,
0 if x = 0.

Remark 3.8. — There are several ways to extend the function Klk to
a = 0. One can choose for example the extension by zero. We choose
here the middle extension, i.e. that Klk(0, ω1, . . . , ωk; q) coincides with the
trace of the Frobenius at x = 0. It is a deep result of Deligne that the
estimate (3.10) remains valid for a = 0 (see [6, (1.8.9)]).
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3.2. Twisted Correlation Sums and the ω-Möbius Group

The strategy in the proof of Theorem 1.6 is to estimate an amplified
second moment of SV (g,K; q) for g varying in a basis of cusp forms of
level q and nebentypus ω. After completing the spectral sum, applying
Kuznetsov–Petersson and Poisson formula, we have to confront some sums
that we call twisted correlation sums, which we now define.
We let PGL2(Fq) acts on the projective line P1(Fq) by fractional linear

transformations

γz = az + b

cz + d
, γ =

(
a b

c d

)
∈ PGL2(Fq).

Definition 3.9 (Twisted correlation sum). — Let γ=
(
a b
c d

)
∈PGL2(Fq).

For ω a multiplicative character modulo q and K : Fq → C, we define the
twisted correlation sum C(K,ω; γ) by

C(K,ω; γ) :=
∑
z∈Fq
z 6=−d/c

ω(cz + d)K(γz)K(z).

Remark 3.10. — Note that for γ ∈ PGL2(Fq), C(K,ω; γ) is well defined
up to multiplication by ω(−1) ∈ {−1,+1}. This is in fact not a problem
since only the complex modulus |C(K,ω; γ)| will be considered later. We
also mention that unlike the definition of correlation sum that the authors
made for the original Theorem (see [14, (1.10)]), we have the presence here
of a twist by the nebentypus of the modular form f . This is because the
Kloosterman sums that we obtain after the application of Kuznetsov trace
formula are also twsited by ω.

Note that for K a trace function, we have the bound ‖K‖∞ 6 cond(K).
Hence using Cauchy–Schwarz and Parseval identity, we get

(3.13) |C(K,ω; γ)| 6 cond(K)2q.

In order to obtain better bounds, we introduce a geometric object associ-
ated to the correlation sum C(K,ω; γ).

Definition 3.11. — Let q be prime number and F an isotypic trace
sheaf on A1

Fq . Let ω be a multiplicative character modulo q and Lω the
associated Kummer sheaf. The ω-Möbius group GF,ω is the subgroup of
PGL2(Fq) defined by

GF,ω :=
{
γ =

(
a b

c d

)
∈ PGL2(Fq)

∣∣∣∣ F 'geom γ∗F ⊗ Lω(cX+d)

}
.
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Remark 3.12. — Note that Definition 3.11 makes sense in the sense that
if γ, γ′ ∈ GL2(Fq) are equal in PGL2(Fq), then γ = ±I2γ

′ and thus

γ∗F ⊗ Lω(cX+d) = γ′∗F ⊗ Lω(−c′X−d′)

'geom γ′∗F ⊗ Lω(c′X+d′) ⊗ Lω(−1)

'geom γ′∗F ⊗ Lω(c′X+d′).

The key property here is that GF,ω is indeed a subgroup of PGL2(Fq).

Proposition 3.13. — GF,ω is a subgroup of PGL2(Fq).

Proof. — Let F be the set of geometric isomorphism classes of trace
sheaves. To show that GF,ω is a subgroup, it is enough to prove that the
map F × PGL2(Fq) −→ F given by

(3.14) (F , γ) 7−→ F · γ := γ∗F ⊗ Lω(cX+d),

defines a right group action because GF,ω will be the stabilizer of F . For
this, we will use the fact that we have geometric isomorphisms (we use the
notation ' instead of 'geom)

(3.15) Lω(d) ' Q` ' Lω(cX+d) ⊗ Lω(cX+d),

where Q` denotes the constant sheaf. The first isomorphism implies that the
identity matrix acts trivially. For the second part, note that for γ1 =

(
a b
c d

)
and γ2 =

(
a′ b′

c′ d′

)
∈ PGL2(Fq), we have

Lω(cX+d) ' j(γ)∗Lχ, j(γ) :=
(

0 1
c d

)
,

and

j(γ1γ2) =
(

0 1
ca′ + dc′ cb′ + dd′

)
, j(γ1)γ2 =

(
c′ d′

ca′ + dc′ cb′ + dd′

)
.

Combining the above equality with the second isomorphism in (3.15) leads
to

j(γ1γ2)∗Lω ' (j(γ1)γ2)∗Lω ⊗ j(γ2)∗Lω.
Hence we obtain

F · (γ1γ2) ' (γ1γ2)∗F ⊗ j(γ1γ2)∗Lω ' γ∗2γ∗1F ⊗ γ∗2j(γ1)∗Lω ⊗ j(γ2)∗Lω

' γ∗2
(
γ∗1F ⊗ j(γ1)∗Lω

)
⊗ j(γ2)∗Lω

' (F · γ1) · γ2,

which completes the proof of this Proposition. �

We will also need the following fact about the conductor of F · γ.
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Lemma 3.14. — Let F be a trace sheaf and γ ∈ PGL2(Fq). Then

|cond(F · γ)− cond(F)| 6 2.

Proof. — Since the Kummer sheaves are of rank one and tamely ramified
at the singularities, we have for any x ∈ P1

Fq (by definition (3.14) of the
action of γ on F),

rank(γ∗F⊗Lω(cX+d)) = rank(γ∗F) = rank(F), Swanx(F·γ) = Swanx(F),

see [22, 4.6(iv)]. Moreover, if n(F) (resp n(Lω(cX+d))) denotes the number
of singularities of F (resp. of Lω(cX+d)), the tensor product γ∗F⊗Lω(cX+d)
satisfies (see for example [33, Proposition 1.23])

n(F)− n(Lω(cX+d)) = n(γ∗F)− n(Lω(cX+d))
6 n(γ∗F ⊗ Lω(cX+d))
6 n(γ∗F) + n(Lω(cX+d)) = n(F) + n(Lω(cX+d)),

which completes the proof since n(Lω(cX+d)) = 0 or 2 depending on whether
c = 0 or not. �

The following proposition establishes the link between the correlation
sum C(K,ω; γ) and the ω-Möbius group GF,ω. The proof uses deep results
on `-adic cohomology for varieties over finite fields.

Proposition 3.15. — Let q > 2 be a prime number, F an isotypic trace
sheaf with associated trace function K modulo q of conductor cond(K).
Let ω : F×q → C× be a multiplicative character. Then there exists absolute
constants A, s > 1 such that for any γ ∈ PGL2(Fq) \GF,ω,

|C(K,ω; γ)| 6 A(cond(K))sq1/2.

Proof. — See [14, Theorem 9.1]. �

The last part of this section is devoted to the structure of the group
GF,ω ⊂ PGL2(Fq). For some technical reasons due to the amplification
method and the fact that we are dealing with forms of level q, we want
to avoid the presence of unipotent elements in our group GF,ω because in
contrary to [14, Theorem 1.2], parabolic matrices could appear in our case
and their contribution seems to be big. We therefore impose an additional
hypothesis on our sheaf F and prove that under this extra assumption, the
group GF,ω does not contain any unipotent elements. Before doing this,
we introduce the following notation :

• For x 6= y in P1, the pointwise stabilizer of x and y is denoted by
Tx,y (this is a maximal torus) and its stabilizer in PGL2 (or the
stabilizer of the set {x, y}) is denoted by Nx,y.
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Definition 3.16. — Let F be an isotypic trace sheaf. We say that F
is ω-exceptional if its irreducible component is of the form Lψ ·γ = γ∗Lψ⊗
Lω(cX+d) for some Artin–Schreier sheaf Lψ and some γ ∈ PGL2(Fq).

Proposition 3.17. — Let q > 2 be a prime number, F an isotypic
trace sheaf on A1

Fq and ω : F×q → C×. Assume that F is not ω-exceptional
and that q is large enough compared to the conductor cond(K). Then GF,ω
one of the following type :

(1) |GF,ω| 6 60 and the non trivial elements belong to at most 59
different tori.

(2) GF,ω is cyclic and is contained in the normalizer Nx,y of a certain
maximal torus Tx,y for x 6= y in P1.

(3) GF,ω is dihedral of order 2r. Its cyclic subgroup of order r is con-
tained in a maximal torus Tx,y and any element not contained in
it is in the normalizer Nx,y (x 6= y).

In particular, GF,ω does not contain parabolic elements.

Proof. — If the order of GF,ω is coprime with q, the first paragraph in
the proof of [14, Theorem 1.14] says that GF,ω is one of the three types of
groups cited above.
We now show that the order of GF,ω cannot be divisible by q. Assume

by contradiction that it is the case and fix an element γ0 ∈ GF,ω of order q.
Then γ0 is necessarily parabolic, so it has a unique fixed point x ∈ P1(Fq).
Let σ ∈ PGL2(Fq) be such that

σ

(
1 1
0 1

)
σ−1 = γ0,

and define

G := F · σ = σ∗F ⊗ Lω(cX+d), σ =
(
a b

c d

)
.

Since geometrically we have [+1]∗F ' F · ( 1 1
0 1 ), we see that we have a

geometric isomorphism
[+1]∗G ' G.

Suppose first that G is ramified at some y ∈ A1(Fq), then by the above, G
is also ramified at y + 1, . . . , y + p− 1 and we obtain by Lemma 3.14

cond(F) > cond(G)− 2 > q − 2 + rank(G) > q − 1,

which is a contradiction with the fact that cond(F) < q − 1. Assume now
that G is lisse on A1(Fq). Since F is geometrically isotypic, the same is true
for G and the geometrically irreducible component G1 of G also satisfies
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[+1]∗G1 ' G1. Using [12, Lemma 5.4, (2)] with G = Fq and Ph = 0, we
have either

cond(G) > Swan∞(G1) > q + rank(G1)
and in this case we are done as before, or G1 is geometrically isomorphic to
some Artin–Schreier sheaf Lψ for some additive character ψ. It follows that
G is geometrically isomorphic to a direct sum of copies of Lψ and thus, by
definition of G, we have a geometric isomorphism

F '
(⊕

Lψ
)
· σ−1 =

⊕
Lψ · σ−1,

which contradicts the fact that F is not ω-exceptional. �

4. Bilinear forms involving trace functions

We begin with a classical result, which is a simple consequence of the
Poisson summation formula.

Proposition 4.1 (Polyá–Vinogradov method). — Let q be a prime
number and F be a Fourier trace sheaf on A1

Fq with corresponding trace
function K modulo q. Let f be a smooth and compactly supported function
on R and N > 0 be a real number. Then for any ε > 0, we have∑

n∈Z

K(n)f
( n
N

)
� min

{
N,

N

q1/2

(
1 + q1+ε

N

)}
,

where the implied constant depends on ε, f and the conductor of F .

