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A FREQUENCY SPACE FOR THE HEISENBERG
GROUP

by Hajer BAHOURI,
Jean-Yves CHEMIN & Raphaël DANCHIN (*)

Abstract. — We revisit the Fourier analysis on the Heisenberg group Hd.
Starting from the so-called Schrödinger representation and taking advantage of the
projection with respect to the Hermite functions, we look at the Fourier transform
of an integrable function f, as a function f̂H on the set H̃d def= Nd×Nd×R\{0}. After
observing that f̂H is uniformly continuous on H̃d equipped with an appropriate
distance d̂, we extend the definition of f̂H to the completion Ĥd of H̃d. This new
point of view provides a simple and explicit description of the Fourier transform
of integrable functions, when the “vertical” frequency parameter tends to 0. As
an application, we prepare the ground for computing the Fourier transform of
functions on Hd that are independent of the vertical variable.
Résumé. — On propose une nouvelle approche de la théorie de Fourier sur le

groupe de Heisenberg. En utilisant la représentation de Schrödinger et la projection
sur les fonctions de Hermite, la transformée de Fourier d’une fonction intégrable
est définie comme une fonction sur l’ensemble H̃d def= Nd × Nd × R \ {0}. Cette
fonction étant uniformément continue sur H̃d muni d’une distance adéquate, on
peut l’étendre par densité sur le complété Ĥd de H̃d. Ce nouveau point de vue
fournit une description simple de la limite de la transformée de Fourier des fonctions
intégrables lorsque la « fréquence verticale » tend vers 0. On dispose ainsi d’un
cadre adéquat pour calculer par exemple la transformée de Fourier d’une fonction
indépendante de la variable verticale.
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1. Introduction

Fourier analysis on locally compact Abelian groups is by now classical
matter that goes back to the first half of the 20th century (see e.g. [16] for
a self-contained presentation).

Consider a locally compact Abelian group (G,+) endowed with a Haar
measure µ, and denote by (Ĝ, · ) the dual group of (G,+) that is the set
of characters on G equipped with the standard multiplication of functions.
By definition, the Fourier transform of an integrable function f : G → C
is the continuous and bounded function f̂ : Ĝ → C (also denoted by Ff)
defined by

(1.1) ∀ γ ∈ Ĝ, f̂(γ) = Ff(γ) def=
∫
G

f(x) γ(x)dµ(x).

Being also a locally compact Abelian group, the “frequency space” Ĝ may
be endowed with a Haar measure µ̂. Furthermore, one can normalize µ̂ so
that the following Fourier inversion formula holds true for, say, all function
f in L1(G) with f̂ in L1(Ĝ):

(1.2) ∀ x ∈ G, f(x) =
∫
Ĝ

f̂(γ) γ(x)dµ̂(γ).

As a consequence, we get the Fourier–Plancherel identity

(1.3)
∫
G

|f(x)|2dµ(x) =
∫
Ĝ

|f̂(γ)|2dµ̂(γ) for all f in L1(G) ∩ L2(G).

The Fourier transform on locally compact Abelian groups has a number
of noteworthy properties that we do not wish to enumerate here. Let us
just recall that it changes convolution products into products of functions,
namely

(1.4) ∀ f ∈ L1(G), ∀ g ∈ L1(G), F(f ? g) = Ff · Fg.

In the Euclidean case G = Rn the dual group may be identified to (Rn)?
through the map ξ 7→ ei〈ξ,· 〉 (where 〈 · , · 〉 stands for the duality bracket
between (Rn)? and Rn), and the Fourier transform of an integrable func-
tion f may thus be seen as the function on (Rn)? (usually identified to Rn)
given by

(1.5) F(f)(ξ) = f̂(ξ) def=
∫
Rn

e−i〈ξ,x〉 f(x)dx.

Of course, we have (1.4) and, as is well known, if one endows the fre-
quency space (Rn)? with the measure 1

(2π)n dξ then the inversion and Fou-
rier–Plancherel formulae (1.2) and (1.3) hold true. Among the numerous
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additional properties of the Fourier transform on Rn, let us just underline
that it allows to “diagonalize” the Laplace operator, namely for all smooth
compactly supported functions, we have

(1.6) F(∆f)(ξ) = −|ξ|2f̂(ξ).

For noncommutative groups, Fourier theory gets wilder, for the dual
group is too “small” to keep the definition of the Fourier transform given
in (1.1) and still have the inversion formula (1.2). Nevertheless, if the group
has “nice” properties (that we are not going to list here) then one can work
out a consistent Fourier theory with properties analogous to (1.2), (1.3)
and (1.4) (see e.g. [1, 5, 6, 12, 15, 17, 18, 20] and the references therein for
the case of nilpotent Lie groups). In that context, the classical definition of
the Fourier transform amounts to replacing characters in (1.1) with suitable
families of irreducible representations that are valued in Hilbert spaces (see
e.g. [6, 9] for a detailed presentation). Consequently, the Fourier transform
is no longer a complex valued function but rather a family of bounded
operators on suitable Hilbert spaces. It goes without saying that within
this approach, the notion of “frequency space” becomes unclear, which
makes Fourier theory much more involved than in the Abelian case.

In the present paper, we want to focus on the Heisenberg group which, to
some extent, is the simplest noncommutative nilpotent Lie group and comes
into play in various areas of mathematics, ranging from complex analysis
to geometry or number theory, probability theory, quantum mechanics and
partial differential equations (see e.g. [3, 7, 17, 18]). As several equivalent
definitions coexist in the literature, let us specify the one that we shall
adopt throughout.

Definition 1.1. — Let σ(Y, Y ′) = 〈η, y′〉 − 〈η′, y〉 be the canonical
symplectic form on T ?Rd. The Heisenberg group Hd is the set T ?Rd × R
equipped with the product law

w ·w′ def=
(
Y +Y ′, s+s′+2σ(Y, Y ′)

)
=
(
y+y′, η+η′, s+s′+2〈η, y′〉−2〈η′, y〉

)
where w = (Y, s) = (y, η, s) and w′ = (Y ′, s′) = (y′, η′, s′) are generic
elements of Hd.

As regards topology and measure theory on the Heisenberg group, we
shall look at Hd as the set R2d+1, after identifying (Y, s) in Hd to (y, η, s)
in R2d+1.With this viewpoint, the Haar measure on Hd is just the Lebesgue
measure on R2d+1. In particular, one can define the following convolution
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product for any two integrable functions f and g:

(1.7) f ? g(w) def=
∫
Hd
f(w · v−1)g(v)dv =

∫
Hd
f(v)g(v−1 · w)dv.

Even though convolution on the Heisenberg group is noncommutative, if
one defines the Lebesgue spaces Lp(Hd) to be just Lp(R2d+1), then one still
gets the classical Young inequalities in that context.
As already explained above, as Hd is noncommutative, in order to have a

good Fourier theory, one has to resort to more elaborate irreducible repre-
sentations than characters. In fact, the group of characters on Hd is isomet-
ric to the group of characters on T ?Rd. Roughly, if one defines the Fourier
transform according to (1.1) then the information pertaining to the vertical
variable s is lost.
There are essentially two (equivalent) approaches, that are based ei-

ther on the Bargmann representation or on the Schrödinger representation
(see [6]). For simplicity, let us just recall the second one which is the family
of group homomorphisms w 7→ Uλw (with λ ∈ R \ {0}) between Hd and the
unitary group U(L2(Rd)) of L2(Rd), defined for all w = (y, η, s) in Hd and
u in L2(Rd) by

Uλwu(x) def= e−iλ(s+2〈η,x−y〉) u(x− 2y).

The classical definition of Fourier transform of integrable functions on Hd
reads as follows:

Definition 1.2. — The Fourier transform of an integrable function f
on Hd is the family (FH(f)(λ))λ∈R\{0} of bounded operators on L2(Rd)
given by

FH(f)(λ) def=
∫
Hd
f(w)Uλwdw.

In the present paper, we strive for another definition of the Fourier trans-
form, that is as similar as possible to the one for locally compact groups
given in (1.1). In particular, we want the Fourier transform to be a com-
plex valued function defined on some “explicit” frequency space that can
be endowed with a structure of a locally compact and complete metric
space, and to get formulae similar to (1.2), (1.3), (1.4) together with a di-
agonalization of the Laplace operator (for the Heisenberg group of course)
analogous to (1.6).

There is a number of motivations for our approach. An important one
is that, having an explicit frequency space will allow us to get elementary
proofs of the basic results involving the Fourier transform, just by mim-
icking the corresponding ones of the Euclidean setting. In particular, we
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expect our setting to open the way to new results for partial differential
equations on the Heisenberg group. Furthermore, our definition will enable
us to get an explicit (and comprehensible) description of the range of the
Schwartz space by the Fourier transform. As a consequence, extending the
Fourier transform to the set of tempered distributions will become rather
elementary (see more details in our forthcoming paper [2]).
In the present paper, we will give two concrete applications of our ap-

proach. First, in Theorem 2.7, we will provide an explicit asymptotic de-
scription of the Fourier transform when (what plays the role of) the vertical
frequency parameter tends to 0. Our second application is the extension
(also explicit) of the Fourier transform to functions depending only on the
horizontal variable (this is Theorem 2.8).

2. Results

Before presenting the main results of the paper, let us recall how, with
the standard definition of the Fourier transform in Hd, Properties (1.2),
(1.3) and (1.4) may be stated (the reader may refer to e.g. [3, 4, 7, 8, 9, 10,
12, 13, 17, 18, 20] for more details).

Theorem 2.1. — Let f be an integrable function. Then we have

(2.1) ∀ λ ∈ R \ {0} , ‖FH(f)(λ)‖L(L2) 6 ‖f‖L1(Hd)

and, for any function u in L2(Rd), the map λ 7→ FH(f)(λ)(u) is continuous
from R \ {0} to L2(Rd). For any function f in the Schwartz space S(Hd)
(which is the classical Schwartz space on R2d+1), we have the inversion
formula:

(2.2) ∀ w ∈ Hd, f(w) = 2d−1

πd+1

∫
R

tr
(
Uλw−1FHf(λ)

)
|λ|ddλ ,

where tr(A) denotes the trace of the operator A. Moreover, if f belongs
to L1(Hd)∩L2(Hd) then FH(f)(λ) is an Hilbert–Schmidt operator for any λ
in R \ {0}, and we have

(2.3) ‖f‖2L2(Hd) = 2d−1

πd+1

∫
R
‖FH(f)(λ)‖2HS |λ|ddλ

where ‖ · ‖HS stands for the Hilbert–Schmidt norm.

We also have an analogue of the convolution identity (1.4). Indeed, as
the map w 7→ Uλw is a homomorphism between Hd and U(L2(Rd)), we get
for any integrable functions f and g,

(2.4) FH(f ? g)(λ) = FH(f)(λ) ◦ FH(g)(λ).
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Let us next recall the definition of the (sub-elliptic) Laplacian on the
Heisenberg group, that will play a fundamental role in our approach. Being
a real Lie group, the Heisenberg group may be equipped with a linear space
of left invariant vector fields, that is vector fields commuting with any left
translation τw(w′) def= w · w′. It is well known that this linear space has
dimension 2d+ 1 and is generated by the vector fields

S
def= ∂s , Xj

def= ∂yj + 2ηj∂s and Ξj
def= ∂ηj − 2yj∂s , 1 6 j 6 d.

The Laplacian associated to the vector fields (Xj)16j6d and (Ξj)16j6d
reads

(2.5) ∆H
def=

d∑
j=1

(X 2
j + Ξ2

j ).

