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LONG-TIME ASYMPTOTICS FOR THE
DEGASPERIS–PROCESI EQUATION ON THE

HALF-LINE

by Anne BOUTET DE MONVEL,
Jonatan LENELLS & Dmitry SHEPELSKY (*)

Dedicated to the memory of Louis Boutet de Monvel

Abstract. — We analyze the long-time asymptotics for the Degasperis–
Procesi equation on the half-line. By applying nonlinear steepest descent tech-
niques to an associated 3× 3-matrix valued Riemann–Hilbert problem, we find an
explicit formula for the leading order asymptotics of the solution in the similarity
region in terms of the initial and boundary values.
Résumé. — Nous étudions le comportement asymptotique en temps grand de

l’équation de Degasperis–Procesi sur la demi-droite. L’application de techniques
de descente de plus grande pente non linéaire à un problème de Riemann–Hilbert
matriciel 3× 3 associé nous permet d’obtenir une formule explicite, en termes des
données initiale et au bord, pour le terme dominant de l’asymptotique de la solution
dans la région de similarité.

1. Introduction

The nonlinear steepest descent method introduced in [12] provides a
powerful technique for determining asymptotics of solutions of nonlinear
integrable PDEs. By appropriately deforming the contour of the associated
Riemann–Hilbert (RH) problem, the long-time behavior of the solution can
be determined by adding up the contributions from the individual critical
points. In this way the asymptotics associated with the modified KdV [12],
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the nonlinear Schrödinger [10], and several other integrable equations posed
on the real line have been rigorously established, see [2, 11, 15]. More
recently, a number of works treating periodic problems [16] as well as initial-
boundary value problems [1, 3] have also appeared.
In this paper we use the method of nonlinear steepest descent to analyze

long-time asymptotics for the Degasperis–Procesi (DP) equation

(1.1) ut − utxx + 3κux + 4uux − 3uxuxx − uuxxx = 0, κ > 0,

posed in the domain

(1.2) Ω =
{

(x, t) ∈ R2 | 0 6 x <∞, 0 6 t <∞
}
.

Our main result (see Theorem 5.1 below) gives an explicit formula for the
leading order asymptotics of u(x, t) in the similarity region 0 < x

t < 3 in
terms of the initial and boundary values. In this region it has the form of
slowly decaying oscillations, whereas in the complementary region x

t > 3 it
is dominated by solitons, if any, see [2, 3, 4].
Equation (1.1) was discovered in [8] using methods of asymptotic inte-

grability. A Lax pair and a bi-Hamiltonian structure were derived in [7].
An interesting aspect of (1.1) is the existence of peaked solutions [7] as
well as weak solutions with a very low degree of regularity [5]. The latter
class includes a class of discontinuous generalizations of the peakons called
shock-peakons [21]. The asymptotic behavior of the solution of (1.1) on the
line was determined in [4]. In [17] the solution of the initial-boundary value
problem of (1.1) on the half-line was expressed in terms of the solution of
a 3× 3-matrix RH problem.

Compared with most other applications of the nonlinear steepest descent
approach, the asymptotic analysis of (1.1) presents a number of additional
difficulties:

(a) The RH problem associated with (1.1) involves 3 × 3 matrices in-
stead of 2× 2 matrices. This implies that the standard uniqueness
results for L2-RH problems (such as Theorem 7.18 of [9]) do not
apply. However, it turns out that in an appropriate function space,
which we denote by L̇3, uniqueness holds also for 3×3-matrix valued
RH problems, see [20].

(b) The t-part of the Lax pair associated with (1.1) has singularities
at the points Kj = e

πij
3 −

πi
6 , j = 1, . . . , 6. In [17] this difficulty

was overcome by utilizing two different sets of eigenfunctions which
were solutions of two different Lax pairs (a similar idea was used
already in [4] to recover u(x, t) for the problem on the line). Here we
adopt a similar approach; however, in order to obtain a RH problem
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suitable for the asymptotic analysis of (1.1), we use a modification
of the RH problem in [17]. The modified problem has the advantage
that, after the appropriate contour deformations prompted by the
nonlinear steepest descent method have been performed, the RH
problem involves only one set of eigenfunctions near each of the
twelve critical points. This leads to a jump matrix near each critical
point of an appropriate form.

(c) The Lax pair associated with (1.1) has singularities at the sixth
roots of unity κj = e

πi(j−1)
3 , j = 1, . . . , 6. In [4, 17] this difficulty

was overcome by considering a regular RH problem for an associated
row vector. Here, rather than trying to develop a nonlinear steep-
est descent approach for row vector RH problems, we carry out
the steepest descent analysis using a regular 3 × 3-matrix valued
solution which, in general, is different from the original solution.
However, by uniqueness for the row vector RH problem, the row
vectors associated with these two solutions coincide.

(d) On the half-line, the jump contour for the RH problem associ-
ated with (1.1) involves nontransversal intersection points, see Fig-
ure 2.1. This implies that the standard theory of Lp-RH problems
does not apply. We circumvent this difficulty by employing the the-
ory of Lp-RH problems developed in [20] for general Carleson jump
contours.

Our analysis determines the asymptotic behavior of u(x, t) provided that
all boundary values {∂jxu(0, t)}20 are known. However, for a well-posed prob-
lem, only a subset of the initial and boundary values can be independently
prescribed. If all boundary values are not known, our asymptotic formula
(see Theorem 5.1) still provides some information on the solution, but since
the function r(k) is unknown, the precise form of the asymptotics remains
undetermined. In general, the computation of the unknown boundary val-
ues (i.e. the construction of the generalized Dirichlet-to-Neumann map)
involves the solution of a nonlinear Volterra integral equation. We do not
consider the construction of the Dirichlet-to-Neumann map in this paper.
We also do not consider the existence of so-called linearizable boundary con-
ditions for which the unknown boundary values can be eliminated thanks
to additional symmetries.
In Section 2, we give a short review of the RH approach for (1.1) on the

half-line. In Section 3, we formulate a RH problem suitable for determining
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the long-time asymptotics. In Section 4, we prove a nonlinear steepest de-
scent theorem appropriate for analyzing the asymptotics in the similarity
region. In Section 5, we prove our main theorem.

2. Preliminaries

We consider initial-boundary value problems for (1.1) for which the initial
and boundary values

u0(x) = u(x, 0), x > 0,(2.1a)
g0(t) = u(0, t), g1(t) = ux(0, t), g2(t) = uxx(0, t), t > 0,(2.1b)

satisfy the three conditions

u0(x)− u0xx(x) + κ > 0, x > 0,(2.2a)
g0(t)− g2(t) + κ > 0, t > 0,(2.2b)

g0(t) 6 0, t > 0.(2.2c)

The assumptions in (2.2) imply the following positivity condition which is
needed for the spectral analysis:

u(x, t)− uxx(x, t) + κ > 0, (x, t) ∈ Ω.(2.3)

In view of (2.3), we may define q(x, t) by

(2.4) q(x, t) =
(
u(x, t)− uxx(x, t) + κ

) 1
3 , (x, t) ∈ Ω.

We next give a short review of the RH approach for (1.1) on the half-line;
see [17] for further details. We suppose that {gj}20 belong to the Schwartz
class S(R+) and that there exists a unique smooth solution u(x, t) of (1.1)
in Ω such that (2.1) and (2.2) are satisfied and u( · , t) ∈ S(R+) for each
t > 0. For simplicity, we henceforth assume that κ = 1.

2.1. Lax pairs

Equation (1.1) admits the Lax pair [4, 6]

(2.5)
{
ψx(x, t, k) = L(x, t, k)ψ(x, t, k),
ψt(x, t, k) = Z(x, t, k)ψ(x, t, k),
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where k ∈ Ĉ = C ∪ {∞} is the spectral parameter, ψ(x, t, k) is a 3 × 3-
matrix valued eigenfunction, the 3×3-matrix valued functions L and Z are
defined by

L(x, t, k) =

 0 1 0
0 0 1
λq3 1 0

, Z(x, t, k) =

 ux − 2
3λ −u 1

λ

u+ 1 1
3λ −u

ux − λuq3 1 −ux + 1
3λ

,
and λ = λ(k) is defined by

λ = 1
3
√

3

(
k3 + 1

k3

)
.

Let ω = e
2πi
3 . Define {lj}31 and {zj}31 by

(2.6) lj(k) = 1√
3

(
ωjk+ 1

ωjk

)
, zj(k) =

√
3
(

(ωjk)2 +(ωjk)−2

k3 + k−3

)
, k∈C.

Let

P (k) =

 1 1 1
l1(k) l2(k) l3(k)
l21(k) l22(k) l23(k)

 , k ∈ C,(2.7)

and define {Vj(x, t, k), Ṽj(x, t, k)}21 by

V1 = P−1

 0 0 0
0 0 0

λ(q3 − 1) 0 0

P,

V2 = P−1

 ux −u 0
u 0 −u

ux − λuq3 0 −ux

P,

Ṽ1 = P−1


qx
q 0 0
0 0 0
0 1

q − q − qxq

P,

Ṽ2 = P−1


 −

uqx
q 0 0

u+1
q − 1 0 0
ux
q2

1
q − 1 + uq uqx

q

+ q2 − 1
λ

0 0 1
0 0 0
0 0 0


P.

Let L = diag(l1, l2, l3) and Z = diag(z1, z2, z3). The eigenfunctions Ψ and
Ψ̃ introduced by

ψ(x, t, k) = P (k)Ψ(x, t, k)eL(k)x+Z(k)t,(2.8a)

ψ(x, t, k) = D(x, t)P (k)Ψ̃(x, t, k)eL(k)y(x,t)+Z(k)t,(2.8b)
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where

(2.9)

y(x, t) =
∫ (x,t)

(0,0)
q(x′, t′) (dx′ − u(x′, t′)dt′) ,

D(x, t) =

 1
q(x,t) 0 0

0 1 0
0 0 q(x, t)

 ,

satisfy the Lax pair equations{
Ψx − [L,Ψ] = V1Ψ,
Ψt − [Z,Ψ] = V2Ψ,

(2.10a)

and {
Ψ̃x − [qL, Ψ̃] = Ṽ1Ψ̃,
Ψ̃t − [Z − uqL, Ψ̃] = Ṽ2Ψ̃,

(2.10b)

respectively.

2.2. Analytic eigenfunctions

Let γj , j = 1, 2, 3, denote contours in the (x, t)-plane connecting (xj , tj)
with (x, t), where (x1, t1) = (0,∞), (x2, t2) = (0, 0), and (x3, t3) = (∞, t).
The contours can be chosen to consist of straight line segments parallel
to the x- or t-axis. For a diagonal matrix D, let D̂ denote the operator
which acts on a matrix A by D̂A = [D,A], i.e. eD̂A = eDAe−D. We
define solutions {Ψn(x, t, k)}18

1 and {Ψ̃n(x, t, k)}18
1 of the Lax pairs (2.10a)

and (2.10b) respectively, by the solutions of the integral equations

(Ψn)ij(x, t, k) = δij +
∫
γn
ij

(
eL̂(k)x+Ẑ(k)tWn(x′, t′, k)

)
ij
,(2.11a)

(Ψ̃n)ij(x, t, k) = δij +
∫
γn
ij

(
eL̂(k)y(x,t)+Ẑ(k)tW̃n(x′, t′, k)

)
ij
,(2.11b)

where k ∈ Dn, i, j = 1, 2, 3, n = 1, . . . , 18, and the contours γnij are given
by

(2.12) γnij =


γ1, Re li(k) < Re lj(k), Re zi(k) > Re zj(k),
γ2, Re li(k) < Re lj(k), Re zi(k) < Re zj(k),
γ3, Re li(k) > Re lj(k),

for k ∈ Dn,
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Figure 2.1. The sets Dn, n = 1, . . . , 18, which decompose the complex
k-plane.

the closed one-forms Wn(x, t, k) and W̃n(x, t, k) are defined by

Wn = e−L̂x−Ẑt(V1dx+ V2dt)Ψn, W̃n = e−L̂y−Ẑt(Ṽ1dx+ Ṽ2dt)Ψ̃n,

and the open sets {Dn}18
1 are displayed in Figure 2.1. Precise definitions

of all the sets Dn can be found in [17]; here we only give the definitions of
the Dn relevant near the positive real axis and near K1:

D1 = {k ∈ Ĉ |Re l1 < Re l2 < Re l3 and Re z1 < Re z2 < Re z3},

D6 = {k ∈ Ĉ |Re l2 < Re l1 < Re l3 and Re z2 < Re z1 < Re z3},

D7 = {k ∈ Ĉ |Re l1 < Re l2 < Re l3 and Re z2 < Re z1 < Re z3},

D8 = {k ∈ Ĉ |Re l1 < Re l2 < Re l3 and Re z1 < Re z3 < Re z2},

D18 = {k ∈ Ĉ |Re l2 < Re l1 < Re l3 and Re z1 < Re z2 < Re z3}.

Let Kj = e
πij
3 −

πi
6 , j = 1, . . . , 6, denote the points where λ = 0 and let

κj = e
πi(j−1)

3 , j = 1, . . . , 6, denote the sixth roots of unity, see Figure 2.2.
Away from the sets {∞, 0}∪{κj}61∪{kj} and {κj ,Kj}61∪{kj}, respectively,
Ψn and Ψ̃n are bounded and analytic functions of k ∈ Dn with continuous
extensions to D̄n. Here {kj} denotes a possibly empty set of singularities
at which the Fredholm determinant of integral equations (2.11) vanishes;

TOME 69 (2019), FASCICULE 1
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Figure 2.2. The points Kj = e
πij
3 −

πi
6 , j = 1, . . . , 6, where λ = 0, and

the points κj = e
πi(j−1)

3 , j = 1, . . . , 6, where P−1(k) has poles.

for simplicity, we henceforth assume that the set {kj} is empty (soliton-
less case). For those n for which the indicated limiting points lie on the
boundary of the corresponding Dn,

Ψn(x, t, k) = I +O(k −Kj) as k → Kj , k ∈ Dn, j = 1, . . . , 6,

Ψ̃n(x, t, k) = I +O(1/k) as k →∞, k ∈ Dn,

Ψ̃n(x, t, k) = I +O(k) as k → 0, k ∈ Dn,

where I denotes the identity matrix.
We define spectral functions {Sn(k)}18

1 and {S̃n(k)}18
1 by

Sn(k) = Ψn(0, 0, k), S̃n(k) = Ψ̃n(0, 0, k), k ∈ Dn.(2.13)

2.3. Symmetries

Define sectionally analytic functions S∗(k) and S̃∗(k) for k ∈ C by setting
S∗(k) = Sn(k) and S̃∗(k) = S̃n(k) for k ∈ Dn. If f denotes one of the 3×3-
matrix valued functions L, Z, M , S∗, or S̃∗, then f obeys the symmetries
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Figure 2.3. The sets En which decompose the complex k-plane.

f(k) = Af(ωk)A−1, k ∈ C,(2.14a)

f(k) = Bf(1/k)B, k ∈ C,(2.14b)

f(k) = Bf(k)B, k ∈ C,(2.14c)

where A, B are defined by

A =

0 0 1
1 0 0
0 1 0

 , B =

0 1 0
1 0 0
0 0 1

 .(2.15)

3. A Riemann–Hilbert problem

We use the eigenfunctions Ψn and Ψ̃n to define a RH problem suitable
for analyzing the long-time asymptotics.
Choose a small radius r > 0 and let Bj denote the open disk of radius r

centered at Kj , j = 1, . . . , 6. Let B = ∪6
j=1Bj and define open sets {En}36

1
by, see Figures 2.3 and 2.4:

En = Dn \ B̄, En+18 = Dn ∩B, n = 1, . . . , 18.(3.1)

The eigenfunctions {Ψ̃n}18
1 are well-behaved near k = ∞ and k = 0 while

the eigenfunctions {Ψn}18
1 are well-behaved near the Kj ’s. We formulate a
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Figure 2.4. The sets En for k near K1.