A more elaborate treatment of the Polyá–Vinogradov method can be
used to obtain bounds for bilinear sums [13, Theorem 1.17].

Theorem 4.2. — Let K be an isotypic trace function modulo q asso-
ciated to an isotypic `-adic sheaf F such that F does not contain a sheaf
of the form Lω ⊗ Lψ in his irreducible component. Let M,N > 1 be pa-
rameters and (αm)m, (βn)n two sequences of complex numbers supported
on [M/2, 2M ] and [N/2, 2N ] respectively.

(1) We have∑∑
n,m

(m,q)=1

αmβnK(mn)

� ‖α‖2‖β‖2(NM)1/2

(
1
q1/4 + 1

M1/2 + q1/4 log1/2 q

N1/2

)
,

with
‖α‖2

2 =
∑
m

|αm|2 , ‖β‖2
2 =

∑
n

|βn|2.
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(2) We have

∑
(m,q)=1

αm
∑
n6N

K(mn)�
(∑

m

|αm|

)
N

(
1
q1/2 + q1/2 log q

N

)
.

In both estimates, the implicit constants depend only, and at most poly-
nomially, on the conductor of F .

The above theorem beats the trivial bound and gives a power saving in
the error term as long as max(N,M) > q1/2+δ and min(M,N) > qδ for
some δ > 0. In the critical case where N ∼M ∼ q1/2, we have the powerful
result of Kowalski, Michel and Sawin, which still saves a small power of
q, but has been proved in the special case of classical hyper-Kloosterman
sums [29, Theorem 1.3] and [1, Theorem 5.1].

Theorem 4.3. — Let q be a prime number and a an integer coprime
with q. Let M,N > 1 be such that

(4.1) 1 6M 6 N2, N < q, MN < q3/2.

Let (αm)m6M be a sequence of complex numbers and N ⊂ [1, q− 1] be an
interval of length N . Then for any ε > 0, we have

(4.2)
∑
n∈N

∑
16m6M

αmKlk(anm; q)

� qε‖α‖1/2
1 ‖α‖

1/2
2 M1/4N

(
M2N5

q3

)−1/12

,

with
‖α‖1 =

∑
16m6M

|αm|

where the implied constant in (4.2) only depends on ε and k.

5. Proof of Theorem 1.6

This section is devoted to the proof of Theorem 1.6. For the cuspidal
case, we will indicate the necessary changes in [14, Sections 4, 5 and 6] due
to the level q and the presence of a nebentypus. Finally, we will explain
how to adapt [13, Section 2] and put together with Section 5.1 to obtain
the conclusion of Theorem 1.6 in the Eisenstein case.
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5.1. The cuspidal case

5.1.1. The amplification method

Let q > 2 be a prime number, ω a Dirichlet character of modulus q and
κ ∈ {0, 1} such that ω(−1) = (−1)κ. Let f be a L2-normalized primitive
Hecke cusp form of weight kf ≡ κ (mod 2) (resp. with Laplace eigenvalue
1/4 + t2f ) if f is holomorphic (resp. if f is a Maass form) of level q and
nebentypus ω. For some technical reasons, it is convenient to view f as
a modular form of level 2q (see the beginning of Section 2.1.1) under the
isometric embedding (with respect to the Petersson inner product)

f(z) 7→ f(z)
[Γ0(q) : Γ0(2q)]1/2 = f(z)√

3
,

which can be embedded in a suitable orthonormal basis of modular cusp
forms of level 2q, i.e. either Bkf (2q, ω) or B(2q, ω). The strategy is therefore
to estimate an amplified second moment of the sum SV (g,K; q) where g
runs over a basis of Bkf (2q, ω) and B(2q, ω).
To be precise, let L > 1 and (b`) a sequence of coefficients supported on

1 6 ` 6 2L. For any modular form g, we let

B(g) :=
∑

16`62L
b`λg(`).

For an Eisenstein series Ea( · , 1/2 + it), we set

B(a, it) :=
∑

16`62L
b`λa(`, it),

where for any singular cusp a, λa(`, it) is given by (2.1). Since the original
form is of level q and L will be at the end a small power of q, we cannot
choose the standard coefficients b` = λf (`) for ` a prime p ∼ L, but rather
the less obvious amplifier found by Iwaniec in [10],

(5.1) b` =


λf (p)ω(p) if ` = p ∼ L1/2 and (p, 2q) = 1,
−ω(p) if ` = p2 ∼ L and (p, 2q) = 1,
0 otherwise.

Since we will apply the trace formula, it is also better to consider the Fourier
coefficients ρg(n) instead of the Hecke eigenvalues λg(n) in the definition
of SV (g, k; q). For this, we define

S̃V (g,K; q) =
∑
n

ρg(n)K(n)V
(
n

q

)
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and note that for g primitive, it is related to the original sum SV (g,K; q)
by the simple relation (cf. (2.10)),

(5.2) S̃V (g,K; q) = ρg(1)SV (g,K; q).

We then let

(5.3) M(L) :=
∑

k≡κ (mod 2)
k>κ

φ̇(k)(k − 1)M(L; k)

+
∑

g∈B(2q,ω)

φ̃(tg)
4π

cosh(πtg)
|B(g)|2

∣∣∣S̃V (g,K; q)
∣∣∣2

+
∑
a

∫ ∞
−∞

φ̃(t) 1
cosh(πt) |B(a, it)|2

∣∣∣S̃V (Ea( · , 1/2 + it),K; q)
∣∣∣2 dt,

where for any k ≡ κ (mod 2) with k > κ,

(5.4) M(L; k) := (k − 2)!
π(4π)k−1

∑
g∈Bk(2q,ω)

|B(g)|2
∣∣∣S̃V (g,K; q)

∣∣∣2 ,
and we refer to [14, Section 3.2] or [2, (2.9)] for the choice and properties
of the test function φ = φa,b. The key Proposition is the following [14,
Proposition 4.1].

Proposition 5.1. — Let K : Fq → C and V as in Theorem 1.6. Let
(b`) be the sequence of complex numbers defined by (5.1). Then for any
ε > 0, there exists k(ε) > κ such that for any k > k(ε) and any integers
a > b > 2 satisfying

a− b > k(ε), a− b ≡ κ (mod 2),

we have the bound

(5.5) M(L), M(L; k)

� cond(K)s
{
q1+εL1/2P (P +Q) + q1/2L2PQ2(P +Q)

}
,

for some absolute constant s > 1, provided

(5.6) qεLQ < q1/4

and where the implied constant depends on C, ε, a, b, k and polynomially
on the archimedean parameter of f .

Theorem 1.6 can be deduced from Proposition 5.1 exactly in the same
way as in [14, Section 4.2]. The only changes is to use (5.2) to pass from
|B(f)|2|SV (f,K; q)|2 to |B(f)|2|S̃V (f,K; q)|2 and then (2.11) for the upper
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bound on |ρf (1)|−2. Finally, since for any prime p different from q we have
the elementary relation

λf (p)2 − λf (p2) = ω(p),

we obtain the lower bound

B(f)� L1/2

logL,

simply using the prime number Theorem. Hence it remains to prove Propo-
sition 5.1.
Expanding the square in |B(g)|2 and |S̃V (g,K; q)| (choosing the variables

`1, `2 for those comming from the amplifier), we get a first decomposition
of M(L) and M(L; k)

(5.7) M(L) = Md(L) +Mnd(L) and M(L; k) = Md(L; k) +Mnd(L; k),

depending on weither (`1, `2) > 1 (the diagonal term) or not. For the
diagonal term, we have the following lemma which is the analogous of [14,
Lemma 5.1].

Lemma 5.2. — For any ε > 0, we have

Md(L),Md(L; k)� cond(K)2q1+εL1/2P (P + 1),

where the implied constant depends only on ε.

Proof. — We consider Md(L) which decomposes as a sum of the holo-
morphic, Maass and Eisenstein contributions

Md(L) = Md,hol(L) +Md,Maass(L) +Md,Eis(L).

We treat only Md,Maass(L) since the others contributions are the same and
even simpler. For instance, we have

Md,Maass(L) =
∑

g∈B(2q,ω)

φ̃(tg)
4π

cosh(πtg)
C (g, L)

∣∣∣∣∣∑
n

K(n)ρg(n)V
(
n

q

)∣∣∣∣∣
2

,

with
C (g, L) :=

∑
(`1,`2)>1

b`1b`2λg(`1)λg(`2).

By definition of the coefficients b` (cf. (5.1)), the case (`1, `2) > 1 appears
when `1 = `2 = p ∼ L1/2, `1 = p2 = `2

2 ∼ L (or the inverse) and `1 = `2 =
p2 ∼ L. We write C (g, L) = C1(g, L) +C2(g, L) +C3(g, L) according to the
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different possibilities and we estimate the three quantities individually. We
first have by Cauchy–Schwarz inequality and (2.8),

C1(g, L) =
∑

p∼L1/2

p prime

|λf (p)|2|λg(p)|2

6

 ∑
p∼L1/2

|λf (p)|4
1/2 ∑

p∼L1/2

|λg(p)|4
1/2

� (qL(1 + |tf |)(1 + tg))εL1/2,

where the implied constant only depends on ε. For the second case, we have
using |λ(p2)| 6 1 + |λ(p)|2 (cf. (2.2)), Hölder and again (2.8),

|C2(g, L)| 6
∑

p∼L1/2

p prime

|λf (p)‖λg(p)‖λg(p2)|

6
∑

p∼L1/2

p prime

|λf (p)||λg(p)|(1 + |λg(p)|2)

6

 ∑
p∼L1/2

|λf (p)|4
1/4 ∑

p∼L1/2

|λg(p)|4
1/4

×

 ∑
p∼L1/2

(1 + |λg(p)|2)2

1/2

� (qL(1 + |tf |)(1 + tg))εL1/2.

Using the inequality |λg(p2)|2 6 2(1 + |λg(p)|4), we treat in the same way
C3(g, L). The rest of the proof is exaclty the same as [14, Lemma 5.1], except
that we must use Proposition 2.5 for the spectral large sieve (possible since
the conductor of ω is either 1 or a prime q) instead of the original version
of Deshouillers–Iwaniec [7, Theorem 2, (1.29)]. �

Now comes the contribution of the `1, `2 such that (`1, `2) = 1. We
first change the complex conjugate λg(`2) = ω(`2)λg(`2) in Mnd(L) and
Mnd(L; k) appearing in the decomposition (5.7) (cf. (2.3)). By the primi-
ality condition, we use the multiplicativity of the Hecke eigenvalues (2.2)
followed by the relation (2.9) to obtain

λg(`1`2)ρg(n1) =
∑

d|(`1`2,n1)

ω(d)ρg
(
`1`2n1

d2

)
.
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Once we have done this, we apply the Petersson trace formula (2.15) to
Mnd(L; k) in (5.7), obtaining

πMnd(L; k) = M1(L; k) +M2(L; k),

where M1(L; k) corresponds to the diagonal term δ(`1`2n1d
−2, n2). Simi-

larily, we apply Kuznetsov formula (2.16) to Mnd(L) and since there is no
diagonal term, we write Mnd(L) = M2(L). The treatment of the diago-
nal term M1(L; k) is contained in [14, Lemma 5.3], with the appropriate
changes using (2.7) for the coefficients of the amplifier,

(5.8) M1(L; k)� cond(K)2(q(1 + |tf |))εqL1/2P,

with an implied constant depending only on ε.