As in the Euclidean case (see Identity (1.6)), the Fourier transform allows
to diagonalize Operator ∆H, a property that is based on the following
relation that holds true for all functions f and u in S(Hd) and S(Rd),
respectively (see e.g. [11, 14]):

(2.6) FH(∆Hf)(λ) = 4FH(f)(λ) ◦∆λ
osc

with ∆λ
oscu(x) def=

d∑
j=1

∂2
j u(x)− λ2|x|2u(x).

This prompts us to take advantage of the spectral structure of the har-
monic oscillator to get an analog of Formula (1.6). To this end, we need to
introduce the family of Hermite functions (Hn)n∈Nd defined by

Hn
def=
(

1
2|n|n!

) 1
2

CnH0 with Cn
def=

d∏
j=1

C
nj
j and H0(x) def= π−

d
2 e−

|x|2
2

where Cj
def= −∂j +Mj stands for the creation operator with respect to the

j-th variable and Mj is the multiplication operator defined by Mju(x) def=
xju(x). As usual, n! def= n1! · · ·nd! and |n|

def= n1 + · · ·+ nd.
It is well known that the family (Hn)n∈Nd is an orthonormal basis of the

Hilbert space L2(Rd). In particular,

(2.7) ∀ (n,m) ∈ Nd × Nd , (Hn|Hm)L2 = δn,m,

where δn,m = 1 if n = m, and δn,m = 0 if n 6= m.

Besides, we have

(2.8) (−∂2
j +M2

j )Hn = (2nj + 1)Hn and −∆1
oscHn = (2|n|+ d)Hn.
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For λ in R \ {0}, we further introduce the rescaled Hermite function

Hn,λ(x) def= |λ| d4Hn(|λ| 12x).

It is obvious that (Hn,λ)n∈Nd is an orthonormal basis of L2(Rd), that

(−∂2
j + λ2M2

j )Hn,λ = (2nj + 1)|λ|Hn,λ

and thus

(2.9) −∆λ
oscHn,λ = (2|n|+ d)|λ|Hn,λ.

We are now ready to give “our” definition(1) of the Fourier transform on Hd.

Definition 2.2. — Let H̃d def= Nd × Nd × R \ {0}. We denote by ŵ =
(n,m, λ) a generic point of H̃d. For f in L1(Hd), we define the map FHf

(also denoted by f̂H) to be

FHf :
{
H̃d −→ C

ŵ 7−→
(
FH(f)(λ)Hm,λ|Hn,λ

)
L2 .

From now on, we shall use only that definition of the Fourier transform,
which amounts to considering the “infinite matrix” of FHf(λ) in the or-
thonormal basis of L2(Rd) given by (Hn,λ)n∈N. To emphasize the likeness
with the Euclidean case, we shall rewrite FHf in terms of the mean value
of f modulated by some oscillatory functions which may be seen as suitable
Wigner distribution functions of the family (Hn,λ)n∈Nd,λ6=0, and will play
the same role as the characters ei〈ξ,· 〉 in Rn. Indeed, by definition, we have

FHf(ŵ) =
∫
Hd×Rd

f(w) e−isλ e−2iλ〈η,x−y〉Hm,λ(x− 2y)Hn,λ(x)dwdx.

Therefore, making an obvious change of variable, we discover that

FHf(ŵ) =
∫
Hd

eisλW(ŵ, Y ) f(Y, s)dY ds with(2.10)

W(ŵ, Y ) def=
∫
Rd

e2iλ〈η,z〉Hn,λ(y + z)Hm,λ(−y + z)dz.(2.11)

At this stage, looking at the action of the Laplace operator on eisλW(ŵ, Y )
is illuminating. Indeed, easy computations (carried out in Appendix) give

(2.12) (X 2
j + Ξ2

j )
(
eisλW(ŵ, Y )

)
= −4|λ|(2mj + 1) eisλW(ŵ, Y ).

By summation on j ∈ {1, . . . , d}, we get

(2.13) ∆H
(
eisλW(ŵ, Y )

)
= −4|λ|(2|m|+ d) eisλW(ŵ, Y ),

(1)This point of view has been already taken in [19] in connection with uncertainty
inequalities on the Heisenberg group.
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from which one may deduce that, whenever f is in S(Hd) (again, refer to
the Appendix),

(2.14) FH(∆Hf)(ŵ) = −4|λ|(2|m|+ d)f̂H(ŵ).

Let us underline the similarity with Relation (1.6) pertaining to the Fourier
transform in Rn.
One of the basic principles of the Fourier transform on Rn is that “reg-

ularity implies decay”. It remains true in the Heisenberg framework, as
stated in the following lemma.

Lemma 2.3. — For any non negative integer p, there exist an integer Np
and a positive constant Cp such that for any ŵ in H̃d and any f in S(Hd),
we have

(2.15)
(
1 + |λ|(|n|+ |m|+ d) + |n−m|

)p|f̂H(n,m, λ)| 6 Cp‖f‖Np,S ,

where ‖ · ‖N,S denotes the classical family of semi-norms of S(R2d+1),
namely

‖f‖N,S
def= sup
|α|6N

∥∥(1 + |Y |2 + s2)N/2 ∂αY,sf
∥∥
L∞

.

As may be easily checked by the reader, in our setting, there are very
simple formulae corresponding to (2.2) and (2.3), if the set H̃d is endowed
with the measure dŵ defined by:

(2.16)
∫
H̃d
θ(ŵ)dŵ def=

∑
(n,m)∈N2d

∫
R
θ(n,m, λ)|λ|ddλ.

Then Theorem 2.1 recasts as follows:

Theorem 2.4. — The following inversion formula holds true for any
function f in S(Hd):

(2.17) f(w) = 2d−1

πd+1

∫
H̃d

eisλW(ŵ, Y )f̂H(ŵ)dŵ.

Moreover, for any function f in L1(Hd) ∩ L2(Hd), we have

(2.18) ‖f̂H‖2
L2(H̃d)

= πd+1

2d−1 ‖f‖
2
L2(Hd).

In this new setting, the convolution identity (2.4) rewrites as follows for
all integrable functions f and g:

(2.19) FH(f ? g)(n,m, λ) = (f̂H · ĝH)(n,m, λ)

with (f̂H · ĝH)(n,m, λ) def=
∑
`∈Nd

f̂H(n, `, λ)ĝH(`,m, λ).
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The reader is referred to the appendix for the proof.
Next, we aim at endowing the set H̃d with a structure of a metric space.

According to the decay inequality (2.15), it is natural to introduce the
following distance d̂:

(2.20) d̂(ŵ, ŵ′) def=
∣∣λ(n+m)−λ′(n′+m′)

∣∣
1+
∣∣(n−m)−(n′−m′)|1+|λ−λ′|,

where | · |1 denotes the `1 norm on Rd.
At first glance, the metric space (H̃d, d̂) seems to be the natural frequency

space within our approach. However, it fails to be complete, which may be
a source of difficulties for further development. We thus propose to work
with its completion, that is described in the following proposition.

Proposition 2.5. — The completion of the set H̃d for the distance d̂ is
the set Ĥd defined by Ĥd def=

(
N2d × R \ {0}

)
∪ Ĥd0 with Ĥd0

def= Rd∓ × Zd and
Rd∓

def=((R−)d ∪ (R+)d). On Ĥd, the extended distance (still denoted by d̂)
is given by

d̂((n,m, λ), (n′,m′, λ′)) =
∣∣λ(n+m)− λ′(n′ +m′)

∣∣
1

+
∣∣(m− n)− (m′ − n′)|1 + |λ− λ′| if λ 6= 0 and λ′ 6= 0,

d̂
(
(n,m, λ), (ẋ, k)

)
= d̂
(
(ẋ, k), (n,m, λ)

)
def= |λ(n+m)− ẋ|1 + |m− n− k|1 + |λ| if λ 6= 0,

d̂
(
(ẋ, k), (ẋ′, k′)

)
= |ẋ− ẋ′|1 + |k − k′|1.

Proof. — Consider a Cauchy sequence (np,mp, λp)p∈N in (H̃d, d̂). If p
and p′ are large enough, then |(mp − np) − (mp′ − np′)| is less than 1,
and thus mp − np has to be a constant, that we denote by k. Next, we
see that (λp)p∈N is a Cauchy sequence of real numbers, and thus converges
to some λ in R. If λ 6= 0 then our definition of d̂ implies that the se-
quence (np)p∈N is constant after a certain index, and thus converges to
some n in Nd. Therefore we have (np,mp, λp)→ (n, n+ k, λ).

If λ = 0 then the Cauchy sequence
(
λp(np +mp)

)
p∈N has to converge to

some ẋ in Rd. By definition of the extended distance, it is clear that

(np,mp, λp)p∈N → (ẋ, k) in Ĥd.

Now, if ẋ 6= 0 then there exists some index j such that ẋj 6= 0. Because the
sequence

(
λp(nj,p + mj,p)

)
p∈N tends to ẋj and nj,p + mj,p is positive (for

large enough p), we must have sgn(λp) = sgn(ẋj). Therefore, all the of ẋ
have the same sign.
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Conversely, let us prove that any point of Rd+ ×Zd (the case of Rd− ×Zd

being similar) is the limit in the sense of d̂ of some sequence (np,mp, λp)p∈N.
As Q is dense in R, there exist two families of sequences of positive inte-
gers (aj,p)p∈N and (bj,p)p∈N such that

∀ j ∈ {1, . . . , d} , ẋj = lim
p→∞

ẋj,p with ẋj,p
def= aj,p

bj,p
and lim

p→∞
bj,p =∞.

Let us write that

ẋp = 2λpnp with λp
def=
(

2
d∏
j=1

bj,p

)−1
and np

def=
(
aj,p

d∏
j′ 6=j

bj,p

)
16j6d

.

As (λp)p∈N tends to 0, we have that limp→∞ d̂
(
(np, np + k, λp), (ẋ, k)

)
con-

verges to 0. �

Remark 2.6. — It is not difficult to check that the closed bounded subsets
of Ĥd (for the distance d̂) are compact. The details are left to the reader.

The above proposition prompts us to extend the Fourier transform of an
integrable function, to the frequency set Ĥd, that will play the same role
as (Rn)? in the case of Rn. With this new point of view, we expect the
Fourier transform of any integrable function to be continuous on the whole
Ĥd. This is exactly what is stated in the following theorem.

Theorem 2.7. — The Fourier transform f̂H of any integrable function
on Hd may be extended continuously to the whole set Ĥd. Still denoting
by f̂H (or FHf) that extension, the linear map FH : f 7→ f̂H is continuous
from the space L1(Hd) to the space C0(Ĥd) of continuous functions on Ĥd

tending to 0 at infinity. Moreover, we have for all (ẋ, k) in Ĥd0,

FHf(ẋ, k) =
∫
T?Rd

Kd(ẋ, k, Y )f(Y, s)dY ds with(2.21)

Kd(ẋ, k, Y ) =
d⊗
j=1
K(ẋj , kj , Yj) and

K(ẋ, k, y, η) def= 1
2π

∫ π

−π
ei
(

2|ẋ|
1
2 (y sin z+η sgn(ẋ) cos z)+kz

)
dz.(2.22)

In other words, for any sequence (np, λp)p∈N of Nd × (R \ {0}) such that

lim
p→∞

λp = 0 and lim
p→∞

λpnp = ẋ

2
,

we have

lim
p→∞

f̂H(np, np + k, λp) =
∫
T?Rd

Kd(ẋ, k, Y )f(Y, s)dY ds.
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Granted with the above result, one can propose a natural extension of the
Fourier transform to (smooth) functions on Hd independent of the vertical
variable s. This will come up as a consequence of the following theorem.

Theorem 2.8. — Let us define the following operator GH on L1(T ?Rd):

GHg(ẋ, k) def=
∫
T?Rd

Kd(ẋ, k, Y )g(Y )dY.

