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ÉTALE COHOMOLOGY, COFINITE GENERATION,
AND p-ADIC L-FUNCTIONS

by Rob DE JEU & Tejaswi NAVILAREKALLU (*)

Abstract. — Let p be a prime number. We study certain étale cohomology
groups with coefficients associated to a p-adic Artin representation of the Galois
group of a number field k. These coefficients are equipped with a modified Tate twist
involving a p-adic index. The groups are cofinitely generated, and we determine
the additive Euler characteristic. If k is totally real and the representation is even,
we study the relation between the behaviour or the value of the p-adic L-function
at the point e in its domain, and the cohomology groups with p-adic twist 1− e. In
certain cases this gives short proofs of a conjecture by Coates and Lichtenbaum,
and the equivariant Tamagawa number conjecture for classical L-functions. For
p = 2 our results involving p-adic L-functions depend on a conjecture in Iwasawa
theory.
Résumé. — Soit p un nombre premier. Nous étudions certains groupes de

cohomologie étale à coefficients associés à une représentation d’Artin p-adique de
groupe de Galois d’un corps des nombres k. Ces coefficients sont munis d’un tordu
à la Tate modifié avec un indice p-adique. Ces groupes sont de type cofini, et
nous déterminons la caractéristique d’Euler additive. Si k est totalement réel et
la représentation est paire, nous étudions la relation entre le comportement ou la
valeur de la fonction L p-adique en le point e de ce domaine et les groupes de
cohomologie avec torsion p-adique 1− e. Dans certains cas, ceci donne une preuve
courte d’une conjecture de Coates et Lichtenbaum, et de la conjecture équivariante
des nombres de Tamagawa pour les fonctions L classiques. Pour p = 2 nos résultats
impliquant des fonctions L p-adiques dépendent d’une conjecture de la théorie
d’Iwasawa.
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1. Introduction

Let k be a number field, p a prime number, E a finite extension of Qp with
valuation ring OE , and η : Gk → E an Artin character with dual character
η∨, that is, the character of an Artin representation of Gk = Gal(k/k). If
S is a finite set of finite primes of k, m 6 0 an integer, and σ : E → C an
embedding, then the value LS(m,σ ◦η∨, k) of the classical truncated Artin
L-function is in σ(E), and if we let L∗S(m, η∨, k) = σ−1(LS(m,σ ◦ η∨, k))
in E then this is independent of σ (see Section 3).

We call η realizable over E if the corresponding representation can be
defined over E. This representation can then be obtained as M(E, η)⊗OE
E ' M(E, η) ⊗Zp Qp for some finitely generated torsion-free OE-module
M(E, η) on which Gk acts (we shall call M(E, η) an OE-lattice for η). If S
includes all the finite primes of k at which η is ramified, andOk,S is obtained
from the ring of algebraic integers Ok of k by inverting all primes in S, then
we may view M(E, η) and M(E, η) ⊗OE E/OE ' M(E, η) ⊗Zp Qp/Zp as
sheaves for the étale topology on the open subscheme SpecOk,S of SpecOk.
We let α : SpecOk,S → SpecOk be the inclusion, but in étale cohomology
groups we shall write Ok instead of SpecOk and similarly for Ok,S .

In the special case that p is odd, E = Qp, m < 0, and L∗S(m, η∨, k) 6= 0,
according to Conjecture 1 of [10] we should have that the étale cohomology
groups Hi(Ok, α!(M(E, η) ⊗Zp Qp/Zp(m))) are finite for all i > 0, trivial
for i > 3, and that

(1.1) |L∗S(m, η∨, k)|p =
3∏
i=0

#Hi(Ok, α!(M(E, η)⊗Zp Qp/Zp(m)))(−1)i .

(Note that on page 502 of loc. cit. the inverse of the arithmetic Frobenius
is used in the definition of the L-function for η, resulting in the standard
L-function for η∨.) We observe here that by [26, VII Theorem 12.6] and
the definition of the completed L-series, the non-vanishing of the L-value
is equivalent with k being totally real, and η(c) = (−1)m−1η(idk) for all
complex conjugations c in Gk.

Báyer and Neukirch proved this conjecture for the trivial character [2,
Theorem 6.1] assuming the main conjecture of Iwasawa theory for this
character (later proved by Wiles in far greater generality; see [35, The-
orems 1.2 and 1.3]). In this case the conjecture is, in fact, equivalent to
an earlier conjecture of Lichtenbaum (see [23, Conjecture 9.1] and [10,
Conjecture 3.1]) because Hi(Ok, α!(M(E, η) ⊗Zp Qp/Zp(m))) is dual to
H2−i(Ok,S ,M(E, η∨) ⊗Zp Qp/Zp(1 − m)) for some lattice M(E, η∨) (see
Remark 1.5). Using this duality the proof of Báyer-Neukirch relates the
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right-hand side of (1.1) to the p-adic absolute value of the value of a cer-
tain p-adic L-function at m, which equals the left-hand side of (1.1) by an
interpolation formula (see (1.7)).
Again letting p be any prime number, one may therefore expect the p-adic

absolute value of the value of a p-adic L-function at an integer m to be re-
lated to the multiplicative Euler characteristic of certain étale cohomology
groups with an m-th Tate twist. In order to generalize this interpretation
from integersm to (almost) every point in the much larger p-adic domain of
definition of the p-adic L-function, we now introduce modified Tate twists
indexed by suitable p-adic numbers. If k is any number field and A any
Zp[Gk]-module, then A(m) is obtained from A by multiplying the action
of Gk by the m-th power of the p-cyclotomic character ψp : Gk → Z×p . For
g in Gk write

(1.2) ψp(g) = ωp(g)ψ〈〉p (g)

with ψ〈〉p (g) in 1 + 2pZp and ωp = ωp,k : Gk → µφ(2p) ⊂ Z×p the Teichmüller
character of Gk for p. Let k∞/k be the cyclotomic Zp-extension of k, and γ̃0
in Gk a lift of a topological generator γ0 of Gal(k∞/k). Let qk = ψp(γ̃0) =
ψ
〈〉
p (γ̃0), and for a finite extension E of Qp (always with p-adic absolute

value | · |p normalized by |p|p = 1/p), put

(1.3) Bk(E) = {e in E with |e|p < |qk − 1|−1
p p−1/(p−1)} ,

i.e., those e in E where qek and ψ〈〉p (g)e for g in Gk converge. Then Bk(E)
contains OE but it can be much larger. For any OE [Gk]-module A and e in
Bk(E), we let A〈e〉 be A with the action of Gk multiplied by (ψ〈〉p )e. Note
that for an integer m, A(m) can be obtained from A〈m〉 by twisting the
action of Gk with ωmp . Since ψ〈〉p (g) is often denoted as 〈ψp(g)〉, we think
of this as a ‘diamond’ twist and use notation and terminology accordingly.
Using this twist systematically leads to a more general result and simpler
proofs: it removes the need to adjoin the 2p-th roots of unity (thus avoiding
many technical complications when p = 2).
WithW (E, η) = M(E, η)⊗ZpQp/Zp as before, Theorem 1.4 concerns the

structure of the étale cohomology groups Hi(Ok,S ,W (E, η)〈1 − e〉). (We
state our results for étale cohomology groups with torsion coefficients. For
some reasons why we prefer these over alternatives we refer to Remark 1.5
below.) For i > 3, it is well-known that this group is trivial if p 6= 2,
and is finite and easily computed if p = 2 (see Remark 2.8), so we only
consider i = 0, 1, 2. For its statement, let us call an OE-module A cofinitely
generated if its Pontryagin dual A∨ = HomZp(A,Qp/Zp), on which OE acts
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through its action on A, is a finitely generated OE-module. In this case we
define corankOEA = rankOEA∨. We note that then also the natural map
A → (A∨)∨ is an isomorphism (see Remark 2.5). We write Bη(E) for
Bk(E) if η does not contain the trivial character, and for Bk(E) \ {1} if
it does. Finally, if k is totally real then we call an Artin character η of Gk
even if η(c) = η(idk) for every complex conjugation c in Gk.
We first extend results on cofinite generation that already have a long

history. For example, the equivalent statement for Galois cohomology of
the first part of Theorem 1.4(1) below follows already by combining [32,
Theorems 2.1 and 3.1] with the Corollary on page 260 of [33]; a succinct
general overview is given in Appendix A.1 of [28]. (For the relation be-
tween those cohomology groups and the groups we consider, we refer to
Remark 1.5 or Remark 2.6.) However, the uniform bound across all e and
E in the second part of Theorem 1.4(1) is new.

Theorem 1.4. — Let k be a number field, p a prime number, E a finite
extension of Qp, and η : Gk → E an Artin character realizable over E. Let
M(E, η) be an OE-lattice for η and let W (E, η) = M(E, η) ⊗Zp Qp/Zp.
Assume that S is a finite set of finite primes of k containing the primes
above p as well as the finite primes at which η is ramified. Then for e in
Bk(E) the following hold.

(1) Hi(Ok,S ,W (E, η)〈1− e〉) for i > 0 is cofinitely generated. There is
a constant D = D(S, η, k) independent of e, E and the choice of
M(E, η), such that each of these groups can be cogenerated by at
most D elements.

(2) Let ri = ri,S(1 − e, η) = corankOEHi(Ok,S ,W (E, η)〈1 − e〉) for
i = 0, 1, 2. Then ri is independent of the choice of M(E, η), and the
Euler characteristic r0 − r1 + r2 equals

−[k : Q] · η(idk) +
∑
v∈Σ∞

corankOEH0(Gal(kv/kv),W (E, η)) ,

where Σ∞ is the set of all infinite places of k and kv the completion
of k at v. This quantity is independent of e, non-positive, and is
zero if and only if k is totally real and η is even. Moreover, ri is
independent of S for i = 0, and also for i = 1, 2 if e 6= 0.

(3) r0,S(1−e, η) = 0 if e 6= 1, and r0,S(0, η) equals the multiplicity of the
trivial character in η. Moreover, the size ofH0(Ok,S ,W (E, η)〈1−e〉)
is a locally constant function for e in Bη(E).
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(4) If p 6= 2 then H2(Ok,S ,W (E, η)〈1− e〉) is p-divisible. If p = 2 then

H2(Ok,S ,W (E, η)〈1− e〉) '

2H2(Ok,S ,W (E, η)〈1− e〉)
⊕
⊕v∈Σ∞H

0(Gal(kv/kv),W (E, η))/2 ,

and 2H2(Ok,S ,W (E, η)〈1− e〉) is 2-divisible.

We mention that if Hi(Ok,S ,W (E, η)〈1− e〉) is finite for i = 0 or 1, then
Proposition 2.29, Remark 2.32 and Remarks 2.33 express its size and struc-
ture using cohomology groups with finite coefficients. By Theorem 1.4(2),
this can happen for i = 1 only when k is totally real and η is even, in which
case this group is finite for i = 0 and trivial for i = 2 by that theorem. Of
independent interest is that for such k and η a short exact sequence of co-
efficients gives rise to a nine term exact sequence involving only Hi(Ok,S , ·)
for i = 0, 1, 2 (see Lemma 2.25).

Remark 1.5. — We formulated Theorem 1.4 (and Theorem 1.8 below)
for the groups Hi(Ok,S ,W (E, η)〈1− e〉) because this gives a uniform point
of view for all primes and all modified Tate twists, unlike the groups
Hi(Ok, α!W (E, η)〈e〉) and Hi

cts(Ok,S ,M(E, η)〈1− e〉) discussed below. On
the other hand, the groups lim←−nH

i
c(Ok, α!(M(E, η)〈e〉/pn)) below also pro-

vide a uniform approach but they are technically more difficult to handle.
For example, in the proof of Theorem 5.5 the only cohomology groups that
we have to analyse in detail in our approach are of low degree, and those
can be described fairly explicitly.
We refer to Remark 2.6 and the proof of Proposition 2.12 for details of

the following discussion.
Let k be any number field and η : Gk → E any Artin character. Fix a

finite set S of finite primes of k containing all primes at which η is ramified
as well as all primes of k lying above p, and let α : SpecOk,S → SpecOk
be the natural inclusion. Then for an appropriate choice of lattices we have

lim←−
n

Hi
c(Ok, α!(M(E, η)〈e〉/pn)) ' lim←−

n

Hi
c(Ok,S ,M(E, η)〈e〉/pn)

'
(
H3−i(Ok,S ,W (E, η∨ωp)〈1− e〉)

)∨
for e in Bk(E) and i = 0, . . . , 3, where Hi

c denotes cohomology with com-
pact support. If p 6= 2 and all Hi(Ok,S ,W (E, η∨ωp)〈1− e〉) are finite then
also

(1.6) Hi(Ok, α!W (E, η)〈e〉) ' H2−i(Ok,S ,W (E, η∨ωp)〈1− e〉)

for e in Bk(E), i = 0, 1, 2, the group on the left being trivial for i > 3.