5.1.2. The off-diagonal terms

This is the most important case of M2(L) and M2(L; k) and thus we
write explicitly the quantities to study. For φ an arbitrary function, we
write

(5.9) M2[φ] = 1
2q

∑
(`1,`2)=1

b`1b`2ω(`2)
∑
d|`1`2

ω(d)

×
∑
n1,n2
d|n1

K(n1)K(n2)V
(
n1

q

)
V

(
n2

q

)

×
∑
c>1

c−1Sω(`1`2n1d
−2, n2; 2cq)φ

(
4π
2cq

√
`1`2n1n2

d2

)
,

in order to have

M2(L) = M2[φa,b] and M2(L; k) = M2[φk]

where φk = 2πi−kJk−1 is the Bessel function. We transform the sum as

(5.10) M2[φ] =
∑

(`1,`2)=1

b`1b`2ω(`2)
∑

de=`1`2

ω(d)M2[φ; d, e],

where
M2[φ; d, e] = 1

2q
∑
c>1

c−1Eφ(c, d, e)

and

Eφ(c, d, e) =
∑
n1,n2

Sω(en1, n2; 2cq)K(dn1)K(n2)Hφ(n1, n2),
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with

(5.11) Hφ(x, y) = φ

(4π√exy
2cq

)
V

(
dx

q

)
V

(
y

q

)
.

As in [14, Section 5.4], we truncate the parameter c in M2[φ; d, e] by writ-
ing M2[φ; d, e] = M2,C [φ; d, e] +M3[φ; d, e] where M2,C [φ; d, e] denotes the
contribution of ther terms with c > C for some C = C(d, e) > 1/2 and
correspondingly

(5.12) M2[φ] = M2,tail[φ] +M3[φ].

It turns out that with the choice

(5.13) C = max
(

1
2 , q

δP

√
e

d

)
� qδLP,

the contribution of c > C is negligible (see [14, (5.9)]), so we focus on the
complementary sum, which is given by

(5.14) M3[φ; d, e] = 1
2q

∑
16c6C

c−1Eφ(c, d, e).

In particular, the above expression is zero if C < 1.
Recall that we factored the product `1`2 as de = `1`2. Since we allow `1

and `2 to be square of primes, there are more different type of factorization
to consider. We distinguish three types.

• Type I (balanced case) : this is when both d and e are 6= 1 and
d/e ∼ 1, so d and e are either primes ∼ L1/2 (type (L1/2, L1/2)) or
square of primes ∼ L (type (L,L)) with (d, e) = 1 in each case.

• Type II (unbalanced case) : this is when (d, e) satisfies e/d� L1/2,
i.e. is of type (1, L), (1, L3/2), (1, L2), (L1/2, L) and (L1/2, L3/2).

• Type III (unbalanced case) : this is when (d, e) satisfies d/e� L1/2,
so is of type (L, 1), (L3/2, 1), (L2, 1), (L,L1/2) and (L3/2, L1/2).

Assuming the harmless condition

(5.15) qδP � L1/2,

we obtain by (5.13) :

Lemma 5.3. — Suppose that (d, e) is of Type III and that (5.15) is
satisfied. Then we have the equality

M3[φ; d, e] = 0.

It remains to deal with the Types I and II. The goal now is to transform
the sums Eφ(c, d, e) to connect them with the correlation sums C(K̂, ω; γ) of
the Fourier transform of K defined in (3.9) for suitable matrices γ. This is
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the content of [14, Section 5.5] and it is achieved using principally twisted
multiplicativity of the Kloosterman sums and Poisson summation formula.
The only difference here is the appearance of the nebentypus ω when we
open the Kloosterman sum. We also mention that it is in this treatment
that we use the fact that the level is 2q and not q. The result is that for
any c > 1, we have the identity

(5.16) Eφ(c, d, e) = ω(−d)
q

∑∑
n1n2 6=0, (n2,2c)=1
n1n2≡e(mod 2c)

Ĥφ

(
n1

2cq ,
n2

2cq

)
C(K̂, ω; γ),

where Ĥφ is the Fourier transform of Hφ and

(5.17) γ = γ(c, d, e, n1, n2) :=
(
n1

n1n2−e
2c

2cd dn2

)
∈ M2(Z) ∩GL2(Q).

Remark 5.4. — Observe that det(γ) = de which is coprime with q. Hence
the reduction of γ modulo q provides a well defined element of PGL2(Fq).

5.1.3. Analysis of Eφ(c, d, e)

The first step in the analysis of (5.16) passes by the study of the Fourier
transform of Hφ(x, y). This is the content of [14, Sections 5.6–5.7] and it is
contained in Lemmas 5.7 and 5.9 therein. One of the consequences is that
it allows to truncate the n1, n2-sum in Eφ(c, d, e) to

(5.18) 0 6= |n1| 6 N1 := qεcd

(
Q+ P

2c
√

e
d

)
P

, 0 6= |n2| 6 N2 := N1

d
,

(see [14, (5.21)]). The final strategy is to separate the terms in (5.16) (with
the restriction (5.18) on n1, n2) according to whether the reduction of γ
modulo q belongs to GF̂,ω or not (see Definition 3.11). In the first case, we
use the bound (see (3.13) and (3.8))

|C(K̂, ω; γ)| 6 cond(K̂)2q 6 100 cond(K)4q,

while for γ not in G
F̂ ,ω

, we have by Proposition 3.15

|C(K̂, ω; γ)| 6 A(cond(K̂))sq1/2 � cond(K)2sq1/2.

We thus write
Eφ(c, d, e) = Ecφ(c, d, e) + Enφ (c, d, e),

where Ecφ(c, d, e) is the subsum of (5.16) where we restrict to the vari-
ables n1, n2 such that the reduction modulo q of γ(c, d, e, n1, n2) belongs to
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G
F̂ ,ω

and Enφ (c, d, e) is the contribution of the remaining terms. According
to (5.14), (5.12) and (5.10), we also write

M3[φ; d, e] = 1
2q
∑
c6C

c−1 (Ecφ(c, d, e) + Enφ (c, d, e)
)

= M c
3 [φ; d, e] +Mn

3 [φ; d, e],

and

M3[φ] =
∑

(`1,`2)=1

b`1b`2ω(`2)
∑

de=`1`2

ω(d) (M c
3 [φ; d, e] +Mn

3 [φ; d, e])

= M c
3 [φ] +Mn

3 [φ].

Lemma 5.5. — With the above notations, we have

Mn
3 [φa,b]� cond(K)4q1/2+εL2PQ2(P +Q)

and
Mn

3 [φk]� cond(K)4k3q1/2+εL2PQ2(P +Q),
for any ε > 0 where the implied constant depends on ε, a, b for φ = φa,b
and on ε for φ = φk.

Proof. — This is the content of [14, p. 625–626], with minimal changes
due to the different nature of pairs (d, e) of Type I and II. �

To conclude the proof of Proposition 5.1, it remains to evaluate the con-
tributionM c

3 [φ; d, e] corresponding to the matrices whose reduction modulo
q is in G

F̂ ,ω
. The final lemma is the following:

Lemma 5.6. — Under the assumption

(5.19) q3εLQ < q1/4,

we have
M c

3 [φk]� cond(K)2sk3q1+εL1/2PQ

and
M c

3 [φa,b]� cond(K)2sq1+εL1/2PQ,

where s > 2 and the implied constant depends on ε, a, b.

Proof. — The proof is [14, Sections 6.1, 6.3 and 6.5] (recall that here
there are no parabolic elements by Proposition 3.17). Various arguments
use the fact that the discriminant of certain binary quadratic form is not
zero. For example, if γ = γ(c, d, e, n1, n2) is a toric matrix, then we need to
have (n1 + dn2)2 − 4de 6= 0 and we cannot say that de = `1`2 is squarefree
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since we allow square of primes in the amplifier. This is not a problem here
because if (n1 + dn2)2 = 4de, then we would get (see (5.17))

Tr(γ)2 − 4 det(γ) = 0 in Fq.

This means that γ has only one distinct eigenvalue, so its is necessarily
scalar since not parabolic by assumption. But for γ scalar, we have cd ≡
0 (mod q), wich is not possible by (5.19) and (5.13).
Another argument uses the fact that dn2

2 − e 6= 0 in a situation where
n1−dn2 = 0 (cf. [14, Section 6.3, p. 629]). Again, d and e are not necessarily
coprime here so we cannot argue in the same way. However, if dn2

2 = e,
then since n1 = dn2, we obtain n1n2 − e = dn2

2 − e = 0 and the matrix
γ(c, d, e, n1, n2) takes the form

γ(c, d, e, n1, n2) =
(
n1 0
2cd dn2

)
.

Since dn2 = n1, this matrix is parabolic with single fixed point z = 0, which
contradicts the fact that Gk,ω,M does not contain parabolic elements. �

5.2. The Eisenstein case

We recall the notations from Section 1. For q > 2 prime, ω a Dirichlet
character modulo q and t ∈ R, we set

λω(n, it) =
∑
ab=n

ω(a)
(a
b

)it
,

and

SV (ω, it,K; q) =
∑
n>1

λω(n, it)K(n)V
(
n

q

)
,

for K an isotypic trace function such that its Fourier transform is not
ω-exceptional (see Definition 3.16) and V satisfying condition V (C,P,Q).
Since λω(n, it) appears as Hecke eigenvalues (for (n, q) = 1) of the Eisen-
stein series E1( · , 1/2+it) (the cusp a = 1) lying in the continuous spectrum
of the Laplacian on the space of modular forms of level q (and thus also of
level 2q after a normalization) and nebentypus ω (see Section 2.1.1 and Re-
mark 2.1), we may estimate an amplified second moment of SV (ω, it,K; q)
by embedding in the Eisentsein spectrum and using Kuznetsov trace for-
mula as in the cuspidal case.
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For τ ∈ R, we define as in (5.1)

(5.20) b`(τ) :=


λω(`, iτ)ω(`) if ` = p ∼ L1/2 and (p, 2q) = 1
−ω(`) if ` = p2 ∼ L and (p, 2q) = 1
0 otherwise,

and for g a cuspidal form, we set

Bτ (g) =
∑

16`62L
b`(τ)λg(`).

