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GROWTH OF HOMOLOGY TORSION IN FINITE
COVERINGS AND HYPERBOLIC VOLUME

by Thang T. Q. LÊ (*)

Abstract. — We give an upper bound for the growth of homology torsions
of finite coverings of irreducible oriented 3-manifolds in terms of the hyperbolic
volume.
Résumé. — Nous donnons une limite supérieure pour la croissance des torsions

homologiques de revêtements finis de 3-variétés orientées irréductibles en termes
du volume hyperbolique.

1. Introduction

1.1. Growth of homology torsions in finite coverings

Suppose X is a connected finite CW-complex with fundamental group
Π = π1(X). For a subgroup Γ < Π of finite index let XΓ be the covering
of X corresponding to Γ, and tj(Γ) be the size of the Z-torsion part of
Hj(XΓ,Z). We want to study the growth of tj(Γ).
A sequence of subgroups (Γk)∞k=1 of Π is nested if Γk+1 < Γk and it is

exhaustive if
⋂
k Γk = {e}, where e is the unit of Π. It is known that the

fundamental group of any compact 3-manifold is residually finite [14], i.e.
it has an exhaustive nested sequence of normal subgroups of finite index.
We will prove the following result and some generalizations of it.

Theorem 1.1. — Suppose X is an orientable irreducible compact 3-
manifold whose boundary ∂X is either an empty set or a collection of

Keywords: Homology torsion, covering, Fuglede-Kadison determinant, hyperbolic
volume.
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tori. Let (Γk)∞k=1 be an exhaustive nested sequence of normal subgroups of
Π = π1(X) of finite index. Then

lim sup
k→∞

ln t1(Γk)
[Π : Γk] 6

vol(X)
6π .

Here vol(X) is defined as follows. If the fundamental group of X is finite,
let vol(X) = 0. Suppose the fundamental group of X is infinite. By the
Geometrization Conjecture of W. Thurston proved by G. Perelman (see
e.g. [6, 7]), every piece in the Jaco–Shalen–Johansson decomposition of X
is either Seifert fibered or hyperbolic. Define vol(X) as the sum of the
volumes of all hyperbolic pieces.

1.2. More general limit: trace limit

For any group G with unit e define a trace function trG : G → Z by
trG(g) = 1 if g = e and trG(g) = 0 if g 6= e. This extends to a C-linear map
trG : C[G]→ C. Here C[G] is the group ring of G with complex coefficients.

Assume X is a 3-manifold satisfying the assumption of Theorem 1.1,
with Π = π1(X). Let G be the set of all finite index subgroups of Π. For
any Γ ∈ G, Π acts on the right on the finite set Γ\Π of right cosets of Γ,
and the action gives rise to an action of Π on C[Γ\Π], the C-vector space
with base Γ\Π. For g ∈ Π, define

trΓ\Π(g) = tr(g,C[Γ\Π])
[Π : Γ] ,

where tr(g,C[Γ\Π]) is the trace of the operator g acting on the vector space
C[Γ\Π]. Note that when Γ is a normal subgroup of Π, then G := Γ\Π is a
group, and trΓ\Π(g) coincides with the above definition of trG(p(g)), where
p(g) is the image of g in the quotient group G.
Suppose (Γk)∞k=1 is a sequence of subgroups of Π of finite index, i.e.

Γk ∈ G. We say Γk
tr−→ 1 if for any g ∈ Π,

lim
k→∞

trΓk\Π(g) = trΠ(g) .

For example, if (Γk)∞k=1 is a nested exhaustive sequence of normal subgroups
of Π of finite index, then Γk

tr−→ 1.
We have the following stronger version of Theorem 1.1.

Theorem 1.2. — Suppose X is an orientable irreducible compact 3-
manifold whose boundary ∂X is either an empty set or a collection of tori.
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TORSION GROWTH 613

Then

(1.1) lim sup
G3Γ→1

ln t1(Γ)
[Π : Γ] 6

vol(X)
6π .

Here lim supG3Γ→1 f(Γ), for a function f : G → R, is defined to be the
infimum of the set of all values L such that for any sequence Γk ∈ G with
Γk

tr−→ 1, one has lim supk→∞ f(Γk) 6 L.

Conjecture 1.3. — Suppose X is a an orientable irreducible compact
3-manifold whose boundary ∂X is either an empty set or a collection of
tori.

(1) Let GN be the set of all normal subgroups of Π of finite index. One
has

lim sup
GN3Γ→1

ln t1(Γ)
[Π : Γ] = vol(X)

6π .

(2) (Weaker version) One has

lim sup
G3Γ→1

ln t1(Γ)
[Π : Γ] = vol(X)

6π .

Similar conjectures were formulated independently by Bergeron and
Venkatesh [5] and Lück [21].

It is clear that the left hand side of (1.1) is non-negative. Hence we have
the following result.

Corollary 1.4. — The strong version of Conjecture 1.3 holds true for
3-manifolds X satisfying the assumption of Theorem 1.2 with vol(X) = 0.

For example, if X is the complement in S3 of a tubular neighborhood
of a torus link, then the strong conjecture holds for X. A 3-manifold X

satisfying the assumption of Theorem 1.2 has vol(X) = 0 if and only if X
is spherical or a graph manifold.
A statement similar to Corollary 1.4, applicable to a large class of man-

ifolds, was proved in [21].

1.3. Branched covering

We can extend Theorem 1.2 in the following direction. Suppose K is a
knot in S3 and X = S3 \ N(K), where N(K) is an open tubular neigh-
borhood of K. For a subgroup Γ 6 Π = π1(X) let X̂Γ be the branched
Γ-covering of S3, branched along K. This means, X̂Γ is obtained from XΓ
by attaching solid tori to ∂XΓ in such a way that any lift of a meridian of
K bounds a disk in X̂Γ.

TOME 68 (2018), FASCICULE 2



614 Thang T. Q. LÊ

Theorem 1.5. — Suppose K is a knot in S3. For a subgroup Γ 6 Π =
π1(S3 \ K) let X̂Γ be the branched Γ-covering of S3, branched over K.
Then

lim sup
G3Γ→1

ln |TorZH1(X̂Γ,Z)|
[Π : Γ] 6

vol(X)
6π .

Here |TorZH1(X̂Γ,Z)| is the size of the Z-torsion part of H1(X̂Γ,Z).

1.4. On trace convergence

In the case when (Γk)∞k=1 is a nested sequence of subgroups of Π of finite
index, the definition of Γk

tr−→ 1 was introduced in [10]. Even when (Γk)∞k=1
is not nested, Γk

tr−→ 1 if and only if the representations ρk : Π→ C[Γ\Π]
with k = 1, 2, . . . , form an arithmetic approximation of Π in the sense
of [10, Definition 9.1].
For a discrete group Π, there exists a sequence (Γk)∞k=1 of subgroups of

finite index such that Γk
tr−→ 1 if and only if Π is residually finite.

It turns out that the limit Γk
tr−→ 1, for not necessarily nested sequences,

is closely related to known limits in the literature.

The case of normal subgroups. — When each of Γk is a normal subgroup
of Π of finite index, i.e. Γk ∈ GN , the definition of Γk

tr−→ 1 simplifies.
Suppose (Γk)∞k=1 is a nested sequence of normal subgroups of Π of finite
index. Then Γk

tr−→ 1 if and only if
⋂

Γk = {e}, i.e. (Γk)∞k=1 is exhaustive.
More generally, suppose (Γk)∞k=1 is a not necessarily nested sequence

of normal subgroups of Π of finite index. Then Γk
tr−→ 1 if and only if⋂∞

m=1
⋃∞
k=m Γk = {e}. This means, Γk

tr−→ 1 if and only if for every non-
trivial g ∈ Π, g eventually does not belong to Γk.

Relation to sofic approximation. — Suppose Γk is a sequence of sub-
groups of finite index of Π. Then Γk

tr−→ 1 if and only if Σ = {σk}∞k=1,
where σk is the map from Π to the permutation group of Γ\Π, is a sofic ap-
proximation to Π. For the definition of sofic approximation see [8]. Sofic ap-
proximation has been important in dynamical system theory. Sofic groups,
which are groups having a sofic approximation (not necessarily coming from
actions on cosets), were introduced by Gromov in 1999.

Relation to Benjamini–Schramm convergence. — Suppose X is a hy-
perbolic 3-manifold. Raimbault observed that Γk

tr−→ 1 if and only if XΓk

Benjamini–Schramm (BS) converge to the hyperbolic space H3 in the sense

ANNALES DE L’INSTITUT FOURIER
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of [1]. The notion of BS convergence was introduced in [1] for more general
sequences of manifolds, not necessarily coverings of a fixed manifold.

1.5. Growth of Betti numbers

Suppose X is a connected finite CW-complex with fundamental group
Π. For a subgroup Γ 6 Π of finite index let bj(Γ) be the j-th Betti number
of XΓ.

If (Γk)∞k=1 is an exhaustive nested sequence of normal subgroups of Π,
then Kazhdan [15, 12] showed that

(1.2) lim sup
k→∞

bj(XΓk
)

[Π : Γk] 6 b
(2)
j (X̃) ,

where b(2)
j (X̃) is the L2-Betti number of the universal covering X̃. For

the definition of L2-Betti number and L2-invariants in general, see [20].
Lück [18] then showed that one actually has a much stronger result

(1.3) lim
k→∞

bj(XΓk
)

[Π : Γk] = b
(2)
j (X̃) .