TOME 65 (2015), FASCICULE 6
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For p again an arbitrary prime, let ΩS be the maximal extension of
k that is unramified outside of S and the infinite primes of k, and let
GS = Gal(ΩS/k). ThenHi(Ok,S ,W (E, η)〈1−e〉) ' Hi(GS ,W (E, η)〈1−e〉)
where the right-hand side denotes continuous group cohomology.
Finally, for continuous étale cohomology groups Hi

cts with as coefficients
M(E, η)〈1− e〉 ' lim←−nM(E, η)〈1− e〉/pn, we have a long exact sequence

· · · → Hi
cts(Ok,S ,M(E, η)〈1− e〉)→ Hi

cts(Ok,S ,M(E, η)〈1− e〉)⊗Zp Qp
→ Hi(Ok,S ,W (E, η)〈1− e〉)→ Hi+1

cts (Ok,S ,M(E, η)〈1− e〉)→ · · · ,

where Hi
cts(Ok,S ,M(E, η)〈1− e〉) ' lim←−nH

i(Ok,S ,M(E, η)〈1− e〉/pn) is a
finitely generated OE-module. Hence rankOEHi

cts(Ok,S ,M(E, η)〈1− e〉) =
corankOEHi(Ok,S ,W (E, η)〈1−e〉). If Hj(Ok,S ,W (E, η)〈1−e〉) is finite for
j = i and i+1, thenHi(Ok,S ,W (E, η)〈1−e〉) ' Hi+1

cts (Ok,S ,M(E, η)〈1−e〉)
as well.

Our second main result Theorem 1.8 is a relation between the coho-
mology groups Hi(Ok,S ,W (E, η)〈1 − e〉) and a certain p-adic L-function
Lp,S(e, η, k). For such a p-adic L-function to be defined and non-trivial, we
must have k totally real and η even. By Theorem 1.4(2), this is also the
only case where those cohomology groups can simultaneously be finite for
i = 0, 1 and 2. For the sake of clarity we write χ for an even Artin character
when k is a totally real number field, and η for an arbitrary Artin character
when k is an arbitrary number field.
The conjecture of Coates and Lichtenbaum will be deduced from the

purely p-adic result Theorem 1.8 for χ = η∨ω1−m
p and e = m, by us-

ing (1.6) and two small miracles that occur only at integers. The first is
the relation between A〈m〉 and A(m) for any integer m, so that we may
assume W (E,χ)〈1−m〉 = W (E,χωm−1

p )(1−m). The other is the interpo-
lation formula (1.7) for negative integers (and possibly 0). It is surely no
coincidence that the exponent of ωp is the same in both miracles.
In order to state Theorem 1.8 we now discuss p-adic L-functions (see

Section 3 for details). Let k be a totally real number field, p a prime number,
E a finite extension of Qp with valuation ring OE , and χ : Gk → E an even
Artin character realizable over E. If S is a finite set of finite primes of k
containing the primes above p, then on Bk(E) there exists a meromorphic
E-valued p-adic L-function Lp,S(s, χ, k), defined at all negative integers m,
where it satisfies the interpolation formula

(1.7) Lp,S(m,χ, k) = L∗S(m,χωm−1
p , k) .
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The same statement sometimes also holds when m = 0. The usual p-adic
L-function Lp(m,χ, k) is obtained when S consists only of the finite primes
of k lying above p.
A consequence of [17, Proposition 5] is that the main conjecture of Iwa-

sawa theory for p (i.e., the statements in Theorem 4.2 and Remark 4.3 for p)
implies that Lp,S(s, χ, k) is analytic on Bk(E) if χ does not contain the
trivial character, and meromorphic on Bk(E) with at most a pole at s = 1
if it does. If p 6= 2 we could use this by [35, Theorems 1.2 and 1.3], but our
results imply this consequence of Greenberg’s stronger result when S also
contains the finite primes of k at which χ is ramified, and we remove this re-
striction by proving a lower bound for the corank of H1(Ok,S ,W (E,χ)〈1〉)
in Proposition 2.18. In fact, working directly with Theorem 4.2 if p 6= 2 or
Assumption 4.4 if p = 2, i.e., working with a weaker version of the main
conjecture of Iwasawa theory, we get a uniform approach for all p.

A zero of Lp,S(s, χ, k) always lies in Bk(E′) for some finite extension
E′ of E (see Remark 3.9), so will be interpreted by Theorem 1.8. Note
that Bχ(E) is the expected domain for Lp(s, χ, k) and Lp,S(s, χ, k), as the
Leopoldt conjecture implies that Lp,S(s, χ, k) should not be defined at 1 if
χ contains the trivial character. By Theorem 1.4(3) it is also the set for
which H0(Ok,S ,W (E,χ)〈1− e〉) is finite, and where Theorem 1.8(3) gives
a precise correspondence between non-vanishing of the p-adic L-function
and the finiteness of the cohomology groups.
We can now state our second main result.

Theorem 1.8. — If in Theorem 1.4 k is totally real and η = χ is even,
then Hi(Ok,S ,W (E,χ)〈1− e〉) for i > 0 is finite for all but finitely many e
in Bk(E). Moreover, the following hold, where for p = 2 we make Assump-
tion 4.4.

(1) Let
∑2
i=0(−1)ii · ri = r2 − r0 be the secondary Euler characteristic

and let ν = νS(1 − e, χ) = ords=eLp,S(e, χ, k). Then we have that
min(1− r0, ν) 6 r2 − r0 6 ν.

(2) Lp,S(s, χ, k) and Lp(s, χ, k) are meromorphic on Bk(E); the only
possible pole is at s = 1, with order at most the multiplicity of the
trivial character in χ.

(3) For e in Bχ(E) the following are equivalent:
(a) Lp,S(e, χ, k) 6= 0;
(b) H1(Ok,S ,W (E,χ)〈1− e〉) is finite;
(c) H2(Ok,S ,W (E,χ)〈1− e〉) is finite;
(d) H2(Ok,S ,W (E,χ)〈1− e〉) is trivial.

TOME 65 (2015), FASCICULE 6
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If this is the case, then

|Lp,S(e, χ, k)|p =
(

#H0(Ok,S ,W (E,χ)〈1− e〉)
#H1(Ok,S ,W (E,χ)〈1− e〉)

)1/[E:Qp]

.

The assumption for p = 2 in Theorem 1.8 is fulfilled if k = Q and χ is a
multiple of the trivial character (see Remark 4.5). We also remark that part
of Theorem 1.8 (for p odd, e 6= 1 an odd integer, and χ = ω1−e

p ) is contained
in [2, Theorem 6.1], under an assumption in Iwasawa theory since proved
by Wiles. A similar partial result (for p odd, e a negative odd integer, and
χ an even Artin character) is outlined in the proof of [9, Proposition 6.15].
The case p = 2 is not discussed in either paper.
Theorem 1.8 would be even more complete if the upper bounds in part (1)

and part (2) were sharp. The equality νS(0, χ) = −r0,S(0, χ) in part (2) for
all k is equivalent with the Leopoldt conjecture for all k (see Remarks 5.20).
Equivalently, we always have min(r0,S(0, χ), r2,S(0, χ)) = 0. The other
equality, in part (1), we formulate as a conjecture, which is itself implied
by some folklore conjectures in Iwasawa theory (see Conjecture 5.19).

Conjecture 1.9. — We have νS(1−e, χ) = r2,S(1−e, χ)−r0,S(1−e, χ)
in Theorem 1.8(1).

In this paper we give two applications of the p-adic statements in The-
orem 1.8 to classical L-functions. One of them is contained in Section 7.
It consists of a short proof of the equivariant Tamagawa number conjec-
ture at negative integers for Artin motives of the right parity over a totally
real number field k with coefficients in a maximal order. (In this case the
conjecture is equivalent with the Bloch-Kato conjecture [4, §5], and the
corresponding result for a Dirichlet motive over Q with p odd and p2 not
dividing the conductor of the underlying Dirichlet character, was already
stated in §10.1(b) of [15].) For Dirichlet motives over Q with p odd, Huber
and Kings proved this conjecture at all integers [18, Theorem 1.3.1], whereas
in the same situation Burns and Greither proved the stronger statement
where the maximal order is replaced by the group ring [8, Corollary 8.1].
(See Remark 7.6(2) for those and other statements.)
The other application we give here, namely a proof of a generalization

of the conjecture of Coates and Lichtenbaum discussed above. Let m be
a negative integer, η : Gk → E an Artin character that is realizable over
E with L∗S(m, η∨, k) 6= 0, where E is a finite extension of Qp. Then k is
totally real and ηωm−1

p is even. As in the paragraph containing (1.1), let S
contain the finite primes of k at which η is ramified. Since the conjecture
is independent of the choice of S by (the proof of) [10, Proposition 3.4],
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ÉTALE COHOMOLOGY, p-ADIC L-FUNCTIONS 2339

we may assume S also contains the finite primes of k lying above p, hence
all finite primes of k at which the even Artin character χ = η∨ω1−m

p is
ramified. We see from (1.7) that |Lp,S(m,χ, k)|p = |L∗S(m, η∨, k)|p 6= 0, so
by Theorem 1.8(3) the groups Hi(Ok,S ,W (E,χ)〈1−m〉) are all finite. By
Remark 1.5, with η replaced with ηωmp , if p 6= 2 then for i = 0, 1 and 2,

Hi(Ok, α!W (E, η)(m)) = Hi(Ok, α!W (E, ηωmp )〈m〉)

' H2−i(Ok,S ,W (E,χ)〈1−m〉)∨

with appropriate choice of lattices (see Remark 2.6), and for i = 3 the
left-hand side is trivial. Also, the left-hand side is trivial for i > 3 by
Theorem II.3.1 and Proposition II.2.3(d) of [25]. By Theorem 1.8(3) it
then follows that

|L∗S(m, η∨, k)|[E:Qp]
p = |Lp,S(m,χ, k)|[E:Qp]

p

= #H0(Ok,S ,W (E,χ)〈1−m〉)
#H1(Ok,S ,W (E,χ)〈1−m〉)

= #H2(Ok, α!W (E, η)(m))
#H1(Ok, α!W (E, η)(m)) .

Similarly, if k is totally real, η∨ωp even, S contains the primes lying above
p, L∗S(0, η∨, k) 6= 0, and (1.7) is true with m = 0 and χ = η∨ωp, then those
equalities also hold for m = 0.

If p = 2 then the first two equalities hold for m 6 0 under the same
conditions, where for the second we make Assumption 4.4. The third equal-
ity holds for all primes p provided that we replace the last quotient with
#H3

c(Ok,S ,M(E, η)(m))/#H2
c(Ok,S ,M(E, η)(m)) for certain cohomology

groups Hj

c with compact support (see Section 7). In fact, for m < 0, the
resulting equality

|L∗S(m, η∨, k)|[E:Qp]
p = #H3

c(Ok,S ,M(E, η)(m))
#H2

c(Ok,S ,M(E, η)(m))
is part of the equivariant Tamagawa number conjecture, a generalization
of the conjecture of Coates and Lichtenbaum.
The paper is organized as follows. In Section 2 we prove Theorem 1.4

and discuss how the cohomology groups depend on the choice of the lattice,
the field E, and on the finite set of primes S. If the cohomology groups are
finite then we describe them in terms of cohomology with finite coefficients.
In Section 3 we give the definition of the p-adic L-function and discuss the
interpolation formula relating it to the classical L-function. In Section 4 we
discuss the main conjecture of Iwasawa theory, including the case p = 2.
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In Section 5 we restrict ourselves to k totally real and χ even and prove
Theorem 1.8 in four steps. We first prove most of it for a 1-dimensional
character of order not divisible by p, then for any 1-dimensional character,
followed by the case of all characters. The fourth step then strengthens this
to Theorem 1.8 by varying the twist. In this section we also discuss some
conjectures. In Section 6 we discuss examples based on computations by
X.-F. Roblot for certain Galois extensions of Q with dihedral group G of
order 8 and cyclic subgroup H of order 4. They include the existence of two
(H× (1+Z5))nZ5-extensions of Q(

√
41) and two (H× (1+Z5))nZ5[

√
5]-

extensions of Q(
√

793), which are inside a (G×(1+Z5))nZ2
5-extension of Q

and a (G×(1+Z5))nZ5[
√

5]2-extension of Q respectively; see Remarks 6.3
and 6.5. Finally, in Section 7, we give the first application mentioned after
Conjecture 1.9, i.e., we show how the results from the preceding sections
imply certain cases of the equivariant Tamagawa number conjecture.

2. Cofinite generation and additive Euler characteristics

In this section we prove Theorem 1.4. In the process, we also discuss
some of the properties of the cohomology groups that we shall use in later
sections. We note that the cohomology groups in the later sections have
coefficients with modified Tate twist indexed by 1 − e instead of e, hence
use the twist 1− e also in this section for the sake of consistency.

Notation 2.1. — Unless stated otherwise, throughout this section k de-
notes a number field, p a prime number, and E a finite extension of Qp
with valuation ring OE . For η : Gk → E an Artin character realizable over
E we let V (E, η) be an Artin representation of Gk over E with character η.
Then there exists an OE-lattice for η, i.e., a finitely generated torsion-free
OE-module M(E, η) with Gk-action such that M(E, η)⊗Zp Qp ' V (E, η)
as E[Gk]-modules. Let W (E, η) = M(E, η)⊗Zp Qp/Zp.
For a number field F we write F∞ for the cyclotomic Zp-extension. Fix

a topological generator γ0 of Γ0 = Gal(k∞/k). Let ωp : Gk → µ2p and
ψ
〈〉
p : Gk → 1 + 2pZp be as in (1.2), and let qk = ψ

〈〉
p (γ̃0) in 1 + 2pZp, where

γ̃0 is a lift of γ0 to Gk. As defined around (1.3), for any OE-module A on
which Gk acts and e in Bk(E) = {s in E with |s|p < |qk − 1|−1

p p−1/(p−1)},
we let A〈e〉 be A with the action of Gk multiplied by the character (ψ〈〉p )e.
Let Σ∞ be the set of infinite places of k, and S a finite set of finite

primes of k containing the set P of primes above p, as well as all finite
primes at which η is ramified. For any subfield k′ of an algebraic closure k

ANNALES DE L’INSTITUT FOURIER



ÉTALE COHOMOLOGY, p-ADIC L-FUNCTIONS 2341

of k containing k, we denote by Ok′,S the ring of integers in Ok′ with all
primes of Ok′ lying above primes in S inverted. For e in Bk(E) we view
W (E, η)〈e〉 as a sheaf for the étale topology of Ok,S . As in Remark 1.5,
we let ΩS denote the maximal extension of k that is unramified outside of
S ∪ Σ∞ and let GS = Gal(ΩS/k).
Finally, for any finite or infinite prime v of k, we let kv denote the com-

pletion of k at v.