For an Eisenstein series Ea( · , 1/2 + it), we let

Bτ (a, it) =
∑

16`62L
b`(τ)λa(`, it)

and we also write Bτ (ω, it) so that it corresponds to the Eisenstein series
E1( · , 1/2+it) having λω(n, it) as Hecke eigenvalues. Since the trace formula
involves Fourier coefficients instead of Hecke eigenvalues, we define as in
Section 5.1

S̃V (ω, it,K; q) =
∑
n>1

ρω(n, it)K(n)V
(
n

q

)
,

with the relation

(5.21) SV (ω, it,K; q) = ρω(1, it)−1S̃V (ω, it,K; q).

Remark 5.7. — Actually, the relation (5.21) is true if we restrict the n-
summation in SV (ω, it,K; q) to (n, q) = 1. However, we could consider
directly this restriction at the beginning since the error to pass from one
to the other is given by

SV (ω, it,K; q) =
∑

(n,q)=1

λω(n, it)K(n)V
(
n

q

)
+O (qεM(P + 1)) .

Using the lower bound for ρω(1, it) given by (2.12) and φ̃a,b(t) �
(1 + |t|)κ−2b−2 (cf. [2, (2.21)]), we obtain exactly as in Section 5.1 (see
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Proposition 5.1),

(5.22)
∫

R

|SV (ω, it,K; q)|2

(1 + |t|)2b+2−ε |Bτ (ω, it)|2 dt

� q1+ε
∫

R

(1 + |t|)κ−2b−2

cosh(πt)

∣∣∣S̃V (ω, it,K; q)
∣∣∣2 |Bτ (ω, it)|2 dt

� q1+ε
∫

R

φ̃a,b(t)
cosh(πt)

∣∣∣S̃V (ω, it,K; q)
∣∣∣2 |Bτ (ω, it)|2 dt

� cond(K)2s
{
q2+εL1/2P (P +Q) + q3/2L2PQ2(P +Q)

}
.

In order to apply (5.22), the following Lemma gets a suitable lower bound
for the amplifier Bτ (ω, it) when τ is close enough to t (see [13, Lemma 2.4]).

Lemma 5.8. — For L large enough, we have

Bτ (ω, it)� L1/2

logL,

uniformly in t, τ ∈ R satisfying

|t− τ | 6 1
log2 L

.

Proof. — Observe that since ` has at most three divisors, we have
|b`(τ)| 6 3 and thus

|Bτ (ω, it)−Bτ (ω, iτ)| 6
∑
`

|b`(τ)||λω(`, it)− λω(`, iτ)|

6 3
∑

p∼L1/2

p prime

{
|λω(p, it)− λω(p, iτ)|+ |λω(p2, it)− λω(p2, iτ)|

}
6 6

∑
p∼L1/2

p prime

{
|pit − piτ |+ |p2it − p2iτ |

}

6 36|t− τ |
∑

p∼L1/2

p prime

log(p)� L1/2

log2 L
.

It is therefore enough to prove the result for t = τ . But this is a consequence
of the elementary relation

λω(p, it)2ω(p)− ω(p)λω(p2, it) = 1,

valid for (p, q) = 1, and the prime number Theorem. �
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The above Lemma combining with the average bound (5.22) allows us to
deduce a first upper-bound for short averages of twists of Eisenstein series.
For this, we introduce the notation

I(τ, q) :=
{
t ∈ R

∣∣∣∣ |t− τ | 6 1
log2 q

}
.

and
K(P,Q; q) := cond(K)sq1− 1

16 (PQ)1/2(P +Q)1/2,

so that Theorem 1.6 claims that

SV (ω, it,K; q)�ε q
ε(1 + |t|)AK(P,Q; q)

for any ε > 0 and some A > 1 depending on ε.

Proposition 5.9. — For any ε > 0, there exists B > 1, depending only
on ε, such that for any τ ∈ R we have

(5.23)
∫
I(τ,q)

|SV (ω, it,K; q)|2 dt�ε q
ε(1 + |τ |)BK(P,Q; q)2,

where the implied constant depends only on ε.

Proof. — Using Lemma 5.8 and (5.22), we obtain
L

log2 L

∫
I(τ,q)

|SV (ω, it,K; q)|2 dt

�
∫
I(τ,q)

(1 + |τ |)2b+2

(1 + |t|)2b+2−ε |SV (ω, it,K; q)|2 |Bτ (ω, it)|2 dt

� (1 + |τ |)2b+2cond(K)2s
{
q2+εL1/2P (P +Q) + q3/2L2PQ2(P +Q)

}
,

and we conclude as in [14, Section 4.2] by choosing

L = 1
2q

1/4−εQ−1,

and B = 2b+ 2 which depends on ε. �

The last step is to derive a pointwise bound for SV (ω, it,K; q). For this,
we separate the variables n,m in the twisted divisor function λω(n, it) and
using a partition of unity, we can decompose SV (ω, it,K; q) into O(logPq)
sums of the shape

SV,M,N (ω, it,K; q)

=
∑
n,m>1

K(mn)ω(m)
(m
n

)it
W1

(m
M

)
W2

( n
N

)
V

(
nm

q

)
,

TOME 69 (2019), FASCICULE 4



1498 Raphaël ZACHARIAS

where the parameters (M,N) belongs to the set

(5.24) P :=
{

(M,N)
∣∣∣∣ Pq4 6 NM 6 4Pq , 1 6 N,M

}
and W1,W2 are smooth and compactly supported functions on [−1/2, 2]
satisfying xjW (j)

i (x)�j 1 for every j > 0. It follows that

(5.25) SV (ω, it,K; q)� log(Pq) max
(M,N)∈P

|SV,M,N (ω, it,K; q)| .

The relation between SV,M,N (ω, it,K; q) and an average of SV (ω, it,K; q)
is given through the Mellin transform (see [13, Lemma 2.1]).

Lemma 5.10. — Given s ∈ C and x > 0, we define

Vs(x) := V (x)x−s.

Then for every ε > 0, we have

(5.26) SV,M,N (ω, it,K; q)

�ε

∫ ∫
|t1|,|t2|6qε

∣∣SVit1 (ω, it2 + it,K; q)
∣∣ dt1dt2 +O

(
q−100) .

Proof. — Using Mellin inversion formula for W1 and W2, we can write

SV,M,N (ω, it,K; q) = 1
(2πi)2

∫
(0)

∫
(0)

Ŵ1(s1)Ŵ2(s2)TV (s1, s2)Ms1Ns2ds1ds2,

where Ŵ1, Ŵ2 denote the Mellin transform of the smooth functionsW1,W2
and

TV (s1, s2) =
∑
n,m>1

K(nm)ω(m)mit−s1n−it−s2V

(
nm

q

)
.

Note that this sum can be expressed as a twist of Eisenstein series, namely

TV (s1, s2) = q−θ1SVθ1
(ω, θ2 + it,K; q),

with

θ1 = s1 + s2

2 , θ2 = −s1 + s2

2 .

For <e(θ1), the smooth function Vθ1 satisfies condition V (C,P,Q(θ1)) with

(5.27) Q(θ1)� Q+ |θ1|,
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where the implied constant is absolute. Thus by a change of variables, we
get

(5.28) SV,M,N (ω, it,K; q)

= 1
(2πi)2

∫
(0)

∫
(0)

Ŵ1(θ1 − θ2)Ŵ2(θ1 + θ2)
(
M

N

)θ2

×
(
MN

q

)θ1

SVθ1
(ω, θ2 + it,K; q)dθ1dθ2.

Because we have the estimations

Ŵ1(s), Ŵ2(s)� 1
(1 + |s|)C ,

with an implied constant depending on C and <e(s), we can truncate the
integral (5.28) to |θ1| 6 qε, |θ2| 6 qε for a cost of O(q−100) by taking C large
enough in term of ε and using the trivial bound for <e(θ1) = <e(θ2) = 0

SVθ1
(ω, θ2 + it,K; q)�MPq log q. �

5.2.1. Conclusion

We are now in position to obtain the conclusion of Theorem 1.6 in the
Eisenstein case. Indeed, fix ε > 0 and take B = B(ε) as in Proposition 5.9.
By (5.25), it is enough to estimate SV,M,N (ω, it,K; q) for (M,N) ∈ P. Now
let ε′ = ε/B such that we have the estimate (5.26) of Lemma 5.10. We thus
get

SV,M,N (ω, it,K; q)

�ε′ q
ε′ max
|t1|6qε′

∫
|t2|6qε′

∣∣SVit1 (ω, it2 + it,K; q)
∣∣dt1dt2 +O

(
q−100) .

We split the above integral into O(qε′) integrals over intervals of length
log−2 q. For such interval I centered at τ , we obtain by Proposition 5.9,
the value (5.27) and Cauchy–Schwarz inequality, the bound

SV,M,N (ω, it,K; q)� qε(1 + |τ |)B/2K(P,Q+ qε
′
; q),

(the function Q 7→ K(P,Q; q) is increasing). Finally, taking the maximal
value |τ | 6 |t|+ qε

′ yields the desire result.
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6. Proof of Theorem 1.3

6.1. The Eisenstein case

It is natural to separate the sum in (1.1) into even and odd primitives
characters because they have different gamma factors in their functional
equations. We will treat only the case of even characters since the odd case
is completely similar. We therefore consider

(6.1) T 3
even(ω1, ω2, `; q) := 2

q−1
∑+

χ (mod q)
χ 6=ω0,ω1,ω2

L
(
χ, 1

2
)
L
(
χω1,

1
2
)
L
(
χω2,

1
2
)
χ(`),

where
∑+

means that we sum over even characters.

6.1.1. Applying the approximate functional equation

Applying the approximate function equation provided by Lemma 2.6, we
decompose (6.1) into two terms

T 3
even(ω1, ω2, `; q) = S1(ω1, ω2, `; q) + iκ1+κ2S2(ω1, ω2, `; q),

with

(6.2) S1(ω1, ω2, `; q) := 2
q − 1

∑+

χ (mod q)
χ 6=ω0,ω1,ω2

∑∗

n0,n1,n2>1

× χ(n0n1n2`)ω1(n1)ω2(n2)
(n0n1n2)1/2 Vχ

(
n0n1n2

q3/2

)
,

and

(6.3) S2(ω1, ω2, `; q) := 2
q−1

∑+

χ (mod q)
χ 6=ω0,ω1,ω2

∑∗

n0,n1,n2>1

χ(n0n1n2`)ω1(n1)ω2(n2)
(n0n1n2)1/2

× ε(χ)ε(χω1)ε(χω2)Vχ

(
n0n1n2

q3/2

)
,

where the symbol ∗ over the n′is summeans that we restrict to (n0n1n2, q) =
1 and the function Vχ is defined in (2.21). In particular, since we sum over
even characters, this function is constant on the average and we write V
instead of Vχ.
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Remark 6.1. — The function V has rapid decay at infinity by
Remark 2.7, so the sums (6.2)–(6.3) are essentially supported on 1 6
n0n1n2 6 q3/2+ε. It follows that the sum over n0, n1, n2 is trivially bounded
by O(q3/4+ε), so we can remove as it suits us the contribution of χ = ω0, ω1
or χ = ω2 for an error of size O(q−1/4+ε).