Then, for any function χ in S(R) with value 1 at 0 and compactly supported
Fourier transform, and any function g in L1(T ?Rd), we have

(2.23) lim
ε→0
FH(g ⊗ χ(ε·)) = 2π(GHg)µĤd0

in the sense of measures on Ĥd, where µĤd0
is the measure (supported in

Ĥd0) defined for all continuous compactly supported functions θ on Ĥd by

(2.24)

〈µĤd0
, θ〉 =

∫
Ĥd0
θ(ẋ, k)dµĤd0

(ẋ, k)

def= 2−d
∑
k∈Zd

(∫
(R−)d

θ(ẋ, k)dẋ+
∫

(R+)d
θ(ẋ, k)dẋ

)
·

The above theorem allows to give a meaning of the Fourier transform of
a smooth function that does not depend on the vertical variable. The next
step would be to study whether our approach allows, as in the Euclidean
case, to extend the definition of the Fourier transform to a much larger
set of functions, or even to tempered distributions. This requires a fine
characterization of FH(S(Hd)) the range of S(Hd) by FH, which will be the
purpose of our companion paper [2].
We end this section with a short description of the structure of the rest

of the paper, and of the main ideas of the proofs.
Section 3 is devoted to the proof of the first part of Theorem 2.7. It

relies on the fact that the function W( · , Y ) is uniformly continuous (for
distance d̂) on bounded sets of H̃d, and can thus be extended to the clo-
sure Ĥd of H̃d. Establishing that property requires our using an explicit
asymptotic expansion of W.

Proving Theorem 2.8 is the purpose of Section 4. The main two ingredi-
ents are the following ones. First, we show that if ψ is an integrable function
on R with integral 1, then we have

lim
ε→0

1
ε
ψ
(λ
ε

)
dŵ = µĤd0

,
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in the sense of measures on Ĥd. That is to say, for any continuous compactly
supported function θ on Ĥd, we have

(2.25) lim
ε→0

∫
Ĥd

1
ε
ψ
(λ
ε

)
θ(ŵ)dŵ = 〈µĤd0

, θ|Ĥd0
〉.

Then by a density argument, the proof of Theorem 2.8 reduces to the case
when g is in S(T ?Rd).
Section 5 is devoted to computing K. This will be based on the following

properties (that we shall first establish):
• K(0, k, Y ) = δ0,k for all Y in T ?R;
• The symmetry identities:

(2.26)
K(ẋ,−k,−Y ) = K(ẋ, k, Y ), K(−ẋ,−k, Y ) = (−1)kK(ẋ, k, Y )

and K(−ẋ, k, Y ) = K(ẋ, k, Y );
• The identity

(2.27) ∆YK(ẋ, k, Y ) = −4|ẋ|K(ẋ, k, Y );

• The relation

(2.28) ikK(ẋ, k, Y ) =
(
η∂yK(ẋ, k, Y )− y∂ηK(ẋ, k, Y )

)
sgn(ẋ);

• The convolution property

(2.29) K(ẋ, k, Y1 + Y2) =
∑
k′∈Z
K(ẋ, k − k′, Y1)K(ẋ, k′, Y2);

• And finally, the following relation for ẋ > 0 given by the study
of FH(|Y |2f):

(2.30) |Y |2K + ẋ∂2
ẋK + ∂ẋK −

k2

4ẋK = 0.

Let us emphasize that proving first (2.25) is essential to justify rigor-
ously (2.22).
Finally, Section 6 is devoted to the proof of an inversion formula involving

Operator GH. Some basic properties of Hermite functions and of Wigner
transform of Hermite functions are recalled in Appendix. There, for the
reader convenience, we also prove the decay result stated in Lemma 2.3.

3. The uniform continuity of the Fourier transform of
an L1 function

The key to the proof of Theorem 2.7 is a refined study of the behavior
of functions W( · , Y ) defined by (2.11) on the set H̃d. Of course, a special
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attention will be given to the neighborhood of Ĥd0. This is the aim of the
following proposition.

Proposition 3.1. — Let R0 be a positive real number, and let

B(R0) def=
{

(n,m, λ) ∈ H̃d, |λ|(|n+m|+ d) + |n−m| 6 R0

}
×
{
Y ∈ T ?Rd, |Y | 6 R0

}
·

The function W( · , Y ) restricted to B(R0) is uniformly continuous with
respect to ŵ, that is for all ∀ ε > 0, there exists αε > 0 such that

∀ (ŵj , Y ) ∈ B(R0) , d̂(ŵ1, ŵ2) < αε =⇒
∣∣W(ŵ1, Y )−W(ŵ2, Y )

∣∣ < ε.

Furthermore, for any (ẋ, k) in Ĥd0, we have

lim
ŵ→(ẋ,k)

W(ŵ, Y ) = Kd(ẋ, k, Y )

where the function Kd is defined on Ĥd0 × T ?Rd by

(3.1) Kd(ẋ, k, Y ) def=
∑

(`1,`2)∈Nd×Nd

(iη)`1

`1!
y`2

`2! F`1,`2(k) (sgn ẋ)`1 |ẋ|
`1+`2

2

with F`1,`2(k) def=
∑

`′16`1,`
′
26`2

k+`1−2`′1=`2−2`′2

(−1)`2−`′2

(
`1
`′1

)(
`2
`′2

)
.

Above, sgn ẋ designates the (common) sign of all components of ẋ, and
|ẋ| def=(|ẋ1|, . . . , |ẋd|).

Proof. — Let us first perform the change of variable z′ = −y+z in (2.11)
so as to get

(3.2)
W(ŵ, Y ) = e2iλ〈η,y〉 W̃(ŵ, Y ) with

W̃(ŵ, Y ) def=
∫
Rd

e2iλ〈η,z′〉Hn,λ(2y + z′)Hm,λ(z′)dz′.

Obviously, the uniform continuity of W reduces to that of W̃. Moreover,
as the integral defining W̃ is a product of d integrals on R (of modulus
bounded by 1), it is enough to study the one dimensional case.

Let us start with the case where both ŵ1 = (n1,m1, λ1) and ŵ2 =
(n2,m2, λ2) are relatively far away from Ĥ1

0. As we need only to consider
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the situation where ŵ1 and ŵ2 are close to one another, one may assume
that (n1,m1) = (n2,m2) = (n,m). Then we can write that

W̃(ŵ1, Y )− W̃(ŵ2, Y )

=
∫
R

(
e2iλ1ηz − e2iλ2ηz

)
Hn,λ1(2y + z)Hm,λ1(z)dz

+
∫
R

e2iλ2ηz
(
Hn,λ1(2y + z)−Hn,λ2(2y + z)

)
Hm,λ1(z)dz

+
∫
R

e2iλ2ηzHn,λ2(2y + z)
(
Hm,λ1(z)−Hm,λ2(z)

)
dz.

Clearly, we have

(3.3)
∣∣∣∣∫

R

(
e2iλ1ηz − e2iλ2ηz

)
Hn,λ1(2y + z)Hm,λ1(z)dz

∣∣∣∣
6 2|λ1|−

1
2R0|λ2 − λ1| ‖MHm‖L2 .

Next, let us study the continuity of the map λ 7−→ Hn,λ in the case
d = 1. One may write

Hn,λ1(x)−Hn,λ2(x)

=
(
|λ1|

1
4 − |λ2|

1
4
)
Hn(|λ1|

1
2x)

+ |λ2|
1
4
(
Hn(|λ1|

1
2x)−Hn(|λ2|

1
2x)
)

=
(
|λ1|

1
4 − |λ2|

1
4
)
Hn(|λ1|

1
2x)

+ |λ2|
1
4 (|λ1|

1
2 − |λ2|

1
2 )x

∫ 1

0
H ′n
(
(|λ2|

1
2 + t(|λ1|

1
2 − |λ2|

1
2 ))x

)
dt.

If
∣∣|λ1|

1
2 − |λ2|

1
2
∣∣ 6 1

2 |λ2|
1
2 , then the changes of variable x′ = |λ1|

1
2x and

x′ = (|λ2|
1
2 + t(|λ1|

1
2 − |λ2|

1
2 ))x, respectively, together with the fact that

the Hermite functions have L2 norms equal to 1 ensure that

(3.4) ‖Hn,λ1 −Hn,λ2‖L2 6

∣∣|λ1|
1
4 − |λ2|

1
4
∣∣

|λ1|
1
4

+ 4
∣∣|λ1|

1
2 − |λ2|

1
2
∣∣

|λ2|
1
2

‖MH ′n‖L2 .

Using (A.4), we get that

MH ′n = 1
2
(√

n(n− 1)Hn−2 −Hn −
√

(n+ 1)(n+ 2)Hn+2
)
.

As the family of Hermite functions is an orthonormal basis of L2, one can
write that

4‖MH ′n‖2L2 = n(n− 1) + 1 + (n+ 1)(n+ 2) = 2n2 + 2n+ 3.
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Hence, one can conclude that if
∣∣|λ1| − |λ2|| 6 1

2 |λ2|
1
2
(
|λ1|

1
2 + |λ2|

1
2
)
and

(|λ1|+ |λ2|)|n+m|+ |λ1|+ |λ2|+ |Y | 6 R0 then

(3.5)
∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )

∣∣ 6 C(R0)|λ1 − λ2|
(

1
|λ1|

+ 1
λ2

1

)
·

That estimate fails if the above condition on
∣∣|λ1| − |λ2|

∣∣ is not satisfied.
To overcome that difficulty, we need the following lemma.

Lemma 3.2. — The series∑
`1,`2

(sgnλ)`1 |λ|
`1+`2

2
(2iη)`1(2y)`2

`1!`2!
(
M `1Hm|∂`2Hn

)
L2(Rd)

converges normally towards W̃ on B(R0).

Proof. — Again, as Hermite functions in dimension d are tensor prod-
ucts of one-dimensional Hermite functions, it is enough to prove the above
lemma in dimension 1. Now, using the expansion of the exponential func-
tion and Lebesgue theorem, we get that for any fixed (ŵ, Y ) in H̃1 × T ?R,

W̃(ŵ, Y ) =
∞∑
`1=0

1
`1! (2iλη)`1

∫
R
Hn,λ(2y + z)z`1Hm,λ(z)dz

=
∞∑
`1=0

(sgnλ)`1
(2iη)`1

`1! |λ|
`1
2

∫
R
Hn,λ(2y + z)(M `1Hm)λ(z)dz.(3.6)

Let us prove that the series converges for the supremum norm on B(R0).
Clearly, (A.4) implies that for all integers ` > 1 and m in N,

‖(
√

2M)`Hm‖L2(R) 6
√
m ‖(
√

2M)`−1Hm−1‖L2(R)

+
√
m+ 1 ‖(

√
2M)`−1Hm+1‖L2(R),

which, by an obvious induction yields for all (`1,m) in N2,

(3.7) ‖M `1Hm‖L2(R) 6 (2m+ 2`1)
`1
2 .

Hence the generic term of the series of (3.6) can be bounded by:

W`1(ŵ) def= (2
√

2R0)`1

`1! |λ|
`1
2 (m+ `1)

`1
2 .

Let us observe that, because |λ|m and |λ| are less than R0, we have

W`1+1(ŵ)
W`1(ŵ) = 2

√
2R0

`1 + 1
√
|λ|(m+ `1 + 1)

(
1 + 1

m+ `1

) `1
2

6
2
√

2eR0

`1 + 1
√
R0
(
1 +

√
`1 + 1

)
.
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This implies that the series converges with respect to the supremum norm
on B(R0).

Next, for fixed `1, we want to expand

|λ|
`1
2

∫
R
Hn,λ(2y + z)(M `1Hm)λ(z)dz

as a series with respect to the variable y. To this end, we just have to
expand the real analytic Hermite functions as follows:

Hn,λ(z + 2y) =
∞∑
`2=0

(2y)`2

`2! |λ|
`2
2 (H(`2)

n )λ(z).