Remarks 2.2.
(1) If η is 1-dimensional then any M(E, η) is isomorphic as OE [Gk]-

module to OE with g in Gk acting as multiplication by η(g). Hence
in this case W (E, η) is always isomorphic to OE ⊗Zp Qp/Zp ' E/OE
with this action of Gk.

(2) Let K/k be a Galois extension with G = Gal(K/k) ' Z/pZ, M =
OE [G], M1 = OE

∑
g∈G g ⊂M , and M2 = M/M1, so that M1 ⊕M2

and M are lattices for the same Artin character of Gk. If K ∩k∞ = k

then W 〈1 − e〉Gk is isomorphic with OE/(q1−e
k − 1) if e 6= 1 and

E/OE if e = 1, W1〈1 − e〉Gk ' W 〈1 − e〉Gk under the natural map,
and W2〈1− e〉Gk ' OE/(p, q1−e

k − 1). This shows the coefficients W
are not necessarily unique up to isomorphism for Abelian characters
that are not 1-dimensional.

(3) Assume p 6= 2, E contains a primitive p-th root of unity ξp, and
fix e in Bk(E). Let K/k be a Galois extension with G = Gal(K/k)
isomorphic to the dihedral group of order 2p. Fix r and s in G with
orders p and 2 respectively. Consider the two actions of G onM = O2

E

by letting r act as either R1 =
(
ξp
0

0
ξ−1
p

)
or R2 =

(
0
1
−1

ξp+ξ−1
p

)
, and s as( 0

1
1
0
)
. Noting that K ∩ k∞ = k, one easily checks that W 〈1− e〉Gk '

OE/(ξp−1) for the first action but is trivial for the second. Therefore
the coefficients W are not necessarily unique up to isomorphism for
non-Abelian characters that are irreducible over Qp.

Remark 2.3. — If χ : Gk → E is a 1-dimensional even Artin char-
acter of order prime to p, then we shall see in the proof of Theorem 5.5
that H1(Ok,S ,W (E,χ)〈1 − e〉) is isomorphic to the Pontryagin dual of
⊕jOE/(gj(q1−e

k − 1)) for some distinguished polynomials gj(T ) in OE [T ].
We remark here that in general even H0(Ok,S ,W (E,χ)〈1− e〉) cannot be
isomorphic to the Pontryagin dual of ⊕jOE/(hj(qek)) for non-zero polyno-
mials hj(T ) in OE [T ] because either hj(qek) is zero for some e in Bk(E)
or |hj(qek)|p is a constant function on Bk(E). This would contradict the
example W2〈1− e〉Gk ' OE/(p, q1−e

k − 1) in Remark 2.2(2).
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Recall that in the introduction we made the following definition to de-
scribe the structure of the cohomology groups Hi(Ok,S ,W (E, η)〈1−e〉) for
i = 0, 1, 2, which, in general are not even finitely generated.

Definition 2.4. — Let O be the valuation ring in a finite extension of
Qp. For an O-module A we denote its Pontryagin dual HomZp(A,Qp/Zp)
by A∨. Then O acts on A∨ via its action on A. We say that A is cofinitely
generated if A∨ is a finitely generated O-module, and in this case we denote
by corankOA the O-rank of A∨.

Remark 2.5. — Note that HomZp(·,Qp/Zp) is an exact functor on Zp-
modules, hence submodules and quotients of cofinitely generated modules
are cofinitely generated. In particular, if A is cofinitely generated then so
is H0(GS , A). Moreover, if A is finitely generated or cofinitely generated,
then by Pontryagin duality [27, Theorem 1.1.11] the natural inclusion of
A into (A∨)∨ is an isomorphism because the Qp/Zp-dual of its cokernel is
trivial, hence the cokernel is trivial.

Remark 2.6. — Let e in Bk(E). We shall mostly use the étale cohomol-
ogy groups Hi(Ok,S ,W (E, η)〈1 − e〉), but they are isomorphic to various
other groups as we now discuss.
For m in Z, we may assume V (E, η) = V (E, ηωmp ) as E-vectorspaces

but with different Gk-actions. Then choosing M(E, ηωmp ) = M(E, η) we
get M(E, η)〈e〉(m) = M(E, ηωmp )〈e + m〉 and similarly for W instead of
M . We let M(E, η∨) = HomZp(M(E, η),Zp) on which Gk acts via the
inverse of its action on M(E, η), so that on M(E, η∨)⊗Zp Qp this gives an
Artin representation of Gk with character η∨. We then have W (E, η∨) =
M(E, η∨)⊗Zp Qp/Zp ' HomZp(M(E, η),Qp/Zp).
By [25, Proposition II.2.9] we have an isomorphism between Hi(Ok,S , X)

and the continuous group cohomology group Hi(GS , X) for any finite Zp-
module X with continuous GS-action. This isomorphism is natural, so tak-
ing direct limits gives Hi(Ok,S ,W (E, η)〈1−e〉) ' Hi(GS ,W (E, η)〈1−e〉).
By [27, Theorem 8.3.20(i)] the Hi(GS , X) are finite for any such X and
i > 0, so by [33, Corollary, p.261] we have Hi(GS ,M(E, η)〈1 − e〉) '
lim←−nH

i(GS ,M(E, η)〈1−e〉/pn) for i > 1, and for i = 0 this is obvious. Sim-
ilarly lim←−

1
n
H1(Ok,S ,M(E, η)〈1−e〉/pn) ' lim←−

1
n
H1(GS ,M(E, η)〈1−e〉/pn)

is trivial, so if Hi
cts denotes Jannsen’s continuous étale cohomology [21],

then it follows from (3.1) in loc. cit., that for all i,

Hi
cts(Ok,S ,M(E, η)〈1− e〉) ' lim←−

n

Hi(Ok,S ,M(E, η)〈1− e〉/pn)

' Hi(GS ,M(E, η)〈1− e〉) .

ANNALES DE L’INSTITUT FOURIER



ÉTALE COHOMOLOGY, p-ADIC L-FUNCTIONS 2343

We shall see in Proposition 2.12 that H3−i(Ok,S ,W (E, η∨ωp)〈1 − e〉)
is cofinitely generated. Let Hi

c(Ok,S , ·) denote the i-th cohomology with
compact support as in [25, Section II § 2, p.203], so that Hi

c(Ok,S , ·) '
Hi
cts(Ok,S , ·) when p 6= 2. Let α : SpecOk,S → SpecOk be the natural

inclusion. Then by [25, II, Proposition 2.3(d) and Corollary 3.3] and [33,
Corollary, p.261], we have

(2.7)

lim←−
n

Hi
c(Ok, α!(M(E, η)〈e〉/pn))

' lim←−
n

Hi
c(Ok,S ,M(E, η)〈e〉/pn)

' lim←−
n

H3−i(Ok,S ,Hom(M(E, η)〈e〉/pn, µp∞))∨

'H3−i(Ok,S , lim−→
n

Hom(M(E, η)〈e〉/pn, µp∞))∨

'H3−i(Ok,S ,Hom(M(E, η)〈e〉, µp∞))∨

'H3−i(Ok,S ,W (E, η∨ωp)〈1− e〉)∨ ,

for e in Bk(E), i = 0, 1, 2 and 3.
If Hj(Ok,S ,W (E, η)〈1 − e〉) is finite for j = i, i + 1, then it will fol-

low from the proof of Proposition 2.12 that Hi(Ok,S ,W (E, η)〈1 − e〉) '
Hi+1
cts (Ok,S ,M(E, η)〈1− e〉). So, if p 6= 2 and all Hi(Ok,S ,W (E, η)〈e〉) are

finite, then Hi(Ok, α!W (E, η)〈e〉) ' H2−i(Ok,S ,W (E, η∨ωp)〈1 − e〉)∨ for
i = 0, 1, 2 and both sides are trivial for i > 3 (cf. [10, Theorem 3.2]).

Remark 2.8. — If p 6= 2 then by [27, Proposition 8.3.18] we have
Hi(Ok,S , X) ' Hi(GS , X) = 0 for i > 3 and any finite GS-module X.
By taking filtered direct limits it follows that Hi(Ok,S ,W (E, η)〈1− e〉) is
trivial for i > 3. But for p = 2 and i > 3 we have, by [27, 8.6.10(ii)] and a
direct limit argument, that

Hi(Ok,S ,W (E, η)〈1− e〉) ' Hi(GS ,W (E, η)〈1− e〉)

'
⊕
v∈Σ∞

Hi(kv,W (E, η)〈1− e〉) .

We now start the proof of Theorem 1.4. In the proof of Proposition 2.12
below we shall use results by Tate [32], [33] and Jannsen [21], although we
shall use [27] as a reference instead of [32].

Lemma 2.9. — Let O be the valuation ring of a finite extension of Qp. If
A is a (co)finitely generated O-module on which a finite group G acts, then
each Hi(G,A) is (co)finitely generated and the number of (co)generators
needed can be bounded in terms of #G, i and the number of (co)generators
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of A. In particular, if i > 0 then #Hi(G,A) is bounded in terms of the
same quantities.

Proof. — Since A is (co)finitely generated and G is finite it follows that
each HomO[G](O[Gi+1], A) is (co)finitely generated with the number of
(co)generators needed bounded by a constant depending only on #G, i
and the number of (co)generators of A. The lemma now follows immedi-
ately from the definition of Hi(G,A) because #G annihilates Hi(G,A) if
i > 0. �

Definition 2.10. — For any a 6= 0 in OE we let

W (E, η)[a] = ker(W (E, η) a→W (E, η)) ,

so that for e in Bk(E) we have a short exact sequence

(2.11) 0→W (E, η)[a]〈1− e〉 →W (E, η)〈1− e〉 a→W (E, η)〈1− e〉 → 0 .

Proposition 2.12. — Let k be a number field, p a prime number, E
a finite extension of Qp with valuation ring OE , η : Gk → E an Artin
character, and e in Bk(E). Assume that S contains P as well as all the
finite primes of k at which η is ramified. Then the following hold.

(1) For i > 0, Hi(Ok,S ,W (E, η)〈1 − e〉) is a cofinitely generated OE-
module.

(2) There is some constant D = D(S, η, k) depending only on S, η and
k, but not on e, E, or the choice of the lattice M(E, η), such that
each Hi(Ok,S ,W (E, η)〈1 − e〉) can be cogenerated by at most D
elements.

Proof. — Write M and W for M(E, η) and W (E, η) respectively. From
the long exact sequence associated to 0 → M〈1 − e〉 p→ M〈1 − e〉 →
M〈1 − e〉/pM〈1 − e〉 → 0 we see that, for i > 0, Hi(GS ,M〈1 − e〉)/p is
finite since Hi(GS ,M〈1−e〉/pM〈1−e〉) is finite by [27, Theorem 8.3.20(i)].
Hence Hi

cts(Ok,S ,M〈1 − e〉) ' Hi(GS ,M〈1 − e〉) is finitely generated for
i > 0 by [33, Corollary, p.260]. From [21, Theorem 5.14(a)] we have an
exact sequence

· · · → Hi
cts(Ok,S ,M〈1− e〉)→ Hi

cts(Ok,S ,M〈1− e〉)⊗Zp Qp
→ Hi(Ok,S ,W 〈1− e〉)→ Hi+1

cts (Ok,S ,M〈1− e〉)→ · · · ,

so it follows that Hi(Ok,S ,W 〈1− e〉) is cofinitely generated for i > 0. This
proves part (1).
Consider the long exact sequence associated to (2.11) with a = p, so that

Hi(Ok,S ,W 〈1−e〉)[p] is a quotient of Hi(Ok,S ,W [p]〈1−e〉) for i > 0. Since
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p kills W [p]〈1− e〉, there exists an m depending only on k such that, with
K = kη(µpm) ⊂ ΩS , W [p]〈1− e〉 ' (OE/(p))η(id

k
) as Gal(ΩS/K)-modules

for all e in Bk(E). Note that this isomorphism is independent of the choice
of M . By [27, Theorem 8.3.20(i)], each Hj(Gal(ΩS/K), (OE/(p))η(id

k
)) is

finite and so the number of its generators can be bounded by a constant
that depends only on S, k and η(idk) and not on e or E. By Lemma 2.9
the number of generators of Hi(Gal(K/k), Hj(Gal(ΩS/K),W [p]〈1 − e〉))
can be bounded by a constant that depends only on S, η, i, j and k. By
the Hochschild-Serre spectral sequence and Remark 2.8 it follows that the
number of generators of Hi(Ok,S ,W [p]〈1− e〉) ' Hi(GS ,W [p]〈1− e〉) can
be bounded by a constant that depends only on S, η and k. This shows
that there is a constant D = D(S, η, k) depending only on S, η and k such
that each Hi(Ok,S ,W 〈1 − e〉)[p], and hence each Hi(Ok,S ,W 〈1 − e〉) can
be cogenerated by at most D elements. �

This proves part (1) of Theorem 1.4. We now start the proof of the
remaining parts, obtaining various results for later use along the way.