RH problem relative to the contour shown in Figure 2.3 (see also Figure 2.4)
by using Ψ̃n and Ψn for k in En and En+18, respectively.
Let y = y(x, t) be the function defined in (2.9). The map G : (x, t) 7→

(y, t) is a bijection from Ω = {x > 0, t > 0} onto G(Ω) ⊂ R2. Thus,
for each (y, t) ∈ G(Ω), we may define a sectionally meromorphic function
M(y, t, k) by

(3.2) M(y, t, k)

=
{

Ψ̃n(x, t, k), k ∈ En,
P (k)−1D(x, t)−1P (k)Ψn(x, t, k)e(x−y+ν0)L(k), k ∈ En+18,

where n = 1, . . . , 18 and the constant ν0 ∈ R is defined by

ν0 = lim
x→∞

(y − x) =
∫ ∞

0
(q(x, 0)− 1)dx.

Let Mn denote the restriction of M to En. The definition (3.2) and the
relations (2.8) imply that M satisfies the jump condition

Mn = MmJm,n, k ∈ Ēn ∩ Ēm,(3.3)

where

(3.4)


Jm,n(y, t, k) = eyL̂+tẐ(S̃−1

m (k)S̃n(k)
)
,

Jn,n+18(y, t, k) = eyL̂+tẐCn(k),
Jm+18,n+18(y, t, k) = eyL̂+tẐe−ν0L̂

(
S−1
m (k)Sn(k)

)
,

n,m = 1, . . . , 18.
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The functions {Cn(k)}18
1 are defined as follows. By (2.8) the functions

ψn = DP Ψ̃ne
yL+tZ = DPMne

yL+tZ ,

ψn+18 = PΨne
xL+tZ = DPMn+18e

yL+tZ−ν0L

solve the same differential equations (2.5), hence ψn+18 = ψnC̃n(k) with
C̃n(k) independent of (x, t). Thus,Mn+18 = Mne

yL̂+tẐCn(k) with Cn(k) =
C̃n(k)eν0L, and Cn(k) = ψ−1

n ψn+18e
ν0L satisfies

(3.5) Cn(k) = e−yL−tZΨ̃n(x, t, k)−1P (k)−1

×D(x, t)−1P (k)Ψn(x, t, k)exL+tZeν0L.

Proposition 3.1. — Let E = ∪36
n=1En and let (y, t) ∈ G(Ω). Except

for possible singularities at the points {κj}61, M(y, t, k) is a bounded and
analytic function of k ∈ E. Moreover,

M(x, t, k) = I +O(1/k) uniformly as k →∞, k ∈ C.

Proof. — Since P (k)−1D(x, t)−1P (k) is an analytic function of k ∈ Ĉ
except for poles at the points κj , the result follows immediately from the
properties of the functions Ψn and Ψ̃n. �

The singularity structure of Mn at the κj ’s implies that the function N
defined by

(3.6) N(y, t, k) = (1, 1, 1)M(y, t, k), k ∈ E,

is nonsingular at the κj ’s, see [4, 17]. Together with Proposition 3.1 and
Lemma A.3, this implies that, for each (y, t) ∈ G(Ω),

N(y, t, · ) ∈ (1, 1, 1) + Ė3(E) ∩ E∞(E),

where the function spaces Ė3(E) and E∞(E) are defined in Appendix A.
Thus the following result holds.
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Proposition 3.2. — For each (y, t) ∈ G(Ω), the function N(y, t, · ) is a
row vector solution of the L3-RH problem{

N(y, t, · ) ∈ (1, 1, 1) + Ė3(E),
Nn(y, t, k) = Nm(y, t, k)Jm,n(y, t, k) for a.e. k ∈ Ēn ∩ Ēm,

(3.7)

where n,m = 1, . . . , 36.

Remark 3.3. — Although the RH problem formulated in (3.7) differs
from the one used in [17], both problems rely on the same idea of using the
Ψn’s near the Kj ’s and the Ψ̃n’s near {0,∞}. The RH problem formulated
in (3.7) is better adapted for our present purposes because it uses only one
set of eigenfunctions, namely the Ψ̃n’s, near the three lines R, ωR, and
ω2R.

3.1. Jump matrix

Define functions {r(k), h(k), ř(k), ȟ(k), r1(k), ř1(k)} by

(3.8)

r(k) = (S̃18(k)−1S̃7(k))21, k ∈ Ē7 ∩ Ē18,

h(k) = (S̃6(k)−1S̃18(k))21, k ∈ Ē18,

ř(k) = (S̃13(k)−1S̃12(k))21, k ∈ Ē12 ∩ Ē13,

ȟ(k) = (S̃4(k)−1S̃13(k))21, k ∈ Ē13,

r1(k) = (S̃6(k)−1S̃1(k))21, k ∈ R+,

ř1(k) = (S̃4(k)−1S̃3(k))21, k ∈ R−.

The domains of definition of the functions h(k), ȟ(k), r1(k), and ř1(k)
in (3.8) can be understood as follows. For j = 1, . . . , 6, the function S̃j(k)
is defined in terms of the initial data alone. This means that S̃j(k) has
an analytic continuation to the sector arg k ∈ ((j − 1)π/3, jπ/3) for each
j = 1, . . . , 6. It follows that h(k) and ȟ(k) are well-defined for k ∈ Ē18 and
k ∈ Ē13, respectively. Similarly, r1(k) and ř1(k) are well-defined for k ∈ R+
and k ∈ R−, respectively.
From (2.14b) and (2.14c), we infer the symmetries

r(k−1) = r(k̄), r1(k−1) = r1(k̄), h(k−1) = h(k̄).

In particular, |r(k−1)| = |r(k)| for k ∈ Ē7 ∩ Ē18 and |r1(k−1)| = |r1(k)| for
k ∈ R+. The functions ř, ř1, and ȟ satisfy analogous symmetries.
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The approach of Section 5 of [17] shows that with the contour oriented
as in Figure 2.3 the jump matrix for the RH problem (3.7) is given for k
near R by

J =



J6,1 =


1 −r1(k̄)e−tΦ 0

r1(k)etΦ 1− |r1(k)|2 0
0 0 1

 , k ∈ Ē1 ∩ Ē6,

J18,7 =


1 −r(k̄)e−tΦ 0

r(k)etΦ 1− |r(k)|2 0
0 0 1

 , k ∈ Ē7 ∩ Ē18,

J1,7 =


1 h(k̄)e−tΦ 0
0 1 0
0 0 1

 , k ∈ Ē1 ∩ Ē7,

J6,18 =


1 0 0

h(k)etΦ 1 0
0 0 1

 , k ∈ Ē6 ∩ Ē18,

J4,3 =


1 −ř1(k̄)e−tΦ 0

ř1(k)etΦ 1− |ř1(k)|2 0
0 0 1

 , k ∈ Ē3 ∩ Ē4,

J13,12 =


1 −ř(k̄)e−tΦ 0

ř(k)etΦ 1− |ř(k)|2 0
0 0 1

 , k ∈ Ē12 ∩ Ē13,

J3,12 =

1 ȟ(k̄)e−tΦ 0
0 1 0
0 0 1

 , k ∈ Ē3 ∩ Ē12,

J4,13 =


1 0 0

ȟ(k)etΦ 1 0
0 0 1

 , k ∈ Ē4 ∩ Ē13,

(3.9)

where Φ := Φ(ζ, k) with ζ = y/t and

Φ(ζ, k) = (l2(k)− l1(k))ζ + (z2(k)− z1(k)).(3.10)

The matrices J1,2, J5,6 and J3,2, J4,5 are not listed in (3.9) because they
can be recovered by symmetries from J4,3 and J6,1, respectively.
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Proceeding as in Section 5 of [17] we also obtain the identities

r1(k) = r(k) + h(k), k ∈ Ē7 ∩ Ē18,

ř1(k) = ř(k) + ȟ(k), k ∈ Ē12 ∩ Ē13.

The first of these identities ensures that appropriate cyclic products of the
relevant jump matrices equal the identity matrix at the intersection points
where the sets E1, E6, E7, E18 meet. Similarly, the second identity ensures
that appropriate cyclic products of the jump matrices equal the identity
matrix where the sets E3, E4, E12, E13 meet.
In a similar way, we find that the jump matrix J for k near K1 is given

by (see Figure 2.4)

J =



J19,25 = eyL̂+tẐ


1 f1(k) 0
0 1 0
0 0 1

 , k ∈ Ē19 ∩ Ē25,

J19,26 = eyL̂+tẐ


1 0 0
0 1 f2(k)
0 0 1

 , k ∈ Ē19 ∩ Ē26,

(3.11)

where the functions f1 and f2 are bounded and continuous on the given
subcontours.
We finally need the form of the jump matrix J for k on the circles where

the En’s and En+18’s meet.

Lemma 3.4. — With the contour oriented as in Figure 2.3, we have

J =



J1,19 = eyL̂+tẐ


1 g1(k) g2(k)
0 1 g3(k)
0 0 1

 , k ∈ Ē1 ∩ Ē19,

J7,25 = eyL̂+tẐ


1 0 g4(k)
0 1 g5(k)
0 0 1

 , k ∈ Ē7 ∩ Ē25,

J8,26 = eyL̂+tẐ


1 g6(k) g7(k)
0 1 0
0 0 1

 , k ∈ Ē8 ∩ Ē26,

(3.12)

where the functions {gj(k)}71 are bounded and continuous on the given
subcontours.
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Proof. — In view of (3.4), it is enough to show that

(3.13)

C1(k) =

1 ∗ ∗
0 1 ∗
0 0 1

 , k ∈ D̄1,

C7(k) =

1 0 ∗
0 1 ∗
0 0 1

 , k ∈ D̄7,

C8(k) =

1 ∗ ∗
0 1 0
0 0 1

 , k ∈ D̄8,

where ∗ denotes an entry which is bounded and continuous except for
possible singularities at the points κj , Kj , 0, and ∞. For n = 1, 7, 8, the
matrices (γn)ij = γnij are given by (see (2.12))

γ1 =

γ3 γ2 γ2
γ3 γ3 γ2
γ3 γ3 γ3

 , γ7 =

γ3 γ1 γ2
γ3 γ3 γ2
γ3 γ3 γ3

 , γ8 =

γ3 γ2 γ2
γ3 γ3 γ1
γ3 γ3 γ3

 .

Hence evaluation of (3.5) as (y, t)→ (∞, 0) yields

Cn(k) = lim
y→∞

e−ν0Le−Lx

1 ∗ ∗
0 1 ∗
0 0 1

−11 ∗ ∗
0 1 ∗
0 0 1

 eLy =

1 ∗ ∗
0 1 ∗
0 0 1

 ,

for k ∈ Dn and n = 1, 7, 8. Moreover, thanks to the assumed decay of
the Dirichlet and Neumann values as t → ∞, the functions Ψ̃n and Ψn

are bounded as (y, t) → (0,∞) for each k ∈ Dn. Consequently, using that
Re z2 < Re z1 < Re z3 in D7 and Re z1 < Re z3 < Re z2 in D8, evaluation
of (3.5) as (y, t)→ (0,∞) yields (C7(k))12 = 0 for k ∈ D7 and (C8(k))23 =
0 for k ∈ D8. This proves (3.13). �

4. A nonlinear steepest descent theorem

We prove a nonlinear steepest descent theorem suitable for determining
the asymptotics of (1.1) in the similarity region.

For r > 0, let Xr = Xr
1 ∪ · · · ∪Xr

4 denote the cross X = X1 ∪ · · · ∪X4
defined in (B.1) restricted to the disk of radius r centered at the origin, i.e.
Xr = X ∩{|z| < r}. The spaces Ėp and L̇p are defined in Appendix A. Let
I ⊂ R be a (possibly infinite) interval. Let ρ, ε : I → (0,∞) be bounded
strictly positive functions. Let k0 : I → [1/2, 1) be a function such that
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Re k

Im k

k0 k−1
0

−k0−k−1
0

Figure 4.1. The contour ΓX and the open set V (shaded).

k0(ζ) + ε(ζ) < 1 and ε(ζ) < k0(ζ)/2 for each ζ ∈ I. We henceforth drop
the ζ dependence of these functions and write simply ρ, ε, k0 for ρ(ζ), ε(ζ),
k0(ζ), respectively.
Before stating Theorem 4.3 we list the necessary assumptions.

Assumptions 4.1 (Contour Assumptions). — Assume Γ = Γ(ζ) is a
family of Carleson jump contours parametrized by ζ ∈ I such that:

(Γ1) For each ζ ∈ I, Γ contains the small crosses ±k0 +Xε as a subset.
(Γ2) For each ζ ∈ I, Γ is invariant as a set under the maps

k 7→ ωk, k 7→ 1/k.(4.1)

Moreover, the orientation of Γ is such that if k traverses Γ in the
positive direction, then ωk and 1/k also traverse Γ in the positive
direction.

(Γ3) Let V denote the union of the two disks {|k± k0| < ε} and the sets
obtained by letting the symmetries in (4.1) act repeatedly on these
disks, see Figure 4.1. Let Γ̂ = Γ∪∂V and assume that the boundary
of each of the 12 components of V is oriented counterclockwise.
Then, after reversing the orientation on a subcontour if necessary,
Γ̂ is a Carleson jump contour for each ζ ∈ I.
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(Γ4) The contour remains a bounded distance away from the pointK1 :=
e
iπ
6 for all ζ ∈ I:

inf
ζ∈I

dist(K1, Γ̂) > 0.(4.2)

Assume also that the Cauchy singular operator SΓ̂ defined by

(SΓ̂h)(z) = lim
r→0

1
πi

∫
Γ̂\{|z′−z|<r}

h(z′)
z′ − z

dz′,

is uniformly(1) bounded on L2(Γ̂), i.e.

sup
ζ∈I
‖SΓ̂‖B(L2(Γ̂)) <∞.(4.3)

We consider the following family of L3-RH problems parametrized by
the two parameters ζ ∈ I and t > 0:{

m(ζ, t, · ) ∈ I + Ė3(Ĉ \ Γ),
m+(ζ, t, k) = m−(ζ, t, k)v(ζ, t, k) for a.e. k ∈ Γ,

(4.4)

where the jump matrix v is assumed to fulfill the following conditions.