6.1.2. Average over the primitive and even characters

We need to average the sum over the characters in (6.2)–(6.3). For this,
we use some orthogonality relations asserting that for any prime q > 2 and
any integer a corpime with q, we have (cf. [20, (3.2)–(3.4)])

(6.4)
∑+

χ (mod q)
χ 6=1

χ(a) = q − 1
2 δa≡±1(q) − 1,

and for κ ∈ {0, 1},

(6.5)
∑κ

χ (mod q)
χ 6=1

χ(m)ε(χ) = q − 1
2q1/2

∑
±

(±1)κ
(
e

(
±m
q

)
+ 1

(q − 1)

)
,

where the supscript κ means that we sum over χ such that χ(−1) = (−1)κ.
In (6.2), we remove the contribution of χ = ω1, ω2 (see Remark 6.1) and
after applying (6.4), we get S1 = S+

1 + S−1 +O(q−1/4+ε) with

(6.6) S±1 (ω1, ω2, `; q) =
∑∑∑
n0,n1,n2>1

n0n1n2`≡±1 (mod q)

ω1(n1)ω2(n2)
(n0n1n2)1/2 V

(
n0n1n2

q3/2

)
.

For (6.3), we remove the contribution of χ = ω0, ω2 and note that for
(m, q) = 1 we have, opening the Gauss sum ε(χω2) and using (6.5),

(6.7) 2
q − 1

∑+

χ6=ω1

χ(m)ε(χω1)ε(χω2)

= 1
q1/2

∑
a∈F×q

ω2(a)e
(
a

q

) 2
q − 1

∑+

χ 6=ω1

χ(am)ε(χω1)


= ω1(m)

q1/2

∑
a∈F×q

ω1ω2(a)e
(
a

q

) 2
q − 1

∑κ1

χ 6=1
χ(am)ε(χ)


= 1
q1/2

∑
±
ω1(±m)

 1
q1/2

∑
a∈F×q

ω1ω2(a)e
(
a

q

)(
e

(
±am
q

)
+ 1
q−1

).

TOME 69 (2019), FASCICULE 4



1502 Raphaël ZACHARIAS

The second expression in the above parenthesis is easily computed as a
Gauss sum. For the first term, we have

1
q1/2

∑
a∈F×q

ω1χ2(a)e
(
a

q

)
e

(
±am
q

)

= ω1ω2(±m) 1
q1/2

∑
a∈F×q

ω1ω2(a)e
(
a

q

)
e

(
±ma
q

)
= ω1(±m)Kl2(±m,ω1, ω2; q),

where the twisted Kloosterman sum is defined by (3.9) (see also (3.11)).
Hence we see that (6.7) equals

(6.8) 2
q − 1

∑+

χ6=ω1

χ(m)ε(χω1)ε(χω2)

= 1
q1/2 Kl2(±m,ω1, ω2; q) + ε(ω1ω2)ω1(m)(1 + (−1)κ1)

q1/2(q − 1)
.

Now opening the Gauss sum ε(χ) and using (6.8), we obtain for every
(m, q) = 1,

(6.9) 2
q − 1

∑+

χ6=ω1

χ(m)ε(χ)ε(χω1)ε(χω2)

= 1
q1/2

∑
a∈F×q

e

(
a

q

) 2
q − 1

∑+

χ 6=ω1

χ(am)ε(χω1)ε(χω2)


= 1
q

∑
a∈F×q

Kl2(±am, ω1, ω2; q)e
(
a

q

)
+O

(
q−3/2

)
= 1
q1/2 Kl3(±m,ω1, ω2, 1; q) +O

(
q−3/2

)
.

Finally, applying (6.9) in (6.3) with m = n0n1n2` yields S2 = S+
2 + S−2 +

O(q−1/4+ε) (recall Remark 6.1) with

(6.10) S±2 (ω1, ω2, `; q) = 1
q1/2

∑∗

n0,n1,n2>1

ω1(n1)ω2(n2)
(n0n1n2)1/2

×Kl3(±n0n1n2`, ω1, ω2, 1; q)V
(
n0n1n2

q3/2

)
.

We will evaluate each of these two terms ((6.6)–(6.10)) separately and find
that a main term appears only in S+

1 (ω, ω2, `; q) when ` = 1. The others
will contribute as an error term.
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6.1.3. The Main Term

The main contribution comes from n0 = n1 = n2 = ` = 1 in (6.6).
Indeed, assuming n0n1n2` = 1, we obtain by the Remark 2.7

V
(

1
q3/2

)
= 1 +O

(
q−3/4+ε

)
.

When n0n1n2` ≡ ±1 (mod q) with n0n1n2` 6= 1, we write the congruence
equation in the form n0n1n2` = ±1+kq with 1 6 k 6 `q1/2+ε+1. Therefore,
we get that the contribution of n0n1n2` 6= 1 is at most

`1/2qε−1/2
∑

16k6`q1/2+ε+1

1
k1/2 � `q−1/4+ε.

We conclude with

S+
1 (ω1, ω2, `; q) = δ`=1 +O

(
`q−1/4+ε

)
S−1 (ω1, ω2, `; q) = O

(
`q−1/4+ε

)
,

which gives the desired main term of Theorem 1.3 provided

(6.11) ` 6 q
1
4−

1
64 = q

15
64 .

6.1.4. The error term

In this section, we analyze the expression (6.10) and will find that it
contributes as an error term. Applying a partition of unity to [1,∞) for
each variable in order to locate n0, n1, n2 and we obtain S±2 (ω1, ω2, `; q) =∑
N0,N1,N2

S±2 (`,N0, N1, N2; q) with

(6.12) S±2 (`,N0, N1, N2; q)

= 1
(qN0N1N2)1/2 ×

∑∗

n0,n1,n2∈Z

ω1(n1)ω2(n2)f1

(
n1

N1

)
f2

(
n2

N2

)

×Kl3(±n0n1n2`, ω1, ω2, 1; q)f0

(
n0

N0

)
V
(
n0n1n2

q3/2

)
,

where the functions fi are smooth and compactly supported on (1/2, 2)
and the N ′is runs over real numbers of the form 2i, i > 0. By the fast decay
at infinity of V, we can assume that

1 6 N0, N1, N2 and N0N1N2 6 q
3/2+ε.

Hence it remains to bound O(log3 q) sums of the shape (6.12). It is also
convenient to separate the variables n0n1n2 in the test function V. This
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can be done using its integral representation (2.21) and we refer to [37, Sec-
tion 4.1] for more details. We keep the same notation S±2 (`,N0, N1, N2; q),
but with the factor V removed, and also for the functions fi, i.e.

(6.13) S±2 (`,N0, N1, N2; q)

= 1
(qN0N1N2)1/2 ×

∑∗

n0,n1,n2∈Z

ω1(n1)ω2(n2)Kl3(±n0n1n2`, ω1, ω2, 1; q)

× f0

(
n0

N0

)
f1

(
n1

N1

)
f2

(
n2

N2

)
,

with

(6.14) xjf
(j)
i (x)�j q

εj .

Note finally that the trivial estimate is

(6.15) S±2 (`,N0, N1, N2; q)�
(
N0N1N2

q

)1/2
.

6.1.5. Polyá–Vinogradov bound

We show here that (6.13) is very small if we assume that one of the
parameters Ni is greater than q. Indeed, since the argument is the same,
we suppose that N1 > q/2. In this case, for fixed (n0n2, q) = 1 we focus on
the n1-sum

P(N1; q) =
∑∗

n1∈Z

ω(n1)Kl3(±n0n1n2`, ω1, ω2, 1; q)f1

(
n1

N1

)
.

By Remark 3.8, we can add the contribution of q|n1 for an error of size
O(N1/q) (since N1 > q/2). Hence, applying Proposition 4.1 with the
Fourier trace sheaf

Lω ⊗
[
×
(
±n0n2`

)]∗K`3(ω1, ω2, 1; q),

we get

P(N1; q) = O

(
qε
N1

q1/2 + N1

q

)
= O

(
qε
N1

q1/2

)
.

Finally, averaging trivially over n0 and n2 in (6.13) yields

S±2 (`,N0, N1, N2; q)� qε
(
N0N1N2

q2

)1/2
.

Since N0N1N2 6 q3/2+ε, we obtain
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Proposition 6.2. — Assume thatNi > q/2 for some i ∈ {0, 1, 2}. Then
for any ε > 0, we have

S±2 (`,N0, N1, N2; q) = O
(
q−1/4+ε

)
,

with an implied constant depending only on ε.

6.1.6. Applying Poisson summation in the three variables

In this section, we obtain an estimate for S±2 which is satisfactory if
the product of the three variables N0N1N2 is greater that q. This can be
done using successive applications of Poisson summation formula. Before
this, we just note that by Proposition 6.2, we can assume that Ni < q/2 for
i = 0, 1, 2, which allows us to ignore the primality condition (n0n1n2, q) = 1
in (6.13) since we also have Ni > 1.
We begin with the n0-variable. In (6.13), we write the Kloosterman sum

as the Fourier transform of the function

Fq 3 x 7→ K2(x) := K2(x, ω1, ω2; q)

defined in (3.12). Hence, an application of Poisson summation in n0 and
Fourier inversion formula gives (recall that (n1n2, q) = 1)∑
n0∈Z

K̂2(±n0n1n2`)f0

(
n0

N0

)
= N0

q1/2

∑
n0∈Z

̂̂K2(±n0n1n2`)f̂0

(
n0N0

q

)

= N0

q1/2

∑
n0∈Z

K2(∓n0n1n2`)f̂0

(
n0N0

q

)
.

Since by Definition K2(x) = 0 for q|x, we obtain

(6.16) S±2 (`,N0, N1, N2; q)

= N
1/2
0

q(N1N2)1/2 ×
∑

n0,n1,n2∈Z
(n0,q)=1

ω1(n1)ω2(n2)Kl2(∓n1n2n0`, ω1, ω2; q)

× f̂0

(
n0N0

q

)
f1

(
n1

N1

)
f2

(
n2

N2

)
.

We continue with the n2-variable. As before, since the argument of Kl2 is
non zero modulo q, we can express the Kloosterman sum as suitable Fourier
transform, namely (see (3.12))

(6.17) Kl2(∓n1n2`, ω1, ω2; q) = ω2(∓n1n2n0`) ̂[ω2K1(ω1; q)](∓n1n2n0`).
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Using exactly the same argument as before, after replacing Kl2 by (6.17)
in (6.16), we get

S±2 (`,N0, N1, N2; q)

= ω2(∓`)N1/2
0

q(N1N2)1/2 ×
∑

n0,n1,n2∈Z
(n0n2,q)=1

ω1χ2(n1)ω2(n0)[ ̂ω2K1(ω1)](∓n1n2n0`)

× f̂0

(
n0N0

q

)
f1

(
n1

N1

)
f2

(
n2

N2

)
.