Remarks 2.13.

(1) IfM andM ′ are OE-lattices for η, then we can find an injection from
M to M ′ with finite cokernel. Tensoring with Qp/Zp, we get a short
exact sequence

(2.14) 0→ XE →M ⊗Zp Qp/Zp →M ′ ⊗Zp Qp/Zp → 0

of sheaves for the étale topology on Spec(Ok,S) with XE finite. Each
Hi(Ok,S , XE〈1−e〉) is finite by [27, Theorem 8.3.20(i)], so the groups
Hi(Ok,S ,M ⊗Zp Qp/Zp〈1 − e〉) and Hi(Ok,S ,M ′ ⊗Zp Qp/Zp〈1 − e〉)
have the same corank.

(2) Suppose that E′/E is a finite extension and let OE′ denote the valu-
ation ring of E′. Then M ′ = M ⊗OE OE′ is an OE′ -module of finite
OE′ -rank on which Gk acts such thatM ′⊗OE′E

′ ' V ⊗EE′. Because
M ′ 'M [E′:E] as OE [G]-modules, we have, with W = M ⊗Zp Qp/Zp
and W ′ = M ′ ⊗Zp Qp/Zp 'W [E′:E],

Hi(Ok,S ,W ′〈1− e〉) ' Hi(Ok,S ,W 〈1− e〉)[E′:E]

for all e in Bk(E).
(3) Consider two Artin characters η1, η2 : Gk → E that are realizable

over E, and let Mj for j = 1, 2 be corresponding torsion-free OE-
lattices. Then M1 ⊕M2 corresponds to the character η1 + η2, and
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with Wj = Mj ⊗Zp Qp/Zp for j = 1, 2, we have

Hi(Ok,S , (W1 ⊕W2)〈1− e〉)

' Hi(Ok,S ,W1〈1− e〉)×Hi(Ok,S ,W2〈1− e〉) .

(4) Let k′/k be a finite extension, η′ an Artin character of Gk′ realizable
over E, and M ′ an OE-lattice for η′. Then M=OE [Gk]⊗OE [Gk′ ] M

′

is an OE-lattice for the Artin character η = Indkk′(η′) of Gk. If S is
such that η (and hence η′) is unramified outside of S, then by [27,
Proposition 1.6.4] we have that Hi(Ok,S ,M ⊗Zp Qp/Zp〈1 − e〉) '
Hi(Ok′,S ,M ′ ⊗Zp Qp/Zp〈1− e〉).

(5) Suppose that S′ is a finite set of primes of k containing S. Tak-
ing M(E, ηω−1

p ) = M(E, η) as OE-modules but with different Gk-
action, localization with respect to Z = Spec(Ok,S) \ Spec(Ok,S′)
gives an exact Gysin sequence (cf. the proof of VI Corollary 5.3, VI
Remark 5.4(b) of [24], and [19, Exposé I, Theorem 5.1]), giving an
isomorphism H0(Ok,S ,W (E, η)〈1− e〉) ' H0(Ok,S′ ,W (E, η)〈1− e〉)
and an exact sequence

(2.15)

0→ H1(Ok,S ,W (E, η)〈1− e〉)→ H1(Ok,S′ ,W (E, η)〈1− e〉)

→ H0(Z,W (E, ηω−1
p )〈−e〉)→ H2(Ok,S ,W (E, η)〈1− e〉)

→ H2(Ok,S′ ,W (E, η)〈1− e〉)→ H1(Z,W (E, ηω−1
p )〈−e〉)→ 0 .

Note that H3(Ok,S ,W (E, η)〈1− e〉)→ H3(Ok,S′ ,W (E, η)〈1− e〉) is
an isomorphism by Remark 2.8.
We observe that

Hi(Z,W (E, ηω−1
p )〈−e〉) '

⊕
v∈S′\S

Hi(Gal(Fv/Fv),W (E, ηω−1
p )〈−e〉) ,

where Fv is the residue field at v. Because Gal(Fv/Fv) is topologically
generated by the Frobenius Frv, we have

H0(Gal(Fv/Fv),W (E, ηω−1
p )〈−e〉) ' ker(1−Frv|W (E, ηω−1

p )〈−e〉)

and

H1(Gal(Fv/Fv),W (E, ηω−1
p )〈−e〉) ' coker(1−Frv|W (E, ηω−1

p )〈−e〉).

But ker(1−Frv|V (E, ηω−1
p )〈−e〉)' ker(1−〈Nm(v)〉−eFrv|V (E, ηω−1

p ))
because ηω−1

p is unramified at all v in Z and ψp(Frv) = Nm(v) in
Z×p , with ψp as in (1.2). This group is trivial if e 6= 0 because all the
eigenvalues of Frv are roots of unity and 〈Nm(v)〉e is a root of unity
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only when e = 0. Applying the snake lemma to 1−Frv acting on the
short exact sequence

0→M(E, ηω−1
p )〈−e〉 → V (E, ηω−1

p )〈−e〉 →W (E, ηω−1
p )〈−e〉 → 0 ,

we find that corankOEHi(Gal(Fv/Fv),W (E, ηω−1
p )〈−e〉), for i = 0, 1,

is trivial when e 6= 0, and equals dimE V (E, ηω−1
p )Frv=1 otherwise. If

this corank is trivial then 1−Frv is an isomorphism on V (E,ηω−1
p )〈−e〉,

so H1(Gal(Fv/Fv),W (E, ηω−1
p )〈−e〉) is trivial and

(2.16)
#H0(Gal(Fv/Fv),W (E, ηω−1

p )〈−e〉)

= |det(1− 〈Nm(v)〉−eFrv|V (E, ηω−1
p ))|−[E:Qp]

p .

In Section 5 we shall use the following proposition for Conjecture 5.19.
Here we let ri,S(1 − e, η) = corankOEHi(Ok,S ,W (E, η)〈1 − e〉), just as in
Theorem 1.8.

Proposition 2.17. — Let k be a number field, η an Artin character, S
and S′ finite set of primes of k such that S ⊆ S′, and e in Bk(E). Then

(1) the map H2(Ok,S ,W (E, η)〈1 − e〉) → H2(Ok,S′ ,W (E, η)〈1 − e〉)
in (2.15) has finite kernel;

(2) r1,S′(1−e, η)−r1,S(1−e, η) = r2,S′(1−e, η)−r2,S(1−e, η), which is
equal to

∑
v∈S′\S dimE V (E, ηω−1

p )Frv=1 if e = 0 and to 0 if e 6= 0.

Proof. — From Remark 2.13(5) we see this holds for e 6= 0, and that
for e = 0 it is sufficient to prove part (1). We may assume W (E, η)〈1〉 =
W (E, ηω−1

p )(1), therefore we only need to show that the kernel of the map
H2(Ok,S ,W (E, ηω−1

p )(1)) → H2(Gk,W (E, ηω−1
p )(1)) is finite. We let K

be a Galois extension of k such that the restriction of ηω−1
p to GK is

a multiple of the trivial character, and let G = Gal(K/k). Because the
Hi(OK,S ,W (E, ηω−1

p )(1)) are cofinitely generated by Theorem 1.4(1), we
see from Lemma 2.9 and the spectral sequence

Hp(G,Hq(OK,S ,W (E, ηω−1
p )(1))) =⇒ Hp+q(Ok,S ,W (E, ηω−1

p )(1))

that it suffices to show that the map

H2(OK,S ,W (E, ηω−1
p )(1))G → H2(GK ,W (E, ηω−1

p )(1))G

has finite kernel. By our choice of K and Remark 2.13(1) this follows if
H2(OK,S ,Qp/Zp(1))→ H2(GK ,Qp/Zp(1)) has finite kernel.
Consider the boundary map H1(GK ,Qp/Zp(1))→ H0(Z,Qp/Zp) where

Z = Spec(OK) \ S (cf. (2.15)). This is obtained by taking the direct limit
of the maps H1(GK ,Z/pnZ(1))→ H0(Z,Z/pnZ). The size of the cokernel
of this last map is bounded by the class number of K. Taking the direct
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limit over n, it follows that H1(GK ,Qp/Zp(1))→ H0(Z,Qp/Zp) has finite
cokernel, so H2(OK,S ,Qp/Zp(1)) → H2(GK ,Qp/Zp(1)) has finite kernel.

�

We also prove the following result, which provides a lower bound for the
corank of H1(Ok,S ,W (E, η)〈1〉).
Proposition 2.18. — Let k be a number field, p a prime number, E a

finite extension of Qp, η : Gk → E an Artin character realizable over E,
M(E, η) an OE-lattice for η, and W (E, η) = M(E, η) ⊗Zp Qp/Zp. Write
α : Spec k → SpecOk,P for the natural map. Then Hi(OP , α∗W (E, η)〈1〉)
is cofinitely generated for i > 0, and its corank is independent of the choice
of M(E, η). Moreover,

(2.19)
corankOEH1(Ok,S ,W (E, η)〈1〉)

= corankOEH1(OP , α∗W (E, η)〈1〉) +
∑

v∈S\P

dimE V (E, ηω−1
p )Gwv ,

where wv is a prime of k above v with decomposition group Gwv .
Proof. — Write W for W (E, η)〈1〉 and Z for SpecOk,P \ SpecOk,S . Let

β : SpecOk,S → SpecOk,P be the natural map. For i > 0, by [25, II.
Lemma 2.4] we have an exact sequence

(2.20)
· · · → ⊕v∈ZHi−1(Gal(kv/kv),W )→ Hi(Ok,P , β!W )

→ Hi(Ok,S ,W )→ ⊕v∈ZHi(Gal(kv/kv),W )→ · · · .
For any finite prime v of k and a finite Galois extension K of kv such that
Gal(kv/K) acts trivially on W (E, ηω−1

p ), [27, Theorem 7.1.8(i) and Propo-
sition 7.3.10] imply that Hi(Gal(kv/K),W ) is cofinitely generated, and us-
ing Lemma 2.9 one sees that the same holds for ⊕v∈ZHi(Gal(kv/kv),W ).
From Proposition 2.12(1) and (2.20) it then follows that Hi(Ok,P , β!W ) is
cofinitely generated. Since Hi(Gal(kv/kv), X) is finite for finite X by [27,
Theorem 7.1.8(iii)], it also follows from the long exact sequence associated
to (2.14) that the corank of Hi(Gal(kv/kv,W ) does not depend on the
choice of M(E, η). Hence the same holds for the corank of Hi(Ok,P , β!W )
by Remark 2.13(1) and (2.20).
On the other hand, with γ : Z → SpecOk,P the natural map, by [24,

p.76] we have a short exact sequence

(2.21) 0→ β!β
∗α∗W → α∗W → γ∗γ

∗α∗W → 0

of sheaves for the étale topology on Ok,P , which gives a long exact sequence
of cohomology groups. We note that

(2.22) Hi(Ok,P , γ∗γ∗α∗W ) ' ⊕v∈ZHi(Gal(Fv/Fv),W Iwv ) ,
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where Iwv denotes the decomposition group of a prime wv in k lying above
v. These groups are cofinitely generated and using (2.14) their coranks are
independent of the choice ofM(E, η) because Hi(Gal(Fv/Fv), X) is finite if
X is finite. Since Hi(Ok,P , β!β

∗α∗W ) = Hi(Ok,P , β!W ) it follows from the
long exact sequence associated to (2.21) that Hi(Ok,P , α∗W ) is cofinitely
generated and that its corank is independent of the choice of M(E, η).
Moreover,Hi(Ok,P , α∗W ) behaves well under extending E, as well as under
induction and addition of characters. Combining Brauer induction with
parts (3) and (4) of Remarks 2.13, one sees that it is enough to prove (2.19)
for 1-dimensional characters η. With this S, if η is unramified at a prime
v of k, then V (E, ηω−1

p )Gwv = V (E, ηω−1
p )Frv=1, so by Proposition 2.17,

it is enough to prove the result for S = Smin, the smallest set of primes
containing the finite primes of k lying above p and the primes at which η is
ramified. In this case, if v is in Z then V (E, ηω−1

p )Gwv is trivial since ηω−1
p is

ramified at v. Therefore, we need to show that corankOEH1(Ok,Smin ,W ) =
corankOEH1(Ok,P , α∗W ) for 1-dimensional η.
The first term of (2.20), with i = 1 and S = Smin, is finite since

Gal(kv/kv) acts non-trivially on W . On the other hand, for any finite
Abelian extension K of kv, the coranks of H1(Gal(K/K), E/OE(1)) and
⊕ψH1(Gal(kv/kv),W (E,ψ)(1)) are the same, where the sum runs over
all characters ψ : Gal(kv/kv) → E that are irreducible over E and factor
through Gal(K/kv). Since

H1(Gal(K/K), E/OE(1)) ' E/OE ' H1(Gal(kv/k), E/OE(1))

by [27, Theorem 7.3.10(ii)], W ' W (E, ηω−1
p )(1) by Remark 2.2(1) and

ηω−1
p is non-trivial on Gal(kv/kv) for v in Z, we see thatH1(Gal(kv/kv),W )

is finite for all such v. By (2.20), with i = 1 and S = Smin, it follows that
the coranks of H1(Ok,P , β!W ) and H1(Ok,Smin ,W ) are equal. Moreover, in
this case, the groups Hi(Gal(Fv/Fv),W Iwv ) in (2.22) are also finite since
W Iwv is finite. Therefore, from the long exact sequence associated to (2.21)
it follows that the coranks of H1(Ok,P , α∗W ) and H1(Ok,P , β!W ) are the
same. This completes the proof. �

We need the following lemmas in order to prove Theorem 1.4(2), and also
to show that Definition 5.1 is independent of the choice of lattice. Here, for
a Gk-module A and a place v in Σ∞, we let A+,v = H0(kv, A).
Lemma 2.23. — Let A be a finite Abelian group with continuous GS-

action and #A in O×k,S . Then

(2.24) #H0(GS , A) ·#H2(GS , A)
#H1(GS , A) = (#A)−[k:Q] ·

∏
v∈Σ∞

(#A+,v) .
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For non-trivial A, this last quantity equals 1 if and only if k is totally real
and every complex conjugation in Gk acts trivially on A.