Assumptions 4.2 (Jump Assumptions). — Assume the jump matrix v
obeys the symmetries (2.14a) and (2.14b) and satisfies

w(ζ, t, · ) := v(ζ, t, · )− I ∈ L̇1(Γ) ∩ L∞(Γ), ζ ∈ I, t > 0.(4.5)

Let τ := tρ2. Let ΓX denote the union of the two small crosses ±k0 + Xε

and the sets obtained by letting the symmetries in (4.1) act repeatedly on
these crosses. Let Γ′ = Γ \ ΓX and suppose

‖w(ζ, t, · )‖L̇p(Γ′) = O(ε
1
p τ−1), τ →∞, ζ ∈ I, p ∈ {1, 3

2 , 3},(4.6a)

‖w(ζ, t, · )‖L∞(Γ′) = O(τ−1), τ →∞, ζ ∈ I,(4.6b)

uniformly with respect to ζ ∈ I. Moreover, let C = diag(1,−1, 1) and
suppose that the normalized jump matrices

v0(ζ, t, z) = Cv
(
ζ, t, k0 − εz

ρ

)
C,

v̌0(ζ, t, z) = Cv
(
ζ, t,−k0 + εz

ρ

)
C,

z ∈ Xρ, ζ ∈ I,(4.7)

(1)For any fixed ζ ∈ I, SΓ̂ is bounded on L2(Γ̂) as a consequence of (Γ3).
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have the form

v0(ζ, t, z) =




1 0 0

R1(ζ, t, z)z−2iν(ζ)etφ(ζ,z) 1 0
0 0 1

 , z ∈ Xρ
1 ,


1 −R2(ζ, t, z)z2iν(ζ)e−tφ(ζ,z) 0
0 1 0
0 0 1

 , z ∈ Xρ
2 ,


1 0 0

−R3(ζ, t, z)z−2iν(ζ)etφ(ζ,z) 1 0
0 0 1

 , z ∈ Xρ
3 ,


1 R4(ζ, t, z)z2iν(ζ)e−tφ(ζ,z) 0
0 1 0
0 0 1

 , z ∈ Xρ
4 ,

(4.8a)

and

v̌0(ζ, t, z) =




1 0 0

Ř1(ζ, t, z)z−2iν̌(ζ)etφ(ζ,z) 1 0
0 0 1

 , z ∈ Xρ
1 ,


1 −Ř2(ζ, t, z)z2iν̌(ζ)e−tφ(ζ,z) 0
0 1 0
0 0 1

 , z ∈ Xρ
2 ,


1 0 0

−Ř3(ζ, t, z)z−2iν̌(ζ)etφ(ζ,z) 1 0
0 0 1

 , z ∈ Xρ
3 ,


1 Ř4(ζ, t, z)z2iν̌(ζ)e−tφ(ζ,z) 0
0 1 0
0 0 1

 , z ∈ Xρ
4 ,

(4.8b)

where:

• The phase φ(ζ, z) is a smooth function of (ζ, z) ∈ I × C such that

φ(ζ, 0) ∈ iR, ∂φ

∂z
(ζ, 0) = 0, ∂2φ

∂z2 (ζ, 0) = i, ζ ∈ I,(4.9)
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and

Reφ(ζ, z) 6 −|z|
2

4 , z ∈ Xρ
1 ∪X

ρ
3 , ζ ∈ I,(4.10a)

Reφ(ζ, z) > |z|
2

4 , z ∈ Xρ
2 ∪X

ρ
4 , ζ ∈ I,(4.10b) ∣∣∣∣φ(ζ, z)− φ(ζ, 0)− iz2

2

∣∣∣∣ 6 C |z|3ρ , z ∈ Xρ, ζ ∈ I,(4.10c)

where C > 0 is a constant.
• There exist smooth functions q, q̌ : I → C and constants (α,L) ∈

[ 1
3 , 1)× (0,∞) such that

sup
ζ∈I
|q(ζ)| < 1, sup

ζ∈I
|q̌(ζ)| < 1,

and 

|R1(ζ, t, z)− q(ζ)| 6 L
∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
1 ,

|R2(ζ, t, z)− q(ζ)
1−|q(ζ)|2 | 6 L

∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
2 ,

|R3(ζ, t, z)− q(ζ)
1−|q(ζ)|2

∣∣ 6 L∣∣ zρ ∣∣αe t|z|26 , z ∈ Xρ
3 ,

|R4(ζ, t, z)− q(ζ)| 6 L
∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
4 ,

(4.11a)



|Ř1(ζ, t, z)− q̌(ζ)| 6 L
∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
1 ,

|Ř2(ζ, t, z)− q̌(ζ)
1−|q̌(ζ)|2 | 6 L

∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
2 ,

|Ř3(ζ, t, z)− q̌(ζ)
1−|q̌(ζ)|2

∣∣ 6 L∣∣ zρ ∣∣αe t|z|26 , z ∈ Xρ
3 ,

|Ř4(ζ, t, z)− q̌(ζ)| 6 L
∣∣ z
ρ

∣∣αe t|z|26 , z ∈ Xρ
4 ,

(4.11b)

for ζ ∈ I and t > 0.
• The functions ν(ζ) and ν̌(ζ) are defined by

ν(ζ) = − 1
2π log(1− |q(ζ)|2), ν̌(ζ) = − 1

2π log(1− |q̌(ζ)|2).(4.12)

Theorem 4.3 (Nonlinear steepest descent). — If the contour Γ and the
jump matrix v(ζ, t, k) satisfy Assumptions 4.1 and Assumptions 4.2, then
the L3-RH problem (4.4) has a unique solution for all sufficiently large
τ = tρ2 and this solution satisfies

(4.13) (1, 1, 1)m(ζ, t,K1) = (1, 1, 1)

+ 2ε
k0
√
τ

Re
(
F1β − F̄2β̌,F3β − F̄3β̌,F2β − F̄1β̌

)
+O

(
ετ−

1+α
2
)
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for ζ ∈ I as τ →∞, where the error term is uniform with respect to ζ ∈ I,
the functions Fj = Fj(ζ), j = 1, 2, 3, are defined by

(4.14)

F1(ζ) = 1− k2
0ω

(i+ k0)(1− k0K1) ,

F2(ζ) = 1− k2
0ω

(i− k0)(1 + k0K1) ,

F3(ζ) = − i(1− k
2
0ω)

1 + k2
0ω

,

and the functions β = β(ζ, t) and β̌ = β̌(ζ, t) are defined by

β(ζ, t) =
√
ν(ζ)ei(

π
4−arg q(ζ)+arg Γ(iν(ζ)))e−tφ(ζ,0)t−iν(ζ),(4.15a)

β̌(ζ, t) =
√
ν̌(ζ)ei(

π
4−arg q̌(ζ)+arg Γ(iν̌(ζ)))e−tφ(ζ,0)t−iν̌(ζ).(4.15b)

Proof. — Since det v = 1 and we are considering an L3-RH problem for
a 3× 3-matrix valued function, uniqueness follows from Lemma A.1.
Let mX be the solution of Theorem B.1 and let

D(ζ, t) = diag
(
e−

tφ(ζ,0)
2 t−

iν(ζ)
2 , e

tφ(ζ,0)
2 t

iν(ζ)
2 , 1

)
,

Ď(ζ, t) = diag
(
e−

tφ(ζ,0)
2 t−

iν̌(ζ)
2 , e

tφ(ζ,0)
2 t

iν̌(ζ)
2 , 1

)
.

Define m0(ζ, t, k) in neighborhoods of k = k0 and k = −k0 by

m0(ζ, t, k) =


CD(ζ, t)mX

(
q(ζ),−

√
τ
ε (k − k0)

)
D(ζ, t)−1C, |k − k0| 6 ε,

CĎ(ζ, t)−1mX
(
q̌(ζ),

√
τ
ε (k + k0)

)
Ď(ζ, t)C, |k + k0| 6 ε,

and extend it to all of V in such a way thatm0 obeys the symmetries (2.14a)
and (2.14b).
Lemma A.4 implies that m satisfies the L3-RH problem (4.4) if and only

if the function m̂(ζ, t, k) defined by

m̂(ζ, t, k) =
{
m(ζ, t, k)m0(ζ, t, k)−1, k ∈ V,
m(ζ, t, k), otherwise,

satisfies the L3-RH problem{
m̂(ζ, t, · ) ∈ I + Ė3(Ĉ \ Γ̂),
m̂+(ζ, t, k) = m̂−(ζ, t, k)v̂(ζ, t, k) for a.e. k ∈ Γ̂,

(4.16)
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where the jump matrix v̂ is given by

v̂(ζ, t, k) =


m0−(ζ, t, k)v(ζ, t, k)m0+(ζ, t, k)−1, k ∈ V,
m0(ζ, t, k)−1, k ∈ ∂V,
v(ζ, t, k), otherwise.

By construction, ŵ = v̂ − I satisfies the symmetries (2.14a) and (2.14b).
The proofs of the following five claims can be found in Appendix C.

Claim 4.4. — The function ŵ = v̂ − I satisfies

ŵ(ζ, t, k) = O
(
τ−

α
2 e−

τ
24ε2
|k∓k0|2), τ →∞, ζ ∈ I, k ∈ ±k0 +Xε,(4.17)

where the error term is uniform with respect to (ζ, k) in the given ranges.

Claim 4.5. — We have

‖ŵ(ζ, t, · )‖L̇3(Γ̂) = O(ε 1
3 τ−

α
2 ), τ →∞, ζ ∈ I,(4.18a)

‖ŵ(ζ, t, · )‖L∞(Γ̂) = O(τ−α2 ), τ →∞, ζ ∈ I,(4.18b)

and, for any p ∈ [1,∞),

‖ŵ(ζ, t, · )‖L̇p(±k0+Xε) = O(ε
1
p τ−

1
2p−

α
2 ), τ →∞, ζ ∈ I,(4.19)

‖m0(ζ, t, k)−1 − I‖Lp(|k−k0|=ε) = O(ε
1
p τ−

1
2 ), τ →∞, ζ ∈ I,(4.20)

where the error terms are uniform with respect to ζ ∈ I.

Let Ĉ denote the Cauchy operator associated with Γ̂:

(Ĉf)(z) = 1
2πi

∫
Γ̂

f(s)
s− z

ds, z ∈ C \ Γ̂.

The operator Ĉŵ : L̇3(Γ̂) +L∞(Γ̂)→ L̇p(Γ̂) is defined by Ĉŵ(h) = Ĉ−(hŵ),
where Ĉ−f denotes the nontangential boundary value of Ĉf from the right
side of Γ̂.

Claim 4.6. — There exists a T > 0 such that I − Ĉŵ(ζ,t,· ) ∈ B(L̇3(Γ̂))
is invertible for all (ζ, t) ∈ I × (0,∞) with τ > T .

In view of Claim 4.6, we may define the 3 × 3-matrix valued function
µ̂(ζ, t, z) whenever τ > T by

µ̂ = I + (I − Ĉŵ)−1ĈŵI ∈ I + L̇3(Γ̂).(4.21)

Claim 4.7. — The function µ̂(ζ, t, k) satisfies

‖µ̂(ζ, t, · )− I‖L̇3(Γ̂) = O
(
ε

1
3 τ−

α
2
)
, τ →∞, ζ ∈ I,(4.22)

where the error term is uniform with respect to ζ ∈ I.
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Claim 4.8. — There exists a unique solution m̂ ∈ I + Ė3(Ĉ \ Γ̂) of the
L3-RH problem (4.16) whenever τ > T . This solution is given by

m̂(ζ, t, k) = I + Ĉŵµ̂ = I + 1
2πi

∫
Γ̂
µ̂(ζ, t, s)ŵ(ζ, t, s) ds

s− k
.(4.23)

Using the above claims we can complete the proof of Theorem 4.3 as
follows.

Let C(ζ) denote the union of the two circles |k−k0| = ε and |k+k0| = ε

oriented counterclockwise. Let C(ζ)−1 denote the image of C(ζ) under the
map k 7→ k−1. The symmetry properties of v imply that Am̂(ζ, t, ωk)A−1 ∈
I + Ė3(Ĉ \ Γ̂) and m̂(ζ, t, k) both satisfy the L3-RH problem (4.16); by
uniqueness they are equal, i.e.,

m̂(ζ, t, k) = Am̂(ζ, t, ωk)A−1, k ∈ Ĉ \ Γ̂.

Using this symmetry in (4.23), we obtain

(4.24) m(ζ, t,K1) = m̂(ζ, t,K1) = I+ 1
2πi

2∑
n=0
A−n

[
Fn(ζ, t)+Gn(ζ, t)

]
An

+ 1
2πi

∫
Γ
µ̂(ζ, t, k)ŵ(ζ, t, k) dk

k −K1
,

where

Fn(ζ, t) =
∫
C(ζ)

µ̂(ζ, t, k)ŵ(ζ, t, k)dk
k − ω−nK1

,

Gn(ζ, t) =
∫
C(ζ)−1

µ̂(ζ, t, k)ŵ(ζ, t, k)dk
k − ω−nK1

.

By (B.3), we have, as τ →∞ with ζ ∈ I,

m0(ζ, t, k)−1 = CD(ζ, t)mX

(
q(ζ),−

√
τ

ε
(k − k0)

)−1
D(ζ, t)−1C

= I − B(ζ, t)√
τ(k − k0)

+O(τ−1), |k − k0| = ε,

(4.25a)

m0(ζ, t, k)−1 = CĎ(ζ, t)−1mX

(
q̌(ζ),

√
τ

ε
(k + k0)

)−1
Ď(ζ, t)C

= I + B̌(ζ, t)√
τ(k + k0)

+O(τ−1), |k + k0| = ε,

(4.25b)
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where B(ζ, t) and B̌(ζ, t) are defined by

B(ζ, t) = iε

 0 −β(ζ, t) 0
β(ζ, t) 0 0

0 0 0

 ,

B̌(ζ, t) = iε

 0 −β̌(ζ, t) 0
β̌(ζ, t) 0 0

0 0 0

 ,

with

β(ζ, t) = βX(q(ζ))e−tφ(ζ,0)t−iν(ζ), β̌(ζ, t) = βX(q̌(ζ))e−tφ(ζ,0)t−iν̌(ζ).

Using (4.20), (4.22), and (4.25) we find

Fn(ζ, t) =
∫
C(ζ)

µ̂(ζ, t, k)(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

=
∫
C(ζ)

(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

+
∫
C(ζ)

(µ̂(ζ, t, k)− I)(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

= −
∫
|k−k0|=ε

B(ζ, t)√
τ(k − k0)

dk
k − ω−nK1

+
∫
|k+k0|=ε

B̌(ζ, t)√
τ(k + k0)

dk
k − ω−nK1

+O(ετ−1) +O
(
‖µ̂− I‖L̇3(Γ̂)‖m

−1
0 − I‖L̇3/2(C(ζ))

)
= −2πi√

τ

(
B(ζ, t)

k0 − ω−nK1
+ B̌(ζ, t)
k0 + ω−nK1

)
+O(ετ−

1+α
2 )(4.26)

uniformly with respect to ζ ∈ I as τ →∞.
In order to compute the contribution from Gn we note that (4.25) implies

m0(ζ, t, k)−1 = Bm0(ζ, t, k−1)−1B

=

I −
BB(ζ,t)B√
τ(k−1−k0) +O(τ−1), |k−1 − k0| = ε,

I + BB̌(ζ,t)B√
τ(k−1+k0) +O(τ−1), |k−1 + k0| = ε.
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Hence, proceeding as in (4.26), we find

Gn(ζ, t) =
∫
C(ζ)−1

µ̂(ζ, t, k)(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

=
∫
C(ζ)−1

(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

+
∫
C(ζ)−1

(µ̂(ζ, t, k)− I)(m0(ζ, t, k)−1 − I)dk
k − ω−nK1

.

That is,

Gn(ζ, t) = −
∫
|k−1−k0|=ε

BB(ζ, t)B√
τ(k−1 − k0)

dk
k − ω−nK1

+
∫
|k−1+k0|=ε

BB̌(ζ, t)B√
τ(k−1 + k0)

dk
k − ω−nK1

+O(ετ−1) +O
(
‖µ̂− I‖L̇3(Γ̂)‖m

−1
0 − I‖L̇3/2(C(ζ)−1)

)
= 2πi√

τ

(
BB(ζ, t)B

k0(1− k0ω−nK1) + BB̌(ζ, t)B
k0(1 + k0ω−nK1)

)
+O(ετ−

1+α
2 )(4.27)

uniformly with respect to ζ ∈ I. On the other hand, using (4.2),∣∣∣∣∫
Γ

µ̂(ζ, t, k)ŵ(ζ, t, k)dk
k −K1

∣∣∣∣ =
∣∣∣∣∫

Γ

(µ̂− I)ŵdk
k −K1

+
∫

Γ

ŵdk
k −K1

∣∣∣∣
6 C‖µ̂− I‖L̇3(Γ)‖ŵ‖L̇ 3

2 (Γ)
+ C‖ŵ‖L̇1(Γ).