Farber extended Lück’s result (1.3) to the trace convergence, Γk
tr−→ 1

(no normal subgroups). The following is a special case of [10, Theorem 9.2]:
If (Γk)∞k=1 is a sequence of subgroups of Π of finite index such that Γk

tr−→ 1,
then

(1.4) lim
k→∞

bj(XΓk
)

[Π : Γk] = b
(2)
j (X̃) .

Theorem 1.2 is an analog of Kazhdan’s inequality for the growth of the
torsion part of the homology, and Conjecture 1.3 asks for analogs of Lück’s
and Farber’s equalities. In general, the question about the growth of the
torsion part of the homology is considered much more difficult than the
similar question for the free part of the homology; it is closely related to
the difficult question of approximating the Fuglede-Kadison determinant
by finite determinants, see [20, Question 13.52] and the discussion there.
There has been little progress in this direction. At the moment of this
writing, there is even no known example of a hyperbolic 3-manifold (closed
or cusped) and a sequence Γk

tr−→ 1 such that limk→∞
ln t1(Γk)
[Π:Γk] > 0.

TOME 68 (2018), FASCICULE 2



616 Thang T. Q. LÊ

1.6. Abelian covering

In the abelian case, results on the growth of the torsion part of the
homology are much more satisfactory, as below. Proofs of results on the
growth of the torsion part of the homology are more complicated than
those on the growth of the Betti numbers.

Suppose X̃ → X is a regular covering with the group of deck transfor-
mations equal to Zn. Here X is a finite CW-complex. We choose generators
z1, . . . , zn of Zn and identify Z[Zn] ≡ Z[z±1

1 , . . . , z±1
n ].

Let G in this case be the set of all subgroups Γ 6 Zn of finite index. Again
XΓ is the corresponding finite covering, and bj(Γ) and tj(Γ), for Γ ∈ G, are
respectively the rank and the size of the Z-torsion part of Hj(XΓ,Z). In
this abelian case, Γk

tr−→ 1 is equivalent to limk→∞〈Γk〉 = ∞, where 〈Γ〉,
for Γ 6 Zn, is the smallest among norms of non-zero elements in Γ.

In this case, we have a positive answer to an analog of Conjecture 1.3,
as follows. For any j > 0,

(1.5) lim sup
Zn3Γ→1

ln tj(XΓ)
[Zn : Γ] = µ(∆(Hj(X̃,Z))) .

Here µ(f), for a non-zero f ∈ Z[z±1
1 , . . . , z±1

n ], is the Mahler measure of f ,
and ∆(Hj(X̃,Z)) is the first non-trivial Alexander polynomial of Hj(X̃,Z),
considered as a Z[z±1

1 , . . . , z±1
n ]-module. For details and discussions of re-

lated results, see [17]. The proof of (1.5) in [17] uses tools from algebraic
geometry, commutative algebra, and also results from algebraic dynamics
and cannot be generalized to non-commutative cases.
For an arbitrary finite CW-complex with fundamental group Π and a

fixed index j, we don’t know what would be the upper limit of the left
hand side of (1.5), with Zn replaced by Π. Only when X has some geomet-
ric structure, like 3-dimensional manifolds, do we have results like Theo-
rem 1.2.

1.7. Related results

The growth of torsion parts of homology of coverings or more generally
bundles over a fixed manifold has attracted a lot of attention lately. For
related results see e.g. [1, 4, 5, 9, 23, 24, 25]. Probably C. Gordon [11] was
the first to ask about the asymptotic growth of torsion of homology in finite,
albeit abelian, coverings. Recently R. Sauer [27] gave an upper bound for
the growth rate of tj(Γ), for closed aspherical Riemannian manifolds, but
the bound is not expected to be sharp like in the one in Theorem 1.2.
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1.8. Organization

In Section 2 we recall the definition of geometric determinant, introduce
the notion of metric abelian groups, and use them to get an estimate for the
torsion parts in exact sequences. In Section 3 we recall the definition of the
Fuglede-Kadison determinant and prove an upper bound for growth of geo-
metric determinants by Fuglede-Kadison determinant. Finally in Section 4
we give proofs of the main results.

1.9. Acknowledgements

The author would like to thank N. Bergeron, M. Boileau, N. Dunfield,
S. Friedl, W. Lück, J. Raimbault, A. Reid for enlightening discussions,
J. Meumertzheim for correcting a mistake in Lemma 4.1, and anonymous
referees for many corrections and suggestions. The results of the paper
were reported in various conferences including the Banff workshop “Low-
dimensional Topology and number Theory” (2007), Fukuoka conference
“Low dimensional topology and number theory” (2009), Columbia Univer-
sity conferences “Geometric Topology” (2009 & 2013, see [16]), and the
author would like to thank the organizers of these conferences for inviting
him to talk. The author is partially supported by NSF grant DMS-1105678.

2. Geometric determinant, lattices, and volume in inner
product spaces

In this section we recall the definition of the geometric determinant, in-
troduce the notion of metric abelian groups, and establish certain results on
upper bounds for torsion parts in exact sequences. For a finitely-generated
abelian group A let rk(A) and t(A) be respectively the rank of A and the
size of the Z-torsion part of A. For a ring R let Mat(n×m,R) denote the
R-module of all n×m matrices with entries in R.

2.1. Geometric determinant

For a linear map f : V1 → V2, where each Vi is a finite-dimensional
inner product space the geometric determinant det′(f) is defined to be the
product of all non-zero singular values of f . Recall that x ∈ R is singular

TOME 68 (2018), FASCICULE 2



618 Thang T. Q. LÊ

value of f if x > 0 and x2 is an eigenvalue of f∗f . By convention det′(f) = 1
if f is the zero map. We always have det′(f) > 0. It is easy to show that
det′(f) = det′(f∗).
Since the maximal singular value of f is the norm ||f ||, we have

(2.1) det′(f) 6 ||f ||rk(f) with convention 00 = 1.

IfM ∈ Mat(n×m,C), we define det′(M) = det′(f), where f : Cn → Cm
is the linear operator defined byM , and Cn and Cm are standard Hermitian
spaces.

Remark 2.1. — The geometric meaning of det′ f is the following. The
map f restricts to a linear isomorphism f ′ from Im(f∗) to Im(f), each is
an inner product space. Then det′ f = |det(f ′)|, where the ordinary deter-
minant det(f ′) is calculated using orthonomal bases of the inner product
spaces.

Lemma 2.2. — Suppose g is a generator of a cyclic group A of order l.
Define an inner product structure on C[A] such that A is an orthonormal
basis. Let A act on C[A] by left multiplication. Then det′(1− g) = l.

Proof. — Let f = 1− g. Then f∗ = 1− g−1, and f∗f = 2− g− g−1. Let
ζ = exp(2πi/l). Since ζk, with k = 0, 1, . . . , l − 1, are all eigenvalues of g,
the eigenvalues of f∗f are 2− ζk− ζ−k = |1− ζk|2, with k = 0, 1, . . . , l− 1.
Excluding the 0 value, we have

det′(f) =

∣∣∣∣∣∣
l−1∏
j=1

(1− ζl)

∣∣∣∣∣∣ = l ,

where the last identity follows since for any complex number z one has
l−1∏
j=1

(z − ζk) =
l−1∑
k=0

zk = zl − 1
z − 1 .

(The above holds since ζk, with k = 1, . . . , l − 1, are roots of z
l−1
z−1 .) �

2.2. Volume of lattices

We recall here some well-known facts about volumes of lattices in inner
product spaces.

Suppose V is a finite-dimensional inner product space. In this paper, any
discrete finite-rank abelian subgroup Λ ⊂ V will be called a lattice in V .

ANNALES DE L’INSTITUT FOURIER
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Note that we don’t require Λ to be of maximal rank as in many texts. For
a lattice Λ ⊂ V with Z-basis v1, . . . , vl define

vol(Λ) = |det
(
(vi, vj)li,j=1

)
|1/2 > 0 .

That is, vol(Λ) is the volume of the parallelepiped spanned by a set of basis
vectors. By convention, the volume of the zero space is 1.
It is clear that if Λ1 ⊂ Λ2 are lattices in V of the same rank, then

(2.2) |Λ2/Λ1| =
vol(Λ1)
vol(Λ2) .

Let V and W be finite-dimensional inner product spaces. Suppose Λ is
a lattice in V of rank equal the dimension of V and f : Λ → W is an
abelian group homomorphism such that the image Im(f) is discrete in W .
The kernel ker(f) and the image Im(f) are lattices in respectively V and
W . Note that f extends uniquely to a linear map f̃ : V →W , and we put
det′(f) = det′(f̃). We have

vol(ker f) vol(Im(f)) = det′(f) vol(Λ) .(2.3)

2.3. Metric abelian groups

A metric abelian group is a finitely generated free abelian group A

equipped with an inner product on A ⊗Z R. An integral metric abelian
group is a metric abelian group A such that the inner product of any two
elements x, y ∈ A is an integer.
Suppose A is a metric abelian group. Then any subgroup B 6 A inherits

a metric from A. Besides, if A is an integral metric abelian, then the induced
metric on B is also integral.

What we will use is the following obvious property of an integral metric
group: If A is an integral metric group and B 6 A, then vol(B) > 1.
The following is a basic example. Suppose X is a finite CW-complex.