Applying Poisson in the n2-variable yields∑
n2∈Z

̂ω2K1(ω1)(∓n1n2n0`)f2

(
n2

N2

)

= N2

q1/2

∑
n2∈Z

̂̂
ω2K1(ω1)(∓n2n1n0`)f̂2

(
n2N2

q

)

= N2

q1/2

∑
n2∈Z

ω2(±n2n1n0`)K1(±n2n1n0`, ω1; q)f̂2

(
n2N2

q

)

= N2

q1/2

∑
(n2,q)=1

ω1ω2(±n2n1n0`)e
(
±n1n2n0`

q

)
f̂2

(
n2N2

q

)
.

Hence

(6.18) S±2 (`,N0, N1, N2; q) = ω1(±`)ω2(−1)
(
N0N2

q3N1

)1/2

×
∑

n0,n1,n2∈Z
(n0n2,q)=1

ω1(n2n0)ω2(n2)e
(
±n1n2n0`

q

)

× f1

(
n1

N1

)
f̂0

(
n0N0

q

)
f̂2

(
n2N2

q

)
.

It remains to do Poisson in the n1-variable. Let a ∈ Fq, we denote by δa
the Dirac function on Fq defined by δa(x) = 1 if x = a and zero else. Then
the exponential map

n1 7→ e

(
±n1n0n2`

q

)
is the additive Fourier transform of the Dirac function x 7→ q1/2δ±n0n2`

(x).
It follows that the n1 sum in (6.18) equals∑

n1∈Z

̂q1/2δ±n0n2`
(n1)f1

(
n1

N1

)
= N1

∑
n1∈Z

δ±n0n2`
(−n1)f̂1

(
n1N1

q

)
.
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Summarizing all the previous computations yields the bound

S±2 (`,N0, N1, N2; q)

�
(
N0N1N2

q3

)1/2
×

∑
n0n1n2`≡∓1(mod q)

∣∣∣∣f̂0

(
n0N0

q

)
f̂1

(
n1N1

q

)
f̂2

(
n2N2

q

)∣∣∣∣.
Finally, using the fact that all these Fourier transform have fast decay at
infinity, we see that the above sum is essentially supported on |ni| 6 q1+ε

Ni
(recall that Ni < q/2) and thus, a trivial estimate leads to

S±2 (`,N0, N1, N2; q)� qε
(
N0N1N2

q3

)1/2(
q2

N0N1N2
+ 1
)

� qε
(

q

N0N1N2

)1/2
.

(6.19)

6.1.7. Estimation of S±2 using Theorems 1.6 and 4.2

We return to expression (6.13). The combination of (6.15) and (6.19)
shows that it remains to deal with the case where the product N0N1N2 is
of length about q. The strategy is the following : if one of the variables Ni
is very small, then we factorize the two others to form a new long variable
and apply Theorem 1.6 for the twist of Eisenstein series. If all Ni are not
too small, then it is possible to factorize two variables and form a bilinear
sum in such a way that an application of Theorem 4.2 is beneficial.
We prove in this section :

Proposition 6.3. — Let N = max(N0, N1, N2), M = min(N0, N1, N2)
and write D for the remaining parameter, i.e. M 6 D 6 N . Then for every
ε > 0, we have

(6.20) S±2 (`,N0, N1, N2; q)

�ε q
ε

(
N0N1N2

q

)1/2

(

1 + qM
N0N1N2

)1/2
q−1/16

1
q1/4 + 1

D1/2 + q1/4

(NM)1/2 .

Proof. — To fix the ideas, we assume that

M = N0 6 N1 = D 6 N2 = N,

and we leave it to the reader to ensure that the other cases treated with
minimal changes.
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We first focus on the n1, n2-sum in (6.13) and write it in the form (recall
that N1, N2 < q/2 so the primality condition is satisfied)

(6.21)
∑

n1,n2>1
ω1ω2(n1)ω2(n1n2)Kl3(n0n1n2`, ω1, ω2; q)f1

(
n1

N1

)
f2

(
n2

N2

)
.

We show now how to transform this expression in order to obtain the same
as in Corollary 3.2. To simplify notations, we define

(6.22) K(n) := ω2(n)Kl3(±nn0`, ω1, ω2; q).

Using Mellin inversion on f1 and f2 in (6.21) leads to

1
(2πi)2

∫
(0)

∫
(0)

f̃1(s1)f̃2(s2)Ns1
1 Ns2

2

×
∑

n1,n2>1
ω1ω2(n1)K(n1n2)n−s1

1 n−s2
2 ds1ds2.

Making the change of variables

θ1 = s1 + s2

2 , θ2 = −s1 + s2

2 ,

and we see that the above integral takes the form

(6.23) 2
(2πi)2

∫
(0)

∫
(0)

f̃1(θ1 − θ2)f̃2(θ1 + θ2)
(
N2

N1

)θ2

×
∑

n1,n2>1
ω1ω2(n1)

(
n1

n2

)θ2

K(n1n2)
(
N1N2

n1n2

)θ1

dθ1dθ2

= 2
(2πi)2

∫
(0)

(
N2

N1

)θ2 ∑
n>1

λω1ω2(n, θ2)K(n)V
(

n

N1N2
, θ2

)
dθ2,

where for any x > 0 and <e(θ2) = 0, we defined

(6.24) V (x, θ2) :=
∫

(0)
f̃1(θ1 − θ2)f̃2(θ1 + θ2)x−θ1dθ1.

Because the Mellin transforms satisfy (cf. (6.14))

(6.25) f̃1(s), f̃2(s)�
(

qε

1 + |s|

)B
,

with an implied constant depending on ε,B and <e(s), the function V (x, θ2)
satisfies

V (x, θ2)�B
1

(1 + x)B and xνV (ν)(x, θ2)�ν,ε q
νε,
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uniformly in <e(θ2) = 0. Since we want to estimate the inner sum in (6.23)
using Theorem 1.6 and then average trivially over the θ2-integral, we also
need to control the function V (x, θ2) with respect to the θ2-variable.
By (6.25), for any B > 1, we have uniformly on x > 0 and with an implied
constant depending only on B,

V (x, θ2)�
∫

(0)

(
qε

(1 + |θ1 − θ2|)(1 + |θ1 + θ2|)

)B
dθ1.

Note the identity

(1 + |θ1 − θ2|)(1 + |θ1 + θ2|) = 1 + |θ2
1 − θ2

2|+ |θ1 − θ2|+ |θ1 + θ2|

> 1 + |θ2
1 − θ2

2|+ 2 max(|θ1|, |θ2|).

Hence, splitting the integral depending on whether |θ1| 6 |θ2| or not and
we get

V (x, θ2)�
∫

<e(θ1)=0
|θ1|>|θ2|

(
qε

1 + |θ2
1 − θ2

2|+ 2|θ1|

)B
dθ1

+
∫

<e(θ1)=0
|θ1|6|θ2|

(
qε

1 + |θ2
1 − θ2

2|+ 2|θ2|

)B
dθ1

6
∫
|t|>|θ2|

(
qε

1 + 2|t|

)B
dt+

∫
|t|6|θ2|

(
qε

1 + 2|θ2|

)B
dt

�
(

qε

1 + |θ2|

)B−1
.

Therefore, for any ε′ > 0, we obtain that (6.23) is bounded, up to a constant
which depends only on ε′, by

(6.26) qε
′

max
|θ2|6qε

′

<e(θ2)=0

∣∣∣∣∣∣
∑
n>1

λω1ω2(n, θ2)K(n)V
(

n

N1N2
, θ2

)∣∣∣∣∣∣ .
We now apply Corollary 3.2 with the Schwartz function V (x, θ) and with
the sheaf

F := Lω2 ⊗ [±n0`]∗K`3(ω1, ω2, 1; q)
having trace function (6.22). Note that since Kl3( · , ω1, ω2, 1; q) is invariant
under permutation of the triple (ω1, ω2, 1), we have by (3.11) a geometric
isomorphism

F ' [×(±n0`)]∗FT
(
Lω2 ⊗ [x 7→ x−1]∗K`2(ω1, 1; q)

)
TOME 69 (2019), FASCICULE 4
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and hence F is not Fourier-exceptional since by Fourier inversion, its `-adic
Fourier transform is a rank 2 irreducible sheaf. It follows that for any ε > 0,
we can estimate (6.26) by

qε
′

max
|θ2|6qε

′
(qN1N2)ε(1 + |θ2|)AN1N2

(
1 + q

N1N2

)1/2
q−1/16.

Choosing ε′ = ε/A, maximizing the above quantity by setting θ2 = qε
′ ,

replacing the obtained bound in (6.21) and finally, averaging trivially over
n0 in (6.13) yields the first estimate of (6.20)

(6.27) S±2 (`,N0, N1, N2; q)�ε q
ε

(
N0N1N2

q

)1/2(
1 + q

N1N2

)1/2
q−1/16.

For the second bound, we group together the variables n0n2 = m in (6.13)
and we obtain

(6.28) S±2 (`,N0, N1, N2; q)

= 1
(qN0N1N2)1/2

∑
n,n1

αmβn1Kl3(±nn1`, ω1, ω2, 1; q),

with

αm :=
∑

n0n2=m
ω2(n2)f0

(
n0

N0

)
f2

(
n2

N2

)
and βn1 := ω1(n1)f1

(
n1

N1

)
.

Applying Theorem 4.2(1) with N = N0N2 and M = N2 gives

(6.29) S±2 (`,N0, N1, N2; q)

� qε
(
N0N1N2

q

)1/2
(

1
q1/4 + 1

N
1/2
1

+ q1/4

(N0N2)1/2

)
,

as wishes. �

6.1.8. Conclusion of the Eisenstein case

WriteNi = qµi with µi > 0 and let η > 0 be a parameter. If µ0+µ1+µ2 <

1 − 2η or µ0 + µ1 + µ2 > 1 + 2η, we use the trivial bound (6.15) or the
estimate (6.19) to obtain

S±2 (`,N0, N1, N2; q) = O
(
q−η+ε) .

We therefore assume that we are in the range

(6.30) 1− 2η 6 µ0 + µ1 + µ2 6 1 + 2η.
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Let δ > 0 be an auxiliary parameter. As we already see, there is no loose
of generality assuming that µ0 6 µ1 6 µ2. Suppose first that

(6.31) µ0 6 δ.

In this case, we apply (6.27) which, combining with (6.30) and (6.31) gives

S±2 (`,N0, N1, N2; q)�ε q
ε
(
qη−

1
16 + q

δ
2−

1
16

)
�ε q

−η+ε,

provided

(6.32) η 6
1
32 and δ 6

1
8 − 2η,

which condition we henceforth assume to hold.
Suppose now that we are in the case

(6.33) µ0 > δ.

The estimate (6.29) leads to

S±2 (`,N0, N1, N2; q)� qε
(
qη−

1
4 + q

1
2 (µ0+µ2−1) + q

1
2 (µ1− 1

2 )
)
.

The first term is clearly smaller than q−η+ε by (6.32). For the second, note
that µ1 > µ0 > δ and thus, by (6.30)

µ0 + µ2 − 1 6 2η − δ.