The L̇1-norm of ŵ is O(ετ−1) on Γ′ by (4.6a) and is O(ετ− 1+α
2 ) on {±k0 +

Xε} by (4.19). Hence ‖ŵ‖L̇1(Γ) = O(ετ− 1+α
2 ). Similarly,

‖ŵ‖
L̇

3
2 (Γ)

= O
(
ε

2
3 τ−1 + ε

2
3 τ−

1
3−

α
2
)

by (4.6a) and (4.19). Since ‖µ̂−I‖L̇3(Γ) = O(ε1/3τ−α2 ) by (4.22) and 1/3 6
α < 1, we infer that∣∣∣∣∫

Γ

µ̂(ζ, t, k)ŵ(ζ, t, k)dk
k −K1

∣∣∣∣ = O(ετ−
1+α

2 ), τ →∞, ζ ∈ I,(4.28)

uniformly with respect to ζ ∈ I. Equations (4.24), (4.26), (4.27), and (4.28)
yield

(4.29) m(ζ, t,K1) = I − 1√
τ

2∑
n=0
A−n

(
B(ζ, t)

k0 − ω−nK1
+ B̌(ζ, t)
k0 + ω−nK1

− BB(ζ, t)B
k0(1− k0ω−nK1) −

BB̌(ζ, t)B
k0(1 + k0ω−nK1)

)
An +O(ετ−

1+α
2 ).
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Recalling that K1 = e
iπ
6 , a tedious but straightforward computation gives

us (4.13). This completes the proof of the theorem. �

5. Long-time asymptotics in the similarity sector

Theorem 5.1 gives explicit formulas in terms of r(k) for the leading order
asymptotics of the solution of the DP equation on the half-line in the
asymptotic region

0 < c < ξ < 3, (3− ξ) 3
2 t→∞,

where ξ = x/t.

Theorem 5.1 (Long-time asymptotics in the similarity region). — Let
u0 and {gj}20 be functions in the Schwartz class S(R+) that satisfy the
assumptions (2.2). Suppose there exists a unique solution u(x, t) of equa-
tion (1.1) with κ = 1 in the half-line domain Ω = {x > 0, t > 0} such
that

• u is a smooth function of (x, t) ∈ Ω,
• u satisfies the initial and boundary conditions (2.1),
• u( · , t) ∈ S(R+) for each t > 0.

Let q(x, t) = (u(x, t)−uxx(x, t)+1) 1
3 . Define Ψ̃n(x, t, k) for (x, t) in the set

{x > 0, t = 0} ∪ {x = 0, t > 0}

by the linear integral equations (2.11b). Define r(k) for k ∈ (
√

5−1
2 ,

√
5+1
2 )

by
r(k) = (Ψ̃18(0, 0, k)−1Ψ̃7(0, 0, k))21e

i(k−k−1)
∫∞

0
(q(x,0)−1)dx

.

Suppose the set {kj} defined in Section 2 is empty and that

sup
√

5−1
2 <k<

√
5+1
2

|r(k)| < 1.

Then, for any α ∈ [ 1
3 , 1) and 0 < c < 3, the following asymptotic formulas

are valid:

q(x, t) = 1 + b1(ξ)√
t

cos
(
b2(ξ)t− ν(ξ) log(t) + b3(ξ)

)
(5.1)

+O
(
(3− ξ)−

1+3α
4 t−

1+α
2
)
, (3− ξ) 3

2 t→∞, c 6 ξ < 3,

u(x, t) = 3b1(ξ)
(1 + 4k̃2

0(ξ))
√
t

cos
(
b2(ξ)t− ν(ξ) log t+ b3(ξ)

)
(5.2)

+O
(
(3− ξ)−

1+3α
4 t−

1+α
2
)
, (3− ξ) 3

2 t→∞, c 6 ξ < 3,

TOME 69 (2019), FASCICULE 1



196 Anne BOUTET DE MONVEL, Jonatan LENELLS & Dmitry SHEPELSKY

where the error terms are uniform with respect to ξ in the given ranges
and the functions {bj(ξ)}31, ν(ξ), and k̃0(ξ) are defined by

b1(ξ) = 1− k2
0(ξ)

1 + k2
0(ξ)

√
(3 + 4k̃2

0(ξ))(1 + 4k̃2
0(ξ))ν(ξ)

3k̃0(ξ)− 4k̃3
0(ξ)

,

b2(ξ) = 48k̃3
0(ξ)

(1 + 4k̃2
0(ξ))2

,

b3(ξ) = π

4 − χ0(ξ) + ν(ξ) log
(

(4k̃2
0(ξ) + 1)2(4k̃2

0(ξ) + 3)
576k̃3

0(ξ)(3− 4k̃2
0(ξ))

)
+ arg Γ(iν(ξ))− arg r(k0(ξ))− arctan

(√
31 + k2

0(ξ)
1− k2

0(ξ)

)
+ 3k̃0(ξ)

π

∫ 1
k0(ξ)

k0(ξ)
log(1− |r(s)|2)1 + s4

1 + s6 ds,

ν(ξ) = − 1
2π log(1− |r(k0(ξ))|2), k̃0(ξ) =

√
−2ξ − 3 +

√
24ξ + 9

8ξ ,

with

(5.3)

k0(ξ) = −k̃0(ξ) +
√

1 + k̃2
0(ξ),

χ0(ξ) = − 3
2π

∫ 1
k0(ξ)

k0(ξ)
log
(

1− |r(s)|2

1− |r(k0(ξ))|2

)
× (k0(ξ)− k11

0 (ξ))(s6 + s4) + (k5
0(ξ)− k7

0(ξ))(s10 + 1)
k12

0 (ξ)s6 − k6
0(ξ)(s12 + 1) + s6 ds.

5.1. Proof of Theorem 5.1

The basic idea of the proof consists of deforming the contour of the RH
problem (3.7) so that the jump matrix is exponentially close to the identity
everywhere except near a certain set of critical points. Near these critical
points the problem is solved locally and the asymptotic expansion of the
solution is extracted from the local solution.

Suppose ζ = y/t ∈ (0, 3). In order to find the critical points, we note
that, for fixed ζ, the function Φ(ζ, k) defined in (3.10) can be written as
Φ(ζ, k) = Φ̃(ζ, k̃(k)) where

Φ̃(ζ, k̃) = 2iζk̃ − 6ik̃
1 + 4k̃2

, k̃(k) = 1
2

(
1
k
− k
)
.
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The equation ∂k̃Φ̃(ζ, k̃) = 0 has two real solutions ±k̃0, where k̃0 = k̃0(ζ)
is defined by

k̃0 =

√
−2ζ − 3 +

√
24ζ + 9

8ζ .

Consequently, there are four real points at which ∂Φ/∂k = 0; these are
given by ±k0,±k−1

0 , where k0 = k0(ζ) is defined by

k0 = −k̃0 +
√

1 + k̃2
0.

It follows that for ζ ∈ (0, 3) the RH problem (3.7) has twelve critical
points associated with it (the four points ±k0,±k−1

0 as well as the eight
points obtained by multiplying these four points by ω and ω2). Note that
0 < k̃0 < 1/2 and

√
5−1
2 < k0 < 1 for 0 < ζ < 3. We henceforth assume

that ζ ∈ I, where I = [c, 3) and c > 0 is a small constant. The signature
table of Re Φ for ζ in this range is displayed in Figure 5.1. The form of the
signature table can be deduced from the explicit formula

Re Φ(ζ, k1 + ik2) = k2
(
k2

1 + k2
2 + 1

)( ζ

k2
1 + k2

2
+ P (k1, k2)
Q(k1, k2)

)
,

where

P (k1, k2) = 3
(
k4

1 + k2
1
(
2k2

2 − 3
)

+ k4
2 + k2

2 + 1
)
,

Q(k1, k2) = k8
1 + k6

1
(
4k2

2 − 2
)

+ k4
1
(
6k4

2 − 2k2
2 + 3

)
+ 2k2

1
(
2k6

2 + k4
2 − 5k2

2 − 1
)

+
(
k4

2 + k2
2 + 1

)2
.

The equation P = 0 implies Re(z2 − z1) = 0 and defines the curves (D̄1 ∩
D̄7)∪ (D̄6 ∩ D̄18) and (D̄3 ∩ D̄12)∪ (D̄4 ∩ D̄13). The remainder of the proof
proceeds through seven steps.
Step 1: Deform contour. — We begin by deforming the contour so that it

passes through the twelve critical points, see Figures 5.2 and 5.3. For k near
k0 and k−1

0 , the contour deformation is achieved by defining M̂ = MJ−1
1,7

for k ∈ F1 ∩E7 and M̂ = MJ−1
6,18 for k ∈ F6 ∩E18, where the sets {Fn} are

as in Figure 5.3. We define M̂ analogously near the other critical points
and set M̂ = M otherwise.
Let Γ̂ denote the contour displayed in Figure 5.3. The matrix J6,18 in-

volves the factor h(k)etΦ, which is bounded and analytic in F6 ∩ E18.
Similarly, J1,7 involves the factor h(k̄)e−tΦ, which is bounded and an-
alytic in F1 ∩ E7. Thus, except for possible singularities at the points
{κj}61, M̂(y, t, k) is a bounded and analytic function of k ∈ Ĉ \ Γ̂. Using
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Re Φ < 0

Re Φ > 0

K1

K2

K3

K4

K5

K6

k0 k−1
0−k0−k−1

0

Figure 5.1. The regions in the complex k-plane where Re Φ(ζ, k) < 0
(shaded) and Re Φ(ζ, k) > 0 (white). The contour separating the sets
En is dashed.

Re Φ < 0

Re Φ > 0

K1K3

K4 K6

k0 k−1
0−k0−k−1

0

Figure 5.2. The jump contour Γ̂ for k near R together with the regions
where Re Φ < 0 (shaded) and Re Φ > 0 (white).

Lemma A.4, we conclude that N̂ = (1, 1, 1)M̂ satisfies the L3-RH problem{
N̂(y, t, · ) ∈ (1, 1, 1) + Ė3(Ĉ \ Γ̂),
N̂+(y, t, k) = N̂−(y, t, k)Ĵ(y, t, k) for a.e. k ∈ Γ̂,

(5.4)

where the expression for Ĵ = Ĵm,n for k ∈ F̄m ∩ F̄n coincides with the
expression for J on Ēm ∩ Ēn, see equations (3.9), (3.11), and (3.12).
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K1

K2

K3

K4

K5

K6

k0 k−1
0−k0−k−1

0

F1F1F3 F3

F4 F4 F6F6

F7

F12

F13

F18

Figure 5.3. The jump contour Γ̂ for M̂ .

Step 2: Conjugate. — On the circles where the En’s and En+18’s meet,
the jump matrix Ĵ(y, t, k) has exponential decay as t → ∞. Indeed, the
circles where the En’s and En+18’s meet are the small circles centered at
Kj , j = 1, . . . , 6, see Figure 2.3. By symmetry, it is enough to consider
the small circle centered at K1. On this circle, the jump matrix is given
by the three formulas (3.12) in Lemma 3.4, see Figure 2.4. The (12), (13),
and (23) entries of the matrices in (3.12) involve the exponentials e−tΦ(ζ,k),
etΦ(ζ,ω2k), and e−tΦ(ζ,ωk), respectively; the decay now follows from (3.12)
and the signature table of Re Φ, see Figure 5.1.

In order to arrive at a jump matrix with the appropriate decay properties
also on the remaining part of the contour, we need to perform a triangular
factorization of Ĵ . Such a factorization can be achieved by conjugating the
RH problem as follows. Let

∆(ζ, k) =

δ(ζ, k)δ(ζ, ω2k)−1 0 0
0 δ(ζ, k)−1δ(ζ, ωk) 0
0 0 δ(ζ, ω2k)δ(ζ, ωk)−1

,
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where, for k ∈ C \ R,

(5.5) δ(ζ, k) = exp
{

1
4πi

∫ −k0

− 1
k0

log(1− |ř(s)|2)
(

1
s− k

− 1
s− 1

k

)
ds

+ 1
4πi

∫ 1
k0

k0

log(1− |r(s)|2)
(

1
s− k

− 1
s− 1

k

)
ds
}
.

The identities
δ(ζ, k) = 1

δ(ζ, k̄)
= 1
δ(ζ, k−1) ,

imply that ∆(ζ, k) obeys the three symmetries in (2.14). The function δ

satisfies

δ+(ζ, k) =


δ−(ζ, k)(1− |r(k)|2), k ∈ (k0, k

−1
0 ),

δ−(ζ, k)(1− |ř(k)|2), k ∈ (−k−1
0 ,−k0),

δ−(ζ, k), otherwise,

and

δ(ζ, k) = eiϕ +O(k−1), k →∞, k ∈ C,

where the constant ϕ ∈ R is given by

ϕ = 1
4π

∫ −k0

− 1
k0

log(1− |ř(s)|2)ds
s

+ 1
4π

∫ 1
k0

k0

log(1− |r(s)|2)ds
s
.

Moreover, the representation

δ(ζ, k) =
(

(k−1
0 − k)(k0 − k−1)

(k0 − k)(k−1
0 − k−1)

) iν
2
(

(k0 + k)(k−1
0 + k−1)

(k−1
0 + k)(k0 + k−1)

) iν̌
2

eχ(ζ,k),

where

χ(ζ, k) = 1
4πi

∫ −k0

− 1
k0

log
(

1− |ř(s)|2

1− |ř(−k0)|2

)(
1

s− k
− 1
s− 1

k

)
ds

+ 1
4πi

∫ 1
k0

k0

log
(

1− |r(s)|2

1− |r(k0)|2

)(
1

s− k
− 1
s− 1

k

)
ds,

shows that
δ(ζ, · ), δ(ζ, · )−1 ∈ E∞(C \ R).

We conclude that

∆(ζ, · ),∆(ζ, · )−1 ∈ I + Ė3(C \ Γ̂) ∩ E∞(C \ Γ̂).

The function M̃ defined by

M̃(y, t, k) = M̂(y, t, k)∆(ζ, k)

ANNALES DE L’INSTITUT FOURIER



LONG-TIME ASYMPTOTICS FOR THE DP EQUATION 201

satisfies the jump condition M̃+ = M̃−J̃ on Γ̂ with J̃ = ∆−1
− Ĵ∆+. Define

r2(k) by

r2(k) = r(k)
1− r(k)r(k̄)

, k ∈ Ē7 ∩ Ē18.

We find from (3.9) that

J̃ =



b−1
l bu, k ∈ F̄1 ∩ F̄6,

B−1
u Bl, k ∈ F̄7 ∩ F̄18,
1 δ(ζ,ωk)δ(ζ,ω2k)

δ(ζ,k)2 h(k̄)e−tΦ 0
0 1 0
0 0 1

 , k ∈ F̄1 ∩ F̄7,


1 0 0

δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)h(k)etΦ 1 0
0 0 1

 , k ∈ F̄6 ∩ F̄18,

b̌−1
l b̌u, k ∈ F̄3 ∩ F̄4,

B̌−1
u B̌l, k ∈ F̄12 ∩ F̄13,
1 δ(ζ,ωk)δ(ζ,ω2k)

δ(ζ,k)2 ȟ(k̄)e−tΦ 0
0 1 0
0 0 1

 , k ∈ F̄3 ∩ F̄12,


1 0 0

δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) ȟ(k)etΦ 1 0
0 0 1

 , k ∈ F̄4 ∩ F̄13,

where

bl =

 1 0 0
− δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)r1(k)etΦ(ζ,k) 1 0
0 0 1

 ,

Bu =

1 δ(ζ,ωk)δ(ζ,ω2k)
δ−(ζ,k)2 r2(k̄)e−tΦ(ζ,k) 0

0 1 0
0 0 1

 ,

Bl =

 1 0 0
δ+(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)r2(k)etΦ(ζ,k) 1 0
0 0 1

 ,
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U1

U2

U3

U4

U5

U6

U1

U6

U7

U8

U9

U10

U11

U12

U7

U12

V1V1V3V3

V4 V4 V6 V6

Re Φ < 0

Re Φ > 0

Figure 5.4. The open sets {Uj}12
1 and the jump contour Γ for k near R.

bu =

1 − δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 r1(k̄)e−tΦ(ζ,k) 0

0 1 0
0 0 1

 ,

and b̌l, B̌u, B̌l, b̌u are given by analogous expressions but with r and h

replaced with ř and ȟ, respectively.