Then we have to study (for fixed `1) the convergence of the series with
general term,

W`1,`2(ŵ, Y ) def= (2y)`2

`2! |λ|
`2
2
(
H(`2)
n |M `1Hm

)
L2 .

Using again (A.4), we see that

‖H(`2)
n ‖L2(R) 6 (2n+ 2`2)

`2
2 .

Hence, arguing as above, we get for any (ŵ, Y ) in B(R0),

W`1,`2(ŵ, Y ) 6 2
`1
2 (m+`1)

`1
2 W̃`2(ŵ, Y )

with W̃`2(ŵ, Y ) def= (2
√

2R0)`2

`2! |λ|
`2
2 (n+`2)

`2
2 ,

and it is now easy to complete the proof of the lemma. �

Reverting to the proof of the continuity of W̃ in the neighborhood of Ĥd0,
the problem now consists in investigating the behavior of the function

H`1,`2 :
{

H̃1 −→ R
ŵ = (n,m, λ) 7−→ |λ|

`1+`2
2
(
M `1Hm|H(`2)

n

)
L2(R)

when λ tends to 0 and λ(n+m)→ ẋ for fixed k def= m− n.
From Relations (A.3), we infer that

H`1,`2(ŵ) = 2−(`1+`2) |λ|
`1+`2

2
(
(A+ C)`1Hm|(A− C)`2Hn

)
L2(R).

The explicit computation of (A±C)` is doable but tedious and fortunately
turns out to be useless when λ tends to 0. Indeed, we have the following
lemma:
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Lemma 3.3. — A constant C`(R0) (depending only on R0 and `) exists
such that, for any (n, λ) with λ > 0 and λn 6 R0, we have (with the
convention that Hp = 0 if p < 0):

∥∥∥∥λ `2(A± C2

)`
Hn−

(
λn

2

) `
2 ∑̀
`′=0

(±1)`−`
′
(
`

`′

)
Hn+`−2`′

∥∥∥∥
L2(R)

6 C`(R0)λ 1
2 .

Proof. — Let Vn,` be the vector space generated by (Hn+`′)−`6`′6`,
equipped with the L2(R)-norm. Let

Rn,`
def= λ

`
2 (A± C)`Hn − (2λn) `2

∑̀
`′=0

(±1)`−`
′
(
`

`′

)
Hn+`−2`′ .

Formulae (A.2) guarantee that Rn,` is in Vn,`. Let us now prove by induc-
tion on ` that

(3.8) ‖Rn,`‖Vn,` 6 C`(R0)λ 1
2 .

In the case when ` equals 1, by definition of A and C, we have

λ
1
2 (A± C)Hn = λ

1
2
(√

2nHn−1 ±
√

2n+ 2Hn+1
)

=
√

2λn(Hn−1 ±Hn+1)± 2
√
λ

√
2n+ 2 +

√
2n
Hn+1

and (3.8) is thus obvious.
Let us now observe that, for any `′ in {−`, . . . , `}, we have

λ
1
2 ‖AHn+`′‖L2(R) =

√
2λ(n+ `′) ‖Hn+`′−1‖L2(R) and

λ
1
2 ‖CHn+`′‖L2(R) =

√
2λ(n+ `′ + 1) ‖Hn+`′+1‖L2(R).

This gives that for all λ(n+ 1) 6 R0,

(3.9)
∥∥λ 1

2 (A± C)
∥∥
L(Vn,`;Vn,`+1) 6 C`(R0).

Let us assume that (3.8) holds for some `. Inequality (3.9) implies that

(3.10)
∥∥λ 1

2 (A± C)Rn,`
∥∥
Vn,`+1

6 λ
1
2C`(R0).
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Then, for any `′ in {0, . . . , `}, we have

λ
1
2 (A± C)Hn+`−2`′ = λ

1
2
(√

2n+ 2`− 4`′Hn+`−2`′−1

±
√

2n+ 2`− 4`′ + 2Hn+`−2`′+1
)

=
√

2λn
(
Hn+`+1−2(`′+1) ±Hn+`+1−2`′

)
+ 2λ 1

2 (`− 2`′)√
2n+ 2`− 4`′ +

√
2n
Hn+`−2`′−1

± 2λ 1
2 (`− 2`′ + 1)√

2n+ 2`− 4`′ + 2 +
√

2n
Hn+`−2`′+1 ·

We deduce that for any `′ in {0, . . . , `},∥∥λ 1
2 (A± C)Hn+`−2`′ −

√
2λn

(
Hn+`+1−2(`′+1) ±Hn+`+1−2`′

)∥∥
Vn,`+1

6 C`+1(R0)λ 1
2 .

Using (3.10) gives∥∥λ `+1
2 (A± C)`+1Hn − (2λn)

`+1
2 Σn,`

∥∥
L2(R) 6 C`+1(R0)λ 1

2

with Σn,`
def=
∑̀
`′=0

(±1)`−`
′
(
`

`′

)(
Hn+`+1−2(`′+1) ±Hn+`+1−2`′

)
.

Now, Pascal’s rule ensures that

Σn,` =
`+1∑
`′=1

(±1)`+1−`′
(

`

`′−1

)
Hn+`+1−2`′+

∑̀
`′=0

(±1)`+1−`′
(
`

`′

)
Hn+`+1−2`′

=
`+1∑
`′=0

(±1)`+1−`′
(
`+1
`′

)
Hn+`+1−2`′ .

The lemma is proved. �

From this lemma, we can deduce the following corollary.

Corollary 3.4. — For any (`1, `2) in N2 and R0 > 0, there exists a
constant C`1,`2(R0) such that for all (n, n+k, λ) in H̃1 with |λn|+|k|+|λ| 6
R0, we have∣∣∣∣H`1,`2(ŵ)− F`1,`2(k)

(
|λ|n

2

) `1+`2
2
∣∣∣∣ 6 C`1,`2(R0)|λ| 12

with F`1,`2(k) def=
∑

`′16`1,`
′
26`2

k+`1−2`′1=`2−2`′2

(−1)`2−`′2

(
`1
`′1

)(
`2
`′2

)
·
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Proof. — Lemma 3.3 implies that

∣∣∣∣H`1,`2(ŵ)−
(
|λ|n

2

) `2
2
(
|λ|(n+k)

2

) `1
2

×
∑
`′16`1
`′26`2

(−1)`2−`′2

(
`1
`′1

)(
`2
`′2

)(
Hn+k+`1−2`′1 |Hn+`2−2`′2

)
L2

∣∣∣∣
6 C`1,`2(R0)|λ| 12 .

Now, let us notice that

(|λ|(n+ k))
`1
2 − (|λ|n)

`1
2

= |λ|k√
|λ|n+

√
|λ|(n+ k)

`1−1∑
`′1=0

√
|λ|n

`′1
√
|λ|(n+ k)

`1−1−`′1
.

Hence it is clear that for fixed k in Z such that |k| 6 R0, we have, for |λ| 6
R0 and |nλ| 6 R0,∣∣(|λ|n)

`2
2 (|λ|(n+ k))

`1
2 − |λn|

`1+`2
2
∣∣ 6 C`1,`2(R0)|λ| 12 .

Thanks to (2.7), we conclude the proof. �

Conclusion of the proof of Proposition 3.1. — Consider a positive real
number ε. Recall that

W̃(ŵ, Y ) =
∑
`1,`2

(sgnλ)`1
(2iη)`1(2y)`2

`1!`2! H`1,`2(ŵ).

Clearly, it suffices to prove the uniform continuity of W̃ for all subset of
Ĥd corresponding to some fixed value k of m − n. Now, considering ŵ1 =
(n1, n1 + k, λ1) and ŵ2 = (n2, n2 + k, λ2), Lemma 3.2 implies that for all
ε > 0, there exist two integers L1,ε and L2,ε such that

∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )
∣∣ 6 ε

4 +
∑

`16L1,ε
`26L2,ε

(2|η|)`1(2|y|)`2

`1!`2!

×
∣∣(sgnλ1)`1H`1,`2(n1, n1 + k, λ1)− (sgnλ2)`1H`1,`2(n2, n2 + k, λ2)

∣∣ .
Let Cε(R0) be the supremum for `1 6 L1,ε and `2 6 L2,ε of all con-
stants C`1,`2(R0) which appear in Corollary 3.4. Then |λ1|+|λ2| 6 A(ε,R0)
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implies that

(3.11)
∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )

∣∣ 6 ε

2 +
∑

`16L1,ε
`26L2,ε

(2R0)`1+`2

`1!`2! |F`1,`2(k)|

×
∣∣∣∣(sgnλ1)`1

∣∣∣∣λ1n1

2

∣∣∣∣
`1+`2

2

− (sgnλ2)`1

∣∣∣∣λ2n2

2

∣∣∣∣
`1+`2

2
∣∣∣∣

with A(ε,R0) def= e−8R0 ε2

32C2
ε (R0) ·

If `1 + `2 = 0 then the last term of the above inequality is 0. If `1 + `2 is
positive, as |F`1,`2(k)| is less than 2`1+`2 , we have, using (3.11),

(3.12) |λ1|+ |λ2| 6 A(ε,R0) and |λ1n1|+ |λ2n2| 6
1
16ε

2 e−8R0

=⇒
∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )

∣∣ 6 ε.
In the case when |λ1n1|+ |λ2n2| is greater than 1

16ε
2 e−8R0 then if∣∣λ1n1 − λ2n2

∣∣ 6 1
32ε

2 e−8R0

then λ1 and λ2 have the same sign. The sum in the right-hand side term is
finite, and it is clear that each term converges uniformly to 0 if λ2n2 tends
to λ1n1. Thus a positive real number ηε exists such that

(3.13) |λ1|+ |λ2| 6 A(ε,R0) and |λ1n1 − λ2n2| 6 ηε

=⇒
∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )

∣∣ 6 ε.
Finally, we have to consider the case where |λ1|+ |λ2| > A(ε,R0). With no
loss of generality, one can assume that λ2 > 1

2A(ε,R0). Thus, if |λ1 − λ2|
is less than 1

4A(ε,R0) we have λ1 > 1
4A(ε,R0) and we can apply Inequal-

ity (3.5) which gives (supposing that A(ε,R0) 6 1):∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )
∣∣ 6 2C(R0)

(
1
4A(ε,R0)

)−2
|λ1 − λ2|.

Together with (3.12), this gives, if (nj ,mj , λj) are in B(R0),

|λ1 − λ2| 6
εA2(ε,R0)
32C(R0) and |λ1n1 − λ2n2| < ηε

=⇒
∣∣W̃(ŵ1, Y )− W̃(ŵ2, Y )

∣∣ < ε.

The proposition is proved. �
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End of the proof of the first part of Theorem 2.7. — Because of the
integrability of f , Proposition 3.1 implies that f̂H is uniformly continuous
on H̃d, and can thus be extended to a uniformly continuous function on
the complete metric space Ĥd.
Let us finally establish that f̂H(ŵ) → 0 when ŵ goes to infinity. In the

case where f is in S(Hd), this in an obvious consequence of Lemma 2.3.
The general case of an integrable function on Hd follows by density as,
obviously, Formula (2.10) implies that the map f → f̂H is continuous from
L1(Hd) to L∞(Ĥd). �

We are now ready to establish Formula (2.21) for any integrable function
f on Hd. So let us fix some (ẋ, k) in Ĥd0, and consider a sequence (ŵp)p∈N =
(np, np + k, λp)p∈N such that

lim
p→∞

ŵp = (ẋ, k) in the sense of d̂.