Proof. — By [27, Theorem 8.3.20(i)] the groups Hi(GS , A) for i > 0 are
finite, and by the Global Euler-Poincaré Characteristic formula [27, 8.7.4]
we have

#H0(GS , A) ·#H2(GS , A)
#H1(GS , A) =

∏
v∈Σ∞

#H0(kv, A)
||#A||v

,

where ||n||v = n if v is real and ||n||v = n2 if v is complex. This proves the
first claim, and the second claim follows immediately. �

Lemma 2.25. — Let O be the valuation ring of a finite extension of
Qp. Suppose that 0 → A1 → A2 → A3 → 0 is a short exact sequence of
cofinitely generated O-modules with continuous GS-action, with A1 finite.
Then

(1) the size of the image of the connecting map δ : H2(GS , A3) →
H3(GS , A1) is bounded by a constant depending only on the num-
ber of generators of A1 and the number of real places of k;

(2) δ is trivial if and only if (A2)+,v → (A3)+,v is surjective for all v in
Σ∞. In this case we have a nine-term exact sequence

0→ H0(GS , A1)→ H0(GS , A2)→ H0(GS , A3)→ · · ·

· · · → H2(GS , A1)→ H2(GS , A2)→ H2(GS , A3)→ 0 .

Proof. — By [27, 8.6.10(ii)] we haveH3(GS , A1) '
∏
v∈Σ∞ H

3(kv, A1) '∏
v∈Σ∞ H

1(kv, A1), the size of which is, by Lemma 2.9, bounded by a con-
stant depending only on the number of generators of A1 and the number
of real places of k. This proves part (1). For part (2), we see this way that
δ is trivial if and only if H1(kv, A1) → H1(kv, A2) is injective for all v in
Σ∞, and this is true if and only if H0(kv, A2) → H0(kv, A3) is surjective
for all v in Σ∞. �

We shall now finish the proof of Theorem 1.4 by provingPropositions 2.26,
2.27 and 2.28.

Proposition 2.26. — Fix e in Bk(E). Then H2(Ok,S ,W (E, η)〈1− e〉)
is p-divisible for p 6= 2. If p = 2 then

H2(Ok,S ,W (E, η)〈1− e〉)

' 2H2(Ok,S ,W (E, η)〈1− e〉)⊕
⊕
v∈Σ∞

W (E, η)+,v/2 ,

and 2H2(Ok,S ,W (E, η)〈1− e〉) is 2-divisible.
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Proof. — If p 6= 2 then this follows from Lemma 2.25(2) applied to (2.11)
with a = p, so let us take p = 2. By the structure of cofinitely generated
OE-modules we have H2(Ok,S ,W (E, η)〈1−e〉) ' A⊕B with A 2-divisible
and B finite. Take n > 1 such that H2(Ok,S ,W (E, η)〈1−e〉)/2n ' B. Note
that H3(Ok,S ,W (E, η)[2n]〈1 − e〉) ' ⊕v∈Σ∞H

3(kv,W (E, η)[2n]〈1 − e〉) is
killed by multiplication by 2, so from the long exact sequence associated to
(2.11) with a = 2n we see 2B = 0, hence A = 2H2(Ok,S ,W (E, η)〈1− e〉).
On the other hand,

B ' H2(Ok,S ,W (E, η)〈1− e〉)/2

' ker
(
H3(Ok,S ,W (E, η)[2]〈1− e〉)→ H3(Ok,S ,W (E, η)〈1− e〉)

)
' ⊕v∈Σ∞ ker

(
H3(kv,W (E, η)[2]〈1− e〉)→ H3(kv,W (E, η)〈1− e〉)

)
' ⊕v∈Σ∞ ker

(
H1(kv,W (E, η)[2]〈1− e〉)→ H1(kv,W (E, η)〈1− e〉)

)
' ⊕v∈Σ∞W (E, η)〈1− e〉+,v/2
' ⊕v∈Σ∞W (E, η)+,v/2 ,

where we used that W (E, η)〈1− e〉+,v = W (E, η)+,v since ψ〈〉p is trivial on
every complex conjugation. �

Proposition 2.27. — For e in Bk(E), with

ri,S(1− e, η) = corankOEHi(GS ,W (E, η)〈1− e〉)

one has
2∑
i=0

(−1)iri,S(1− e, η) = − [k : Q] · corankOEW (E, η)

+
∑
v∈Σ∞

corankOEW (E, η)+,v ,

which is independent of e and non-positive. It is zero if and only of k is
totally real and η is even. Moreover, ri,S(1 − e, η) is independent of S for
i = 0, and also for i = 1, 2 if e 6= 0.

Proof. — Note that an OE-module A is cofinitely generated as an OE-
module if and only if the same holds as a Zp-module, and in this case
corankZpA = [E : Qp] · corankOEA.

Write W for W (E, η)〈1− e〉, so that W+,v = W (E, η)+,v as in the proof
of Proposition 2.26. For i = 0, 1, 2, let ri be an integer and Xi a finite
Zp-module such that Hi(GS ,W ) ' (Qp/Zp)ri × Xi and let d = [k : Q] ·
corankZpW −

∑
v∈Σ∞ corankZpW+,v. We need to show r0 − r1 + r2 = −d.

Let n > 0 be such that pn annihilates Xi for i = 0, 1, 2, as well as
the torsion in (W+,v)∨ for every v in Σ∞. Since (W [pn])+,v = W+,v[pn],
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the right-hand side of (2.24) with A = W [pn] equals p−nd+c for some c
independent of n.
On the other hand, consider the long exact sequence associated to (2.11)

with a = pn. We get an isomorphism H0(GS ,W [pn]) ' H0(GS ,W )[pn]
and the two short exact sequences

0→ H0(GS ,W )/pn → H1(GS ,W [pn])→ H1(GS ,W )[pn]→ 0

and

0→ H1(GS ,W )/pn → H2(GS ,W [pn])→ H2(GS ,W )[pn]→ 0 .

Therefore the left-hand side of (2.24) for A = W [pn] equals

#H0(GS ,W [pn]) ·#H2(GS ,W [pn])
#H1(GS ,W [pn])

= #H0(GS ,W )[pn] ·#H2(GS ,W )[pn] ·#X1

#H1(GS ,W )[pn] ·#X0

= p(r0−r1+r2)n+c′

for some c′ independent of n. Hence r0 − r1 + r2 = −d by Lemma 2.23,
proving the displayed equality. Independence of e is then obvious. Compar-
ing the coranks of W (E, η) and W (E, η)+,v as OE-modules it is easy to
see when the right-hand side is non-positive and when it is zero. The last
statement follows from Remark 2.13(5) and Proposition 2.17(1). �

We next prove a result on H0(Ok,S ,W (E, η)〈1 − e〉). Recall from just
before Theorem 1.4 that Bη(E) equals Bk(E) if η does not contain the
trivial character, and equals Bk(E) \ {1} if it does.

Proposition 2.28. — Let k be a number field, E a finite extension of
Qp, and η : Gk → E an Artin character realizable over E. Assume that
S contains P as well as all the primes at which η is ramified. Then the
following hold.

(1) For e in Bη(E), H0(Ok,S ,W (E, η)〈1− e〉) is finite and its size is a
locally constant function of e.

(2) The corank ofH0(Ok,S ,W (E, η)) equals the multiplicity of the triv-
ial character in η.

Proof. — For part (1), let ρ : Gk → GL(V ) realize η on a finite di-
mensional E-vector space V and let K be the fixed field of the kernel
of ρ. Since M = M(E, η) is torsion-free, we have a short exact sequence
0 → M → V → W → 0 with W = W (E, η). Let g1, . . . , gn in Gk be
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lifts of the elements in Gal(K/k), and let g0 in Gk be a lift of a topologi-
cal generator of Gal(K∞/K) ⊆ Gal(K∞/k). Then we have a commutative
diagram

0 // M //

ΦM,e
��

V //

ΦV,e
��

W //

ΦW,e
��

0

0 // Mn+1 // V n+1 // Wn+1 // 0

of OE [Gk]-modules, where Φ∗,e is given by

(id−ψ〈〉p (g0)1−e id)× (id−ψ〈〉p (g1)1−eρ(g1))× · · · × (id−ψ〈〉p (gn)1−eρ(gn))

with ψ〈〉p as in (1.2), and H0(Ok,S ,W (E, η)〈1−e〉) = ker(ΦW,e) because the
action of Gk factorizes through its quotient Gal(K∞/k). Note that ΦV,e is
injective: if e 6= 1 then id−ψ〈〉p (g0)1−e id is an automorphism of V (E, η), and
if e = 1 and η does not contain the trivial character then it follows by con-
sidering the other components of ΦV,1. Hence H0(Ok,S ,W (E, η)〈1− e〉) =
ker(ΦW,e) is isomorphic as OE-module with the torsion in coker(ΦM,e),
hence is finite. If we fix an isomorphism M(η,E) ' OdE of OE-modules,
where d = dimE V (E, η), then ΦM,e is identified with an (nd+d)×d-matrix
Ae with entries in OE . The ideal Ie of OE generated by the determinants
of the d × d-minors of Ae is not the zero ideal because ΦV,e is injective,
hence #H0(Ok,S ,W (E, η)〈1− e〉) = # coker(ΦM,e)tor = #OE/Ie. Clearly,
Ie′ = Ie for all e′ in Bη(E) close enough to e. This proves part (1).
For part (2), write η = sη0 + η′, where η′ does not contain the triv-

ial character η0, and is realizable over E. Then by Remark 2.13(1) we
may choose M(E, η) = M(E, η′) ⊕ OsE . Since H0(Ok,S ,W (E, η′)) is fi-
nite by part (1) we find the corank of H0(Ok,S ,W (E, η)) equals that of
H0(Ok,S , (E/OE)s) ' (E/OE)s, which is s. �

We have now proved all the statements of Theorem 1.4: part (1) is Propo-
sition 2.12, part (2) follows from Remark 2.13(1) and Proposition 2.27,
part (3) is Proposition 2.28 and part (4) is Proposition 2.26.

To conclude this section, we describeHi(Ok,S ,W (E, η)〈1−e〉) for i = 0, 1
when it is finite by means of cohomology groups with finite coefficients, and
discuss how its structure varies with e. By Theorem 1.4(2), for i = 1 this
can only apply when k is totally real and η is even, in which case this group
is also finite for i = 0, and, by Proposition 2.26, trivial for i = 2.

Proposition 2.29. — Let k be a number field, p a prime number, E
a finite extension of Qp, and η : Gk → E an Artin character realizable
over E.
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(1) Assume that H0(Ok,S ,W (E, η)〈1 − e〉) is annihilated by a0 6= 0 in
OE . Then
(a) H0(Ok,S ,W (E, η)[a0]〈1−e〉) ' H0(Ok,S ,W (E, η)〈1−e〉) as OE-

modules under the natural map;
(b) if, for e′ in Bη(E), a0 also annihilates H0(Ok,S ,W (E, η)〈1−e′〉),

and qek − qe
′

k is in a0OE , then

H0(Ok,S ,W (E, η)〈1− e′〉) ' H0(Ok,S ,W (E, η)〈1− e〉)

as OE-modules.
(2) Assume that H1(Ok,S ,W (E, η)〈1 − e〉) is annihilated by a1 6= 0 in
OE . Then

(a) #H1(Ok,S ,W (E, η)〈1− e〉) = #H1(Ok,S ,W (E, η)[a1]〈1− e〉)
#H0(Ok,S ,W (E, η)[a1]〈1− e〉) ;

(b) if H0(Ok,S ,W (E, η)〈1− e〉) is annihilated by a0 6= 0 in OE then
H1(Ok,S ,W (E, η)〈1− e〉) ' coker(fa0,a1) as OE-modules, with

H0(Ok,S ,W (E, η)[a0]〈1−e〉)
fa0,a1→ H1(Ok,S ,W (E, η)[a1]〈1−e〉)

the boundary map in the long exact sequence corresponding to
the short exact sequence
0→W (E, η)[a1]〈1− e〉 →W (E, η)[a0a1]〈1− e〉

a1→W (E, η)[a0]〈1− e〉 → 0 ,
(2.30)

and fa0,a1 is injective if and only if H0(Ok,S ,W (E, η)〈1− e〉) is
annihilated by a1 as well.

(c) If, for e′ in Bη(E), a1 also annihilates H1(Ok,S ,W (E, η)〈1−e′〉),
and qek − qe

′

k is in a0a1OE , then

(2.31) H1(Ok,S ,W (E, η)〈1− e′〉) ' H1(Ok,S ,W (E, η)〈1− e〉)

as OE-modules.