Step 3: Introduce analytic approximations. — The next step consists of
splitting each of the functions rj , j = 1, 2, into an analytic part rj,a and a
small remainder rj,r.
Define open sets Uj := Uj(ζ), j = 1, . . . , 12, as in Figure 5.4 so that

Re Φ(ζ, k) > 0 in U1 ∪ U4 ∪ U7 ∪ U10 and Re Φ(ζ, k) < 0 in U3 ∪ U6 ∪
U9 ∪ U12. Write U6 = U+

6 ∪ U
−
6 , where U+

6 = U6 ∩ {Re k > k−1
0 } and

U−6 = U6 ∩ {Re k < k0}.

Lemma 5.2 (Analytic approximations of r1(k) and r2(k)). — There ex-
ist decompositions

r1(k) = r1,a(y, t, k) + r1,r(y, t, k), k ∈ Ū1 ∩ Ū6,

r2(k) = r2,a(y, t, k) + r2,r(y, t, k), k ∈ Ū3 ∩ Ū4,

where the functions {rj,a, rj,r}2j=1 have the following properties:

(a) For each ζ ∈ I and each t > 0, r1,a(y, t, k) is continuous for k ∈ Ū6
and analytic for k ∈ U6, while r2,a(y, t, k) is continuous for k ∈ Ū3
and analytic for k ∈ U3.
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(b) There exists a constant C independent of ζ, t, k such that
|r1,a(y, t, k)− r1(k0)| 6 C|k − k0|e

t
4 |Re Φ(ζ,k)|, k ∈ Ū−6 ,

|r1,a(y, t, k)− r1(k−1
0 )| 6 C|k − k−1

0 |e
t
4 |Re Φ(ζ,k)|, k ∈ Ū+

6 ,

|r1,a(y, t, k)| 6 C
1+|k|e

t
4 |Re Φ(ζ,k)|, k ∈ Ū6,

and{
|r2,a(y, t, k)− r2(k0)| 6 C|k − k0|e

t
4 |Re Φ(ζ,k)|,

|r2,a(y, t, k)− r2(k−1
0 )| 6 C|k − k−1

0 |e
t
4 |Re Φ(ζ,k)|,

k ∈ Ū3,(5.6)

for ζ ∈ I and t > 0.
(c) The L1, L2, and L∞ norms on Ū1 ∩ Ū6 of the function r1,r(y, t, · )

are O(t−3/2) as t→∞ uniformly with respect to ζ ∈ I.
(d) The L1, L2, and L∞ norms on Ū3 ∩ Ū4 of the function r2,r(y, t, · )

are O(t−3/2) as t→∞ uniformly with respect to ζ ∈ I.
(e) The following symmetries are valid:

rj,a(y, t, k) = rj,a(y, t, k̄−1), rj,r(y, t, k) = rj,r(y, t, k̄−1), j = 1, 2.(5.7)

Proof. — Analytic approximations of this type were introduced in [12].
The proof here follows the presentation of [18, 19] (see in particular Lem-
ma 4.8 of [19]). We will derive the decomposition of r1 in U+

6 . This de-
composition can easily be extended to U−6 by means of the symmetry
r1(k) = r1(k̄−1). The decomposition of r2(k) can be derived in a simi-
lar way.
Our assumption that u0 and {gj}20 belong to the Schwartz class S(R+)

implies that r1(k) has the following properties:
• r1(k) is a smooth function of k ∈ (0,∞).
• There are functions {pj(ζ)}70 such that

r
(n)
1 (k) = dn

dkn

 7∑
j=0

pj(ζ)(k − k−1
0 )j

+O((k − k−1
0 )8−n)

as k∈R approaches k−1
0 for n= 0,1,2 (in fact, pj(ζ) := r

(j)
1 (k−1

0 )/j!).
• There are constants {r1,j}21 ⊂ C such that

r
(n)
1 (k) = dn

dkn

(
r1,1

k
+ r1,2

k2

)
+O(k−3), k →∞, n = 0, 1, 2.

We let

f0(ζ, k) =
10∑
j=1

aj(ζ)
kj

,
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k

φ

k0

k−1
0

φ0

Figure 5.5. Graph of the function k 7→ φ(ζ, k) defined in (5.9).

where the coefficients {aj(ζ)}10
1 are determined by the conditions

f0(ζ, k) =
7∑
j=0

pj(ζ)(k − k−1
0 )j +O((k − k−1

0 )8), k → k−1
0 , ζ ∈ I,

f0(ζ, k) = r1,1

k
+ r1,2

k2 +O(k−3), k →∞, ζ ∈ I.

These ten linear conditions determine the coefficients aj(ζ) uniquely and
we have supζ∈I |aj(ζ)| <∞ for each j. For each ζ ∈ I, f0(ζ, k) is a rational
function of k ∈ C with no poles in Ū+

6 , which coincides with r1(k) to
seventh order at k0 and to second order at∞. In other words, the function
f(ζ, k) defined by f(ζ, k) = r1(k)− f0(ζ, k) satisfies

∂nf

∂kn
(ζ, k) =

{
O((k−k−1

0 )8−n), k → k−1
0 ,

O(k−3), k →∞,
k ∈ R, ζ ∈ I, n = 0, 1, 2,(5.8)

where the error terms are uniform with respect to ζ ∈ I.
The decomposition of r1(k) can now be derived as follows. Define the

new variable φ by

φ = −iΦ(ζ, k) = 2k̃ζ − 6k̃
1 + 4k̃2

, k̃ = k−1 − k
2 ,(5.9)

and let φ0 := φ0(ζ) denote the value of φ at k−1
0 , i.e., φ0(ζ) = φ(ζ, k−1

0 ). For
each ζ ∈ I, the map k 7→ φ = φ(ζ, k) is a decreasing bijection [k−1

0 ,∞)→
(−∞, φ0], see Figure 5.5.
Hence we may define a function F (ζ, φ) by

F (ζ, φ) =


k3

k−k−1
0
f(ζ, k), φ < φ0,

0, φ > φ0,
ζ ∈ I, φ ∈ R.(5.10)
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For each ζ ∈ I, the function F (ζ, · ) is smooth on R \ {φ0} and

∂nF

∂φn
(ζ, φ) =

(
1

∂φ/∂k

∂

∂k

)n[
k3

k − k−1
0
f(ζ, k)

]
, ζ ∈ I, φ < φ0.(5.11)

We have
∂φ

∂k
(ζ, k) = −ζ +O(k−2), k →∞, ζ ∈ I.(5.12)

On the other hand, a computation shows that
∂φ

∂k
(ζ, k) = d1(ζ)(k − k−1

0 ) + d2(ζ)(k − k−1
0 )2 +O((k − k−1

0 )3), ζ ∈ I,

as k → k−1
0 , where the coefficients {dj(ζ)}21 are bounded for ζ ∈ I and

satisfy d1(ζ) < 0 for ζ ∈ (0, 3), d1(3) = 0, and d2(3) 6= 0. In particular,
there exist constants c, C > 0 independent of k, ζ such that∣∣∣∣∂φ∂k (ζ, k)

∣∣∣∣ > c|k − k−1
0 |2 and

∣∣∣∣∂2φ

∂k2 (ζ, k)
∣∣∣∣ < C(5.13)

for all k > k−1
0 and ζ ∈ I. Equations (5.8), (5.11), (5.12), and (5.13) show

that F (ζ, · ) ∈ C1(R) for each ζ and that∣∣∣∣∂nF∂φn
(ζ, φ)

∣∣∣∣ 6 C

1 + |φ| , φ < φ0, ζ ∈ I, n = 0, 1, 2,

where C > 0 is independent of ζ, φ, n. Hence

sup
ζ∈I

∥∥∥∥∂nF∂φn
(ζ, · )

∥∥∥∥
L2(R)

<∞, n = 0, 1, 2.(5.14)

In particular, F (ζ, · ) belongs to the Sobolev space H2(R) for each ζ ∈ I.
We conclude that the Fourier transform F̂ (ζ, s) defined by

F̂ (ζ, s) = 1
2π

∫
R
F (ζ, φ)e−iφsdφ(5.15)

satisfies

F (ζ, φ) =
∫
R
F̂ (ζ, s)eiφsds(5.16)

and

sup
ζ∈I
‖s2F̂ (ζ, s)‖L2(R) <∞.(5.17)

In view of (5.10) and (5.16), we find

k − k−1
0

k3

∫
R
F̂ (ζ, s)esΦ(ζ,k)ds =

{
f(ζ, k), k > k−1

0 ,

0, k 6 k−1
0 ,

ζ ∈ I.
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Let us write

f(ζ, k) = fa(y, t, k) + fr(y, t, k), ζ ∈ I, t > 0, k > k0,

where the functions fa and fr are defined by

fa(y, t, k) = k − k−1
0

k3

∫ ∞
− t4

F̂ (ζ, s)esΦ(ζ,k)ds, ζ ∈ I, t > 0, k ∈ Ū+
6 ,

and

fr(y, t, k) = k − k−1
0

k3

∫ − t4
−∞

F̂ (ζ, s)esΦ(ζ,k)ds, ζ ∈ I, t > 0, k > k−1
0 .

The function fa(y, t, · ) is continuous in Ū+
6 and analytic in U+

6 , because
Re Φ 6 0 in Ū6. Furthermore,

|fa(y, t, k)| 6 |k − k
−1
0 |

|k|3
‖F̂ (ζ, · )‖L1(R) sup

s>− t4
esRe Φ(ζ,k)(5.18)

6
C|k − k−1

0 |
|k|3

e
t
4 |Re Φ(ζ,k)|, ζ ∈ I, t > 0, k ∈ Ū+

6 ,

and

|fr(y, t, k)| 6 |k − k
−1
0 |

|k|3

∫ − t4
−∞

s2|F̂ (ζ, s)|s−2ds(5.19)

6
C

1 + |k|2 ‖s
2F̂ (ζ, s)‖L2(R)

√∫ − t4
−∞

s−4ds

6
C

1 + |k|2 t
−3/2, ζ ∈ I, t > 0, k > k−1

0 .

Hence the L1, L2, and L∞ norms of fr on (k−1
0 ,∞) are O(t−3/2) uniformly

with respect to ζ ∈ I. Letting

r1,a(y, t, k) = f0(ζ, k) + fa(y, t, k), k ∈ Ū+
6 ,

r1,r(y, t, k) = fr(y, t, k), k > k−1
0 ,

we find a decomposition of r1 for k > k−1
0 with the properties listed in the

statement of the lemma. �

Using the decompositions of r1(k) and r2(k) established in Lemma 5.2,
we can factorize the matrices {bu, bl, Bu, Bl} as follows:

bu = bu,abu,r, bl = bl,abl,r, Bu = Bu,aBu,r, Bl = Bl,aBl,r,

where {bu,a, bl,a, Bu,a, Bl,a} and {bu,r, bl,r, Bu,r, Bl,r} are defined by the
same formulas as {bu, bl, Bu, Bl} except that the functions {rj(k)}21 are
replaced by {rj,a(k)}21 and {rj,r(k)}21, respectively.
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In the same way, we introduce decompositions

ř1(k) = ř1,a(y, t, k) + ř1,r(y, t, k), k ∈ Ū7 ∩ Ū12,

ř2(k) = ř2,a(y, t, k) + ř2,r(y, t, k), k ∈ Ū9 ∩ Ū10,

which lead to the factorizations

b̌u = b̌u,ab̌u,r, b̌l = b̌l,ab̌l,r, B̌u = B̌u,aB̌u,r, B̌l = B̌l,aB̌l,r.

Step 4: Deform again. — Let the sets {Uj} and {Vj} be as in Figure 5.4
and define m(y, t, k) for k near R by

m(y, t, k) = M̃(y, t, k)G(y, t, k),(5.20)

where

G(y, t, k) =



bu,a(y, t, k)−1, k ∈ U1,

Bl,a(y, t, k)−1, k ∈ U3,

Bu,a(y, t, k)−1, k ∈ U4,

bl,a(y, t, k)−1, k ∈ U6,

b̌u,a(y, t, k)−1, k ∈ U7,

B̌l,a(y, t, k)−1, k ∈ U9,

B̌u,a(y, t, k)−1, k ∈ U10,

b̌l,a(y, t, k)−1, k ∈ U12.

We define m analogously near the lines ωR and ω2R and set m = M̃

elsewhere. Let Γ denote the jump contour for m; the part of Γ near R
is displayed in Figure 5.4. The function m satisfies the jump condition
m+ = m−v on Γ, where, for k near R+,

v(y, t, k) =



bu,a, k ∈ Ū1 ∩ V̄1,

Bl,a, k ∈ Ū2 ∩ Ū3,

Bu,a, k ∈ Ū4 ∩ Ū5,

bl,a, k ∈ Ū6 ∩ V̄6,

bu,aJ̃1,7, k ∈ Ū1 ∩ Ū2,

bl,aJ̃6,18, k ∈ Ū5 ∩ Ū6,

b−1
l,r bu,r, k ∈ Ū1 ∩ Ū6,

B−1
u,rBl,r, k ∈ Ū3 ∩ Ū4,

(5.21a)
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and, for k near R−,

v(y, t, k) =



B̌l,a, k ∈ Ū8 ∩ Ū9,

b̌u,a, k ∈ Ū7 ∩ V̄3,

b̌l,a, k ∈ Ū12 ∩ V̄4,

B̌u,a, k ∈ Ū10 ∩ Ū11,

b̌u,aJ̃3,12, k ∈ Ū7 ∩ Ū8,

b̌l,aJ̃4,13, k ∈ Ū11 ∩ Ū12,

b̌−1
l,r b̌u,r, k ∈ Ū7 ∩ Ū12,

B̌−1
u,rB̌l,r, k ∈ Ū9 ∩ Ū10,

(5.21b)

with

bu,aJ̃1,7 =

1 − δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 (r1,a(k̄)− h(k̄))e−tΦ 0

0 1 0
0 0 1

 ,

bl,aJ̃6,18 =

 1 0 0
− δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) (r1,a(k)− h(k))etΦ 1 0
0 0 1

 ,

b̌u,aJ̃3,12 =

1 − δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 (ř1,a(k̄)− ȟ(k̄))e−tΦ 0

0 1 0
0 0 1

 ,

b̌l,aJ̃4,13 =

 1 0 0
− δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) (ř1,a(k)− ȟ(k))etΦ 1 0
0 0 1

 .

The jump matrix v obeys the symmetries (2.14a) and (2.14b). Lemma 5.2
implies that

G(y, t, · ) ∈ I + Ė3(U) ∩ E∞(U),

where U = U1∪U3∪U4∪U6∪U7∪U9∪U10∪U12. It follows from Lemma A.4
that N̂(y, t, k) is a row-vector solution of the L3-RH problem (5.4) if and
only if the function n(y, t, k) defined by

(5.22) n(y, t, k) = (1, 1, 1)m(y, t, k), k ∈ Ĉ \ Γ

is a row-vector solution of the L3-RH problem{
n(y, t, · ) ∈ (1, 1, 1) + Ė3(Ĉ \ Γ),
n+(y, t, k) = n−(y, t, k)v(y, t, k) for a.e. k ∈ Γ.