The cellular Z-complex C(X) of X consists of free abelian groups Cj(X),
which are free abelian groups with bases the sets of cells (of corresponding
dimensions) of X. We equip Cj(X) with a metric such that the mentioned
basis is an orthonormal basis. All these metrics are integral.
Suppose α : A → B is a group homomorphism between metric abelian

groups. Then α ⊗ id : A ⊗Z R → B ⊗Z R is a linear map between finite-
dimensional inner product spaces. We define

det′(α) := det′(α⊗Z id) .

TOME 68 (2018), FASCICULE 2
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2.4. Torsion estimate

Recall that for a finitely-generated abelian group A, t(A) is the size of
its Z-torsion part.

Lemma 2.3. — Suppose F1, F2 are integral metric abelian groups.
(1) If α : F1 → F2 is a group homomorphism, then

t(coker(α)) 6 vol(Im(α)) 6 det′(α) vol(F1) .(2.4)
t(coker(α)) vol(ker(α)) 6 det′(α) vol(F1) .(2.5)

(2) If F1
β−→ F2 → A → B is an exact sequence, where A and B are

finitely-generated abelian groups, then

t(A) 6 t(B) det′(β) vol(F1) .

Proof.
(1). — Let Imα = ((Imα)⊗Z Q) ∩ F2, where both (Im α)⊗Z Q and F2

are considered as subsets of F2 ⊗Z Q. Then (2.2) shows that

(2.6) t(coker(α)) = vol(Im(α))
vol(Imα)

6 vol(Im(α)) ,

where the last inequality follows since vol(Imα) > 1 due to the integrality
of the metric. By (2.3),

vol(Im(α)) = det′(α) vol(F1)
vol(ker(α)) 6 det′(α) vol(F1) ,

which, together with (2.6), proves (2.4).
(2). — First we observe that if

0→ A1 → A2 → A3 → 0

is an exact sequence of finitely generated abelian groups, then

t(A2) 6 t(A1)t(A3) .

From the assumption we have the following exact sequence

0→ coker(β)→ A→ B′ → 0 ,

where B′ 6 B. By the above observation,

t(A) 6 t(B′) t(cokerβ) 6 t(B) t(cokerβ) 6 t(B) det′(β) vol(F1) ,

where the last inequality follows from (2.5). This completes the proof of
the lemma. �
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2.5. Torsion of a matrix

For a matrix M ∈ Mat(m × n,Z) let t(M) := t(cokerM), where M is
also considered as the homomorphism Zm → Zn given by x→ xM .

Proposition 2.4. — Suppose M ∈ Mat(m× n,Z).
(1) Let M∗ be the transpose of M , then t(M) = t(M∗).
(2) One has t(M) 6 det′(M).
(3) Suppose (C, ∂) is a chain complex of free finitely generated Z-

modules. Then t(Hi(C)) = t(coker ∂i+1).

Proof. — We first prove (1). Note that t(M) is equal to the greatest
common divisor of all the minors of M of size r where r = rk(M), see [28,
Section 4.2]. From here we have t(M) = t(M∗).
(2) is a special case of (2.4). For (3), notice that the torsion part of either

Hi(C) or coker ∂i+1 is equal to Im ∂i+1/ Im ∂i+1. �

3. Fuglede-Kadison determinant

We recall here the definition and establish some properties of the Fuglede-
Kadison determinant. We will introduce the Fuglede-Kadison determinant
only for a class of operators which we will need in this paper. For a detailed
treatment of the Fuglede-Kadison determinant, the reader should consult
the book [20]. We prove that the Fuglede-Kadison determinant of a ma-
trix with entries in Z[Π] serves as an upper bound for the growth of the
geometric determinants of a sequence of finite matrices which approximate
the original matrix well enough. This extends a result of Lück.
Recall that Π is the fundamental group of a finite CW-complex.

3.1. Fuglede-Kadison determinant of a density function

For simplicity we use the following definition which is more restrictive
than the one in [18].

Definition 3.1.
(1) A right continuous function

F : [0,∞)→ [0,∞)

is called a density function if

TOME 68 (2018), FASCICULE 2
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(a) F is increasing (i.e. F (λ) 6 F (λ′) if λ 6 λ′), and
(b) There is a constant K such that F is constant on interval

[K,∞).
(2) A density function F is said to be in the determinantal class if

the integral
∫∞

0+ ln(λ)dF exists as a real number. If F is in the
determinant class, define its determinant by

det(F ) := exp
(∫ ∞

0+
ln(λ) dF

)
.

If F is not in the determinantal class, define det(F ) = 0.

(In probability theory, a density function is also known as a cumulative
distribution function.)

Let K be the number in Condition (1b) of Definition 3.1. If F is a density
function in the determinantal class, then one has (see [20, Lemma 3.15])

(3.1) ln det(F ) = (F (K)− F (0)) ln(K)−
∫ K

0+

F (λ)− F (0)
λ

dλ.

For an increasing function F we define

F+(λ) = lim
ε→0+

F (λ+ ε) .

If F : [0,∞) → [0,∞) is a not necessarily right continuous function satis-
fying conditions (1a)–(1b), then F+, which is F made right continuous, is
a density function.

3.2. Von Neumann algebra of a group and trace function

Let `2(Π) be the Hilbert space with orthonormal basis Π. In other words,
`2(Π) is the set of all formal sums

∑
g∈Π cgg, with cg ∈ C and

∑
g∈Π |cg|2 <

∞, with inner product 〈g, g′〉 = δg,g′ . For every positive integer n, (`2(Π))n
inherits a Hilbert structure, where

〈(x1, . . . , xn), (y1, . . . , yn)〉 =
n∑
j=1
〈xj , yj〉 .

We will consider (`2(Π))n as a left Π-module by the left multiplication.
By definition, the von Neumann algebra N (Π) of Π is the C-algebra of

bounded Π-equivariant operators from `2(Π) to `2(Π).
For f ∈ N (Π) its trace is defined by

trΠ(f) = 〈e, f(e)〉 ,
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where e is the unit of Π. More generally, suppose f : (`2(Π))n → (`2(Π))n
is a bounded Π-equivariant operator, define its trace by

tr(f) =
n∑
j=1
〈ej , fej〉 ,

where ej = 0j−1 × e× 0n−j ∈ (`2(Π))n.

3.3. Fuglede-Kadison determinants

Suppose B is an n× k matrix with entries in C[Π]. Let RB : (`2(Π))n →
(`2(Π))k be the bounded Z[Π]-linear operator defined by x → xB. Then
(RB)∗RB = RBB∗ , where (RB)∗ is the adjoint operator, and B∗ is ob-
tained from B by the transpose followed by the conjugation map on C[Π]
given by

∑
cigi →

∑
c̄ig
−1
i , with c̄i being the complex conjugation of ci.

We define the norm ‖B‖ = ‖RB‖.
Let {P (λ), λ ∈ [0,∞)} be the right continuous spectral family of the

positive operator RBB∗ : (`2(Π))n → (`2(Π))n, x → xBB∗. The spectral
density function of B is defined by

F (λ) = FB(λ) := trΠ(P (λ)) .

Then F : [0,∞) → [0,∞) is a density function (Definition 3.1). We say
that B is in the determinantal class if F is in the determinantal class.
Define

detΠ(B) =
√

det(F ) .
When B is in the determinantal class detΠ(B) is a positive real number.

3.4. Relation between Fuglede-Kadison determinant and
geometric determinant

Any matrix B ∈ Mat(n×k,C) (with complex entries) can be considered
as an element of Mat(n×k,C[Π]), where Π is the trivial group, since C[Π] =
C. In this case, trΠ is the usual trace, B is always in the determinantal class,
and (see [20, Example 3.12])

(3.2) detΠ(B) = det′(B) .

For λ > 0 the spectral density function FB(λ) is the number of eigenval-
ues of RBB∗ which are less than or equal to λ, counted with multiplicity.
The density function FB : [0,∞)→ [0,∞) is a bounded, right continuous,
step function, and FB(λ) = nr(B), which is the number of rows of B, if
λ > ‖B‖2. Besides, FB(0) = dim ker(RB).
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3.5. Universal bound for norm

Suppose B ∈ Mat(n × k,C[Π]). For any Γ ∈ G let BΓ : C[Γ\Π]n →
C[Γ\Π]k be the induced C-homomorphism defined by x→ xB. We always
equip C[Γ\Π] (and consequently C[Γ\Π]n) with the Hermitian structure in
which Γ\Π is an orthonormal basis.
One can easily find a universal upper bound for the norm of all operators

induced from one acting on Z[Π]n.

Lemma 3.2. — Suppose B ∈ Mat(n × k,C[Π]). There is a constant K
(depending on B) such that ‖B‖ < K and ‖BΓ‖ < K for any Γ ∈ G.

Proof. — When Γ is a normal subgroup, the statement was proved in [18]
with K = nkmaxi,j |Bij |1, where for an element x =

∑
cgg ∈ C[Π] one

sets |x|1 =
∑
|cg|. The easy proof in [18] also works for our more general

case. �

3.6. Upper limit of growth of determinants

Suppose B ∈ Mat(n × k,Z[Π]). In [18], Lück shows that if (Γm)m>1 is
an exhaustive nested sequence of normal subgroups of Π, then

lim sup
m→∞

ln det′(BΓm
)

[Π : Γm] 6 ln detΠ(B) .

We will show that a similar result holds if the sequence (BΓm)m>0
is replaced by a sequence of matrices that approximates well enough the
matrix B.