According to Proposition 3.1, if we set

Kd(ẋ, k, Y ) def= lim
p→∞

W(ŵp, Y )

then the definition of f̂H on H̃d and the Lebesgue dominated convergence
theorem imply that

f̂H(ẋ, k) = lim
p→∞

f̂H(ŵp) =
∫
Hd
Kd(ẋ, k, Y )f(Y, s)dY ds .

Now, Lemma 3.2 gives

Kd(ẋ, k, Y ) =
∑
`1,`2

(2iη)`1

`1!
(2y)`2

`2! lim
p→∞

H`1,`2(ŵp)(sgnλp)`1

with H`1,`2(ŵ) def= |λ|
|`1+`2|

2
(
M `1Hm|∂`2Hn

)
L2(Rd).

If d = 1 then Corollary 3.4 implies that

lim
p→∞

H`1,`2(ŵp) = F`1,`2(k)
(
|ẋ|
4

) `1+`2
2

and, because sgn(λp) = sgn ẋ for large enough p, this guarantees (2.21) and
Formula (3.1).
Once again, as in general dimension d > 1 the termH`1,`2 may be written

as the product of d terms involving only one-dimensional Hermite functions,
the above formula still holds true (with the notation convention given in
Proposition 3.1 of course).
This concludes the proof of the first part of Theorem 2.7 and of Iden-

tity (2.21). �
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Remark 3.5. — Computing Kd will be carried out later on, in Section 5.
For the time being, let us just underline that the expression of F`1,`2(k)
which appears in (3.1) ensures that F0,0(k) = δ0,k. We thus have

(3.14) Kd(ẋ, k, 0) = Kd(0, k, Y ) = F0,0(k) = δ0,k.

Let us also notice that, denoting by 0̂ the point (0, 0) of Ĥd0, we recover the
following property:

(3.15) f̂H(0̂) =
∫
Hd
f(w)dw.

4. The case of functions that do not depend on the
vertical variable

The purpose of this section is to prove Theorem 2.8. As already pointed
out in the introduction, a key issue is to study the limit (in the sense of
weak convergence of measures) of functions which concentrate near the
set Ĥd0. This is the aim of the following lemma.

Lemma 4.1. — Let χ̂ : R→ R be integrable, compactly supported and
with integral 1. Then for any continuous function θ from Ĥd to C satisfying

(4.1) sup
(n,m,λ)∈H̃d

(
1 + |λ|(|n+m|+ d) + |n−m|

)2d+1|θ(n,m, λ)| <∞,

we have
lim
ε→0

∫
Ĥd
ε−1χ̂(ε−1λ)θ(n,m, λ)dŵ = 〈µĤd0

, θ〉

where the measure in the right-hand side has been defined in (2.24).

Proof. — Let us first prove the result if the function θ is supported in
the closure of

BK
def=
{

(n,m, λ) ∈ H̃d : |λ|(2|n|+ d) 6 K and |m− n| 6 K
}

for some positive K. Then we have

Iε
def=
∫
Ĥd
ε−1χ̂(ε−1λ)θ(n,m, λ)dŵ =

∑
|k|6K

(
I−ε (k) + I+

ε (k)
)

with

I±ε (k) def=
∫
R±

ε−1χ̂(ε−1λ)
(∑
n∈Nd

θ(n, n+ k, λ)
)
|λ|ddλ.

Above, we agreed that θ(n, n+ k, λ) = 0 whenever at least one component
of n + k is negative. Then the idea is to use Riemann type sums. More
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concretely, for all n in Nd and λ in R \ {0}, let us define the family of
cubes Qn,λ

def= 2λn+ 2λ[0, 1[d. It is obvious that

(4.2) Vol(Qn,λ) = (2|λ|)d and
∑
n∈Nd

1Qn,λ = 1 on (Rsgnλ)d.

From the volume property and the definition of I+
ε (k), we readily get

I+
ε (k) = 2−d

∫
R

∫
(R+)d

∑
n∈Nd

ε−1χ̂(ε−1λ)θ(n, n+ k, λ)1Qn,λ(ẋ)dẋdλ.

Let us write that

2dI+
ε (k) =

∫
R

∫
(R+)d

∑
n∈Nd

ε−1χ̂(ε−1λ)θ(ẋ, k)1Qn,λ(ẋ)dẋdλ

+
∫
R

∫
(R+)d

ε−1χ̂(ε−1λ)
∑
n∈Nd

(
θ(n, n+ k, λ)− θ(ẋ, k)

)
1Qn,λ(ẋ)dẋdλ .

Using the second property of (4.2), the fact that χ̂ is of integral 1, and that
the summation may be restricted to those indices n in Nd such that |λn| 6
K (because θ is supported in BK), we end up with

2dI+
ε (k)−

∫
(R+)d

θ(ẋ, k)dẋ

=
∫
R

∫
(R+)d

ε−1χ̂(ε−1λ)
∑
|nλ|6K

(
θ(n, n+ k, λ)− θ(ẋ, k)

)
1Qn,λ(ẋ)dẋdλ.

As θ is uniformly continuous on Ĥd (being compactly supported), we have

∀ η > 0 , ∃ ε > 0, |2λn− ẋ|+ |λ| < ε =⇒
∣∣θ(n, n+ k, λ)− θ(ẋ, k)

∣∣ < η.

One can thus conclude that for any η > 0, if ε is small enough then we
have∣∣∣∣2dI+

ε (k)−
∫

(R+)d
θ(ẋ, k)dẋ

∣∣∣∣
6 η

∫
R
ε−1χ̂(ε−1λ)

( ∑
|nλ|6K

∫
(R+)d

1Qn,λ(ẋ)dẋ
)

dλ.

Using once again that the measure of Qn,λ is (2|λ|)d and noting that the
set of indices n in Nd for which |nλ| 6 K is bounded by CdKd|λ|−d for
some constant Cd depending only on d, we conclude that for small enough
ε, we have

(4.3)
∣∣∣∣I+
ε (k)− 2−d

∫
(R+)d

θ(ẋ, k)dẋ
∣∣∣∣ 6 CdηKd.
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Of course, handling I−ε (k) is strictly similar. Because the set of k in Zd
with |k| 6 K is finite (and independent of ε), this proves the lemma in the
case where θ is compactly supported.
To handle the general case, one may fix some cut-off function ψ : R+ →

R+ with value 1 on [0, 1] and supported in [0, 2], and, for all K > 0,
decompose θ into

θ = θK + θK with θK(ŵ) def= ψ(K−1(|λ|(2|n|+ d) + |m− n|))θ(ŵ).

The first part of the proof applies to θK and for all positive real number η,
one may thus find some εK,η so that

(4.4)
∣∣∣∣∫

Ĥd
ε−1χ̂(ε−1λ)θK(ŵ)dŵ − 〈µĤd0

, θK〉
∣∣∣∣ 6 η for ε < εK,η.

To bound the term corresponding to θK , we shall use the fact that Condi-
tion (4.1) ensures that there exists some constant C so that

(4.5) ∀ (ẋ, k) ∈ Ĥd0 , |θ(ẋ, k)| 6 C(1 + |ẋ|+ |k|)−2d−1.

Now, we have, denoting Rd∓
def=(R−)d ∪ (R+)d,

∫
Ĥd0
|θK(ẋ, k)|dµĤd0

(ẋ, k)

6 2−d
( ∑
|k|>K

∫
Rd∓
|θ(ẋ, k)|dẋ+

∑
k∈Zd

∫
|ẋ|>K

|θ(ẋ, k)|dẋ
)
·

In light of (4.5) and making an obvious change of variables, we get

∑
|k|>K

∫
Rd∓
|θ(ẋ, k)|dẋ 6 C

∑
|k|>K

∫
Rd+

(1 + |ẋ|+ |k|)−2d−1dẋ

6 C
∑
|k|>K

(1 + |k|)−d−1
∫
Rd+

(1 + |ẏ|)−2d−1dẏ

6 CK−1.
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Likewise,∑
k∈Zd

∫
|ẋ|>K

|θ(ẋ, k)|dẋ 6 C
∑
k∈Zd

∫
|ẋ|>K

(1 + |ẋ|+ |k|)−2d−1dẋ

6 C
∑
k∈Zd

1
(1+|k|)d+1

∫
|ẏ|> K

1+|k|

dẏ
(1 + |ẏ|)2d+1

6 C
∑
k∈Zd

1
(1+|k|)d+1

1
(1 +K/(1 + |k|))d+1

6 CK−1.

Therefore, if we take K large enough then one may ensure that

(4.6)
∣∣〈µĤd0

, θK〉
∣∣ 6 η.

Finally,∣∣∣∣∫
Ĥd
ε−1χ̂(ε−1λ)θK(ŵ)dŵ

∣∣∣∣ 6 J 1
K(ε) + J 2

K(ε) with

J 1
K(ε) def= ε−1

∫
R

∑
|k|>K

∑
n∈Nd

χ̂(ε−1λ)|θ(ŵ)| |λ|ddλ

and J 2
K(ε) def= ε−1

∫
R

∑
k∈Zd

∑
|nλ|>K

χ̂(ε−1λ)|θ(ŵ)| |λ|ddλ.

Because θ satisfies (4.1), we have

J 1
K(ε) 6 C

∑
|k|>K

∑
n∈Nd

∫
R
ε−1χ̂(ε−1λ)(1 + |k|+ |λn|)−2d−1 |λ|ddλ.

Clearly, because the sum below has O(|k|/|λ|)d terms, we may write∫
R
ε−1χ̂(ε−1λ)

∑
|nλ|6|k|

(1 + |k|+ |λn|)−2d−1 |λ|ddλ 6 C(1 + |k|)−d−1

and, similarly, because∑
|nλ|>|k|

|λ|d(1 + |k|+ |λn|)−2d−1 6 C
∑
|nλ|>|k|

|λ|d(1 + |λn|)−2d−1

6 C(1 + |k|)−d−1,

we get∫
R
ε−1χ̂(ε−1λ)

∑
|nλ|>|k|

(1 + |k|+ |λn|)−2d−1 |λ|ddλ 6 C(1 + |k|)−d−1.
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Therefore
J 1
K(ε) 6 CK−1.

Proving that J 2
K(ε) 6 CK−1 relies on similar arguments. Putting together

with (4.4) and (4.6), it is now easy to conclude the proof of the lemma. �
Proof of Theorem 2.8. — Let χ in S(R) have a compactly supported

Fourier transform, and value 1 at 0 (hence the integral of χ̂ is 2π). Let θ :
Ĥd → C be continuous and compactly supported, and set

Iε(g, θ)
def= 〈FH(g ⊗ χ(ε·)), θ〉.

By definition of the Fourier transform of L1 functions, one may write:

Iε(g, θ) =
∫
Hd×Ĥd

e−isλ χ(εs)W(ŵ, Y )g(Y )θ(ŵ)dY dsdŵ

=
∫
Ĥd

1
ε
χ̂

(
λ

ε

)
G(ŵ)θ(ŵ)dŵ

with G(ŵ) def=
∫
T?Rd

W(ŵ, Y )g(Y )dY.

As the function g is integrable on T ?Rd, Proposition 3.1 implies that
the (numerical) product Gθ is a continuous compactly supported function
on Ĥd. Lemma 4.1 applied to this function Gθ implies that

lim
ε→0
Iε(g, θ) = 2π

∫
Ĥd0
GHg(ẋ, k)θ(ẋ, k)dµĤd0

(ẋ, k).

In other words, the measure FH(g⊗χ(ε·))dŵ converges weakly to the mea-
sure 2π(GHg)dµĤd0

which is exactly Theorem 2.8. �

5. Computing the kernel K

We have already seen in Remark 3.5 that Kd(0, k, Y ) = δ0,k for all Y
in T ?Rd, so let us now prove the symmetry identities pointed out in the
introduction. The first relation in (2.26) stems from the observation that
for all (n,m, λ) in H̃d and Y in T ?Rd, we have

W(m,n, λ,−Y ) =W(n,m, λ, Y ).