(5.23)
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Step 5: Apply Theorem 4.3. — Let α ∈ [ 1
3 , 1) and c ∈ (0, 3). Let ε = 1−k0

2
(then 0 < ε < 1 and k0 +ε < 1). We claim that Theorem 4.3 can be applied
to the contour Γ and jump matrix v with

I = [c, 3), ρ = ε

√
−iF ′′(k̃0)k̃′(k0)2 = ε

1 + k−2
0

2

√
48k̃0(3− 4k̃2

0)
(4k̃2

0 + 1)3
,(5.24)

q(ζ) =
(

2
k−1

0 + k0

)2iν̌(ζ)
e2χ(ζ,k0)r(k0)

δ(ζ, ωk0)δ(ζ, ω2k0)

(
ρ

ε
(k−1

0 − k0)k0

)2iν(ζ)
,

q̌(ζ) =
(

2
k−1

0 + k0

)2iν(ζ)
δ(ζ,−ωk0)δ(ζ,−ω2k0)

e2χ(ζ,−k0) ř(−k0)

×
(
ρ

ε
(k−1

0 − k0)k0

)2iν̌(ζ)
,

ν(ζ) = − 1
2π log(1− |r(k0)|2), ν̌(ζ) = − 1

2π log(1− |ř(−k0)|2),

φ(ζ, z) = Φ
(
ζ, k0 −

εz

ρ

)
= Φ

(
ζ,−k0 + εz

ρ

)
= − 48ik̃3

0

(1 + 4k̃2
0)2

+ i

2z
2 +O(z3), z → 0.

Indeed, by adding a number of arcs on which v = I, we can ensure that Γ
is a Carleson jump contour which satisfies (Γ1)-(Γ4).

Lemma 5.3. — The 3×3-matrix valued function w = v−I satisfies (4.5)
and (4.6).

Proof. — This follows from the decay properties of e±tΦ. Indeed, for
k ∈ Γ′ near R, the decay is a consequence of the expressions for the jump
matrix v given in (5.21) and the estimates in Lemma 5.2. By symmetry,
it follows that w has decay also near ωR and ω2R. On the other hand, we
already noted that w has exponential decay on the circles ∪6

j=1∂Bj , where
Bj denotes the disk centered at Kj along which the En’s and En+18’s
meet (see Step 2 above). Thus, it only remains to verify that w is small on
Γ′ ∩ (∪6

j=1Bj). We will show that w is small on Ē19 ∩ Ē25; the other parts
of Γ′ ∩ (∪6

j=1Bj) can be handled in a similar way.
In view of (3.11), we have

v(y, t, k) =

1 δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 f1(k)e−tΦ(ζ,k) 0

0 1 0
0 0 1

 , k ∈ Ē19 ∩ Ē25,
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where the functions δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 and f1(k) are bounded on Ē19 ∩ Ē25. In

particular,

|w(y, t, k)| 6 Ce−tRe Φ(ζ,k), ζ ∈ I, k ∈ Ē19 ∩ Ē25.

It is therefore enough to show that there exists a constant c1 > 0 indepen-
dent of ζ, k such that

Re Φ(ζ, k) > c1 > 0, ζ ∈ I, k ∈ Ē19 ∩ Ē25.(5.25)

In order to prove (5.25), we note that the curve Ē19 ∩ Ē25 ⊂ D̄1 ∩ D̄7 is
determined by the equation Re(z1− z2) = 0. Hence the definition (3.10) of
Φ(ζ, k) yields

Re Φ(ζ, k) = Re(l2 − l1)ζ = k2(k2
1 + k2

2 + 1)ζ
k2

1 + k2
2

, k ∈ D̄1 ∩ D̄7.

Since k2 = Im k is positive and bounded away from 0 on Ē19 ∩ Ē25 and
I = [c, 3) with c > 0, the inequality (5.25) follows. �

The definition (5.21) of v implies that (4.7) and (4.8) are satisfied with
R1(ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) (r1,a(k)− h(k))z2iν(ζ),

R2(ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 r2,a(k̄)z−2iν(ζ),

R3(ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)r2,a(k)z2iν(ζ),

R4(ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 (r1,a(k̄)− h(k̄))z−2iν(ζ),

where k and z are related by k = k0 − εz
ρ , and

Ř1(ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 (ř1,a(k̄)− ȟ(k̄))z2iν̌(ζ),

Ř2(ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) ř2,a(k)z−2iν̌(ζ),

Ř3(ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)
δ(ζ,k)2 ř2,a(k̄)z2iν̌(ζ),

Ř4(ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k) (ř1,a(k)− ȟ(k))z−2iν̌(ζ),

where k and z are related by k = −k0 + εz
ρ . The definition (5.24) of φ(ζ, z)

shows that (4.9) and (4.10) hold. The symmetry δ(ζ, k) = 1/δ(ζ, k̄) implies
that |δ(ζ, ωk0)δ(ζ, ω2k0)| = 1. Hence |q(ζ)| = |r(k0)| and |q̌(ζ)| = |ř(−k0)|;
this yields (4.12). To establish (4.11), we note that if k = k0 − εz

ρ , then

R1(ζ, t, z) =
(
(k−1

0 − k)(k−1 − k0)kk0
)iν( (k0 + k)(k−1

0 + k−1)
(k−1

0 + k)(k0 + k−1)

)iν̌
× e2χ(ζ,k)

δ(ζ, ωk)δ(ζ, ω2k) (r1,a(k)− h(k))
(
ρ

ε

)2iν(ζ)
.
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Since r1,a(k0)−h(k0) = r(k0), this shows that q(ζ) = R1(ζ, t, 0). Similarly,
if k = −k0 + εz

ρ , then

Ř1(ζ, t, z) =
(

(k−1
0 − k)(k0 − k−1)

(k0 − k)(k−1
0 − k−1)

)−iν( 1
(k−1

0 + k)(k0 + k−1)kk0

)−iν̌
× δ(ζ, ωk)δ(ζ, ω2k)

e2χ(ζ,k) (ř1,a(k̄)− ȟ(k̄))
(
ρ

ε

)2iν̌(ζ)
.

Since (ř1,a(−k0) − ȟ(−k0)) = ř(−k0), this shows that q̌(ζ) = Ř1(ζ, t, 0).
The inequalities in (4.11) for R1 and Ř1 are now a consequence of standard
estimates, cf. [12]. The inequalities in (4.11) for {Rj , Řj}42 are proved in a
similar way. This shows that the conditions of Theorem 4.3 are satisfied.
The conclusion (4.13) of Theorem 4.3 implies that the solution n(y, t, k)

of the L3-RH problem (5.23) satisfies

(5.26) n(y, t,K1) = (1, 1, 1)+ 2ε
k0
√
τ

Re(F1β−F̄2β̌,F3β−F̄3β̌,F2β−F̄1β̌)

+O
(
ετ−

1+α
2
)
, τ = tρ2 →∞, ζ ∈ I,

where the error term is uniform with respect to ζ ∈ I and the functions
{Fj}31, β, β̌ are defined in (4.14) and (4.15).

Remark 5.4. — In general, the solution m of the L3-RH problem (4.4)
featured in Theorem 4.3 is different from the function m used in this section;
the former is regular at the points {κj}61 whereas the latter, in general, is
singular at these points. However, by Lemma A.5, this discrepancy disap-
pears when premultiplying by (1, 1, 1); hence the row vector solution n of
the L3-RH problem (5.23) satisfies (5.26).

Step 6: Find q(x, t) and u(x, t). — For k ∈ E25 near K1 we have

m = M∆ = P (k)−1D(x, t)−1P (k)Ψ7e
(x−y+ν0)L∆.

Using the identity

(1, 1, 1)P (k)−1D(x, t)−1P (k) = q(x, t)(1, 1, 1),

this gives

n(y, t, k) = q(x, t)(1, 1, 1)Ψ7(x, t, k)e(x−y+ν0)L∆(ζ, k).

Since Ψn(x, t,K1) = I, evaluation of this equation at k = K1 yields

n(y, t,K1) = q(x, t)(1, 1, 1)e(x−y+ν0)L(K1)∆(ζ,K1)
= q(x, t)(ey−x−ν0∆11(ζ,K1),∆22(ζ,K1), ex−y+ν0∆33(ζ,K1)).

TOME 69 (2019), FASCICULE 1



212 Anne BOUTET DE MONVEL, Jonatan LENELLS & Dmitry SHEPELSKY

Hence, by (5.26),(2)

∆11(ζ,K1)∆33(ζ,K1)
∆2

22(ζ,K1) = n1(ζ, t,K1)n3(ζ, t,K1)
n2

2(ζ, t,K1) = 1 +O(ετ−1/2)

as τ → ∞. Fixing ζ ∈ I on the left-hand side of this equation and letting
t→∞, we deduce that ∆11(ζ,K1)∆33(ζ,K1) = ∆2

22(ζ,K1) for ζ ∈ I. Pro-
ceeding as in the proof of Proposition 4.2 of [4], we infer that ∆22(ζ,K1) = 1
and |r(k0)| = |ř(−k0)| for all ζ ∈ I. It follows that ν(ζ) = ν̌(ζ) for ζ ∈ I.
The equation

δ(ζ, k) = e
1

4πi

∫ k−1
0

k0
log(1−|r(s)|2)

(
1
s−k−

1
s+k−

1
s−k−1 + 1

s+k−1

)
ds
,

now shows that δ(ζ, k) = δ(ζ,−k)−1 and χ(ζ, k) = −χ(ζ,−k). In particu-
lar, q(ζ) = q̌(ζ)ei(arg ř(−k0)+arg r(k0)).

A computation shows that

arg q(ζ) = 2ν log
(

2
k0 + k−1

0

)
+ χ0(ζ) + arg r(k0)(5.27)

+ 2ν log
(
ρ

ε
(k−1

0 − k0)k0

)
− ν

2 log
∣∣∣∣ (k−1

0 −k)(k0−k−1)
(k0−k)(k−1

0 −k−1)
(k0 +k)(k−1

0 +k−1)
(k−1

0 +k)(k0 +k−1)

∣∣∣∣
k=ωk0

− ν

2 log
∣∣∣∣ (k−1

0 −k)(k0−k−1)
(k0−k)(k−1

0 −k−1)
(k0 +k)(k−1

0 +k−1)
(k−1

0 +k)(k0 +k−1)

∣∣∣∣
k=ω2k0

= χ0(ζ) + arg r(k0)− ν log Y,

where
χ0(ζ) = Im(2χ(ζ, k0)− χ(ζ, ωk0)− χ(ζ, ω2k0))

and the function Y = Y (ζ) is defined by

Y (ζ) = (4k̃2
0 + 1)2(4k̃2

0 + 3)
576k̃3

0(3− 4k̃2
0)

.

Equations (5.26) and (5.27) yield

(5.28) n1(y, t,K1) = 1 + d1√
t

Re
((
F1e

−i arg r(k0) − F̄2e
i arg ř(−k0))

× ei(d2t−ν log t+d3)
)

+O(ετ−
1+α

2 ), τ →∞, ζ ∈ I,

(2)All error terms of the form O( · ) in the remainder of the proof are uniform with
respect to ζ ∈ I.
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and

q(x, t) = n2(y, t,K1)

= 1 + d1√
t

Re
((
F3e

−i arg r(k0) − F̄3e
i arg ř(−k0))ei(d2t−ν log t+d3)

)
+O(ετ−

1+α
2 ), τ →∞, ζ ∈ I,(5.29)

where the functions dj = dj(ζ), j = 1, 2, 3, are defined by

d1 = 2ε
√
ν

k0ρ
, d2 = 48k̃3

0

(1 + 4k̃2
0)2

, d3 = π

4 − χ0 + ν log Y + arg Γ(iν).

It can be seen from the proof of Theorem 5.1 that thanks to the uniform
decay and smooth dependence of the jump matrix v on t, the asymptotic
formula (4.13) can be differentiated in time without affecting the error
term. Hence equations (5.28) and (5.29) together with the fact that

y − x = log
(
n1(y, t,K1)
n2(y, t,K1)

)
− log ∆11(ζ,K1) + ν0,(5.30)

yield

(5.31) u(x, t) = ∂

∂t

∣∣∣∣
y fixed

(x− y)

= ∂

∂t

∣∣∣∣
y fixed

d1√
t

Re
(
fei(d2t−ν log t+d3)

)
+ ∂

∂t

∣∣∣∣
y fixed

log ∆11(ζ,K1) +O(ετ−
1+α

2 ),

where
f(ζ) = (F3 −F1)e−i arg r(k0) − (F̄3 − F̄2)ei arg ř(−k0).

As ζ → 3−, we have the expansions

ε = 1
12(3− ζ) 1

2 +O(3− ζ), k0 = 1− (3− ζ) 1
2

6 +O(3− ζ),

k̃0 = (3− ζ) 1
2

6 +O((3− ζ) 3
2 ), ρ = (3− ζ) 3

4
√

6
+O((3− ζ) 5

4 ),

d1 =
√
ν(3− ζ)− 1

4
√

6
+O((3− ζ) 3

4 ), d2 = 2(3− ζ) 3
2

9 +O((3− ζ) 5
2 ),

F1 = 3 +
√

3
2 +O((3− ζ) 1

2 ), F2 = −3 +
√

3
2 +O((3− ζ) 1

2 ),

F3 = −
√

3 +O((3− ζ) 1
2 ), Y = 3(3− ζ)− 3

2

8 +O((3− ζ)− 1
2 ).
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We deduce that there exist constants c1, c2 > 0 such that

(5.32)
c1ε

3/2 < ρ(ζ) < c2ε
3/2, ν′(ζ) < c2ε

−1, f ′(ζ) < c2ε
−1,

d′1(ζ) < c2ε
− 5

2 , d′3(ζ) < c2ε
−2,

for all ζ ∈ I. Moreover, since

∆11(ζ,K1) = e
3

2π

∫ k−1
0

k0
log(1−|r(s)|2) 1+s4

1+s6
ds
,(5.33)

we obtain the estimates

c1ε < |1−∆11(ζ,K1)| < c2ε, c1ε
−1 <

∣∣∂ζ∆11(ζ,K1)
∣∣ < c2ε

−1,

which show that

(5.34)
∣∣∣∣ ∂∂t
∣∣∣∣
y fixed

log ∆11(ζ,K1)
∣∣∣∣ =

∣∣∣∣ζ∂ζ∆11(ζ,K1)
t∆11(ζ,K1)

∣∣∣∣
< Cε−1t−1 = O(ε2τ−1)

as τ → ∞. The above and the following estimates are uniformly valid for
ζ ∈ I. Using the estimates (5.32) and (5.34) together with the identities

∂ζ

∂t

∣∣∣∣
y fixed

= −ζ
t

and d2 + t
∂d2

∂t
= 6k̃0

1 + 4k̃2
0
,

equation (5.31) yields, as τ →∞,

u(x, t) = d1√
t

6k̃0

1 + 4k̃2
0

Re
(
ifei(d2t−ν log t+d3)

)
+O(ετ−

1+α
2 ).(5.35)

Since d
dx = q d

dy we find uxx = uyy + O(ετ− 1+α
2 ). Using that 1

1+4k̃2
0
(1 +

(dd2
dζ )2) = 1, we conclude that

u− uxx + 1 = 1 + d1√
t
6k̃0 Re

(
ifei(d2t−ν log t+d3)

)
+O(ετ−

1+α
2 ).(5.36)

Substituting (5.29) and (5.36) into the relation q3 = u−uxx + 1, the terms
of order O(t−1/2) yield(

6k̃0i(F3 −F1)− 3F3
)
−
(
6k̃0i(F̄3 − F̄2)− 3F̄3

)
ei arg ř(−k0)+i arg r(k0) = 0,

that is,

ei arg ř(−k0)+i arg r(k0) = 6k̃0i(F3 −F1)− 3F3

6k̃0i(F̄3 − F̄2)− 3F̄3
= 1− ωk2

0
k2

0 − ω
.(5.37)

Using (5.37) and the identity

F3 − F̄3
1− ωk2

0
k2

0 − ω
=

2
√

3k̃0

√
4k̃2

0 + 3
4k̃2

0 + 1
e
−i arctan

(√
3

1+k2
0

1−k2
0

)
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in (5.29), we find, as τ →∞,

q(x, t) = 1 + c1(ζ)√
t

cos
(
c2(ζ)t− ν(ζ) log(t) + c3(ζ)

)
+O(ετ−

1+α
2 ),(5.38)

where

c1(ζ) = 1− k2
0

1 + k2
0

√
(3 + 4k̃2

0)(1 + 4k̃2
0)ν

3k̃0 − 4k̃3
0

, c2(ζ) = 48k̃3
0

(1 + 4k̃2
0)2

,

c3(ζ) = d3 − arg r(k0)− arctan
(√

31 + k2
0

1− k2
0

)
= π

4 − χ0(ζ) + ν log Y + arg Γ(iν)− arg r(k0)− arctan
(√

31 + k2
0

1− k2
0

)
.