Definition 3.3. — Let B be a matrix with entries in Z[Π]. A sequence
(Bm, Nm)m>1 is said to tracely approximate B, if each Bm is a matrix with
complex entries, each Nm is a positive number, and there exists K > 0 such
that all the following conditions are satisfied.

(1) ‖B‖, ‖Bm‖ < K.
(2) For every polynomial p(z) ∈ C[z] we have trΠ(p(BB∗)) =

limm→∞
tr(p(BmB

∗
m))

Nm
.

(3) If F is the spectral density of B and Fm is the spectral density of
Bm, then F (0) = limm→∞

Fm(0)
Nm

.

Theorem 3.4. — Suppose a sequence (Bm, Nm)m>1 tracely approxi-
mates a matrix of determinantal class B ∈ Mat(n× k,Z[Π]). Then

lim sup
m→∞

ln det′(Bm)
Nm

6 ln detΠ(B) .
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The proof is a simple modification of Lück’s proof and will be given in
Appendix A. Actually, the definition of trace approximation is constructed
so that Lück’s proof works.

As a corollary, we get the following special case.

Theorem 3.5. — Let B ∈ Mat(n × k,Z[Π]) be of determinantal class
and (Γm)m>1 be a sequence of subgroups of finite index such that Γm

tr−→ 1.
Then (BΓm

, [Π : Γm])m>1 tracely approximates B. Consequently,

lim sup
m→∞

ln det′(BΓm
)

[Π : Γ] 6 ln detΠ(B) .

Proof. — LetK be the number appeared in Lemma 3.2, then we have (1)
of Definition 3.3.
Let p(z) ∈ C[z]. Then (p(BB∗))Γm

= p(BmB∗m). Hence we have (2) by
the definition of Γm

tr−→ 1.
The conclusion of (3), which is a generalization of [18, Theorem 0.1], is a

special case of [10, Theorem 9.2]. See Equation (1.4). In [10], the results are
formulated for the case of a chain complex coming from universal covering
of a finite CW complex, but the proof there works for the general case when
the boundary operators have entries in Z[Π]. �

3.7. Perturbation of a sequence of matrices

The following statement shows that in many cases, a small perturba-
tion of a sequence (Bm, Nm)m>1 tracely approximating B gives another
sequence which also tracely approximates B. For a matrix B let nc(B) and
nr(B) denote respectively the number of columns and the number of rows
of B.

Proposition 3.6. — Suppose (Bm, Nm)m>1 tracely approximates a
matrix B with entries in Z[Π]. For each m > 1, assume dm is a posi-
tive integer, and Bm is an upper left corner submatrix of a matrix Am
which has integer entries (i.e. Bm is obtained from an integer matrix Am
by removing several last columns and several last rows). Also assume that

• there exists L > 0 such that ‖Am‖ < L for all m,
• nc(Am)− nc(Bm) < dm and nr(Am)− nr(Bm) < dm, and

(3.3) lim
m→∞

dm
Nm

= 0 .
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Then the sequence (Am, Nm)m>1 also tracely approximates B. Conse-
quently,

(3.4) lim sup
m→∞

ln det′(Am)
Nm

6 ln detΠ(B) .

Proof. — Replacing L by a bigger number, we can assume that K < L,
where K is the number appeared in Definition 3.3 of (Bm, Nm). We will
prove (1)–(3) of Definition 3.3 hold for (Am, Nm), with K replaced by L.
(1) clearly holds, since ‖B‖ < K < L and ‖Am‖ < L.
Let us prove (3). For any matrix A with complex entries,

(3.5) FA(0) = dim ker(RA) = nr(A)− rk(A) .

Let Fm, Gm be respectively the spectral density function of Bm, Am. Since
Bm is a submatrix of Am and the size difference is < dm, we have

|nr(Bm)− nr(Am)| < dm, 0 6 rk(Am)− rk(Bm) < 2dm .

From the above inequalities and (3.5), we have

|Gm(0)− Fm(0)| < 3dm .

Combining with (3.3), we have limm→∞
Gm(0)
Nm

= limm→∞
Fm(0)
Nm

= F (0),
proving (3).
Let us prove (2). The idea is as follows. Since entries are integers and

‖Am‖ 6 L, on each row or each column of Am there cannot be more L2

non-zero entries. From here we will show that for all indices i except for a
small set, (p(BmB∗m))ii = (p(AmA∗m))ii. This will show | tr(p(BmB∗m)) −
tr(p(AmA∗m))| is small compared to Nm.

Let go to the details. Let Z+ = {1, 2, 3, . . .} and let Mat0(Z+×Z+,C) be
the set of all Z+ × Z+ matrix (with complex entries) with finite support,
i.e. all entries are 0 except for a finite number of them. Each matrix α ∈
Mat0(Z+ ×Z+,C) is a linear endomorphism of the standard Hilbert space
`2, and hence one can define its norm ‖α‖. We define tr(α) =

∑
i αii, which

is finite due to the finite support. Let Ri(α) and Cj(α) be respectively the
i-th row of α and the j-th column of α.
Suppose α, α′ ∈ Mat0(Z+ × Z+,C). Let

Diff(α, α′) = {i ∈ Z+ | Ri(α) 6= Ri(α′) or Ci(α) 6= Ci(α′)} .

We write ρ(α, α′) 6 (d, L) if ‖α‖, ‖α′‖ < L and |Diff(α, α′)| < d.

Lemma 3.7. — Suppose α, β, α′, β′ ∈ Mat0(Z+×Z+,C) and ρ(α, α′) 6
(d, L), ρ(β, β′) 6 (d, L).

(a) For c1, c2 ∈ C one has ρ(c1α+ c2β, c1α
′ + c2β

′) 6 (C1d,C1), where
C1 = C1(L, c1, c2) is a constant depending only on L, c1, c2.
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(b) If the entries of α, α′, β, β′ are integers, then ρ(αβ, α′β′)6 (C2d,C2),
where C2 = C2(L) is a constant depending only on L.

Proof.
(a). — Let C1 = max(2, (|c1| + |c2|)L)). It clear that ‖c1α + c2β‖ <

(|c1|+ |c2|)L) 6 C1. Since

Diff(c1α+ c2β, c1α
′ + c2β

′) ⊂ Diff(α, α′) ∪Diff(β, β′) ,

we have |Diff(c1α+ c2β, c1α
′ + c2β

′)| < 2d 6 C1d. Part (a) is proved.
(b). — Let C2 = 4L4 + 2. It is clear that ‖αβ‖ < L2 6 C2. Similarly

‖α′β′‖ < C2.
Let I1 = Diff(α, α′), J1 = Diff(β, β′). By assumption, |I1|, |J1| < d. For a

subset S ⊂ Z+ denote Sc = Z+ \S. If i ∈ (I1)c and j ∈ (J1)c then ij-entry
of αβ is

(αβ)ij = Ri(α) · Cj(β) = Ri(α′) · Cj(β′) = (α′β′)ij .

This shows αβ and α′β′ have the same (I1)c × (J1)c submatrix, which is
denoted by γ.
Since ‖αβ‖ < L2, the norm of each row or each column is < L2, which

implies on each row or on each column there are at most L4 non-zero
entries. It follows that in any collection of d rows (or d columns) of αβ, all
the entries are 0 except for at most dL4 of them. From the (I1)c × (J1)c
submatrix γ we can recover the full matrix αβ by adding back less than d
columns and less than d rows. In these d columns there are at most dL4

non-zero rows, and let I2 be the set of indexes of those none-zero rows. We
have |I2| < dL4. Now if i 6∈ (I1∪I2) then Ri(αβ) is the 0-extension of Ri(γ).
Similarly, there is a subset I ′2 ⊂ Z+ with |I ′2| < dL4 such that if i 6∈ (I1∪I ′2),
then Ri(α′β′) is the 0-extension of Ri(γ). Hence if i 6∈ (I1 ∪ I2 ∪ I ′2), then
Ri(αβ) = Ri(α′β′).
Similarly, there are subsets J2, J

′
2 ⊂ Z+ with |J2|, |J ′2| < dL4 such that

if j 6∈ (J1 ∪ J2 ∪ J ′2), then Cj(αβ) = Cj(α′β′).
Let I = I1 ∪ I2 ∪ I ′2 ∪ J1 ∪ J2 ∪ J ′2. Then |I| 6 2d + 4dL4 6 dC2. We

have Ri(αβ) = Ri(α′β′) and Ci(αβ) = Ci(α′β′) if i 6∈ I. This implies
Diff(αβ, α′β′) ⊂ I, and

|Diff(αβ, α′β′)| 6 |I| < dC2 .

This completes the proof of the lemma. �

Let us continue with the proof of (2). For a finite matrix α let α̂ ∈
Mat0(Z+×Z+,C) be its 0-extension, i.e. (α̂)ij = αij if αij exists, otherwise
(α̂)ij = 0. The map α→ α̂ is linear and preserves the trace, the norm, and
the matrix product. Since Am is obtained from Bm by adding less than
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dm rows and then less than dm columns, and on each row or each column
there are no more than L2 non-zero elements, we have

|Diff(B̂m, Âm)| < dm + 2L2dm = dm(2L2 + 1) .

It follows that

ρ(B̂m, Âm) 6 (dm(2L2 + 1), L), ρ(B̂∗m, Â∗m) 6 (dm(2L2 + 1), L) .

Applying part (b) of Lemma 3.7 repeatedly to products of B̂m, B̂∗m, Âm, Â∗m,
then applying part (a) of Lemma 3.7, we see that there is a constant
C = C(L, p) depending only on L and the polynomial p, such that

ρ( ̂p(BmB∗m), ̂p(AmA∗m)) 6 (Cdm, C) .