It follows that
qε+ 1

2 (µ0+µ2−1) 6 qε+η− δ2 6 q−η+ε,

under the assumption that

(6.34) δ > 4η.

Finally, the combination of (6.30), µ1 6 µ2 and (6.33) gives

µ1 6
1
2 + η − δ

2
and hence

qε+ 1
2 (µ1− 1

2 ) 6 qε+ η
2−

δ
4 6 q−η+ε,

provided

(6.35) δ > 6η,

which is more restrictive than (6.34). To finalize the computations, we
just note that the second condition in (6.32) and (6.35) are simultaneously
satisfied as long as η 6 1

64 , which gives the correct exponent of the error
term in Theorem 1.3.
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6.2. The cuspidal case

We consider as in Section 6.1 the average over primitive and even char-
acters (recall that the nebentypus is trivial)

(6.36) T 3
even(f, `; q) := 2

q − 1
∑+

χ (mod q)
χ 6=ω0

L
(
f ⊗ χ, 1

2
)
L
(
χ, 1

2
)
χ(`).

6.2.1. Applying the approximate functional equation

Using Proposition 2.10, we can write (6.36) in the form

T 3
even(f, `; q) = C1(f, `; q) + ε∞(f,+1)C2(f, `; q)

with

C1(f, `; q) = 2
q − 1

∑+

χ (mod q)
χ 6=ω0

∑
n,m>1

λf (n)χ(nm`)
(nm)1/2 Vf,χ

(
nm

q3/2

)
,

C2(f, `; q) = 2
q − 1

∑+

χ (mod q)
χ 6=ω0

∑
n,m>1

λf (n)χ(nm)χ(`)
(nm)1/2 ε(χ)3Vf,χ

(
nm

q3/2

)
,

where we recall that Vf,χ depends on χ only through its parity. Since
we assume that f satisfies the Ramanujan–Petersson conjecture, we have
|λf (n)| 6 τ(n). Hence, proceeding as in Section 6.1.2 for the average over
the characters and writing V = Vf,χ, we find

Ci(f, `; q) =
∑
±
C±i (f, `; q) +O

(
q−1/4+ε

)
,

where

(6.37) C±1 (f, `; q) =
∑∗

nm`≡±1 (mod q)

λf (n)
(nm)1/2 V

(
nm

q3/2

)
,

and

(6.38) C±2 (f, `; q) = 1
q1/2

∑∗

n,m>1

λf (n)
(nm)1/2 Kl3(±nm`; q)V

(
nm

q3/2

)
.
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6.2.2. The main term

The extraction of the main term is done is a similar way as in Sec-
tion 6.1.3. We just conclude with

C+
1 (f, `; q) = δ`=1 +O

(
`q−1/4+ε

)
, C−1 (f, `; q) = O

(
`q−1/4+ε

)
.

Note that the error terms are O(q− 1
52 +ε) (cf. Theorem 1.3) if we assume

that

(6.39) ` 6 q
1
4−

1
52 = q

3
13 .

6.2.3. The error term

Applying a partition of unity to (6.38), removing the test function V
using its integral representation (see Section 6.1.4) and we are reduced to
analyze O(log2 q) sums of the shape

(6.40) C±2 (f,N,M ; q)

:= 1
(qNM)1/2

∑∗

n,m∈Z

λf (n)Kl3(±nm`; q)W1

(m
M

)
W2

( n
N

)
,

where Wi are smooth and compactly supported functions on (1/2, 2) such
that xjW (j)

i (x)�ε,j q
εj for all j > 0 and M,N are reals numbers with the

standard restriction due to the fast decay of V at infinity

1 6M,N and NM 6 q3/2+ε.

Note that the trivial bound is

(6.41) C±2 (f,N,M ; q)�
(
NM

q

)1/2
.

Moreover, if M > q/2, then an application of Polyá–Vinogradov method
in the m-variable (see Proposition 4.1 and Section 6.1.5) leads to

C±2 (f,N,M ; q)�ε q
ε

(
NM

q2

)1/2
� q−1/4+ε.

Hence we can suppose from now on that M < q/2 in such a way that
the condition (m, q) = 1 under the summation in (6.38) is automatically
satisfied.
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6.2.4. Application of Poisson/Voronoi summation formula

The first step is to apply Voronoi summation formula in the n-variable.
To get in a good position, we write the Kloosterman sum Kl3 for (a, q) = 1
in the form

(6.42) Kl3(a; q) = 1
q1/2

∑
x∈F×q

Kl2(x; q)e
(
ax

q

)
.

Note that this definition can be extended to a = 0 with the value

Kl3(0; q) = 1
q

 ∑
x∈F×q

e

(
x

q

)2

= 1
q
.

It follows that after writing Kl3(±nm`; q) in the form (6.42) and adding
the contribution of q|n for negligible error term (of size at most q−3/4+ε),
we get

C±2 (f,N,M ; q) = 1
(qNM)1/2

1
q1/2

∑
x∈F×q

Kl2(x; q)

×
∑
m∈Z

W1

(m
M

)∑
n>1

λf (n)e
(
±nm`x

q

)
W2

( n
N

)
.

(6.43)

Assuming we are dealing with the plus case and applying Voronoi formula
(cf. Proposition 2.13) to the inner sum in (6.43), we obtain

C+
2 (f,N,M ; q) =

(
N

q3M

)1/2 1
q1/2

∑
±

∑
x∈F×q

Kl2(x; q)
∑
n>1

λf (n)W±2
(
nN

q2

)

×
∑
m∈Z

e

(
∓nmx`

q

)
W1

(m
M

)
.

Changing the order of summation, making the change of variable x↔ xm

(recall that (m, q) = 1) allows us to write

(6.44) C+
2 (f,N,M ; q)

=
(

N

q3M

)1/2 1
q1/2

∑
±

∑
x∈F×q

∑
n>1

λf (n)e
(
∓nx`
q

)
W±2

(
nN

q2

)

×
∑
m∈Z

Kl2(xm; q)W1

(m
M

)
.
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By Poisson formula and since Kl2 is the Fourier transform of the function
defined by (3.12), we see that the m-sum in (6.44) is equal to

M

q1/2

∑
(m,q)=1

e

(
−xm

q

)
Ŵ1

(
mM

q

)
.

Replacing this identity in (6.44) yields

(6.45) C+
2 (f,N,M ; q)

=
(
NM

q3

)1/2∑
±

∑
n>1

∑
(m,q)=1

λf (n)Ŵ1

(
mM

q

)
W±2

(
nN

q2

)

× 1
q

∑
x∈F×q

e

(
x
∓n`−m

q

)
,

with the same expression for the minus case C−2 , but with ∓ replaced by ±
in the exponential. Because of the fast decay of Ŵ1 and W±2 at infinity (cf.
Lemma 2.3), the n,m-sum (6.45) is essentially supported on |m| 6 q1+ε/M

and |n| 6 q2+ε/N . In this range, we use the estimate |λf (n)| 6 τ(n)�ε n
ε

and we apply Lemma 2.3 with ϑ = 0 (recall that f satisfies R-P-C) to
bound W±2 by qε. Adding the contribution of x = 0, estimating this extra
factor trivially and executing the complete x-summation gives

C+
2 (f,N,M ; q) =

(
NM

q3

)1/2∑
±

∑∑
nm`≡∓1 (mod q)

λf (n)Ŵ1

(
mM

q

)

× W±2

(
nN

q2

)
+O

(
qε
( q

NM

)1/2
)
.

Therefore, as in Section 6.1.6, we obtain

(6.46) C±2 (f,N,M ; q)�ε q
ε
( q

NM

)1/2
,

uniformly on ` < q.

6.2.5. Estimation of C2 using bounds for bilinear forms and Theorem 1.6

We finally state the analogous of Proposition 6.3 which is an immediate
application of Theorem 4.2 (1)-(2), Theorem 4.3 and Corollary 3.2.
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Proposition 6.4. — For any ε > 0, the quantity defined in (6.40)
satisfies

C±2 (f,N,M ; q)� qε
(
NM

q

)1/2



1
q1/4 + 1

M1/2 + q1/4

N1/2

1
q1/2 + q1/2

M(
N2M5

q3

)−1/12

(
1 + q

N

)1/2
q−1/16,

where the implied constant depends on ε and polynomially on tf in the
last bound and the third bound is valid in the case where 1 6 N 6 M2,
M < q and NM < q3/2 (cf. (4.1)).

6.2.6. Conclusion of the cuspidal case

Fix η > 0 a parameter and write M = qµ, N = qν with µ, ν > 0. By the
trivial bound (6.41) and (6.46), we can assume that

(6.47) 1− 2η 6 µ+ ν 6 1 + 2η,

otherwise we get C±2 (f,N,M ; q) = O(q−η+ε). We now let δ1, δ2, δ3 > 0 be
sufficiently small auxiliary parameters and we distinguish four cases :

(a) Assume that µ 6 δ1. In this case we apply the fourth estimate of
Proposition 6.4 and we get by (6.47)

C±2 (f,N,M ; q)�ε,tf q
ε
(
qη−

1
16 + q

δ1
2 −

1
16

)
6 q−η+ε,

provided

(6.48) η 6
1
32 and δ1 6

1
8 − 2η.

(b) If δ1 < µ 6 1
2 − δ2, the first bound of Proposition 6.4 yields

C±2 (f,N,M ; q)�ε q
ε
(
qη−

1
4 + q

1
2 (ν−1) + q

1
2 (µ− 1

2 )
)
.

The first term is less than qε−η since η 6 1
32 . For the second, we

have ν − 1 6 2η − δ1 (use (6.47) and µ > δ1). Thus it is less than
qε−η under the assumption that

(6.49) δ1 > 4η.

The third term is at most q−δ2/2 6 q−η if

(6.50) δ2 > 2η.
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(c) Suppose that 1
2 − δ2 < µ 6 1

2 + δ3. In this configuration, we apply
the third bound and we obtain

C±2 (f,N,M ; q)�ε q
ε− 1

4 + ν
3 + µ

12 = qε−
1
4 + 1

12 (µ+ν)+ ν
4 .

Using (6.47) and ν 6 1 + 2η − µ 6 1
2 + 2η + δ2 allows us to bound

the above expression by

qε−
1
4 + 1

12 (1+2η)+ 1
4 ( 1

2 +2η+δ2) = qε−
1

12 ( 1
2−8η−3δ2) 6 qε−η,

provided

(6.51) 3δ2 6
1
2 − 20η.

(d) Assume that µ > 1
2 + δ3 the second bound gives

C±2 (f,N,M ; q)�ε q
ε
(
qη−

1
2 + qη+ 1

2−µ
)
6 qε−η + qε+η−δ3 � qε−η,

if we assume that
δ3 > 2η.

Finally, the combination of conditions (6.48) and (6.49) forces η 6 1
48

and (6.50)–(6.51) are simultaneously satisfied as long as η 6 1
52 , which

gives the correct exponent of the error term in Theorem 1.3.