Similarly, using (5.37) in (5.35), we find

u(x, t) = 6k̃0d1

(1 + 4k̃2
0)
√
t

Re
{
i

(
F3 −F1 − (F̄3 − F̄2)1− ωk2

0
k2

0 − ω

)
× ei(d2t−ν ln t+d3−arg r(k0))

}
+O(ετ−

1+α
2 ).

In view of the identity

F3 −F1 − (F̄3 − F̄2)1− ωk2
0

k2
0 − ω

= −
i
√

3
√

4k̃2
0 + 3

4k̃2
0 + 1

e
−i arctan

(√
3

1+k2
0

1−k2
0

)
,

this yields

(5.39) u(x, t) = 3c1(ζ)
(1 + 4k̃2

0(ζ))
√
t

cos
(
c2(ζ)t− ν(ζ) log t+ c3(ζ)

)
+O(ετ−

1+α
2 )

as τ →∞ uniformly with respect to ζ ∈ I.
Step 7: Replace ζ with ξ. — In the last step of the proof, we show that,

up to a phase shift, ζ = y/t can be replaced with ξ = x/t in the asymptotic
formulas (5.38) and (5.39) without affecting the error term. For clarity, we
reinsert the dependence on ζ of the functions k0(ζ), k̃0(ζ), and ε(ζ).
By (5.28), (5.29), and (5.30), we have

y − x = − log ∆11(ζ,K1) + ν0 +O(ε(ζ)τ−1/2).

Hence, as τ →∞,

ζ − ξ = c(ζ)
t

+O(ε(ζ)t−1τ−
1
2 ) = O((3− ζ) 1

2 t−1) = O((3− ξ) 1
2 t−1).
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The asymptotic sector {ζ ∈ I, τ →∞} is equivalent to {ζ ∈ I, t(3− ζ) 3
2 →

∞} and hence also to {ξ ∈ I, t(3 − ξ) 3
2 → ∞}. If α ∈ R and g(ζ) is a

smooth function such that |g′(ζ)| < C(3− ζ)α for all ζ ∈ I, then

|g(ξ)− g(ζ)| =
∣∣∣∣ ∫ ξ

ζ

g′(η)dη
∣∣∣∣ < C|(3− ξ)α+1 − (3− ζ)α+1|

< C|ξ − ζ|max
{

(3− ζ)α, (3− ξ)α
}

= O
(
(3− ξ)α+ 1

2 t−1), τ →∞, ζ ∈ I.

The estimates

|c′1(ζ)| < C(3− ζ)− 3
4 , |c′2(ζ)| < C(3− ζ) 1

2 , |c′3(ζ)| < C(3− ζ)−1,

|ν′(ζ)| < C(3− ζ)− 1
2 , |ε′(ζ)| < C(3− ζ)− 1

2 , |k̃′0(ζ)| < C(3− ζ)− 1
2 ,

therefore imply

(5.40)

|c1(ξ)−c1(ζ)| = O
(
(3−ξ)− 1

4 t−1), |c2(ξ)−c2(ζ)| = O
(
(3−ξ)t−1),

|c3(ξ)−c3(ζ)| = O
(
(3−ξ)− 1

2 t−1), |ν(ξ)−ν(ζ)| = O
(
t−1),

|ε(ξ)−ε(ζ)| = O
(
t−1), |k̃0(ξ)−k̃0(ζ)| = O

(
t−1).

On the other hand, the identity

c′2(ζ) = dc2
dk̃0

/
dζ
dk̃0

= −2k̃0(ζ), ζ ∈ I,

and the estimate

|c′′2(ζ)| < C(3− ζ)− 1
2 , ζ ∈ I,

imply

(5.41)
c2(ζ)− c2(ξ) = −2k̃0(ξ)(ζ − ξ) +O((3− ξ)− 1

2 (ζ − ξ)2)

= 2k̃0(ξ)t−1 log ∆11(ζ,K1) +O((3− ξ) 1
4 t−

3
2 ).

Since

χ(ζ, k) = 1
4πi

∫ 1
k0

k0

log
(

1− |r(s)|2

1− |r(k0)|2

)
×
(

1
s− k

− 1
s+ k

− 1
s− k−1 + 1

s+ k−1

)
ds,

we see that χ0(ξ) can be expressed as in (5.3). Employing (5.33), (5.40),
and (5.41), the asymptotic formulas (5.1) and (5.2) follow from (5.38)
and (5.39), respectively.
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Remark 5.5. — Substituting the asymptotic formula (5.2) for u(x, t)
into (1.1), we can verify explicitly that the DP equation is satisfied to
leading order in the similarity region. Indeed, by (5.2), the nonlinear terms
in (1.1) are easily seen to be of order O(ετ− 1+α

2 ) as τ →∞, and the linear
terms satisfy

(u− uxx)t + 3ux = O(ετ−
1+α

2 )

as a consequence of the identity(
b2 − ξ

∂b2
∂ξ

)(
1 +

(
∂b2
∂ξ

)2)
+ 3∂b2

∂ξ
= 0.

Remark 5.6. — The main contributions to the asymptotic formula (5.2)
come from the critical points ωjk±1

0 located on the lines ωjR, j = 0, 1, 2.
On the other hand, the same is true for the asymptotics of the solution
of the whole line problem [4]. Therefore, the structure of the asymptotics
for the whole line and half-line problems is the same, the only difference
being in the determination of r(k) which, in turn, determines ν (h0 in the
notation of [4]).
Following [4], these contributions can be determined by parametrizing

the neighborhood of k = k0 using the rescaled spectral parameter z =
ρnew
ε (k̃ − k̃0), where (recall that Φ(ζ, k) = Φ̃(ζ, k̃(k)))

φnew(ζ, z) = Φ̃
(
ζ, k̃0 + ε

ρnew
z

)
,

ρnew =
√
−iε2∂2

k̃
Φ̃(ζ, k̃0) = ε

√
48k̃0(3− 4k̃2

0)
(1 + 4k̃2

0)3
,

and we denote quantities defined using this rescaled spectral parameter by
the subscript/superscript new. It follows that (4.7) and (4.8) are satisfied
with 

Rnew
1 (ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)r(k)z2iν(ζ),

Rnew
2 (ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)

δ(ζ,k)2
r(k̄)

1−r(k)r(k̄)
z−2iν(ζ),

Rnew
3 (ζ, t, z) = δ(ζ,k)2

δ(ζ,ωk)δ(ζ,ω2k)
r(k)

1−r(k)r(k̄)
z2iν(ζ),

Rnew
4 (ζ, t, z) = δ(ζ,ωk)δ(ζ,ω2k)

δ(ζ,k)2 r(k̄)z−2iν(ζ),

where k and z are related by k̃ = k̃0 + εz
ρnew

. Hence

Rnew
1 = R1

(
k0 + k−1

k0 + k−1
0

)2iν
,
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and so qnew = q. The proof of Theorem 4.3 proceeds in the same way as
before except that equation (4.25) is replaced with

m0(ζ, t, k)−1 = CD(ζ, t)mX

(
q(ζ),

√
τnew
ε

(k̃ − k̃0)
)−1

D(ζ, t)−1C

= I + B(ζ, t)
√
τnew(k̃ − k̃0)

+O(τ−1
new), ζ ∈ I, |k − k0| = ε,

as τnew := tρ2
new → ∞. Hence, the contribution from the critical point at

k0 to m(ζ, t,K1) is

1
2πi

∫
|k−k0|=ε

µ̂(ζ, t, k)(m0(ζ, t, k)−1 − I)dk
k −K1

= 1
2πi

∫
|k−k0|=ε

(m0(ζ, t, k)−1 − I)dk
k −K1

+ 1
2πi

∫
|k−k0|=ε

(µ̂(ζ, t, k)− I)(m0(ζ, t, k)−1 − I)dk
k −K1

= 1
2πi

∫
|k−k0|=ε

B(ζ, t)
√
τnew(k̃ − k̃0)

dk
k −K1

+O(ετ−1
new) +O

(
‖µ̂− I‖L̇3(Γ̂)‖m

−1
0 − I‖L3/2(|k−k0|=ε)

)
= 1

2πi
B(ζ, t)
√
τnew

∫
|k−k0|=ε

2dk
( 1
k −

1
k0
− (k − k0))(k −K1)

+O(ετ−
1+α

2new )

= − 2
√
τnew( 1

k2
0

+ 1)
B(ζ, t)
k0 −K1

+O(ετ−
1+α

2new ).(5.42)

This leads to the same formula for the asymptotics of u(x, t) as above
because 1

2 (1 + k−2
0 )ρnew = ρ.

Taking into account the correspondence of notations (ν, k0, and k̃0 in
the current paper correspond to h0, κ0, and p0 in [4], respectively), for-
mulas (5.2) and (5.3) actually correct the coefficients c1 and c4 in the
corresponding asymptotic formula (4.1) in [4], where the contribution of
the critical points to m(K1) was treated incorrectly.

Remark 5.7. — We have assumed in Theorem 5.1 that the set of sin-
gularities {kj} related to the presence of solitons is empty. If there are
a finite number of points {kj} present at which the solution has simple
poles, then the RH problem can be supplemented with residue conditions
at these points, see Section 5 of [17]. The supplemented RH problem can
be mapped to a regular one coupled with a system of algebraic equations,
see Proposition 2.4 of [13].
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Appendix A. Lp-Riemann–Hilbert problems

Since the jump contour for the RH problem associated with equation (1.1)
on the half-line has nontransversal intersection points (see Figure 2.1), spe-
cial care has to be taken when defining the notion of an Lp-RH problem.
We will follow [20] where a theory of Lp-RH problems with jumps across
Carleson contours is developed using generalized Smirnoff classes.
Let J denote the collection of all subsets Γ of the Riemann sphere Ĉ =

C ∪ {∞} such that Γ is homeomorphic to the unit circle and

sup
z∈Γ∩C

sup
r>0

|Γ ∩D(z, r)|
r

<∞,(A.1)

where D(z, r) denotes the disk of radius r centered at z. Curves satisfy-
ing (A.1) are called Carleson curves; all contours considered in this paper
are Carleson. Let p ∈ [1,∞). If D is the bounded component of Ĉ\Γ where
Γ ∈ J and ∞ /∈ Γ, then a function f analytic in D belongs to the Smirnoff
class Ep(D) if there exists a sequence of rectifiable Jordan curves {Cn}∞1
in D, tending to the boundary in the sense that Cn eventually surrounds
each compact subdomain of D, such that

sup
n>1

∫
Cn

|f(z)|p|dz| <∞.(A.2)

If D is a subset of Ĉ bounded by an arbitrary curve in J , Ep(D) is defined
as the set of functions f analytic in D for which f ◦ϕ−1 ∈ Ep(ϕ(D)), where
ϕ(z) = 1

z−z0 and z0 is any point in C\D̄. The subspace of Ep(D) consisting
of all functions f ∈ Ep(D) such that zf(z) ∈ Ep(D) is denoted by Ėp(D).
If D = D1 ∪ · · · ∪ Dn is the union of a finite number of disjoint subsets
of Ĉ each of which is bounded by a curve in J , then Ep(D) and Ėp(D)
denote the set of functions f analytic in D such that f |Dj ∈ Ep(Dj) and
f |Dj ∈ Ėp(Dj) for each j, respectively. We define E∞(D) as the space of
bounded analytic functions on D.
A Carleson jump contour is a connected subset Γ of Ĉ such that:
(a) Γ ∩ C is the union of finitely many oriented arcs(3) each pair of

which have at most endpoints in common.
(b) Ĉ \ Γ is the union of two disjoint open sets D+ and D− each of

which has a finite number of simply connected components in Ĉ.
(c) Γ is the positively oriented boundary of D+ and the negatively

oriented boundary of D−, i.e. Γ = ∂D+ = −∂D−.

(3)A subset Γ ⊂ C is an arc if it is homeomorphic to a connected subset of the real line
which contains at least two distinct points.
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(d) If {D+
j }n1 and {D−j }m1 are the components of D+ and D−, then

∂D+
j ∈ J for j = 1, . . . , n, and ∂D−j ∈ J for j = 1, . . . ,m.

We henceforth make the following assumptions: (a) p ∈ (1,∞) and n > 1
is an integer, (b) Γ = ∂D+ = −∂D− is a Carleson jump contour, and (c)
v : Γ → GL(n,C) is an n × n-matrix valued function. We define L̇p(Γ) as
the set of all measurable functions on Γ such that |z− z0|1−

2
ph(z) ∈ Lp(Γ)

for some (and hence all) z0 ∈ C \ Γ. If f ∈ Ėp(D+) or f ∈ Ėp(D−), the
nontangential limits of f(z) as z approaches the boundary exist a.e. on
Γ and the boundary function belongs to L̇p(Γ). Let D = D+ ∪ D−. A
solution of the Lp-RH problem determined by (Γ, v) is an n × n-matrix
valued function m ∈ I + Ėp(D) such that the nontangential boundary
values m± satisfy m+ = m−v a.e. on Γ.

Lemma A.1 (Uniqueness). — Suppose 1 6 n 6 p and det v = 1 a.e. on
Γ. If the solution of the Lp-RH problem determined by (Γ, v) exists, then
it is unique and has unit determinant.

If h ∈ L̇p(Γ), then the Cauchy transform Ch defined by

(Ch)(z) = 1
2πi

∫
Γ

h(s)
s− z

ds, z ∈ C \ Γ,(A.3)

satisfies Ch ∈ Ėp(D). We denote the nontangential boundary values of
Ch from the left and right sides of Γ by C+h and C−h respectively. We
henceforth fix a point z0 ∈ C \ Γ and turn L̇p(Γ) into a Banach space with
the norm

‖h‖L̇p(Γ) := ‖| · −z0|1−
2
ph‖Lp(Γ).(A.4)

Then C+ and C− are bounded operators on L̇p(Γ) and C+ −C− = I. Given
a function w ∈ L̇p(Γ) ∩ L∞(Γ), we define Cw : L̇p(Γ) + L∞(Γ)→ L̇p(Γ) by
Cw(h) = C−(hw). Then

‖Cw‖B(L̇p(Γ)) 6 C‖w‖L∞(Γ),(A.5)

where C := ‖C−‖B(L̇p(Γ)) <∞ and B(L̇p(Γ)) denotes the space of bounded
linear operators on L̇p(Γ).

Lemma A.2. — Suppose w := v−I ∈ L̇p(Γ)∩L∞(Γ). If m ∈ I+Ėp(D)
satisfies the Lp-RH problem determined by (Γ, v), then µ = m− ∈ I+L̇p(Γ)
satisfies

µ− I = Cw(µ) in L̇p(Γ).(A.6)

Conversely, if µ ∈ I+L̇p(Γ) satisfies (A.6), thenm = I+C(µw) ∈ I+Ėp(D)
satisfies the Lp-RH problem determined by (Γ, v).
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Lemma A.3. — Let D be an open subset of Ĉ bounded by a curve
Γ ∈ J with ∞ ∈ Γ. Let z0 ∈ C \ D̄ and let f : D → C be an analytic
function. Then f ∈ Ėp(D) if and only if there exist curves {Cn}∞1 ⊂ J in
D, tending to Γ in the sense that Cn eventually surrounds each compact
subset of D, such that

sup
n>1

∫
Cn

|z − z0|p−2|f(z)|p|dz| <∞.(A.7)

Lemma A.4 (Contour deformation). — Let γ ∈ J . Suppose that, re-
versing the orientation on a subcontour if necessary, Γ̂ = Γ∪γ is a Carleson
jump contour. Let B+ and B− be the two components of Ĉ \ γ. Let D̂±
be the open sets such that Ĉ \ Γ̂ = D̂+ ∪ D̂− and ∂D̂+ = −∂D̂− = Γ̂. Let
D̂ = D̂+ ∪ D̂−. Let γ+ and γ− be the parts of γ that belong to the bound-
aries of D̂+ ∩ B+ and D̂− ∩ B+, respectively. Suppose v : Γ → GL(n,C).
Suppose m0 : D̂ ∩B+ → GL(n,C) satisfies

m0,m
−1
0 ∈ I + Ėp(D̂ ∩B+) ∩ E∞(D̂ ∩B+).(A.8)

Define v̂ : Γ̂→ GL(n,C) by

v̂ =


m0−vm

−1
0+ on Γ ∩B+,

m−1
0+ on γ+,

m0− on γ−,
v on Γ ∩B−.