The absolute value of each entry of either ̂p(BmB∗m) or ̂p(AmA∗m) is less
than C since C is an upper bound for the norm.

From the definition, if i 6∈Diff( ̂p(BmB∗m), ̂p(AmA∗m)), then (p(BmB∗m))ii=
(p(AmA∗m))ii. Since |Diff( ̂p(BmB∗m), ̂p(AmA∗m))| < Cdm and the absolute
value of each entry is less than C, we have

| tr( ̂p(BmB∗m))− tr( ̂p(AmA∗m))| < 2C(Cdm) = 2C2dm .

Since limm→∞ dm/Nm = 0 and tr(α) = tr(α̂), we conclude that

lim
m→∞

tr(p(BmB∗m))
Nm

= lim
m→∞

tr(p(AmA∗m))
Nm

= trΠ(p(BB∗)) ,

which completes the proof of (2). �

Remark 3.8. — Since det′(Am) does not change if one permutes the
rows or the columns of Am, Inequality (3.4) still holds if in Proposition 3.6
we replace the assumption “Bm is an upper left corner submatrix of Am”
by the weaker assumption “Bm is a submatrix of Am”. (Actually, one can
also prove that Proposition 3.6 holds under this weaker assumption.)

3.8. Hyperbolic volume and Fuglede-Kadison determinant

Suppose X is an irreducible orientable compact 3-manifold with infinite
fundamental group and with boundary ∂X either empty or a collection of
tori. We define now good presentations of Π = π1(X) and their reduced
Jacobians.
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First assume that ∂X 6= ∅. Then X is homotopic to a 2-dimensional
finite CW-complex Y which has one zero-cell. Suppose there are n two-
cells. Since the Euler characteristic is 0, there must be n + 1 one-cells,
denoted by a1, . . . , an+1. Then Π := Π1(X) = Π1(Y ) has a presentation

(3.6) Π = 〈a1, . . . , an, an+1 | r1, . . . , rn〉 ,

where rj is the boundary of the j-th two-cell. We call such a presentation
a good presentation for Π if an+1 is an element of infinite order in Π. For
a good presentation (3.6), define its reduced Jacobian to be the square
matrix

J =
(
∂ri
∂aj

)n
i,j=1

∈ Mat(n× n,Z[Π]) ,

where ∂ri

∂aj
is the Fox derivative.

Now assume that X is a closed oriented 3-manifold. Assume X = H∪H ′
is a Heegaard splitting of X, where each of H and H ′ is a handlebody of
genus g. There is a graph G ⊂ H with 1 vertex and g loop-edges a1, . . . , ag
such that H is a regular neighborhood of G. Similarly there is a graph
G′ ⊂ H ′ with 1 vertex and g loop-edges a′1, . . . , a′g such that H ′ is a regular
neighborhood of G′. There is a collection {D′1, . . . , D′g} of properly embed-
ded disks in H ′ which cuts H ′ into balls such that D′i meets a′i transversally
at 1 point and does not meet a′j for j 6= i. We assume that ag and a′g are
non-trivial in π1(X). A presentation of Π = π1(X) can be given by

(3.7) Π = 〈a1, . . . , ag | r1, . . . , rg〉 ,

where ri is given by the boundary of D′i, see e.g. [13]. We call such a
presentation a good presentation of π1(X), and define its reduced Jacobian
to be the square matrix

J =
(
∂ri
∂aj

)g−1

i,j=1
∈ Mat((g − 1)× (g − 1),Z[Π]) .

We quote here an important result which follows from a result of Lück
and Schick [22] (appeared as Theorem 4.3 in [20]) and Lück [20, Theo-
rem 4.9].

Theorem 3.9. — Suppose X is an irreducible orientable compact 3-
manifold with infinite fundamental group and with boundary either empty
or a collection of tori. Let J be the reduced Jacobian of a good presentation
of Π = π1(X). Then

ln detΠ(J) = vol(X)/6π .
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Proof. — In the proof of Theorem 4.9 of [20] appeared in [19] it was ex-
plicitly shown that ln detΠ(J) = −ρ(2)(X̃), where ρ(2)(X̃) is the (additive)
L2-torsion of the universal covering of X.
By [20, Theorem 4.3], ρ(2)(X̃) = − vol(X)/6π. Hence ln detΠ(J) =

vol(X)/6π. �

Remark 3.10. — In the formulation of [20, Theorem 4.3] there is an
assumption that X satisfies the conclusion of Thurston Geometrization
Conjecture, which is redundant now due Perelman’s celebrated result. Be-
sides, there is a requirement that the boundary of X be incompressible.
But if a torus component of X is compressible, then X must be a solid
torus, for which all the results are trivial.

4. Proofs of main results

4.1. Growth of functions

Recall that G is the set of all subgroups of Π of finite index. Suppose
f, g : G → R>0 are functions on G with positive values. We say that f has
negligible growth if

lim sup
G3Γ→1

(f(Γ))1/[Π:Γ] 6 1 .

We will write f E g if f/g has negligible growth.

4.2. Chain complexes of coverings

Suppose X is a connected finite CW-complex with fundamental group Π,
and X̃ is its universal covering. Then X̃ inherits a CW-complex structure
from X, where the cells of X̃ are lifts of cells of X. The action of Π on X̃
preserves the CW-structure and commutes with the boundary operators.
Let C(X̃) be the chain Z-complex of the CW-structure of X̃. Then Cj(X̃)
is the free Z-module with basis the set of all j-cells of X̃. We will identify
Cj(X̃) with Z[Π]nj , a free Z[Π]-module, as follows.

We assume that
(i) X has only one 0-cell e0, and
(ii) for any j-cell e of X with j > 1, one has e0 = χe((1, 0, . . . , 0)),

where χe : Dj → X is the characteristic map of e. Here Dj = {x ∈
Rj , ‖x‖ 6 1} is the standard unit j-disk.
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Choose a lift ẽ0 of e0. Condition (i) shows that for every j-cell e there
is a unique lift ẽ defined by using the lift of the characteristic map which
sends (1, 0, . . . , 0) to ẽ0. Let ej1, . . . , ejnj

be an ordered set of all j-cells of
X, then

Cj(X̃) =
nj⊕
l=1

Z[Π] · ẽjl ,

and we use the above equality to identify Cj(X̃) with Z[Π]nj .
We will write an element x ∈ Z[Π]n as a row vector x = (x1, . . . , xn)

where each xj ∈ Z[Π]. Note that Z[Π]n can be considered as a left Z[Π]-
module or a right Z[Π]-module. We will consider Z[Π]n as a left Z[Π]-
module unless otherwise stated. If B ∈ Mat(n×m,Z[Π]) is an n×m matrix
with entries in Z[Π], then the right multiplication by B defines a Z[Π]-linear
map from Z[Π]n to Z[Π]m, and every Z[Π]-linear map Z[Π]n → Z[Π]m arises
in this way.
The boundary operator ∂j : Cj(X̃) → Cj−1(X̃) is given by a nj × nj−1

matrix with entries in Z[Π]; by abusing notation we also use ∂j to denote
this matrix. The chain complex C(X̃) has the form

C(X̃) =
(
· · · → Z[Π]nj+1

∂j+1−→ Z[Π]nj
∂j−→ Z[Π]nj−1 → · · ·

· · · → Z[Π]n1 ∂1−→ Z[Π]n0 ∂0−→ 0
)
.

The 2-skeleton of X gives a presentation of the fundamental group

(4.1) π1(X) = 〈a1, . . . , an | r1, . . . , rm〉 ,

where ai is the represented by the 1-cell e1
i , and rj is the boundary of the

2-cell e2
j , written as a product of ai’s. In this case, ∂1 is the n × 1 matrix

whose i-entry is 1− ai, and ∂2 is the m× n matrix whose ij-entry is ∂ri

∂aj
,

see [28, Claim 16.6].
Suppose Γ 6 Π is a subgroup andXΓ is the corresponding covering. Then

XΓ inherits a CW-structure from X, and its chain Z-complex is exactly
Z[Γ\Π]⊗Z[Π] C(X̃). Here we consider Z[Γ\Π] as a right Z[Π]-module.

In general, if C is a chain complex over Z[Π] of left Z[Π]-modules and
Γ 6 Π, then we denote by CΓ the chain Z-complex Z[Γ\Π]⊗Z[Π] C.
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4.3. Circle complex

Fix a non-trivial element a of a residually finite group Π. Let S be the
following chain Z[Π]-complex

0→ Z[Π] ∂1−→ Z[Π] ∂0−→ 0 ,

where ∂1 = 1−a. For every Γ ∈ G, one has the Z-complex SΓ = Z[Γ\Π]⊗Z[Π]
S. We provide Z[Γ\Π] with a metric such that Γ\Π is an orthogonal lattice.
Recall that bj(SΓ) is the rank of Hj(SΓ).

Lemma 4.1. — Suppose a has infinite order as an element of Π.
(1) One has

(4.2) lim sup
G3Γ→1

b0(SΓ)
[Π : Γ] = lim sup

G3Γ→1

b1(SΓ)
[Π : Γ] = 0 .

(2) The function Γ→ det′(1− aΓ) is negligible.