Proof. — Parts (1)(a) and (2)(a) are immediate from the long exact se-
quence associated to (2.11) with a replaced with ai.
For (2)(b), we compare the long exact sequences associated to (2.30) and

to (2.11) with a replaced with a1 via the natural map between them. This
gives the commutative diagram (withHi(Ok,S ,W (E, η)〈1−e〉) abbreviated
to Hi(W ) and similarly for the other coefficients)

· · · // H0(W [a0a1])
a1 //

'
��

H0(W [a0])
fa0,a1//

'
��

H1(W [a1]) // H1(W [a0a1]) a1 //

��

· · ·

· · · // H0(W ) a1 // H0(W ) // H1(W [a1]) // H1(W ) a1 // · · ·
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where we used (1)(a) for some vertical maps, and the result is immediate
as multiplication on H1(W ) is the zero map by assumption.
Parts (1)(b) and (2)(c) follow from (1)(a) and (2)(b) by using that

W (E, η)[b]〈1 − e′〉 ' W (E, η)[b]〈1 − e〉 as OE [Gk]-modules if b 6= 0 lies
in OE and qek − qe

′

k lies in bOE . �

Remark 2.32. — Let notation and assumptions be as in part (2)(b) of
Proposition 2.29. Comparing the long exact sequences associated to (2.11)
for a = a1 and a = a0a1, one sees that H1(Ok,S ,W (E, η)[a0a1]〈1 − e〉) is
the direct sum of the image of the natural map

H1(Ok,S ,W (E, η)[a1]〈1− e〉)→ H1(Ok,S ,W (E, η)[a0a1]〈1− e〉)

and that of the (injective) connecting map H0(Ok,S ,W (E, η)〈1 − e〉) →
H1(Ok,S ,W (E, η)[a0a1]〈1 − e〉). Therefore H1(Ok,S ,W (E, η)〈1 − e〉) can
be obtained as a direct summand, i.e.,

H1(Ok,S ,W (E, η)[a0a1]〈1− e〉)

' H1(Ok,S ,W (E, η)〈1− e〉)⊕H0(Ok,S ,W (E, η)〈1− e〉) .

For b 6= 0 in OE , the natural map

H1(Ok,S ,W (E, η)[a0a1]〈1− e〉)→ H1(Ok,S ,W (E, η)[ba0a1]〈1− e〉)

corresponds to multiplication by b on H0(Ok,S ,W (E, η)〈1 − e〉) and the
identity map on H1(Ok,S ,W (E, η)〈1− e〉).

Remarks 2.33. — Let the notation and assumptions be as in Proposi-
tion 2.29.
(1) Let a 6= 0 be in OE but not in O×E , so that W (E, η)[a] 6= 0. Using

Theorem 1.4(3) and the long exact sequence associated to (2.11), one
sees that

H1(Ok,S ,W (E, η)[a]〈1− e〉)→ H1(Ok,S ,W (E, η)〈1− e〉)

is injective if and only if H0(Ok,S ,W (E, η)〈1− e〉) = 0.
(2) If a 6= 0 in OE annihilates Hi(Ok,S ,W (E, η)〈1− e〉) for i = 0 and 1,

then from parts (1)(a) and (2)(a) of Proposition 2.29 we obtain

#H0(Ok,S ,W (E, η)〈1− e〉)
#H1(Ok,S ,W (E, η)〈1− e〉) = #H0(Ok,S ,W (E, η)[a]〈1− e〉)2

#H1(Ok,S ,W (E, η)[a]〈1− e〉) .

(3) The isomorphism in (2.31) is natural, but some isomorphism must
already exist if qek − qe

′

k is only in the intersection a0OE ∩ a1OE
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(as opposed to the product a0a1OE). Namely, from the long exact
sequence associated to (2.11) we find, for a 6= 0 in OE ,

#H1(Ok,S ,W (E, η)〈1− e〉)[a] = #H1(Ok,S ,W (E, η)[a]〈1− e〉)
#H0(Ok,S ,W (E, η)[a]〈1− e〉)

and similarly with e replaced with e′. Applying this with a the powers
of a uniformizer of OE , the result follows from the classification of
finite OE-modules as direct sums of cyclic modules.

3. p-adic L-functions

Notation 3.1. — Throughout this section, k is a number field, p a prime
number, E a finite extension of Qp with valuation ring OE , and η : Gk → E

the character of an Artin representation. We let P denote the set of primes
of k lying above p.

First assume that η is 1-dimensional. Fixing an embedding σ : E → C, it
follows from [26, VII Corollary 9.9] that L(m,σ ◦η, k) for an integer m 6 0
is in E and that the value

(3.2) L∗(m, η, k) := σ−1(L(m,σ ◦ η, k))

is independent of the choice of σ.
Now we want to show this for η of arbitrary dimension. By what we have

just proved we may assume that η does not contain the trivial character.
If L(m,σ ◦ η, k) = 0 for m 6 0 and some σ then the same holds for every σ
because such a zero will be determined by the Γ-factors in the functional
equation which in turn are determined by σ◦η(idk) and the multiplicities of
the eigenvalues ±1 of the complex conjugations. We may therefore assume
that L(m,σ ◦ η, k) 6= 0 for every σ. Because η does not contain the trivial
character, we see as just after (1.1) that this is the case if and only if k is
totally real and

(3.3) σ ◦ η(c) = (−1)m−1σ ◦ η(idk)

for every complex conjugation in Gk, which is independent of σ. Then
ηωm−1

p is even, so it factorizes through some Gal(K/k) with K/k totally
real and finite. Using Brauer’s theorem (see [31, Theorems 16 and 19])
we can write ηωm−1

p =
∑
i ai Indkki(χi) for 1-dimensional Artin characters

χi : Gki → E′ and integers ai, where k ⊆ ki ⊆ K, so χi is even, and E′ is
a suitable finite Galois extension of E. Then η =

∑
i ai Indkki(ηi) with ηi =

χiω
1−m
p , and (3.3) applies with η replaced with ηi (cf. the more complicated
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version of Brauer’s theorem used in the proof of [10, Theorem 1.2]). As
induction of characters is compatible with applying σ : E′ → C, we find
σ−1(L(m,σ ◦ Indkki(ηi), ki)) = σ−1(L(m,σ ◦ ηi, ki)) is in E′×. Since this is
independent of σ, the same holds for the value in (3.2) for the current η,
and this value lies in E× because τL∗(m, η, k) = L∗(m, τη, k) = L∗(m, η, k)
for all τ in Gal(E′/E).

We also define, for arbitrary η, v a finite prime of k, and m in Z, the
reciprocal Euler factor Eul∗v(m, η, k). For this, let V be an Artin repre-
sentation of Gk over a finite extension E′ of E with character η, Dw the
decomposition group in Gk of a prime w lying above v, with inertia sub-
group Iw and Frobenius Frw. With Fv(t, η) the determinant of 1−Frwt we
let

(3.4) Eul∗v(m, η, k) = Fv(Nm(v)−m, η) .

Clearly Fv(t, η) has coefficients in OE , and is independent of the choice of
V , w and Frw.
As in Notation 2.1, we let k∞ denote the cyclotomic Zp-extension of k,

γ0 a topological generator of Gal(k∞/k), and let qk = ψ
〈〉
p (γ̃0) in 1 + 2pZp,

where γ̃0 is a lift of γ0 to Gk.
Now assume k is totally real and that χ is even and 1-dimensional. Then

there exists a unique Cp-valued function Lp(s, χ, k) on

Bk = {s in Cp with |s|p < |qk − 1|−1
p p−1/(p−1)}

that is analytic if χ is non-trivial and meromorphic with at most a pole of
order 1 at s = 1 if χ = 1 , such that, in Cp,

(3.5) Lp(m,χ, k) = L∗(m,χωm−1
p , k)

∏
v∈P

Eul∗v(m,χωm−1
p , k)

for all integers m 6 0. (For the existence and uniqueness of such functions
we refer to the overview statement in [3, Theorem 2.9], and for the radius of
convergence to [17, p.82].) In particular, Lp(s, χ, k) is not identically zero
because χ is even, so that the right-hand side of (3.5) is non-zero form < 0.
If χ factorizes through Gal(k∞/k), we let hχ(T ) = χ(γ̃0)(1+T )−1 where

γ̃0 is a lift of γ0 to Gk, and we let hχ(T ) = 1 otherwise. Then from [17,
Eq. (3)] we have an identity

(3.6) Lp(s, χ, k) =
πmχ g̃χ(q1−s

k − 1)uχ(q1−s
k − 1)

hχ(q1−s
k − 1)

for s in Bk if χ is not the trivial character and in Bk \ {1} if it is, where π
is a uniformizer of OE , mχ a non-negative integer, g̃χ(T ) a distinguished
polynomial in OE [T ] and uχ(T ) a unit of OE [[T ]].
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If χ : Gk → E is any even Artin character, with k still totally real, then
we can write χ, as we did following (3.3), in terms of even 1-dimensional
characters of totally real number fields (enlarging E to E′ if necessary). This
gives a meromorphic function Lp(s, χ, k) on Bk such that, for all m < 0
(and possibly for m = 0), Lp(m,χ, k) is defined, non-zero, and (3.5) holds
in E. This interpolation property shows that Lp(s, χ, k) is independent of
the way we write χ in terms of induced characters, hence Lp(s, χ, k) is
compatible with induction of characters. Using the action of Gal(Qp/E)
and the p-adic Weierstraß preparation theorem for OE′ [[T ]] one sees easily
that

(3.7) Lp(s, χ, k) = πmχPχ(q1−s
k − 1)uχ(q1−s

k − 1)/Qχ(q1−s
k − 1)

with π a uniformizer of OE , mχ an integer, Pχ(T ) and Qχ(T ) relatively
prime distinguished polynomials in OE [T ], and uχ(T ) in OE [[T ]]×. So if
Lp(s, χ, k) is defined at some s in Bk(E) = Bk ∩ E (see (1.3)), then its
value lies in E.

Remark 3.8. — Greenberg has shown [17, Proposition 5] that the main
conjecture of Iwasawa theory for the prime p (i.e., the statements in The-
orem 4.2 and Remark 4.3 for p) implies that in (3.7) one can take Qχ[T ]
to be a product of factors ζ · (1 + T )− 1 with ζ a p-th power root of unity.
Moreover, the number of factors with ζ = 1 is at most the multiplicity m of
the trivial character in χ, so that (s− 1)mLp(s, χ, k) is analytic on Bk. We
could use this for p 6= 2 by Theorem 4.2 and Remark 4.3, but as mentioned
in the introduction, we take a uniform approach for all primes based on
Theorem 4.2 and Assumption 4.4.

Remark 3.9. — Note that if G(t) is a polynomial with coefficients in a
finite extension E of Qp, qk is in 1 + 2pZp, and G(qsk − 1) = 0 for some s
in Bk, then qsk lies in a finite extension E′ of E inside Qp, hence s lies in
Bk(E′). Therefore any zero or pole of Lp(s, χ, k) lies in some Bk(E′) with
E′/Qp finite.

In order to extend (3.5) to truncated L-functions we now introduce some
more notation. We shall denote the image of z in Z×p under the projection
Z×p = (1 + 2pZp) · µϕ(2p) → 1 + 2pZp by 〈z〉. Then mapping s to 〈z〉s de-
fines an analytic function on {s ∈ Cp with |s|p < |〈z〉−1|−1

p p−1/(p−1)}, and
|〈z〉s− 1|p < p−1/(p−1). Now let k be any number field, and η : Gk → E an
Artin character. For a finite place v of k not in P , we define a p-adic ‘dia-
mond reciprocal Euler factor’ Eul〈〉v (s, η, k) = Fv(〈Nm(v)〉−s, η) (cf. (2.16)),
i.e., we use 〈Nm(v)〉 instead of Nm(v) in the definition of Eul∗v(m, η, k)
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in (3.4), which allows us to replace the integer m with s. With notation
as just before (3.4), we observe that twisting the representation of Gk on
V with ω−mp for m in Z gives a Gk-action on V with character ηω−mp ,
and V Iw is the same for both actions because ωp is unramified at v. Since
ψp(Frw) = Nm(v) we have ωp(Frw) = Nm(v)/〈Nm(v)〉, hence

(3.10) Fv(〈Nm(v)〉−m, ηω−mp ) = Fv(Nm(v)−m, η)

in E. Therefore Eul〈〉v (s, ηω−1
p , k) is a p-adic analytic function interpolat-

ing the values Eul∗v(m, ηωm−1
p , k) for m in Z. It converges on Bk since

〈Nm(v)〉−s = ψ
〈〉
p (Frw)−s converges on this domain.

Remark 3.11. — Since the eigenvalues of Frobenius are roots of unity,
and 〈Nm(v)〉−s is only a root of unity for s = 0, Eul〈〉v (s, η, k) 6= 0 for
s 6= 0. Moreover, the order of vanishing of Eul〈〉v (s, η, k) at s = 0 equals the
dimension of (V Iw)Frw=1 where V realizes η (cf. Proposition 2.17(2)).

We now return to the case where k is totally real and χ is even. If S is a
finite set of primes of k containing P , then we define a meromorphic p-adic
L-function Lp,S on Bk by putting

(3.12) Lp,S(s, χ, k) = Lp(s, χ, k)
∏

v∈S\P

Eul〈〉v (s, χω−1
p , k)

(cf. [16, Section 3, p.147]). Note that Lp(s, χ, k) = Lp,P (s, χ, k), the latter
being a better notation. Finally, for an integer m < 0 (and possibly for
m = 0), Lp,S(s, χ, k) is defined at m, and in E we have

(3.13) Lp,S(m,χ, k) = L∗S(m,χωm−1
p , k)

where L∗S(m,χωm−1
p , k) = L∗(m,χωm−1

p , k)
∏
v∈S Eul

∗
v(m,χωm−1

p , k).