Let m and m̂ be related by

m̂ =
{
mm−1

0 on D̂ ∩B+,

m on D̂ ∩B−.
(A.9)

Then m(z) satisfies the Lp-RH problem determined by (Γ, v) if and only if
m̂(z) satisfies the Lp-RH problem determined by (Γ̂, v̂).

Proofs of the above statements can be found in [20]. We will also need
the following uniqueness result for row vector solutions.

Lemma A.5. — Suppose 1 6 n 6 p and det v = 1 a.e. on Γ. Suppose
the Lp-RH problem determined by (Γ, v) has a unique solution m. If N
is a row vector solution of the Lp-RH problem determined by (Γ, v) in
the sense that N ∈ (1, 1, . . . , 1) + Ėp(D) and N+ = N−v a.e. on Γ, then
N = (1, 1, . . . , 1)m.

Proof. — Let m̂ denote the n× n-matrix valued function obtained from
m by replacing the first row with the row vector N . Then the n×n-matrix
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X1X2

X3 X4

Figure B.1. The contour X = X1 ∪ · · · ∪X4.

valued function m̃ ∈ I + Ėp(D) defined by

m̃ =


1 −1 · · · −1
0 1 · · · 0
...

...
...

0 0 · · · 1

 m̂

satisfies the Lp-RH problem determined by (Γ, v). Hence m̃ = m by Lem-
ma A.1. Consequently, N = (1, 1, . . . , 1)m̃ = (1, 1, . . . , 1)m. �

Appendix B. The solution on a cross

Consider the cross X = X1 ∪ · · · ∪X4 ⊂ Ĉ where

(B.1)
X1 =

{
ue

iπ
4
∣∣ 0 6 u 6∞}, X2 =

{
ue

3iπ
4
∣∣ 0 6 u 6∞},

X3 =
{
ue−

3iπ
4
∣∣ 0 6 u 6∞}, X4 =

{
ue−

iπ
4
∣∣ 0 6 u 6∞},

and X is oriented as in Figure B.1.
Let D ⊂ C denote the open unit disk and define the function ν : D →

(0,∞) by ν(q) = − 1
2π log(1 − |q|2). We consider the following family of

L3-RH problems parametrized by q ∈ D:{
mX(q, · ) ∈ I + Ė3(Ĉ \X),
mX

+ (q, z) = mX
− (q, z)vX(q, z) for a.e. z ∈ X,

(B.2)
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where the jump matrix vX(q, z) is defined by(4)

vX(q, z) =




1 0 0

qz−2iν(q)e
iz2
2 1 0

0 0 1

 , z ∈ X1,


1 − q

1−|q|2 z
2iν(q)e−

iz2
2 0

0 1 0
0 0 1

 , z ∈ X2,


1 0 0

− q
1−|q|2 z

−2iν(q)e
iz2
2 1 0

0 0 1

 , z ∈ X3,

1 qz2iν(q)e−
iz2
2 0

0 1 0
0 0 1

 , z ∈ X4.

The RH problem (B.2) can be solved explicitly in terms of parabolic
cylinder functions [14] and this leads to the following standard result.

Theorem B.1. — The L3-RH problem (B.2) has a unique solution
mX(q, z) for each q ∈ D. This solution satisfies

(B.3) mX(q, z) = I+ i

z

 0 −βX(q) 0
βX(q) 0 0

0 0 0

+O

(
1
z2

)
, z →∞, q ∈ D,

where the error term is uniform with respect to arg z ∈ [0, 2π] and q in
compact subsets of D, and the function βX(q) is defined by

βX(q) =
√
ν(q)ei(

π
4−arg q+arg Γ(iν(q))), q ∈ D.(B.4)

Moreover, for each compact subset K of D,

sup
q∈K

sup
z∈C\X

|mX(q, z)| <∞.

Appendix C. Proofs of claims

This appendix presents the proofs of the five claims used in the proof of
Theorem 4.3.
(4)Throughout the paper, complex powers and logarithms are defined using the principal
branch: If z, a ∈ C and z 6= 0, then log z := log |z| + iArg z and za := ea log z , where
Arg z ∈ (−π, π] denotes the principal value of arg z.
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C.1. Proof of Claim 4.4

We first assume k ∈ k0 +Xε. Then

ŵ(ζ, t, k) = m0−(ζ, t, k)v(ζ, t, k)m0+(ζ, t, k)−1 − I

= m0−(ζ, t, k)u(ζ, t, k)m0+(ζ, t, k)−1,

where

u(ζ, t, k) := v(ζ, t, k)− CD(ζ, t)vX
(
q(ζ),−

√
τ

ε
(k − k0)

)
D(ζ, t)−1C.

The functionsm0+(ζ, t, k) andm0−(ζ, t, k) are uniformly bounded for t > 0,
ζ ∈ I, and k ∈ k0 +Xε. Therefore, it is enough to prove that

u(ζ, t, k) = O
(
τ−

α
2 e−

τ
24ε2
|k−k0|2), τ →∞, ζ ∈ I, k ∈ k0 +Xε,(C.1)

uniformly with respect to (ζ, k). Introducing the function u0 by

u0(ζ, t, z) = Cu
(
ζ, t, k0 −

εz

ρ

)
C

= v0(ζ, t, z)−D(ζ, t)vX(q(ζ),
√
tz)D(ζ, t)−1,

we can rewrite the condition (C.1) as follows:

u0(ζ, t, z) = O
(
τ−

α
2 e−

t|z|2
24
)
, τ →∞, ζ ∈ I, z ∈ Xρ,(C.2)

uniformly with respect to (ζ, z) in the given ranges. Using that

D(ζ, t)vX
(
q(ζ),

√
tz
)
D(ζ, t)−1

=




1 0 0

q(ζ)z−2iν(ζ)e
itz2

2 etφ(ζ,0) 1 0
0 0 1

 , z ∈ X1,

1 − q(ζ)
1−|q(ζ)|2 z

2iν(ζ)e−
itz2

2 e−tφ(ζ,0) 0
0 1 0
0 0 1

 , z ∈ X2,


1 0 0

− q(ζ)
1−|q(ζ)|2 z

−2iν(ζ)e
itz2

2 etφ(ζ,0) 1 0
0 0 1

 , z ∈ X3,

1 q(ζ)z2iν(ζ)e−
itz2

2 e−tφ(ζ,0) 0
0 1 0
0 0 1

 , z ∈ X4,
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equation (C.2) follows from the assumptions (4.8)–(4.11). Indeed, we will
give the details of the proof of (C.2) in the case of z ∈ Xρ

1 ; the other cases
are similar.
Let z ∈ Xρ

1 . In this case only the (21) entry of u0(ζ, t, z) is nonzero and
using that arg z = π

4 and supζ∈I |q(ζ)| < 1, we find

|(u0(ζ, t, z))21| =
∣∣R1(ζ, t, z)z−2iν(ζ)etφ(ζ,z) − q(ζ)z−2iν(ζ)e

itz2
2 etφ(ζ,0)∣∣

= |z−2iν(ζ)|
∣∣R1(ζ, t, z)etφ̂(ζ,z) − q(ζ)

∣∣|etφ(ζ,0)|e−
t|z|2

2

6 e
πν(ζ)

2

(∣∣R1(ζ, t, z)− q(ζ)
∣∣etRe φ̂(ζ,z)(C.3)

+ |q(ζ)|
∣∣etφ̂(ζ,z) − 1

∣∣)e− t|z|22 , ζ ∈ I, t > 0, z ∈ Xρ
1 ,

where φ̂(ζ, z) = φ(ζ, z)− φ(ζ, 0)− iz2

2 . The simple estimate

|ew − 1| =
∣∣∣∣∫ 1

0
weswds

∣∣∣∣ 6 |w| max
s∈[0,1]

esRew, w ∈ C,

yields the inequality

|ew − 1| 6 |w|max(1, eRew), w ∈ C.(C.4)

On the other hand, by (4.9) and (4.10a),

Re φ̂(ζ, z) = Reφ(ζ, z) + |z|
2

2 6
|z|2

4 , ζ ∈ I, z ∈ Xρ
1 .(C.5)

Using (C.4), (C.5), and the fact that supζ∈I |q(ζ)| < 1 in (C.3), we find

|(u0(ζ, t, z))21| 6 e
πν(ζ)

2

(∣∣R1(ζ, t, z)− q(ζ)
∣∣+ t

∣∣φ̂(ζ, z)
∣∣)e− t|z|24 ,

ζ ∈ I, t > 0, z ∈ Xρ
1 .

By (4.10c), (4.11), and the fact that supζ∈I |ν(ζ)| <∞, the right-hand side
is of order

(C.6) O

((
L|z|α

ρα
+ tC|z|3

ρ

)
e−

t|z|2
4

)
= O

((
(t|z|2)α/2

τα/2
+ (t|z|2)3/2

τ1/2

)
e−

t|z|2
12

)
= O

((
1

τα/2
+ 1
τ1/2

)
e−

t|z|2
24

)
, τ →∞, ζ ∈ I, z ∈ Xρ

1 ,

uniformly with respect to (ζ, z) in the given ranges. This proves (C.2) in
the case of z ∈ Xρ

1 .
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Now let k ∈ −k0 +Xε. Then

ŵ(ζ, t, k) = m0−(ζ, t, k)v(ζ, t, k)m0+(ζ, t, k)−1 − I

= m0−(ζ, t, k)u(ζ, t, k)m0+(ζ, t, k)−1,

where

u(ζ, t, k) := v(ζ, t, k)− CĎ(ζ, t)vX
(
q̌(ζ),

√
τ

ε
(k + k0)

)
Ď(ζ, t)−1C.

The functionsm0+(ζ, t, k) andm0−(ζ, t, k) are uniformly bounded for t > 0,
ζ ∈ I, and k ∈ −k0 +Xε. Therefore, it is enough to prove that

u(ζ, t, k) = O
(
τ−

α
2 e−

τ
8ε2
|k+k0|2), τ →∞, ζ ∈ I, k ∈ −k0 +Xε,(C.7)

uniformly with respect to (ζ, k). Introducing the function u0 by

u0(ζ, t, z) = Cu
(
ζ, t,−k0 + εz

ρ

)
C

= v̌0(ζ, t, z)− Ď(ζ, t)vX(q̌(ζ),
√
tz)Ď(ζ, t)−1,

we can rewrite the condition (C.7) as follows:

u0(ζ, t, z) = O
(
τ−

α
2 e−

t|z|2
8
)
, τ →∞, ζ ∈ I, z ∈ Xρ,

uniformly with respect to (ζ, z) in the given ranges. The rest of the proof
is as in the case of k ∈ k0 +Xε. �

C.2. Proof of Claim 4.5

In view of the symmetries (2.14a) and (2.14b),

(C.8) ‖ŵ(ζ, t, · )‖L̇3(Γ̂)

= O
(
‖ŵ(ζ, t, · )‖L̇3(Γ′) + ‖m0(ζ, t, · )−1 − I‖L3(|k−k0|=ε)

+ ‖m0(ζ, t, · )−1 − I‖L3(|k+k0|=ε)

+ ‖ŵ(ζ, t, · )‖L3(k0+Xε) + ‖ŵ(ζ, t, · )‖L3(−k0+Xε)

)
.

On Γ′, the matrix ŵ is given by either v − I or m0(v − I)m−1
0 . Hence

‖ŵ(ζ, t, · )‖L̇3(Γ′) = O(ε1/3τ−1) by the assumption (4.6a). Moreover,
by (B.3), mX(q, z) = I + O

( 1
z

)
as z → ∞ uniformly with respect to the
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argument of z and with respect to q in compact subsets of D. Hence, as the
entries of D(ζ, t) have unit modulus,

‖m0(ζ, t, k)−1 − I‖Lp(|k−k0|=ε)

=
∥∥∥∥CD(ζ, t)

[
mX

(
q(ζ),−

√
τ

ε
(k − k0)

)−1
− I
]
D(ζ, t)−1C

∥∥∥∥
Lp(|k−k0|=ε)

=
{
O(ε1/pτ−1/2), p ∈ [1,∞),
O(τ−1/2), p =∞,

uniformly with respect to ζ ∈ I. This proves (4.20). The third term on
the right-hand side of (C.8) can be estimated in a similar way. The last
two terms in (C.8) can be estimated using (4.17). This yields (4.18a). The
proof of (4.18b) uses the assumption (4.6b) and is similar.
In order to prove (4.19), we note that (4.17) implies

(C.9) ‖ŵ(ζ, t, · )‖Lp(k0+Xε)

= O

(
τ−

α
2

(∫
k0+Xε

e−
pτ

24ε2
|k−k0|2 |dk|

) 1
p
)

= O

(
τ−

α
2

(∫ ε

0
e−

pτ

24ε2
u2

du
) 1
p
)
, τ →∞, ζ ∈ I.

Letting v = pτ
24ε2u

2 we find∫ ε

0
e−

pτ

24ε2
u2

du 6
∫ ∞

0
e−

pτ

24ε2
u2

du = ε
√

6
√
pτ

∫ ∞
0

e−v√
v

dv = ε
√

6π
√
pτ

.(C.10)

Equations (C.9) and (C.10) yield (4.19). �

C.3. Proof of Claim 4.6

By (A.5) and (4.18b),

‖Ĉŵ‖B(L̇3(Γ̂)) 6 C‖ŵ‖L∞(Γ̂) = O(τ−α2 ), τ →∞.(C.11)

This proves the claim. �

C.4. Proof of Claim 4.7

The Neumann series

(I − Ĉŵ)−1 =
∞∑
j=0
Ĉjŵ(C.12)
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implies that

‖(I − Ĉŵ)−1‖B(L̇3(Γ̂)) 6
∞∑
j=0
‖Ĉŵ‖jB(L̇3(Γ̂)) = 1

1− ‖Ĉŵ‖B(L̇3(Γ̂))
.

Now (4.3) and the Sokhotski–Plemelj formula C− = 1
2 (−I + SΓ) show that

sup
ζ∈I
‖Ĉ−‖B(L̇3(Γ̂)) <∞.

Thus,

‖µ̂− I‖L̇3(Γ̂) = ‖(I − Ĉŵ)−1ĈŵI‖L̇3(Γ̂)

6 ‖(I − Ĉŵ)−1‖B(L̇3(Γ̂))‖Ĉ−(ŵ)‖L̇3(Γ̂) 6
C‖ŵ‖L̇3(Γ̂)

1− ‖Ĉŵ‖B(L̇3(Γ̂))
.

In view of (4.18a) and (C.11), this gives (4.22). �

C.5. Proof of Claim 4.8

Uniqueness follows from Lemma A.1 since det v̂ = 1. Moreover, equa-
tion (4.21) implies that µ̂−I = Ĉŵµ̂. Hence, by Lemma A.2, m̂ = I+ Ĉ(µ̂ŵ)
satisfies the L3-RH problem (4.16). �
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