Therefore, for any (ẋ, k) in Ĥd0 passing to the limit (n,m, λ)→ (ẋ, k) yields

(5.1) Kd(ẋ,−k,−Y ) = Kd(ẋ, k, Y ).

In order to establish the second symmetry relation for Kd, it suffices to
notice that

∀ (n,m, λ, Y ) ∈ H̃d × T ?Rd , W(n,m, λ, Y ) = (−1)|n+m|W(m,n,−λ, Y ).
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and to pass to the limit (n,m, λ)→ (ẋ, k).
The last relation in (2.26) follows from having (n,m, λ) tend to (ẋ, k) in

(5.2) W(n,m,−λ, Y ) =W(n,m, λ, Y ).

Identity (2.27) is a consequence of Relation (2.13). Indeed, observe that for
any smooth function f : T ?Rd → C, we have

e−isλ ∆H
(
eisλ f(Y )

)
= ∆Y f(Y ) + 4iλ

d∑
j=1
Tjf(Y )− 4λ2|Y |2f(Y )

with Tj
def= ηj∂yj − yj∂ηj .

Taking f(Y ) = W(ŵ, Y ), using (2.13) and having (n,m, λ) tend to (ẋ, k)
yields

(5.3) ∆YKd(ẋ, k, Y ) = −4|ẋ|Kd(ẋ, k, Y ).

Relation (2.28) is a consequence of (A.10) which implies in particular
that

|λ|(nj −mj)W(ŵ, Y ) = iλTjW(ŵ, Y ).
Passing to the limit when (n,m, λ) tends to (ẋ, k) ensures

(5.4) ikjKd(ẋ, k, Y ) = sgn(ẋ)TjKd(ẋ, k, Y )

which is exactly (2.28).
Proving Identity (2.29) is bit more involved. To achieve it, let us fix some

function α of S(R) and two functions g1 and g2 of S(T ?Rd). By definition
of convolution and Fourier transform, we have

FH
(
(g1 ⊗ α) ? (g2 ⊗ α)

)
(ŵ)

=
∫
Hd×Hd

e−isλW(ŵ, Y )g1(Y −Y ′)α
(
s− s′− 2σ(Y ′, Y )

)
g2(Y ′)α(s′)dwdw′.

Integrating first with respect to s and next with respect to s′ yields

FH
(
(g1 ⊗ α) ? (g2 ⊗ α)

)
(ŵ)

= α̂2(λ)
∫

(T?Rd)2
e2iλσ(Y,Y ′)W(ŵ, Y )g1(Y − Y ′)g2(Y ′)dY dY ′.

From the fact that σ is symplectic, we infer that

(5.5) FH
(
(g1 ⊗ α) ? (g2 ⊗ α)

)
(ŵ)

= α̂2(λ)
∫

(T?Rd)2
e2iλσ(Y1,Y2)W(ŵ, Y1 + Y2)g1(Y1)g2(Y2)dY1dY2.
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Of course, because both g1⊗α and g2⊗α are in S(Hd), we are guaranteed,
thanks to the convolution formula (2.19), that

FH
(
(g1 ⊗ α) ? (g2 ⊗ α)

)
(n, n+ k, λ) = G12

with G12
def=
(
FH(g1 ⊗ α) · FH(g2 ⊗ α)

)
(n, n+ k, λ).

Now, we have, setting k′ = n+ k − ` in the second line,

G12 =
∑
`∈Nd
FH(g1 ⊗ α)(n, `, λ)FH(g2 ⊗ α)(`, n+ k, λ)

= α̂2(λ)
∫

(T?Rd)2

∑
k′6n+k

W(n, n+ k − k′, λ, Y1)

×W(n+ k − k′, n+ k, λ, Y2)g1(Y1)g2(Y2)dY1dY2.

Hence, reverting to Relation (5.5) and keeping in mind that the above
computations hold true for any functions α, g1 and g2 in the Schwartz
class, one may conclude that

e−2iλσ(Y1,Y2)W(n, n+ k, λ, Y1 + Y2)

=
∑
k′∈Zd

W(n, n+ k − k′, λ, Y1)W(n+ k − k′, n+ k, λ, Y2).

Taking advantage of the decay of W with respect to the variable k given
by Proposition A.1, we can pass to the limit for 2λn tending to ẋ and λ

tending to 0. This gives

(5.6) Kd(ẋ, k, Y1 + Y2) =
∑
k′∈Zd

Kd(ẋ, k − k′, Y1)Kd(ẋ, k′, Y2)

which is the generalization of Formula (2.29) in any dimension.
In order to fully benefit from Relations (2.27), (2.28) and (2.29) so as

to eventually compute the function K, it is wise to introduce the following
function K̃ on R× T× T ?R, where T denotes the one-dimensional torus:

(5.7) K̃(ẋ, z, Y ) def=
∑
k∈Z
K(ẋ, k, Y ) eikz .

From Proposition A.1, after having (n,m, λ) tend to (ẋ, k), we infer that
for all (ẋ, k, Y ) in R× Z× T ?R, we have, denoting 〈Y 〉 def=

√
1 + |Y |2,

(5.8) ∀ N ∈ N , |K(ẋ, k, Y )| 6 CN
(
〈Y 〉(1 + |ẋ|) 1

2

1 + |k|

)N
·

Thus the series (5.7) defines a function K̃ on R× T× T ?R.
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Furthermore, from (2.29) we infer immediately that

(5.9) K̃(ẋ, z, Y1 + Y2) = K̃(ẋ, z, Y1) K̃(ẋ, z, Y2),

and, in light of (5.1), we discover that for any (ẋ, z, Y ) in R× T× T ?R,

(5.10) K̃(ẋ, z,−Y ) = K̃(ẋ, z, Y ).

Combined with (3.14) and (5.9) this implies that for any couple (ẋ, z)
in R × T, the function Y 7→ K̃(ẋ, z, Y ) is a character of R2. Identifying
T ?R with R2, we thus conclude that there exists a function Φ = (Φy,Φη)
from R× T to R2 such that

K̃(ẋ, z, Y ) = eiY ·Φ(ẋ,z) = ei(yΦy(ẋ,z)+ηΦη(ẋ,z)) .

Taking advantage of (5.3) which implies that K is a smooth function of Y,
and arguing as for proving (5.8), we discover that for all multi-index α =
(α1, α2) in N2 and all (ẋ, Y ) in some bounded set B, we have

∀ N ∈ N , sup
(ẋ,Y )∈B
k∈Zd

(1 + |k|)N |∂αẋ,YK(ẋ, k, Y )| <∞.

Therefore invoking Relation (2.28), we deduce that for any positive ẋ

∂zK̃(ẋ, z, Y ) = η∂yK̃(ẋ, z, Y )− y∂ηK̃(ẋ, z, Y )

which entails that ∂zΦ(ẋ, z) = RΦ(ẋ, z) where R denotes the rotation of
angle π/2. Hence

Φ(ẋ, z) = R(z)Φ̃(ẋ)
where R(z) denotes the rotation of angle z. Now, Relation (5.3) ensures
that |Φ̃(ẋ)| = 2|ẋ| 12 , and thus there exists a function φ from R to the unit
circle of R2 so that for positive ẋ

(5.11) K̃(ẋ, z, Y ) = e2i|ẋ|
1
2 Y ·(R(z)φ(ẋ)) .

Let us finally establish Identity (2.30). It relies on the study of the action
of the Fourier transform on the weight function M2 defined by

(M2f)(Y, s) def= |Y |2f(Y, s).

For any functions g in S(T ?R) and ψ : R+×Z→ R, smooth and compactly
supported in [r0,∞[×Z for some positive real number r0, let us define

Θψ(ŵ) def= ψ
(
|λ|(n+m+ 1),m− n

)
and

B(g, ψ) def=
∫
T?R×Ĥ1

0

|Y |2K(ẋ, k, Y )g(Y )ψ(ẋ, k)dY dµĤ1
0
(ẋ, k).
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Lemma 4.1 implies that if χ̂ : R→ R is integrable, supported in [−1, 1] and
with integral 1, then B(g, ψ) = limε→0 Bε(g, ψ) with

Bε(g, ψ)

def=
∫
T?R

g(Y )
∫
R

∑
(n,m)∈N2

|Y |2W(n,m, λ, Y )Θψ(n,m, λ)1
ε
χ̂

(
λ

ε

)
|λ|dλdY.

The following lemma gives a formula for |Y |2W(ŵ, Y ).

Lemma 5.1. — For all ŵ in H̃d and Y in T ?Rd, we have

|Y |2W(ŵ, Y ) = −∆̂W( · , Y )(ŵ)

with

(5.12) ∆̂θ(ŵ) def= − 1
2|λ| (|n+m|+ d)θ(ŵ)

+ 1
2|λ|

d∑
j=1

{√
(nj + 1)(mj + 1) θ(ŵ+

j ) +√njmj θ(ŵ−j )
}

where ŵ±j
def=(n± δj ,m± δj , λ).

Proof. — From the definition of W and integrations by parts, we get

|Y |2W(ŵ, Y ) =
∫
Rd

(
|y|2 − 1

4λ2 ∆z

)(
e2iλ〈η,z〉)Hn,λ(y+z)Hm,λ(−y+z)dz

=
∫
Rd

e2iλ〈η,z〉 |λ| d2 I(ŵ, y, z)dz

with I(ŵ, y, z) def=
(
|y|2 − 1

4λ2 ∆z

)(
Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

)
.

Using Leibniz formula, the chain rule and 4|y|2 = |y + z|2 + |y − z|2 +
2(y + z) · (y − z), we get

I(ŵ, y, z) =− 1
4λ2

(
(∆z − λ2|y + z|2)Hn(|λ| 12 (y + z))

)
Hm(|λ| 12 (−y + z))

− 1
4λ2

(
(∆z − λ2|y − z|2)Hm(|λ| 12 (−y + z))

)
Hn(|λ| 12 (y + z))

− 1
2|λ|

d∑
j=1

(∂jHn)(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))

− 1
2(z + y) · (z − y)Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z)).
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Using (2.9), we end up with

I(ŵ, y, z) = 1
2|λ| (|n+m|+ d)Hn(|λ| 12 (y + z))Hm(|λ| 12 (−y + z))

− 1
2|λ|

d∑
j=1

{
(∂jHn)(|λ| 12 (y + z))(∂jHm)(|λ| 12 (−y + z))

+ (MjHn)(|λ| 12 (y + z))(MjHm)(|λ| 12 (−y + z))
}
·

Then, taking advantage of (A.4), we get Identity (5.12). �

Let us resume to the proof of Identity (2.30). Using the above lemma for
d = 1 and performing obvious changes of variable in the sum give

Bε(g, ψ)

=−
∫
T?R

g(Y )
∫
R

∑
(n,m)∈N2

(∆̂W( · , Y ))(n,m, λ)Θψ(n,m, λ)1
ε
χ̂

(
λ

ε

)
|λ|dλdY

=−
∫
T?R

g(Y )
∫
R

∑
(n,m)∈N2

W(n,m, λ, Y )(∆̂Θψ)(n,m, λ)1
ε
χ̂

(
λ

ε

)
|λ|dλdY.