Remark 3.14. — Suppose that k′/k is a finite extension of number fields
and ψ : Gk′ → E an Artin character. For a finite prime v of k not in P

one has Eul〈〉v (s, (Indkk′ ψ)ω−1
p , k) =

∏
w|v Eul

〈〉
w (s, ψω−1

p , k′), because Eul〈〉v
interpolates the values of Eul∗v as just after (3.10), and for those an anal-
ogous result holds. Therefore, if k′ is totally real and χ : Gk′ → E is an
even Artin character, then Lp,S(s, Indkk′ χ, k) = Lp,S′(s, χ, k′) where S′ is
the set of primes of k′ consisting of all the primes lying above those in S.

Remark 3.15. — If f(T ) 6= 0 is in OE [[T ]] then the power series g(s) =
f(q1−s

k − 1) =
∑
n>0 ans

n converges on Bk and |an|p 6 |qk − 1|nppn/(p−1).
With E′ = E(δ) for some δ algebraic over E with |δ|p = |qk−1|−1

p p−1/(p−1),
we find that g(δs′) is in OE′ [[s′]], so can be written as πlE′P (s′)u(s′) with
πE′ a uniformizer of E′, l a non-negative integer, P (s′) a distinguished
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polynomial in OE′ [s′], and u(s′) in OE′ [[s′]]×. By the discussion follow-
ing (3.10), the same argument can be applied to a factor Eul〈〉v (s, χω−1

p , k) =
Fv(〈Nm(v)〉−s, χω−1

p ) in (3.12). From (3.7) and (3.12) we have, for s in Bk,

Lp,S(s, χ, k) = πlE′
P (s/δ)
Q(s/δ)u(s/δ)

with l in Z, P (s′) and Q(s′) distinguished polynomials in OE′ [s′], and u(s′)
in OE′ [[s′]]×, so that all the zeroes and poles here come from P (s′)/Q(s′).
Therefore Lp,S(s, χ, k), which equals Lp(s, χ, k) if S = P , is analytic (i.e.,
given by a power series that converges on Bk) if and only if it is bounded
on Bk(E) for all finite extensions E of Qp.

4. Iwasawa theory

In this section we discuss the main conjecture of Iwasawa theory and
prove some lemmas for later use.

Let k be a totally real number field, p a prime number, E a finite ex-
tension of Qp, χ : Gk → E an even Artin character, K the (totally real)
fixed field of the kernel of χ, and G = Gal(K/k). As in Notation 2.1 we let
k∞ and K∞ be the cyclotomic Zp-extensions of k and K respectively, γ0 a
topological generator of Γ0 = Gal(k∞/k). Let L∞ be the maximal Abelian
pro-p-extension of K∞ that is unramified outside of the primes above p and
the infinite primes. Write M = Gal(L∞/K∞) and let Gal(K∞/k) act on
the right onM by conjugation.
Now assume that K ∩ k∞ = k, so that Gal(K∞/k) ' G× Γ0. We let Γ0

and G act onM via this isomorphism, and thus viewM as a Zp[G][[T ]]-
module where T acts as γ0 − 1.

L∞
M

K∞
G' 'Γ0

k∞

〈γ0〉=Γ0

K

G

k
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In the remainder of this section we assume χ is 1-dimensional. Then [34,
Theorem 13.31] implies that M⊗Zp[G] OE is a finitely generated torsion
OE [[T ]]-module, where T acts onM, and G acts on OE via χ.

Definition 4.1. — Suppose O is the valuation ring in a finite extension
of Qp. If Y is a finitely generated torsion O[[T ]]-module then by [5, Thm. 5
of §4.4] it is isogenous to A ⊕ B (i.e., there is a morphism Y → A ⊕ B of
O[[T ]]-modules with finite kernel and cokernel), with

A =
r⊕
i=1

O[[T ]]
(πµi) ; B =

s⊕
j=1

O[[T ]]
(gj(T )) ,

where π is a uniformizer of O, r, s > 0, the µi are positive integers, and
the gj(T ) are distinguished polynomials in O[T ]. We let µY =

∑r
i=1 µi and

gY =
∏s
j=1 gj .

We denote the gY and µY in Definition 4.1 for Y = M⊗Zp[G] OE and
O = OE by gχ and µχ respectively. Then the following result is part of the
main conjecture of Iwasawa theory as proved by Wiles for p odd in [35].

Theorem 4.2. — If p does not divide [K : k] and p 6= 2 then, with
notation as in (3.6), gχ(T ) = g̃χ(T ) and µχ = mχ.

Proof. — The first equality is proved in [35, Theorem 1.3], which is equiv-
alent to [35, Theorem 1.2] via [16, Proposition 3]. Note that in [16] Green-
berg uses the direct limit of class groups in the cyclotomic tower, but this is
isogenous to the Galois group of the maximal Abelian unramified extension
of K∞ by [20, Theorem 11].

The equality of the µ-invariants follows from [35, Theorem 1.4]. Note
that by [16, Proposition 1], combined with [20, Theorem 11], we have that
µχ equals the µ-invariant considered in [35, Theorem 1.4]. �

Remark 4.3. — If p divides [K : k] but K ∩ k∞ = k, then

M⊗Zp[G] E '
s⊕
j=1

E[[T ]]/(gj(T )) '
s⊕
j=1

E[T ]/(gj(T ))

for some distinguished polynomials gj(T ) in OE [T ], and, when p 6= 2,
g̃χ =

∏s
j=1 gj by [35, Theorems 1.2 and 1.3].

Our proofs in Section 5 will also work for p = 2 if we assume the following
weaker version of the main conjecture of Iwasawa theory.

Assumption 4.4. — If p = 2 and χ is of odd order then g̃χ(T ) = gχ(T )
and mχ = µχ.
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Remark 4.5. — Let χ be a 1-dimensional even Artin character of Gk
such thatK∩k∞ = k, and assume p = 2. If k = Q then by [35, Theorem 6.2]
we have g̃χ(T ) = gχ(T ) as well. In fact, this still holds for many more pairs
(k, χ) by [35, Theorem 11.1]. We also note that mχ > [k : Q] by [29, (4.8)].
On the other hand, if k is Abelian over Q and χ the trivial character, then
by combining the main theorem on [11, p.377] with [30, Section 6.4], we
have µχ = [k : Q], hence mχ > µχ. Equality holds when k = Q because
then mχ = 1 by [34, Lemma 7.12].

We shall later use the following lemma about the structure of finitely
generated torsion O[[T ]]-modules.

Lemma 4.6. — Let O be the valuation ring in a finite extension of Qp,
Y a finitely generated torsion O[[T ]]-module, so Y is isogenous to A ⊕ B
with

A =
r⊕
i=1

O[[T ]]
(πµi) and B =

s⊕
j=1

O[[T ]]
(gj(T )) ,

where π is a uniformizer of O, r, s > 0, the µi are positive integers, and the
gj(T ) are distinguished polynomials in O[T ]. Suppose that Γ ' Zp acts on
Y such that a topological generator acts as multiplication by u · (1 +T ) for
some u in 1 + πO. Then the following are equivalent.

(1) Y Γ is finite;
(2) YΓ is finite;
(3) gY (u−1 − 1) 6= 0.

In particular, these are satisfied for all but finitely many u in 1+πO. More-
over, if these hold, then (#YΓ)/(#Y Γ) = |πµY gY (u−1 − 1)|−[Frac(O):Qp]

p .

Proof. — For any µ > 1, we have a short exact sequence

0 // O[[T ]]
(πµ)

u·(1+T )−1 // O[[T ]]
(πµ)

// O
(πµ)

// 0.

This shows that AΓ = 0 and that AΓ '
⊕r

i=1O/(πµi). Similarly we get

BΓ '
s⊕
j=1

O
(gj(u−1 − 1)) .(4.7)

Note that the O-ranks of BΓ and BΓ both equal the number of gj with
gj(u−1− 1) = 0, and that BΓ has no non-trivial finite subgroup. Therefore
BΓ is finite if and only if BΓ is finite, hence trivial. From (4.7) it is clear
that BΓ is finite if and only if gY (u−1 − 1) 6= 0. Since gY is a polynomial,
this last condition holds for all but finitely many u in 1 + πO.
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Let Y ′ be a quotient of Y by a finite submodule such that Y ′ injects into
A⊕B. Note that finiteness of Y Γ (resp. YΓ) is equivalent to that of (Y ′)Γ

(resp. (Y ′)Γ). We have an exact sequence of O[[T ]]-modules,

0→ Y ′ → A⊕B → C → 0,

where C is a finite O[[T ]]-module. Since AΓ is finite it follows that (Y ′)Γ is
finite if and only if BΓ is finite. Also, because AΓ is trivial, (Y ′)Γ is finite
if and only if BΓ is finite, hence (1), (2) and (3) are equivalent. Moreover,
in this case note that (Y ′)Γ is trivial, #CΓ = #CΓ, and therefore

#YΓ

#Y Γ = #(Y ′)Γ = #AΓ ·#BΓ = |πµY gY (u−1 − 1)|−[Frac(O):Qp]
p .

�

5. Multiplicative Euler characteristics and p-adic
L-functions

In this section we prove Theorem 1.8, formulate Conjecture 5.19 (which
would imply Conjecture 1.9) and briefly discuss the case of a 1-dimensional
even Artin character in Example 5.21. Note that Theorem 1.8(3) implies
Proposition 2.29 applies for almost all e.
We use notation as in Notation 2.1. Also, for any Artin character η

of Gk we let kη denote the fixed field of the kernel of the corresponding
representation.
As seen in Remarks 2.2(2) and (3), the size of Hi(Ok,S ,W (E,χ)〈1− e〉)

for i = 0 can depend on the choice of the latticeM(E,χ). We shall see that
a (modified) multiplicative Euler characteristic can be defined independent
of this choice when those cohomology groups are finite for i = 0, 1 and 2.
By Proposition 2.27, this can only happen when k is totally real and the
character even, so it will be denoted by χ. For i = 2 the finiteness of the
cohomology group then implies it is trivial, so that the sizes for i = 0 and
i = 1 depend on the choice of the lattice in the same way.

Definition 5.1. — Let E be a finite extension of Qp, k a totally real
number field, χ : Gk → E an even Artin character realizable over E, and e
in Bk(E). If Hi(Ok,S ,W (E,χ)〈1− e〉) is finite for i = 0, 1 and 2 then it is
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trivial for i = 2 by Proposition 2.26, and we define

ÊCp,S(e, χ, k) =
( 2∏
i=0

(
#Hi(Ok,S ,W (E,χ)〈1− e〉)

)(−1)i
)1/[E:Qp]

=
(

#H0(GS ,W (E,χ)〈1− e〉)
#H1(GS ,W (E,χ)〈1− e〉)

)1/[E:Qp]

.

Remark 5.2. — By Remark 2.8, if p 6= 2 then ÊCp,S(e, χ, k) is a (mod-
ified) Euler characteristic, but if p = 2 then it is truncated. For p = 2,
because every complex conjugation acts trivially, Hi(kv,W (E,χ)〈1 − e〉)
for i > 3 is trivial if i is even since W (E,χ)〈1 − e〉 is 2-divisible, and
isomorphic with W (E,χ)[2] for i odd.

Remarks 5.3.

(1) Definition 5.1 for a fixed E is independent of the latticeM = M(E,χ).
Namely, if M ′ is another lattice for the same representation, then we
obtain an exact sequence (2.14). The Hi(Ok,S , (M ′⊗ZpQp/Zp)〈1−e〉)
are finite for i = 0, 1 and 2 by Remark 2.13(1), and Lemma 2.23 ap-
plied with A = XE〈1− e〉 implies that ÊCp,S(e, χ, k) is the same for
W (E,χ) = M ⊗Zp Qp/Zp or M ′ ⊗Zp Qp/Zp.

(2) Definition 5.1 is independent of the field E by Remark 2.13(2).
(3) If χj for j = 1, 2 are even Artin characters, then by Remark 2.13(3),

the ÊCp,S(e, χj , k) are defined if and only if ÊCp,S(e, χ1 + χ2, k)
is defined, in which case ÊCp,S(e, χ1 + χ2, k) = ÊCp,S(e, χ1, k) ·
ÊCp,S(e, χ2, k).

(4) Let k′/k be a finite extension of totally real fields, χ′ : Gk′ → E

an even Artin character realizable over E, and put χ = Indkk′ χ′. If
χ is unramified outside of S then by part (1) and Remark 2.13(4),
ÊCp,S(e, χ′, k′) is defined if and only if ÊCp,S(e, χ, k) is defined, in
which case the two are equal.

(5) Let S′ be a finite set of primes of k with S ⊆ S′. Note that from the
definition of Eul〈〉v in Section 3, we have that

Eul〈〉v (e, χω−1
p , k) = det(1− 〈Nm(v)〉−eFrw|V (E,χω−1

p ))

for any v not in S and w above v. If this is non-zero then by
Remark 2.13(5) we have #H0(Gal(Fv/Fv),W (E,χω−1

p )〈−e〉) =
|Eul〈〉v (e, χω−1

p , k)|−[E:Qp]
p . So if Eul〈〉v (e, χω−1

p , k) 6= 0 for v in S′ \ S
then from Remark 2.13(5) we see that ÊCp,S(e, χ, k) is defined if and
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only if ÊCp,S′(e, χ, k) is defined, in which case

ÊCp,S′(e, χ, k) = ÊCp,S(e, χ, k) ·
∏

v∈S′\S

|Eul〈〉v (e, χω−1
p , k)|p .