Proof.
(1). — Since the order of a is infinite, the group 〈a〉 is an infinite cyclic

subgroup of Π. By decomposing Π as the disjoint union of cosets of 〈a〉,
it is easy to see that the L2-Betti numbers of S are 0. Alternatively, the
L2-Betti numbers of the circle are all 0, and hence the L2-Betti numbers
of S are 0 by the induction theorem, see [20, Theorem 1.35(10)]. Hence
Lemma 4.1(1) is a special case of the main result of Farber [10].
Actually, (1) is much simpler than the full result of [10] due to the simple

nature of S, and here is a direct proof (supplied by J. Meumertzheim). Let
aΓ denote the action of a on Z[Γ\Π]. The chain complex SΓ has the form

0→ Z[Γ\Π] 1−aΓ−→ Z[Γ\Π] −→ 0 .

From the Euler characteristic consideration, one has b1(SΓ) = b0(SΓ).
The element aΓ acts on C[Γ\Π] by permuting the basis Γ\Π. Suppose as

a permutation, aΓ has dn(aΓ) cycles of length n, with total d = d(Γ) :=∑
n dn(aΓ) cycles. From H1(CΓ) = ker(1 − aΓ) one can easily see that

b1(SΓ) = d. We have

(4.3) [Π : Γ] =
∑
n

ndn(aΓ) .

The trace of aΓ is equal to the number of cycles of length 1, i.e.

(4.4) [Π : Γ] trΓ\Π(a) = tr(aΓ,C[Γ\Π]) = d1(aΓ) .
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Using (4.4) and counting the number of cycles of length 1 of (am)Γ, one
has

[Π : Γ] trΓ\Π(am) = d1((am)Γ) =
∑

n|m,n>1

ndn(aΓ) .

In particular,

(4.5) dn(aΓ) 6 1
n

[Π : Γ] trΓ\Π(an) .

For all positive integers l we have
b1(SΓ)
[Π : Γ] =

∑
n dn(aΓ)
[Π : Γ]

=
∑l
n=1 dn(aΓ)
[Π : Γ] +

∑
n>l+1 dn(aΓ)

[Π : Γ]

6
l∑

n=1

trΓ\Π(an)
n

+
∑
n>l+1 dn(aΓ)∑
n ndn(aΓ) by (4.3) and (4.5)

6
l∑

n=1

trΓ\Π(an)
n

+ 1
l + 1 .

Taking the limit, using the fact that lim supG3Γ→1
trΓ\Π(an)

[Π:Γ] = trΓ(an) = 0
(since an 6= 1), we have

lim sup
G3Γ→1

b1(SΓ)
[Π : Γ] 6

1
l + 1 .

Since this is true for all l, we have (4.2), which proves (1).
(2). — Let N = N(Γ) := [Π : Γ]. Recall that b1(SΓ) = d(Γ), the number

of cycles of aΓ.

Claim 4.2. — The function (N(Γ)/d(Γ))d(Γ) on G is negligible.

Proof of Claim 4.2. — By part (1), d/N → 0 as Γ tr−→ 1. It follows that
(N/d)(d/N) → 1 as Γ tr−→ 1. This proves Claim 1.

Let aΓ have d cycles of length l1, . . . , ld. Lemma 2.2 shows that

det′(1− aΓ) =
d∏
j=1

lj .

Since
∑d
j=1 lj = N , the arithmetic-geometric mean inequality implies

det′(1− aΓ) =
d∏
j=1

lj 6 (N/d)d ,

which, in light of Claim 1, proves that det′(1− aΓ) is negligible. �
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Remark 4.3. — Concerning the assumption on the order of a, we have
the following. Suppose X is an irreducible 3-manifold whose fundamental
group Π is infinite. Then Π does not have any non-trivial torsion element
(see e.g. [3, (C3) Section 3.2]), i.e. if a ∈ Π is not the unit, then the order
of a is infinite.

4.4. Proof of Theorem 1.2 for the case ∂X 6= ∅

Proof. — Suppose X satisfies the assumption of Theorem 1.2 and ∂X 6=
∅. As in Section 3.8, choose a finite 2-dimensional CW-complex Y homo-
topic to X which gives a good presentation for Π:

Π = 〈a1, . . . , an, an+1 | r1, . . . , rn〉 .

Let C = C(Ỹ ) be the chain Z-complex of the CW-structure of the uni-
versal covering Ỹ of Y . As in Section 4.2, C has the form

C =
(

0→ Z[Π]n ∂2−→ Z[Π]n+1 ∂1−→ Z[Π]→ 0
)
,

where ∂2 ∈ Mat(n × (n + 1),Z[Π]) is the n × n + 1 matrix with entries
(∂2)ij = ∂ri

∂aj
and ∂1 ∈ Mat(n+ 1× 1,Z[Π]) is a column vector with entries

(∂1)j = 1−aj . The reduced Jacobian J , defined in Section 3.8, is the matrix
obtained from ∂2 be removing the last column, which will be denoted by c.

Then C = C(Ỹ ) is the middle row of the following commutative diagram

0 −−−−→ 0 −−−−→ Z[Π] 1−an+1−−−−−→ Z[Π] ∂0−−−−→ 0y y yι yid
y

0 −−−−→ Z[Π]n ∂2−−−−→ Z[Π]n+1 ∂1−−−−→ Z[Π] ∂0−−−−→ 0y yid
yp y y

0 −−−−→ Z[Π]n J−−−−→ Z[Π]n −−−−→ 0 ∂0−−−−→ 0

where ι : Z[Π] → Z[Π]n+1 is the embedding into the last component, and
p : Z[Π]n+1 → Z[Π]n is the projection onto the first n components. Each
row is a chain Z[Π]-complex. Denote the chain complex of the first row and
the third row by respectively K and Q. The operators ∂0 on the diagram
indicate how to index the components of the complexes. For example, Q1 =
Q2 = Z[Π]n.
The sequence

0→ K → C → Q → 0

ANNALES DE L’INSTITUT FOURIER



TORSION GROWTH 635

is split exact in each degree. Hence, for every Γ ∈ G, one has the following
exact sequence of Z-complexes

(4.6) 0→ KΓ → CΓ → QΓ → 0 .

Note that CΓ is the chain Z-complex of YΓ, and its homology groups are
the homology groups H∗(YΓ,Z) = H∗(XΓ,Z). We provide Z[Γ\Π] with the
metric in which Γ\Π is an orthonormal basis. It is clear that this metric is
integral, see Section 2.3.
The short exact sequence (4.6) generates a long exact sequence, part of

it is
H2(QΓ) βΓ−→ H1(KΓ)→ H1(CΓ)→ H1(QΓ) .

Note that H2(QΓ) 6 (QΓ)2 = Z[Γ\Π]n inherits an integral metric from
Z[Γ\Π]n. Similarly, H1(KΓ) 6 (KΓ)1 = Z[Γ\Π] inherits a integral metric.
Applying Lemma 2.3(2) to the above exact sequence, we get

(4.7) t(H1(CΓ)) 6 det′(βΓ) t(H1(QΓ)) vol(H2(QΓ)) .

Since H1(QΓ) = coker(JΓ) and H2(QΓ) = ker(JΓ), by Lemma 2.3(1), we
have

t(H1(QΓ)) vol(H2(QΓ)) = t(coker(JΓ)) vol(ker(JΓ)) 6 det′(JΓ) .

Using the above inequality in (4.7), and t1(Γ) = t(H1(CΓ)), we get

(4.8) t1(Γ) 6 det′(βΓ) det′(JΓ) .

Claim 4.4. — det′(βΓ) is a negligible function on G.

Proof of Claim 4.4. — We estimate det′(βΓ) by using upper bounds for
the rank and the norm of βΓ. First, the rank of βΓ is less than or equal to
rank of its codomain, which is b1(KΓ).
The connecting homomorphism β is the restriction of β̃ : Z[Π]n → Z[Π]

given by β̃(x) = x · c, where c is the last column of ∂2. It follows that
‖βΓ‖ 6 ‖β̃Γ‖ < ν for some constant ν not depending on Γ (see Lemma 3.2).
By (2.1),

det′(βΓ) 6 νb1(KΓ) .

By Lemma 4.1, lim b1(KΓ)/[Π : Γ] = 0. It follows that det′(βΓ) is negligible.
This completes the proof of the claim. �

From (4.8) and the above claim, we have

t1(Γ) E det′ JΓ .

Hence

lim sup
G3Γ→1

ln t1(Γ)
[Π : Γ] 6 lim sup

G3Γ→1

ln det′(JΓ)
[Π : Γ] 6 ln detΠ J = vol(X)

6π ,
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where we use Theorem 3.5 in the second inequality and Theorem 3.9 in the
last equality. �

4.5. Proof of Theorem 1.5

Let X = S3 \N(K), where N(K) is a small tubular open neighborhood
of K. Then ∂X is a torus. We will use the notations of Section 4.4. We can
further assume that an+1 represents a meridian of K.
Suppose Γ ∈ G. Let p : XΓ → X be the covering map. Then p−1(∂X) con-

sists of tori, and p−1(an+1) is a collection of simple closed curves C1, . . . Cl
on p−1(∂X). From the definition, H1(X̂Γ,Z) = H1(XΓ,Z)/U , where U is
the subgroup of H1(XΓ,Z) generated by C1, . . . , Cl. The curves C1, . . . , Cl
are made up from all the lifts of an+1.

The exact sequence (4.6) gives rise to a long exact sequence

(4.9) . . . H1(KΓ) γ−→ H1(CΓ)→ H1(QΓ)→ H0(KΓ) . . .