Remark 6.5. — The treatment carried out in Section 5.1 remains almost
identical if f is level 1 Hecke cusp form. The only change we have to make
is to replace the exponent 1/16 by 1/8 in the fourth bound of Proposi-
tion 6.4, which is due to the original Theorem [14, Theorem 1.2] for small
level compared with q. However, it does not improve the final exponent 1

52
since (6.50)–(6.51) is more restrictive and independent of (6.48)–(6.49).

7. Proof of Theorems 1.1 and 1.2

7.1. The mollification method

We show here how to derive Theorems 1.1 and 1.2 from Theorem 1.3. Let
1 < L < q be a real number such that logL � log q. For any multiplicative
character χ (mod q), we define the short linear form

(7.1) M(χ;L) :=
∑
`6L

χ(`)µ(`)
`1/2

(
logL/`
logL

)2
,
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where µ is the Möbius function. Let {λf (n)}n>1 denotes the sequence of
Hecke eigenvalues of a Hecke cusp form of level one and µf (n) be the
convolution inverse of λf (n) given by

L(f, s)−1 =
∏
p

(
1− λf (p)

ps
+ 1
p2s

)
=
∞∑
n=1

µf (n)
ns

, <e(s) > 1.

For 1 < L′ < q with logL′ � log q, we also define

(7.2) M(f ⊗ χ;L′) :=
∑
`6L′

χ(`)µf (`)
`1/2

(
logL′/`
logL′

)
.

We finally consider the two mollified cubic moments

(7.3) M 3(ω1, ω2; q) := 1
q − 1

∑
χ (mod q)
χ 6=1,ω1,ω2

2∏
i=0

L
(
χωi,

1
2
)
M(χωi;L),

and

(7.4) M 3(f ; q) := 1
q−1

∑
χ (mod q)

χ 6=1

L
(
f ⊗ χ, 1

2
)
M(f⊗χ;L′)L

(
χ, 1

2
)
M(χ;L).

Note that (7.3) and (7.4) can be written in the form

M 3(ω1, ω2; q) =
∑

`1,`2,`36L

x(`1)x(`2)x(`3)
(`1`2`3)1/2 T 3(ω1, ω2, `1`2`3; q),

M 3(f ; q) =
∑

`6L,`′6L′

xf (`)x(`′)
(``′)1/2 T 3(f, ``′; q),

with

x(`) := µ(`)
(

logL/`
logL

)2
and xf (`′) := µf (`′)

(
logL/`′

logL

)
.

Since f satisfies the Ramanujan–Petersson conjecture, we have for 1 6 ` 6
L and 1 6 `′ 6 L′,

|x(`)| 6 1 and |xf (`′)| 6 τ(`′),

where τ(n) =
∑
d|n 1 is the divisor function. Hence an immediate conse-

quence of Theorem 1.3 is the following corollary :

Corollary 7.1. — For any ε > 0, the mollified cubic moments (7.3)
and (7.4) satisfies

M 3(ω1, ω2; q) = 1+O
(
L3/2q−

1
64 +ε

)
, M 3(f ; q) = 1+O

(
(L′L)1/2q−

1
52 +ε

)
,

ANNALES DE L’INSTITUT FOURIER



SIMULTANEOUS NON-VANISHING FOR DIRICHLET L-FUNCTIONS 1519

where the implied constant only depends on ε > 0 and polynomially on tf
in the second expression.

In [37, Theorem 1.2], we established an asymptotic formula for a mollified
fourth moment of Dirichlet L-functions : for L = qλ with 0 < λ < 11

8064 , we
obtained

(7.5) M 4(q) := 1
q − 1

∑
χ (mod q)
χ 6=ω0

∣∣L (χ, 1
2
)
M(χ;L)

∣∣4 = P (λ−1) + oλ(1),

where P (X) ∈ R[X] is a degree four polynomial with calculable coefficients.
Similarly, in a paper of preparation The second moment theory of families

of L-functions : The case of twisted Hecke L-functions by Blomer, Fouvry,
Kowalski, Michel, Milićević and Sawin, they obtained

M 4(f ; q) : = 1
q − 1

∑
χ (mod q)
χ 6=ω0

∣∣L (f ⊗ χ, 1
2
)
M(f ⊗ χ;L′)

∣∣2

= 2η
(

1 + 2
λ′

)
+ oλ′,tf (1),

(7.6)

for L′ = qλ
′ with 0 < λ′ < 1

360 and η is an absolute constant satisfying
η 6 ζ(3/2). Hence, combining Corollary 7.1 with (7.5) and (7.6) yields

Proof of Theorems 1.1 and 1.2.
The Dirichlet characters case. — We first present the proof of Theo-

rem 1.1. For any χ (mod q), we define the characteristic function

1(χ) := δ|L(χ,1/2)|> 1
log q

δ|L(χω1,1/2)|> 1
log q

δ|L(χω2,1/2)|> 1
log q

.

Using the generalized Hölder’s inequality, we infer∣∣∣∣∣∣∣∣
1

q − 1
∑

χ (mod q)
χ 6=ω0,ω1,ω2

1(χ)
2∏
i=0

L
(
χωi,

1
2
)
M(χωi;L)

∣∣∣∣∣∣∣∣
6

 1
q − 1

∑
χ (mod q)

1(χ)

1/4 (
M 4(q)

)3/4
.

On the other hand, we have the lower bound for the left handside∣∣∣∣∣∣∣∣
1

q − 1
∑

χ (mod q)
χ 6=ω0,ω1,ω2

1(χ)
2∏
i=0

L
(
χωi,

1
2
)
M(χωi;L)

∣∣∣∣∣∣∣∣ >
∣∣M 3(ω1, ω2; q)

∣∣−D ,
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where M 3(ω1, ω2; q) is defined in (7.3) and

D := 1
q − 1

∑
χ 6=ω0,ω1,ω2

1(χ)=0

∣∣∣∣∣
2∏
i=0

L
(
χωi,

1
2
)
M(χωi;L)

∣∣∣∣∣ .
To estimate D , note that the condition 1(χ) = 0 means that one of the
central values is less than log(q)−1. Therefore, if for i = 0, 1, 2, Di is the
subsum of D restricted to χ such that |L(χωi, 1

2 )| 6 log(q)−1, we obtain,
by positivity, D 6 D0 + D1 + D2 with for each i = 0, 1, 2,

Di 6
1

log(q)

 1
q − 1

∑
χ (mod q)

|M(χ;L)|2
1/2

×

 1
q − 1

∑∗

χ (mod q)

∣∣L (χ, 1
2
)
M(χ;L)

∣∣41/2

�λ
1

log(q)

 1
q − 1

∑
χ (mod q)

|M(χ;L)|2
1/2

,

using again twice Cauchy–Schwarz inequality and (7.5) (recall that L = qλ).
Moreover, opening the square in |M(χ;L)|2 and applying the orthogonality
relation yields

1
q − 1

∑
χ (mod q)

|M(χ;L)|2 6
∑

`≡`′ (mod q)
`,`′6L

|x(`)x(`′)|
(``′)1/2 6

∑
`6L

1
`
� logL,

since L < q. Hence, assuming L = qλ with 0 < λ < 11
8064 , we get

1
q − 1

∑
χ (mod q)

1(χ) >
∣∣M 3(ω1, ω2; q)

∣∣4
M 4(q)3 +Oλ

(
1

log(q)1/2

)
= 1
P (λ−1)3 + oλ(1).

If
c1 := max

0<λ6 11
8064

P (λ−1)−3,

then for any ε > 0, there exists 0 < λ̃ < 11
8064 depending on ε satisfying

|P (λ̃−1)−3 − c1| 6 ε/2. Finally, choosing Q = Q(ε) large enough such that
|o
λ̃
(1)| 6 ε/2 for q > Q and the result follows.
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The cuspidal case. — We proceed in a similar way. Setting

1(χ, f) := δ|L(χ,1/2)|> 1
log q

δ|L(f⊗χ,1/2)|> 1
log2 q

,

we obtain∣∣∣∣∣∣ 1
q − 1

∑
χ 6=1

1(χ, f)L
(
f ⊗ χ, 1

2
)
M(f ⊗ χ;L′)L

(
χ, 1

2
)
M(χ;L)

∣∣∣∣∣∣
6

 1
q − 1

∑
χ (mod q)

1(χ, f)

1/4 (
M 4(q)

)1/4 (
M 4(f ; q)

)1/2
,

where M 4(q) (resp. M 2(f ; q)) are defined by (7.5) (resp. by (7.6)). As in
the previous part, the left handside admits the lower bound

>
∣∣M 3(f ; q)

∣∣− C ,

where C is the same as M 3(f ; q), but with the absolute values inside and
with the restriction in the summation to χ such that 1(χ, f) = 0. Writing
C1 (resp. C2) for the contribution of |L(χ, 1

2 )| 6 1
log q (resp. |L(f ⊗χ, 1

2 )| 6
1

log2 q
), we get C 6 C1 + C2 with

C1 = Oλ

(
1

log(q)1/2

)
.

Finally, we have

C2 6
1

log2(q)

 1
q − 1

∑
χ (mod q)

|M(f ⊗ χ;L′)|2
1/2

×

 1
q − 1

∑∗

χ (mod q)

∣∣L (χ, 1
2
)
M(χ;L)

∣∣21/2

�λ
1

log2(q)

 1
q − 1

∑
χ (mod q)

|M(f ⊗ χ;L′)|2
1/2

,

with
1

q − 1
∑

χ (mod q)

|M(f ⊗ χ;L′)|2 6
∑

`≡`′ (mod q)
`,`′6L′

τ(`)τ(`′)
(``′)1/2

=
∑
`6L′

τ(`)2

`
� log3 L′.
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Hence,

C2 = Oλ′

(
1

log(q)1/2

)
,

and the rest of the proof is exactly the same as in the previous case. �

Remark 7.2. — Let f be a primitive Hecke cusp form of prime level q
satisfying the Ramanujan–Petersson conjecture. The formula (1.4) could be
used to prove simultaneous non-vanishing for L(f ⊗χ, 1

2 )L(χ, 1
2 ) as χ runs

over non trivial Dirichlet characters modulo q provided that it is possible
to evaluate a second twisted moment of the form

1
q − 1

∑
χ (mod q)

χ 6=1

∣∣L (f ⊗ χ, 1
2
)∣∣2 χ(`1)χ(`2),

where (`1, `2) = 1 and are coprime with q. An asymptotic formula for this
moment is given in [1] in the special case where the level is 1 and `1 = `2 = 1
and for general (`1, `2) = 1 in the paper of preparation mentioned above
(also for level 1). The principal difficulty here is that since the level is q,
we have the solve a shifted convolution problem of the shape∑∑

`1n−`2m=hq
λf (n)λf (m)W1

( n
N

)
W2

(m
M

)
,

for Hecke eigenvalues λf (n) of level q.
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