The key to proving the convergence of Bε for ε → 0 is the asymptotic
description of the operator ∆̂ when λ tends to 0, given in the following
lemma:

Lemma 5.2. — Let ψ be a smooth function compactly supported in the
set [r0,∞[×Z for some positive real number r0. Then

∆̂Θψ(n,m, λ) 1∼ΘLψ(n,m, λ)

with (Lψ)(ẋ, k) def= ẋψ′′(ẋ, k) + ψ′(ẋ, k)− k2

4ẋψ(ẋ, k)

where the notation Θ1
p∼Θ2 means that for any positive integer N , there

is a constant CN,p such that for all (n,m, λ) in N2×]0,∞[ satisfying

λ(n+m) > r0

2 and λ 6 λ0/(1 + |n−m|),

with a sufficiently small positive real number λ0 depending only on r0, we
have∣∣Θ1(n,m, λ)−Θ2(n,m, λ)

∣∣ 6 CN,p λp (1 + |λ|(|n+m|+ 1) + |m− n|
)−N

.
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Proof. — By definition of the operator ∆̂, and for λ > 0, we have, de-
noting k def= m− n and y def= λ(n+m),

− 2λ2∆̂Θψ(ŵ) = (y + λ)ψ(y + λ, k)

− λ
√

(n+ 1)(m+ 1)ψ(y + 3λ, k)− λ
√
nmψ(y − λ, k).

Using that

λ2nm = λ2

4 (n+m)2 − λ2

4 (m− n)2 = y2

4 −
λ2

4 k2 ,

we get that

λ
√

(n+ 1)(m+ 1) = y

2

√
1 + 4λ

y
+
(

4− k2

y2

)
λ2 3∼ y

2 + λ− k2

4yλ
2

and λ
√
nm

3∼ y

2 −
k2

4yλ
2.

Writing the Taylor expansion for ψ gives (omitting the dependency with
respect to k for notational simplicity),

(y + λ)ψ(y + λ) 3∼ yψ(y) +
(
ψ(y) + yψ′(y))λ+

(
ψ′(y) + y

2ψ
′′(y)

)
λ2 ,

− λ
√

(n+ 1)(m+ 1)ψ(y + 3λ) 3∼−y2ψ(y)−
(
ψ(y) + 3

2yψ
′(y)

)
λ

−
(

9
4yψ

′′(y) + 3ψ′(y)− k2

4yψ(y)
)
λ2,

− λ
√
nmψ(y − λ) 3∼−y2ψ(y) + 1

2yψ
′(y)λ−

(
y

4ψ
′′(y)− k2

4yψ(y)
)
λ2.

By summation of these three identities, we get

−2λ2∆̂Θψ(ŵ) 3∼−
(

2yψ′′(y) + 2ψ′(y)− k2

2yψ(y)
)
λ2,

whence the lemma. �

From the above lemma, it is easy to complete the proof of Identity (2.30).
Indeed, we get

Bε(g, ψ) = −
∫
T?R

g(Y )
∫
R

∑
(n,m)∈N2

W(n,m, λ, Y )

× Lψ
(
|λ|(n+m),m− n

)1
ε
χ̂

(
λ

ε

)
|λ|dλdY +Rε(g, ψ),
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where the remainder Rε is such that for all N ∈ N there exists CN so that∣∣Rε(g, ψ)
∣∣ 6 CN‖g‖L1(T?Rd)

×
∑

(n,m)∈N2

∫
R
|λ|
(
1 + |λ|(|n+m|+ 1) + |m− n|

)−N 1
ε
|χ̂|
(
λ

ε

)
|λ|dλ .

Taking N large enough, we find out that∑
(n,m)∈N2

∫
R
|λ|
(
1 + |λ|(|n+m|+ 1) + |m− n|

)−N 1
ε
|χ̂|
(
λ

ε

)
|λ|dλ

6 CN

∫
R

|λ|
ε
|χ̂|
(
λ

ε

)
dλ 6 CNε.

Then Lemma 4.1 ensures

B(g, ψ) = −
∫
T?R×Ĥ1

0

K(ẋ, k, Y )g(Y )(
ẋψ′′(ẋ, k) + ψ′(ẋ, k)− k2

4ẋψ(ẋ, k)
)

dY dµĤ1
0
(ẋ, k).

Integration by parts yields

B(g, ψ) =
∫
T?R×Ĥ1

0

g(Y )
(
k2

4ẋK(ẋ, k, Y )− ∂ẋK(ẋ, k, Y )

− ẋ∂2
ẋK(ẋ, k, Y )

)
ψ(ẋ, k)dY dµĤ1

0
(ẋ, k).

Using the fact that the above equality holds true for all g in S(T ?R) and for
functions ψ smooth and compactly supported in [r0,∞[×Z for some r0 > 0,
and combining with a density argument, one can conclude to Identity (2.30)
for all positive ẋ and k in Z.
In order to complete the proof of (2.22), let us translate (2.30) in terms

of K̃. We have
1

4ẋ∂
2
z K̃ + ∂ẋ(ẋ∂ẋK̃) + |Y |2K̃ = 0.

Now, plugging the ansatz (5.11) into the above relation yields for any pos-
itive ẋ, any k in Z and any Y in T ?R,

|Y |2 =
(
Y · (R′(z)φ(ẋ))

)2 +
(
Y · (R(z)φ(ẋ)) + 2ẋY · (R(z)φ′(ẋ))

)2
− 4i
√
ẋY · (R(z)φ′(ẋ))− 2iẋ3/2Y · (R(z)φ′′(ẋ)).

Taking the imaginary part implies that φ satisfies

ẋφ′′(ẋ) + 2φ′(ẋ) = 0 for ẋ > 0.
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Now, as φ is valued in the unit circle, this implies that φ is a constant.
Therefore there exists some number z0 in (−π, π] so that for any positive ẋ,
any z in R and any Y in T ?R, we have

K̃(ẋ, z, Y ) = e2i|ẋ|
1
2 (y cos(z+z0)+η sin(z+z0)) .

Inverse Fourier theorem for periodic functions implies that

K(ẋ, k, Y ) = 1
2π

∫ π

−π
e2i|ẋ|

1
2 (y cos(z+z0)+η sin(z+z0)) e−ikz dz.

In order to compute the value of z0, one may take advantage of the sym-
metry relations in (2.26) that imply

(5.13) K(ẋ,−k, y,−η) = (−1)kK(ẋ, k, y, η).

Now, the above formula for K and an obvious change of variable give

2πK(ẋ,−k, y,−η) =
∫ π

−π
eikz e2i|ẋ|

1
2 (y cos(z+z0)−η sin(z+z0)) dz

=
∫ π

−π
eik(π−z) e2i|ẋ|

1
2 (y cos(π−z+z0)−η sin(π−z+z0)) dz

= (−1)k
∫ π

−π
e−ikz e−2i|ẋ|

1
2 (y cos(z−z0)+η sin(z−z0)) dz.

Hence (5.13) is fulfilled for all positive ẋ, k in Z and (y, η) in T ?R if and
only if

∀ z ∈ (−π, π) , cos(z+z0) = − cos(z−z0) and sin(z+z0) = − sin(z−z0)

which is equivalent to z0 ≡ π
2 [π]. Hence there exists ε ∈ {−1, 1} so that

K̃(ẋ, z, Y ) = e2iε
√
ẋ(y sin z−η cos z) .

To determine the value of ε, one may use the fact that for all positive ẋ
and η in R, the above formula implies that∑
k∈Z
K(ẋ, k, (0, η)) = K̃(ẋ, 0, (0, η)) = e−2iε

√
ẋ η = cos(2

√
ẋ η)−iε sin(2

√
ẋ η).

Now, from the expansion of K given in (3.1), we infer that for all η ∈ R
and ẋ > 0,

K̃(ẋ, 0, (0, η)) =
∑
`1∈N

∑
|k|6`1

i`1

`1!F`1,0(k)η`1 ẋ
`1
2 .

Note that the imaginary part of the term corresponding to `1 is positive
(indeed F1,0(k) is positive), which implies that ε = −1. This completes the
proof of Identity (2.22) in the case where ẋ is non negative. The negative
case just follows from (2.26). Thus the whole Theorem 2.7 is proved.
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6. Some properties of operator GH

We end this paper with a short presentation of basic properties of the
transformation GH, that highlight some analogy (but also some difference)
with the classical Fourier transform on T ?Rd. The main result of this section
reads as follows.

Theorem 6.1. — The operator GH maps continuously L1(T ?Rd) to the
space C0(Ĥd0) of continuous functions on Ĥd0 going to 0 at infinity and,
for any couple (f, g) of functions in L1(T ?Rd), we have the convolution
identity:

(6.1) GH(f ? g)(ẋ, k) =
∑
k′∈Zd

GHf(ẋ, k− k′)GH(ẋ, k′) for all (ẋ, k) ∈ Ĥd0.

Moreover, for any g in S(T ?Rd), we have the following inversion formula:

g(Y ) =
(

2
π

)d ∫
Ĥd0
Kd(ẋ, k, Y )GHg(ẋ, k)dµĤd0

(ẋ, k).

Finally, the following Fourier–Plancherel identity holds true:

∀ g ∈ S(T ?Rd) , ‖g‖2L2(T?Rd) =
(

2
π

)d
‖GHg‖2

L2(Ĥd0)
.

Proof. — The first property stems from the fact that, because |Kd| 6 1,
we have

‖GHg‖L∞(Ĥd0) 6 ‖g‖L1(T?Rd).

Furthermore, as the kernel Kd is continuous with respect to (ẋ, k), we get
from the explicit expression of GH that the range of L1(T ?Rd) by GH is
included in the set of continuous functions on Ĥd0.
Proving that (GHg)(ẋ, k) tends to 0 when (ẋ, k) goes to infinity is based

on the regularity and decay properties of the kernel Kd. More specifically,
Identity (2.27) implies that

∀ p ∈ N , 4p|ẋ|pKd(ẋ, k, Y ) =
(
(−∆Y )pKd

)
(ẋ, k, Y ),

while Relation (2.28) gives for all multi-index α in Nd,

(ik sgn ẋ)αKd(ẋ, k, Y ) = (T αKd)(ẋ, k, Y )
)

with T α def=
d∏
j=1

(ηj∂yj − yj∂ηj )αj .
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Hence, if g ∈ S(T ?Rd) then performing suitable integration by parts in the
integral defining GHg yields

4p|ẋ|p(GHg)(ẋ, k) = GH((−∆Y )pg)(ẋ, k)
and (−ik sgn ẋ)α(GHg)(ẋ, k) = (GHT αg)(ẋ, k).

This implies that, for any positive integer p, a constant Cp and an integerNp
exist such that

(6.2) (1 + |ẋ|+ |k|)p|GH(g)(ẋ, k)| 6 Cp ‖g‖Np,S(T?Rd).

This proves that (GHg)(ẋ, k) tends to 0 when (ẋ, k) goes to infinity for any
g in S(T ?Rd). Now, because L1(T ?Rd) is dense in S(T ?Rd) and GH is con-
tinuous from L1(T ?Rd) to the set Cb(Ĥd0) of bounded continuous functions
on Ĥd0, one can conclude that the range of L1(T ?Rd) by GH is included
in C0(Ĥd0).

In order to establish (6.1), it suffices to see that, by virtue of the def-
inition of GH, of Identity (5.6) and of Fubini theorem (here the decay in-
equality (5.8) comes into play), one may write that for any couple (f, g) of
integrable functions on T ?Rd, we have

GH(f ? g)(ẋ, k) =
∫

(T?Rd)2
Kd(ẋ, k, Y ) f(Y − Y ′) g(Y ′)dY dY ′

=
∑
k′∈Zd

∫
(T?Rd)2

Kd(ẋ, k′, Y ′)g(Y ′)

×Kd(ẋ, k − k′, Y − Y ′)f(Y − Y ′)dY dY ′.

Then performing an obvious change of variable, and using again Fubini
theorem and the definition of GH gives (6.1).
In order to prove the inversion Fourier formula for GH, let us consider g

in S(T ?Rd) and χ in S(R) with value 1 near 0. For any sequence (εp)p∈N
of positive real numbers which tends to 0, we have according to the inverse
Fourier formula (2.17),

g(Y )χ(εps) = 2d−1

πd+1

∫
H̃d

eisλW(ŵ, Y )FH(g ⊗ χ(εp·))(ŵ)dŵ

= 2d−1

πd+1

∫
H̃d

eisλW(ŵ, Y )
(∫

T?Rd
W(ŵ, Y ′)g(Y ′)dY ′

)
1
εp
χ̂

(
λ

εp

)
dŵ.