Recall that we use the identification C1 ≡ Z[Π]n+1 via C1 =
⊕n+1

j=1 Z[Π] · ãj .
Correspondingly, the identification K1 ≡ Z[Π] is via K1 = Z[Π] · ãn+1.
Under these identifications, one has U ≡ Im(γ). Hence, from the exact
sequence (4.9), one has the following exact sequence

0→ H1(X̂Γ,Z)→ H1(QΓ)→ H0(KΓ) . . .

Since H0(KΓ) is a free abelian group, the above exact sequence implies that

TorZ(H1(X̂Γ,Z)) = TorZ(H1(QΓ)) .

Applying (2.3) to the map JΓ : Z[Γ\Π]n → Z[Γ\Π]n, we get

|TorZ(H1(X̂Γ,Z))| = |TorZ(H1(QΓ))|

= det′(JΓ)
vol(ker(JΓ)) vol(Im(JΓ))

6 det′(JΓ) .

Here Im(JΓ)) := (Im(JΓ)⊗Z Q) ∩ Z[Γ\Π]n.
Theorem 3.5 and Theorem 3.9 show

lim sup
G3Γ tr−→1

ln |TorZ(H1(X̂Γ,Z))|
[Π : Γ] 6 lim sup

G3Γ tr−→1

ln det′(JΓ)
[Π : Γ] 6 ln detΠ(J) = vol(X)

6π .

This completes the proof of Theorem 1.5.
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4.6. Heegaard splitting and homology

Assume that X is an oriented connected closed 3-manifold and X =
H ∪ H ′ is a Heegaard splitting of X. This means each of H and H ′ is
a handlebody of genus g, and H ∩ H ′ = ∂H = ∂H ′. For generalities on
Heegaard splittings the reader can consult [13].
A properly embedded disk D ⊂ H is essential if its boundary does not

bound a disk in F = ∂H. A system of disks of a handlebody H of genus g
is a collection D = {D1, . . . , Dn} of properly embedded, essential oriented
disks in H which are disjoint and cut H into balls. Then n > g, and if
n = g, we say that the system of disks D is minimal. A disk system D is
minimal if and only if H \ (

⋃
D∈DD) is connected, and any disk system has

a subset which is a minimal disk system.
SupposeD = {D1, . . . , Dn} is a disk system ofH andD′ = {D′1, . . . , D′m}

is a disk system of H ′. Let αi = ∂Di and α′j = ∂D′j . The common boundary
F = ∂H = ∂H ′ inherits an orientation from H, and each curve αi, α′j
inherits an orientation from Di, D

′
j . We will assume that αi and α′j are

transversal in F for all pairs (i, j), and let µ(αi, α′j) be the intersection
index of αi and α′j .
The disk system D generates a dual graph G embedded in H: to every

connected component Q of H \ (
⋃n
i=1Di) there corresponds a vertex vQ

which is a point in the interior of Q, and to every disk Di there corresponds
an edge ai ⊂ H. If Di is in the closure of two connected components Q
and Q′, then ai is an edge connecting vQ and vQ′ . If Di is in the closure of
only one connected component Q, then ai is a loop edge based at vQ. In all
cases, ai intersects Di transversely at exactly one point, and ai ∩Dj = ∅
for i 6= j. We orient ai so that the intersection index µ(ai, Di) = 1. Note
that G, known as a spine of H, is a deformation retract of H. Let G′ ⊂ H ′
be a dual graph of D′, with edge a′i dual to disk D′i.
Although ai and a′j do not intersect, we will define

(4.10) µ(a′i, aj) = µ(α′i, αj) .

Proposition 4.5. — Let M ∈ Mat(m × n,Z) be given by Mij =
µ(a′i, aj). Then t(H1(X,Z)) = t(M).

Proof. — Without loss of generality we can assume that D̄= {D1, ..., Dg}
is a minimal disk system of H. Let M̄ be the m×g submatrix ofM consist-
ing of the first g columns. The dual graph Ḡ of D̄ has only one vertex and
g loop edges ā1, . . . , āg (dual to D1, . . . , Dg). The group H1(H,Z) is free
abelian with basis {ā1, . . . , āg}. If c ⊂ F = ∂H is an oriented closed curve,
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then the homology class of c in H1(H,Z) is
∑g
i=1 µ(c, αi)āi. To obtain X

one glues H ′ to H, and this can be done in 2 steps. In the first one glues
the disks D′j to H, then in the second one glues in the complements (in
H ′) of D′i which are 3-balls. The second step does not change the homol-
ogy group H1. The first gluing shows that H1(X,Z) = cokerRM̄ , where
RM̄ (x) = xM̄ .
Cutting F = ∂H along α1, . . . , αg, we get a sphere with 2g disks removed.

More precisely, F is obtained from F ′, a compact surface of genus 0 and 2g
boundary components c′1, c′′1 , c′2, c′′2 , . . . , c′g, c′′g , by gluing c′i to c′′i , with the
common image being αi. Any simple closed curve in the interior of F ′ is
separating (because F ′ has genus 0), and hence is homologically equal to
a Z-linear combination of boundary curves with coefficients ±1. It follows
that the homology class of any curve in F not meeting any of α1, . . . , αg
is in the Z-linear span of α1, . . . , αg; this applies to the curves αi with
i > g. This implies any column of M is a Z-linear combination of the first
g columns. In other words, the images of RM∗ and RM̄∗ are same. Hence
t(M∗) = t(M̄∗). By Proposition 2.4, one has t(M) = t(M∗). It follows that
t(H1(X,Z)) = t(M̄) = t(M). �

Here is another proof of Proposition 4.5. A Heegaard splitting X =
H ∪H ′ and disk systems D of H and D′ of H ′ give rise to a CW-complex
structure of X as follows. First, the handlebody H is obtained from zero-
handles, each is a regular neighborhood of a vertex of the graph G dual to
D, by attaching one-handles whose cores are in the edges ai of G. Then to
H one glues two-handles whose cores areD′ ∈ D. Finally by gluing in three-
handles one gets X. This handle decomposition gives rise to a CW-complex
structure of X, see [26, Chapter 6]. The second boundary map of the asso-
ciated chain complex is given by the matrix M . By Proposition 2.4(3), we
get t(H1(X,Z)) = t(M).
Recall that a cycle of a graph is a closed walk in the graph which does

not visit any vertex twice. We show here a way to simplify a disk system
of a handlebody.

Lemma 4.6. — Suppose c1, . . . , cr are disjoint cycles of G. In each cycle
choose an edge, called the preferred edge of the cycle. Then the set E ⊂ D,
consisting of all Di such that either ai is a preferred edge of a cycle or ai
does not belong to any cycle, is a system of disks of H.

Proof. — A cycle of G either is one of c1, . . . , cr, or contains an edge
which is not in any of c1, . . . , cr. This shows E cuts G into trees, implying
each connected component of H \ (

⋃
D∈E D) is contractible. Hence E is a

disk system of H. �
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4.7. Proof of Theorem 1.2 for the case when ∂X = ∅

Suppose X is an irreducible, connected, closed, oriented 3-manifolds. If
Π = π1(X) is finite, then the statement of Theorem 1.2 is trivial. We will
assume that Π is infinite. Then every non-trivial element of Π has infinite
order.
Suppose X = H∪H ′ is a Heegaard splitting of X, where F = ∂H = ∂H ′

has genus g. Suppose D = {D1, . . . , Dg} is a minimal disk system of H and
D′ = {D′1, . . . , D′g} is a minimal disk system of H ′. Let the dual graph G
(resp. G′) with the set of edges A = {a1, . . . , ag} (resp. A′ = {a′1, . . . , a′g})
be as defined in Subsection 4.6. The minimality of D and D′ implies each of
G and G′ has one vertex, and each of ai, a′i is a loop-edge. Each of the sets
{a1, . . . , ag} and {a′1, . . . , a′g} generates Π = π1(X). Hence by reordering,
one can assume that ag and a′g are non-trivial in Π. Thus, the associated
presentation of Π,

(4.11) Π = 〈a1, . . . , ag | r1, . . . , rg〉 ,

where ri is determined by the two-cell D′i, is good.
Let J̃ ∈ Mat(g× g,Z[Π]) be the matrix whose ij-entry is given by J̃ij =

∂ri

∂aj
. Then J̃ is the second boundary operator of the chain complex of the

universal covering of X, see Subsection 4.2. The reduced Jacobian J is
obtained from J̃ by removing the last row and the last column.