From the definition of ∆H in (2.5), we gather that for any integer p and
positive real number ε, there exist some function fpε on Hd, and constant
Cp (depending only on p) so that

(6.3) (−∆H)pχ(εs)g(Y ) = χ(εs)(−∆Y )pg(Y ) + εfpε (Y, s)
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with ‖fpε ( · , s)‖L1(T?Rd) 6 Cp.
Therefore, having ε tend to 0, we deduce that

|λ|p(2|m|+ d)p
∣∣∣∣ ∫
T?Rd

W(ŵ, Y )g(Y )dY
∣∣∣∣ 6 Cp ∫

T?Rd

∣∣∣(−∆Y )pg(Y )
∣∣∣dY .

Along the same lines, taking advantage of the right-invariant vector fields
defined in (A.9), we get for any integer p

|λ|p(2|n|+ d)p
∣∣∣∣ ∫
T?Rd

W(ŵ, Y )g(Y )dY
∣∣∣∣ 6 Cp ∫

T?Rd

∣∣∣(−∆Y )pg(Y )
∣∣∣dY .

Identity (A.10) together with integrations by parts implies that for any
multi-index α

(
−i sgnλ

)|α| d∏
j=1

(nj −mj)αj
∫
T?Rd

W(ŵ, Y )g(Y )dY

=
∫
T?Rd

W(ŵ, Y )T αg(Y )dY .

We deduce that the function

ŵ 7−→ W(ŵ, Y )
(∫

T?Rd
W(ŵ, Y ′)g(Y ′)dY ′

)

satisfies the hypothesis of Lemma 4.1. Thus combining with Proposition 3.1
gives

g(Y ) = 2d−1

πd+1 2π
∫
Ĥd0
Kd(ẋ, k, Y )

(∫
T?Rd

Kd(ẋ, k, Y ′)g(Y ′)dY ′
)

dµĤd0
(ẋ, k)

=
(

2
π

)d ∫
Ĥd0
Kd(ẋ, k, Y )GHg(ẋ, k)dµĤd0

(ẋ, k),

which completes the proof of the inversion formula.
Of course, as in the classical Fourier theory, having an inversion for-

mula implies a Fourier–Plancherel type relation. Indeed we have for any
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function g in S(T ?Rd), using Fubini theorem,∫
T?Rd

g(Y )g(Y ) dY

=
(

2
π

)d ∫
T?Rd

(∫
Ĥd0
Kd(ẋ, k, Y )GHg(ẋ, k)dµĤd0

(ẋ, k)
)
g(Y )dY

=
(

2
π

)d ∫
Ĥd0
GHg(ẋ, k)

(∫
T?Rd

Kd(ẋ, k, Y )g(Y )dY
)

dµĤd0
(ẋ, k)

=
(

2
π

)d ∫
Ĥd0
GHg(ẋ, k)GHg(ẋ, k)dµĤd0

(ẋ, k).

The whole Theorem 6.1 is proved. �

Appendix A. Useful tools and results

Let us first recall standard properties of Hermite functions that have
been used repeatedly in the paper, when establishing identities pertaining
to the function W.

In addition to the creation operator Cj
def= −∂j + Mj already defined in

the introduction, it is convenient to introduce the following annihilation
operator:

(A.1) Aj
def= ∂j +Mj .

It is very classical (see e.g. [11, 14]) that

(A.2) AjHn =
√

2nj Hn−δj and CjHn =
√

2nj + 2Hn+δj ,

As Relations (A.1) imply that

(A.3) 2Mj = Cj +Aj and 2∂j = Aj − Cj ,

we discover that

(A.4)
MjHn = 1

2
(√

2nj Hn−δj +
√

2nj + 2Hn+δj
)

and

∂jHn = 1
2
(√

2nj Hn−δj −
√

2nj + 2Hn+δj
)
.

Note also that

(A.5) CjAj + Id = −∂2
j +M2

j and [Cj , Aj ] = −2 Id,

and thus

∆1
osc =

d∑
j=1

CjAj + d Id .
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Finally, we have

(A.6) [−∂2
j +M2

j , Cj ] = 2Cj .

Let us next prove Relation (2.12) and Lemma 2.3. To this end, we write
that by definition of Xj and of W, we have

Xj
(
eisλW(ŵ,Y )

)
=
∫
Rd
Xj
(
eisλ+2iλ〈η,z〉Hn,λ(y + z)Hm,λ(−y + z)

)
dz

=
∫
Rd

eisλ+2iλ〈η,z〉(2iληj + ∂yj
)(
Hn,λ(y + z)Hm,λ(−y + z)

)
dz.

As 2iληj e2iλ〈η,z〉 = ∂zj (e2iλ〈η,z〉), an integration by parts implies that

(A.7) Xj
(
eisλW(ŵ, Y )

)
=
∫
Rd

eisλ+2iλ〈η,z〉(∂yj − ∂zj)(Hn,λ(y + z)Hm,λ(−y + z)
)
dz.

The action of Ξj is simply described by

Ξj
(
eisλW(ŵ, Y )

)
=
∫
Rd

Ξj
(
eisλ+2iλ〈η,z〉)Hn,λ(y + z)Hm,λ(−y + z)dz

=
∫
Rd

eisλ+2iλ〈η,z〉 2iλ(zj − yj)Hn,λ(y + z)Hm,λ(−y + z)dz.

Together with (A.7), this gives

(X 2
j + Ξ2

j )
(
eisλW(ŵ, Y )

)
= 4

∫
Rd

eisλ+2iλ〈η,z〉Hn,λ(y + z)
(
(−∂2

j + λ2M2
j

)
Hm,λ)(−y + z)dz.

Putting together with (2.9), we get Formula (2.12) and thus (2.13).
Now, if f belongs to the Schwartz space, then combining (2.13) with

integrations by parts yields (2.14). Indeed, we have

−4|λ|(2|m|+ d)f̂H(n,m, λ) = −4|λ|(2|m|+ d)
∫
Hd

e−isλW(ŵ, Y )f(Y, s)ds

=
∫
Hd

∆H
(
e−isλW(ŵ, Y )

)
f(Y, s)ds

= (FH∆Hf)(n,m, λ).

This gives, after iteration

(A.8) 4p|λ|p(2|m|+ d)p
∣∣f̂H(n,m, λ)

∣∣ 6 ‖∆p
Hf‖L1(Hd),

which is one part of the decay inequality (2.15).
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To complete the proof of Lemma 2.3, it suffices to exhibit suitable decay
properties with respect to k. To this end, we introduce the right-invariant
vector fields X̃j and Ξ̃j defined by

(A.9) X̃j
def= ∂yj − 2ηj∂s and Ξ̃j

def= ∂ηj + 2yj∂s with j ∈ {1, . . . , d} .

Then arguing as above, we readily get

4|λ|(2nj + 1) eisλW(ŵ, Y )

= − eisλ(∂2
yj + ∂2

ηj )W(ŵ, Y ) + 4iλ eisλ(ηj∂yj − yj∂ηj )W(ŵ, Y )

− 4 eisλ λ2(y2
j + η2

j )W(ŵ, Y ).

As
−X̃ 2

j + X 2
j − Ξ̃2

j + Ξ2
j = 8∂sTj ,

we get by difference with (2.12),

(A.10)
|λ|(nj −mj) eisλW(ŵ, Y ) = ∂sTj

(
eisλW

)
(ŵ, Y )

= iλ eisλ TjW(ŵ, Y ).

After an obvious iteration this gives

(A.11)
d∏
j=1

(nj −mj)αjW(ŵ, Y ) = (i sgn(λ))|α|T αW(ŵ, Y ),

whence, mimicking the proof of (A.8),

(A.12) |n−m|p|f̂H(n,m, λ)| 6 sup
|α|=p

‖T αf‖L1(Hd) for all f in S(Hd).

This completes the proof of Lemma 2.3.
The following result was needed to prove the convergence of the series

in (5.7).

Proposition A.1. — For any integer p, a constant C exists such that

|W(n,m, λ, Y )| 6 Cp
( 〈Y 〉(1 +

√
|λ|(|n+m|+ d)

)
1 + |m− n|

)p
with 〈Y 〉 def=

√
1 + |Y |2 .

Proof. — Identity (A.11) implies that for all integer p,

(A.13) |m− n|p|W(n,m, λ, Y )| 6 Ck〈Y 〉p sup
|α|6p

|∂αYW(n,m, λ, Y )|.
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Differentiating under the integral and using Leibniz formula, we get for all
(α1, α2) ∈ Nd × Nd,

∂α1
y ∂α2

η W(ŵ, Y ) =
∫
Rd

e2iλ〈η,z〉(i sgnλ)|α2||λ|
|α2|

2

× |λ|
|α2|

2 (y + z − y + z)α2∂α1
y

(
Hn,λ(y + z)Hm,λ(−y + z)

)
dz,

whence

∂α1
y ∂α2

η W(ŵ, Y ) = (i sgn(λ))|α2||λ|
|α1|+|α2|

2
∑
β16α1
β26α2

(−1)β1Cβ1
α1
Cβ2
α2

×
∫
Rd

e2iλ〈η,z〉(Mβ2∂β1Hn)λ(y + z)(Mβ2−β2∂α1−β1Hm)λ(−y + z)dz.

Stating α = (α1, α2), we infer that

∂α1
y ∂α2

η W(ŵ, Y ) =
∣∣∂αYW(ŵ, Y )

∣∣
6 |λ|

|α1|+|α2|
2

∑
β16α1
β26α2

Cβ1
α1
Cβ2
α2
‖Mβ2∂β1Hn‖L2‖Mα2−β2∂α1−β1Hm‖L2 .

Relations (A.2)–(A.4) imply that

‖Mβ2∂β1Hn‖L2‖Mα2−β2∂α1−β1Hm‖L2 6 Cα1,α2(|n+m|+ d)
α1+α2

2 .

Plugging that inequality in (A.13) completes the proof of the propo-
sition. �

Let us finally prove the convolution identity (2.19). It is just based on
the fact that for all (n,m, λ) in H̃d and any integrable function f on Hd,
we have∑
m∈Nd

|f̂H(n,m, λ)|2 6 ‖f‖2L1(Hd) and
∑
n∈Nd

|f̂H(n,m, λ)|2 6 ‖f‖2L1(Hd).

Indeed, if A and B are two bounded operators on a separable Hilbert
space H endowed with an orthonormal basis (en)n∈Nd then, denoting

A(n,m) def=(Aem|en) and B(n,m) def=(Bem|en),

one may write ∑
`∈Nd
|A(`,m)|2 = ‖Aem‖2H 6 ‖A‖2L(H)

and
∑
`∈Nd
|A(n, `)|2 = ‖A∗en‖2H 6 ‖A‖2L(H).
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Therefore, from Inequality (2.1) and Definition 2.2, we readily infer that(
FH(f)(λ) ◦ FH(g)(λ)Hm,λ

∣∣Hn,λ

)
L2(Rd)

= lim
(N,N ′)→(∞,∞)

∑
|`|6N
|`′|6N ′

f̂H(`′, `, λ)ĝH(`,m, λ)(H`′,λ|Hn,λ)

= lim
N→∞

∑
|`|6N

f̂H(n, `, λ) ĝH(`,m, λ)

=
∑
`∈Nd

f̂H(n, `, λ) ĝH(`,m, λ).

Then, remembering Relation (2.4) completes the proof of (2.19).
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