Let (Γm)m>0 be a sequence of subgroups of Π of finite index such that
Γm

tr−→ 1. Fix an index m for now. Let Pm : Xm → X be the covering
map corresponding to the subgroup Γm and H̃, H̃ ′, G̃, G̃′ be respectively
the preimage of H,H ′, G,G′ under Pm.
For a diskD inD orD′, the preimage (Pm)−1(D) is a collection of disjoint

disks, each is called a lift of D. The collection D̃ (resp. D̃′) of all lifts of all
disks in D (resp. D′) is a disk system of H̃ (resp. H̃ ′). The CW-structure
of Xm, corresponding to the Heegaard splitting Xm = H̃ ∪ H̃ ′ and the disk
systems D̃ and D̃′, is exactly the lift of the CW-structure of X. Hence the
boundary operator ∂2 : C2(Xm)→ C1(Xm) is equal to J̃m := J̃Γm

.
Let Ã (resp. Ã′) be the set of edges of G̃ (resp. G̃′). An edge ã of G̃

(resp. G̃′) is called a lift of an edge a of G (resp. G′) if Pm(ã) = a. As
explained in Subsection 4.6, if we identify C2(Xm) with the free Z-module
with basis Ã′ and identify C1(Xm) with the free Z-module with basis Ã,
then J̃m = ∂2 : C2(Xm) → C1(Xm) is given by the Ã′ × Ã matrix whose
(a′, a)-entry is µ(a′, a).
Suppose all the lifts of ag form lm cycles. In each cycle choose one lift

of ag, called a preferred lift. Similarly, all the lifts of a′g form l′m cycles. In
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each cycle choose one lift of a′g, called a preferred lift of a′g. Let B̃ (resp.
B̃′) be obtained from Ã (resp. Ã′) by removing all the non-preferred lifts
of ag (resp. a′g). Let J ′m be the B̃′×B̃-submatrix of J̃m. By Lemma 4.6 and
Proposition 4.5, one has t(H1(Xm)) = t(J ′m), hence by Proposition 2.4,

t(H1(Xm)) = t(J ′m) 6 det′(J ′m) .

By Theorem 3.5, the sequence (Jm, [Π : Γm])m>1 tracely approximates J ,
where Jm := JΓm

. Note that Jm is obtained from J ′m by removing lm rows
corresponding to the lm preferred lifts of ag and l′m columns corresponding
to the l′m preferred lifts of a′g. Let dm = max(lm, l′m). By (the proof of)
Lemma 4.1, limm→∞

dm

[Π:Γm] = 0. Besides, by Lemma 3.2, there is L > 0 such
that ‖J̃Γm

‖ < L. As a submatrix of J̃Γm
, we also have ‖J ′m‖ < ‖J̃Γm

‖ < L.
Now Proposition 3.6 (see Remark 3.8) shows the second inequality in the
following

lim sup
m→∞

ln t(H1(Xm))
[Π : Γm] 6 lim sup

m→∞

ln det′(J ′m)
[Π : Γm] 6 ln detΠJ = vol(X)

6π ,

which proves Theorem 1.2.

Remark 4.7. — One can have a proof of Theorem 1.2 for the case when
∂X 6= ∅ similar to (and actually simpler than) the above proof for the case
when ∂X = ∅.

Appendix A. Proof of Theorem 3.4

Assume (Bm, Nm)m>1 tracely approximates B, and K is the constant in
Definition 3.3. Let F be the spectral density function of B, and Fm be the
spectral density function of Bm. Define

(A.1) Gm(λ) = Fm(λ)
Nm

, G(λ) = lim inf
m→∞

Gm(λ), G(λ) = lim sup
m→∞

Gm(λ) .

Recall that for any increasing function h : R → R one defines h+(λ) =
limε→0+ h(λ+ ε).

Lemma A.1. — One has F = G+ = G
+
.

Proof. — The proof is a slight modification of that of [18, Theorem 2.3].
Since ‖B‖, ‖BmB∗m‖ < K2, we have Fm(λ) = nr(Bm) and F (λ) = nr(B)

for all λ ∈ [K2,∞). Applying Condition (2) of Definition 3.3 to the constant
polynomial p = 1 and λ = K2, one has

(A.2) lim
m→∞

nr(Bm)
Nm

= nr(B) .
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Fix a number λ ∈ [0,K2) and let (pn)n>1 be the sequence of polynomials
constructed in [18, Section 2]. These polynomials approximate the charac-
teristic function of the interval [0, λ] and have the following properties:

0 6 pn on [0,K2], 1 6 pn 6 1 + 1
n

on [0, λ],(A.3)

pn 6 1 + 1
n

on [λ, λ+ 1
n

], pn(µ) 6 1
n

on [λ+ 1
n
,K2].(A.4)

lim
n→∞

trΠ(pn(BB∗)) = F (λ).(A.5)

Using the bounds of pn given by (A.3), we have

tr(pn(B∗mBm)) =
∫ K2

0
pn(µ) dFm(µ)

>
∫ λ

0
pn(µ) dFm(µ) >

∫ λ

0
dFm(µ) = Fm(λ).

Dividing by Nm,

Gm(λ) = Fm(λ)
Nm

6
tr(pn(B∗mBm))

Nm
.

Take the superior limit as m → ∞, then the limit as n → ∞. Using
Condition (2) of Definition 3.3 and (A.5), we have

(A.6) G(λ) 6 F (λ) .

Use the bounds of pn given by (A.4), we have

tr(pn(B∗mBm)) =
∫ K2

0
pn(µ) dFm(µ)

=
∫ λ+ 1

n

0
pn(µ) dFm(µ) +

∫ K2

(λ+ 1
n )+

pn(µ) dFm(µ)

6

(
1 + 1

n

)
Fm

(
λ+ 1

n

)
+ 1
n

(
Fm(K2)− Fm

(
λ+ 1

n

))
= Fm

(
λ+ 1

n

)
+ 1
n
Fm(K2) = Fm

(
λ+ 1

n

)
+ nr(Bm)

n
.

Dividing by Nm, then taking the inferior limit as m→∞ and using (A.2),
we have

tr(pn(B∗B) 6 G(λ+ 1
n

) + nr(B)
n

.

Taking the limit as n→∞, we have

(A.7) F (λ) 6 G+(λ) .
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Using (A.7), (A.6) and the fact that G is increasing, for all ε > 0 we have

F (λ) 6 G+(λ) 6 G(λ+ ε) 6 G(λ+ ε) 6 F (λ+ ε) .

Taking the limit ε → 0+ and noting that F is right continuous, i.e.
limε→0+ F (λ+ ε) = F (λ), we have F (λ) = G+(λ) = G

+(λ). �

Lemma A.2. — One has

G+(0) = lim
m→∞

Gm(0) ,(A.8)

G+(K2) = lim
m→∞

Gm(K2) .(A.9)

Proof. — We have (A.8), since the left hand side is equal to F (0) by
Lemma A.1, while the right hand side is also equal to F (0) by Condition (3)
of Definition 3.3.
Since each Gm, like Fm, is a constant function on [K2,∞), each of G

and G is constant on [K2,∞). It follows that G = G+ and G = G
+ on

[K2,∞). Hence for λ ∈ [K2,∞),

G(λ) = G+(λ) = F (λ) = G
+(λ) = G(λ) .

This implies limm→∞Gm(λ) = G(λ) = G+(λ) for λ ∈ [K2,∞). In partic-
ular, we have (A.9). �

Let us prove Theorem 3.4. By definition and Lemma A.1, one has
(detΠ(B))2 = det(F ) = det(G+). Using (3.1) then Lemma A.2, we have

2 ln(detΠ(B)) = ln det(G+)

= (G+(K2)−G+(0)) ln(K2)−
∫ K2

0+

G+(λ)−G+(0)
λ

dλ

= lim
m→∞

(Gm(K2)−Gm(0)) lnK2 −
∫ K2

0+

G+(λ)−G+(0)
λ

dλ(A.10)

By [18, Lemma 3.2], we the first of the following identities∫ K2

0+

G+(λ)−G+(0)
λ

dλ =
∫ K2

0+

G(λ)−G+(0)
λ

dλ

=
∫ K2

0+
lim inf
m→∞

Gm(λ)−Gm(0)
λ

dλ

6 lim inf
m→∞

∫ K2

0+

Gm(λ)−Gm(0)
λ

dλ,(A.11)
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where the second identity follows from G(λ) = lim infm→∞Gm(λ) and
(A.8), and the last inequality follows from Fatou’s lemma. Using Inequal-
ity (A.11) in (A.10), we have

2 ln(detΠ(B))

> lim
m→∞

(Gm(K2)−Gm(0)) lnK2 − lim inf
m→∞

∫ K2

0+

Gm(λ)−Gm(0)
λ

dλ

= lim sup
m→∞

{
(Gm(K2)−Gm(0)) lnK2 −

∫ K2

0+

Gm(λ)−Gm(0)
λ

dλ
}

= lim sup
m→∞

{2 ln(det′(Bm))/Nm},

where in the last equality we again use (3.1). This completes the proof of
Theorem 3.4.

Remark A.3. — As observed by the referee, Theorem 3.4 follows from
the portmanteau theorem in probability theory as follows (sketch). Let
Gm, F be defined as in (A.1). Then Pm := dGm and P := dF are finite
Borel measures on R, with support in [0,K2]. Condition (2) of Definition 3.3
implies that for any polynomial f ,

(A.12) lim
m→∞

∫
[0,K2]

f dPm =
∫

[0,K2]
f dP .

Every continuous function on [0,K2] can be uniformly approximated by
polynomials. It follows that (A.12) holds for all bounded continuous func-
tions. Hence, by definition (see [2]), the sequence of Borel measures Pm
converges weakly (or converges narrowly) to P .

Let P ′m, P ′ be respectively the restriction of the measures Pm, P on
(0,K2]. Condition (3) of Definition 3.3 means that limm→∞ Pm(0) = P (0).
From here and the weak convergence of Pm to P , one can prove that the
sequence P ′m weakly converges to P ′. By a version of the pormanteau the-
orem (see [2, Section 5.1.1], in particular Formula (5.1.15) there), one has
that if h is a function on (0,K2] which is continuous and bounded from
above, then

lim sup
m→∞

∫
(0,K2]

hdP ′m 6
∫

(0,K2]
hdP ′.

Applying to h = ln(x), we get

lim sup
m→∞

(ln detGm) 6 ln detF,

which proves Theorem 3.4.
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