We now prove the finiteness statement in Theorem 1.8.

Lemma 5.4. — Let k be a totally real number field, p a prime number, E
a finite extension of Qp, and χ : Gk → E an even Artin character realizable
over E. Assume that S is a finite set of finite primes of k containing the
primes above p as well as the finite primes at which χ is ramified. Then
Hi(Ok,S ,W (E,χ)〈1− e〉) is finite for all but finitely many e in Bk(E).

Proof. — The result for i = 0 and i > 3 follows from Theorem 1.4(3)
and Remark 2.8. Hence by Proposition 2.27, it is enough to consider i = 1.

Since χ occurs in Indkkχ(χ|kχ) and Bk(E) ⊆ Bkχ(E), parts (1), (3)
and (4) of Remarks 2.13 imply that it is enough to prove the result for
the trivial character. We therefore assume that χ is trivial and hence
W (E,χ) = E/OE . By the last statement in Proposition 2.27, we may
also assume that S = P .

From the spectral sequence

Hj(Γ0, H
j′(Gal(ΩP /k∞), E/OE〈1− e〉))⇒ Hj+j′(Ok,P , E/OE〈1− e〉)

it is enough to show that Hj(Γ0, H
1−j(Gal(ΩP /k∞), E/OE〈1 − e〉)) is fi-

nite for j = 0, 1. Since Gal(ΩP /k∞) acts trivially on E/OE〈1 − e〉, for
j = 1 this group equals the cokernel of multiplication by q1−e

k − 1 on
E/OE , which is finite for e 6= 1. For j = 0, this group is isomorphic to
Hom(M, E/OE〈1− e〉)Γ0 ' Hom((M⊗Zp OE〈e−1〉)Γ0 ,Qp/Zp), whereM
is the Galois group of the maximal Abelian extension of k∞ that is unrami-
fied outside of the primes above p and∞, on which Γ0 acts by conjugation,
and Hom is the functor of continuous homomorphisms. BecauseM⊗ZpOE
is a torsion OE [[T ]]-module as mentioned at the beginning of Section 4,
the result follows from Lemma 4.6 with Y =M⊗Zp OE , O = OE , Γ = Γ0
with topological generator corresponding to γ0, and u = qe−1

k . �

In order to prove the rest of Theorem 1.8 we first prove two weaker
results: Theorem 5.5 if χ is 1-dimensional, and Theorem 5.15 for general χ.

Theorem 5.5. — Let k be a totally real number field, p a prime number,
E a finite extension of Qp with valuation ring OE , χ : Gk → E a 1-
dimensional even Artin character, and let be e in Bk(E). Assume that S
contains P as well as all the finite primes of k at which χ is ramified. Let
k ⊆ k′ ⊆ kχ be such that [k′ : k] = pl for some l > 0 and p does not
divide [kχ : k′]. Assume that e 6= 1 if χ|Gk′ is the trivial character, so that
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Lp,S(s, χ|Gk′ , k
′) is defined at s = e. If its value there is non-zero, then with

Assumption 4.4 if p = 2, we have
(1) Hi(Ok,S ,W (E,χ)〈1− e〉) is finite for i = 0, 1 and trivial for i = 2;
(2) |Lp,S(e, χ, k)|p = ÊCp,S(e, χ, k).

Proof. — We begin by fixing some notation. We write K for kχ, G for
Gal(K/k), and also view χ as a character of G. Also, for any 1-dimensional
(even) Artin character χ with values in E we choose M(E,χ) to be OE
with action given through multiplication by the character, for which we
write M(χ), and write W (χ) = W (E,χ) = M(χ)⊗Zp Qp/Zp.
We first prove the result for l = 0, so that k′ = k, and we assume

Lp,S(e, χ, k) 6= 0. By (3.12) and Remark 5.3(5), it suffices to prove the
theorem when S is the union of the set of primes of k where χ is ramified
and P . Since χω−1

p is 1-dimensional and ramified at all v in S \ P we then
have Lp,S(e, χ, k) = Lp(e, χ, k).
Note that Gal(K∞/k) ' G × Γ0 because p does not divide [K : k]. We

shall consider γ0 as a topological generator of Gal(K∞/K) as well via the
isomorphism Gal(K∞/K) ' Gal(k∞/k) = Γ0.
We have

(5.6)
H0(Ok,S ,W (χ)〈1− e〉) ' H0(Gal(K∞/k),W (χ)〈1− e〉)

=
(
W (χ)〈1− e〉G

)Γ0
.

If χ is non-trivial then χ(g) − 1 is in O×E for any non-trivial g in G as
l = 0, so W (χ)〈1− e〉G and (5.6) are trivial. If χ is trivial then (5.6) equals
(W (χ)〈1 − e〉)Γ0 , which is isomorphic to the kernel of multiplication by
q1−e
k −1 on E/OE . In this case e 6= 1 by assumption, so (5.6) is isomorphic
toOE/(q1−e

k −1). In either case, we see from the definition of hχ in Section 3
that

(5.7) #H0(Ok,S ,W (χ)〈1− e〉)1/[E:Qp] = |hχ(q1−e
k − 1)|−1

p .

We now consider H1(Ok,S ,W (χ)〈1−e〉). Note that Hi(G,T ) = 0 for any
Zp-module T if i > 1, because #G annihilates this group and #G is in Z×p .
Hence takingG-invariants is exact andHi(Ok,S , T ) ' H0(G,Hi(OK,S , T )).
With Z = SpecOK,P \ SpecOK,S we have, for all j, that

Hj(Z,W (χω−1
p )〈−e〉) '

∏
w∈Z

Hj(Gal(Fw/Fw),W (χω−1
p )〈−e〉) .

Let Gw and Iw denote the decomposition and inertia subgroups for w inside
G. Note that Iw is non-trivial for each w in Z since χ is ramified at w. Hence
there exists g in Iw with χ(g)−1−1 6= 0, and this lies inO×E as l = 0. The Iw-
invariants, and hence G-invariants of Hj(Gal(Fw/Fw),W (χω−1

p )〈−e〉), are
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therefore trivial because the action of Iw on this group is as onW (χ). From
the Gysin sequence as in Remark 2.13(5), but with k, S and S′ replaced
with K, P and S, and with the current Z, we find by taking G-invariants
that

Hi(Ok,S ,W (χ)〈1− e〉)) ' Hi(OK,S ,W (χ)〈1− e〉)G

' Hi(OK,P ,W (χ)〈1− e〉)G

for all i > 0.
For the remainder of the case l = 0 we can now follow the setup for the

proof of [2, Theorem 6.1]. Let ΩK,P denote the maximal extension ofK that
is unramified outside of the primes above p or ∞, so that by Remark 2.6
we have

Hi(OK,P ,W (χ)〈1− e〉)G ' Hi(Gal(ΩK,P /K),W (χ)〈1− e〉)G

' Hi(Gal(ΩK,P /k),W (χ)〈1− e〉) .

We obtain from the Hochschild-Serre spectral sequence for the normal sub-
group Gal(ΩK,P /K∞) of Gal(ΩK,P /k) with quotient Gal(K∞/k) ' Γ0×G
a 5-term exact sequence. Using that H0(Gal(ΩK,P /K∞),W (χ)〈1 − e〉) =
W (χ)〈1− e〉, we find there is an exact sequence

(5.8)

0→ H1(Gal(K∞/k),W (χ)〈1− e〉)

→ H1(Gal(ΩK,P /k),W (χ)〈1− e〉)

→ H0(Gal(K∞/k), H1(Gal(ΩK,P /K∞),W (χ)〈1− e〉))

→ H2(Gal(K∞/k),W (χ)〈1− e〉) .

Note that Hi(Gal(K∞/k), ·) ' Hi(Gal(K∞/K), ·)G = 0 for i > 2 as the
cohomological dimension of Gal(K∞/K) is 1, so the last term in (5.8) is
trivial. As H1(Gal(K∞/K),W (χ)〈1− e〉) is the cokernel of multiplication
by q1−e

k − 1 on W (χ), the first term in (5.8) is trivial when e 6= 1 and
equals W (χ)G when e = 1. In the last case χ is non-trivial by assumption,
so χ(g)−1 is in O×E for some g in G as l = 0. Hence H1(Ok,S ,W (χ)〈1−e〉))
is isomorphic withH0(Gal(K∞/k), H1(Gal(ΩK,P /K∞),W (χ)〈1−e〉)). The
action of Gal(ΩK,P /K∞) on W (χ)〈1− e〉 is trivial, so withM the Galois
group of the maximal Abelian pro-p-extension L∞ ofK∞ that is unramified
outside of the primes above p and the infinite primes (so L∞ ⊆ ΩK,P ), we
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can rewrite this last group as

(5.9)

Hom(Gal(ΩK,P /K∞),W (χ)〈1− e〉)Gal(K∞/k)

' Hom(M,W (χ)〈1− e〉)Gal(K∞/k)

' Hom(M〈e− 1〉 ⊗Zp M(χ∨),Qp/Zp)Gal(K∞/k)

' Hom
((
M〈e− 1〉 ⊗Zp M(χ∨)

)
Gal(K∞/k) ,Qp/Zp

)
,

where Hom is again the functor of continuous homomorphisms. Note that
the action of Gal(K∞/k) onM〈e−1〉⊗ZpM(χ∨) is diagonal. We therefore
have

(5.10)

(
M〈e− 1〉⊗ZpM(χ∨)

)
Gal(K∞/k)

'
((
M〈e− 1〉 ⊗Zp M(χ∨)

)
G

)
Gal(K∞/K)

'
((
M〈e− 1〉 ⊗Zp[G] M(χ)

))
Gal(K∞/K)

because for a right (resp. left) Zp[G]-module A (resp. B), with G acting
on A ⊗Zp B as g(a ⊗ b) = a · g ⊗ g−1 · b, we have a natural isomorphism
(A⊗B)G ' A⊗Zp[G] B as Zp-modules.
Recall that, since k is totally real and χ is even,M is a torsion Zp[G][[T ]]-

module with the action of T given by that of γ0 − 1. By [20, Theorem 18]
and [30, Section 6.4],M has no non-trivial finite Zp[[T ]]-submodule, hence
the same holds forM⊗Zp[G]OE [G] 'M[E:Qp]. Then the last group cannot
contain a finite non-trivial OE [[T ]]-submodule, and as we may view M(χ)
as a direct summand of OE [G] because p does not divide #G since l = 0, we
find that M⊗Zp[G] M(χ) is a torsion OE [[T ]]-module without non-trivial
finite submodule.
Observe that we are now in the situation of Lemma 4.6 with O = OE ,

Y = M⊗Zp[G] M(χ), Γ = Gal(K∞/K) with topological generator corre-
sponding to γ0, and u = qe−1

k . As defined right after Definition 4.1, µχ
and gχ are the µY and gY in Definition 4.1 but the action of γ0 on Y in
Lemma 4.6 for this u is the action onM〈e− 1〉 ⊗Zp[G] M(χ).

We assume that Lp,S(e, χ, k) 6= 0, so by Theorem 4.2 when p 6= 2 and As-
sumption 4.4 when p = 2, we get gχ(q1−e

k −1) 6= 0. Since µχ = µY and gχ =
gY in Lemma 4.6, this lemma states that the group in (5.10) is finite and
has cardinality

∣∣πµχ · gχ(q1−e
k − 1)

∣∣−[E:Qp]
p

, with π a uniformizer of OE . The
same holds forH1(Ok,S ,W (χ)〈1−e〉) by (5.9). ThenH2(Ok,S ,W (χ)〈1−e〉)
is also finite by Proposition 2.27, hence trivial by Proposition 2.26.
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By Theorem 4.2 or Assumption 4.4, and (5.7), we then find, since
Lp,S(e, χ, k) = Lp(e, χ, k),

|Lp,S(e, χ, k)|p =
|πµχ · gχ(q1−e

k − 1)|p
|hχ(q1−e

k − 1)|p

=
(

#H0(Ok,S ,W (χ)〈1− e〉)
#H1(Ok,S ,W (χ)〈1− e〉)

)1/[E:Qp]

= ÊCp,S(e, χ, k) .

This completes the proof of the theorem when l = 0.
We now proceed by induction on l, so that we have [K : k] = mpl

with (p,m) = 1 and l > 1. Recall that k′ is the subfield of K = kχ with
[k′ : k] = pl. Since χ is even, K and k′ are totally real. With χ′ = χ|Gk′ we
have

(5.11) Indkk′(χ′) =
∑
ϕ∈I

ϕ,

where I is the set of all 1-dimensional characters ϕ over Qp of Gal(k/k)
factoring through Gal(K/k) that restrict to χ′ on Gk′ (hence the quotient
of two such ϕ is a character of Gal(k′/k) ' Z/plZ). Note that each ϕ

is a power of χ, hence is even, takes values in E, and Indkk′(χ′)is also
unramified outside of S. Let N1 = Indkk′(M(χ′)) and N2 = ⊕ϕ∈IM(ϕ).
By (5.11) these two OE [Gk]-modules of finite OE-rank correspond to the
same representation. From Remark 2.13(4) we know that

(5.12) Hi(Ok,S , N1 ⊗Zp Qp/Zp〈1− e〉) ' Hi(Ok′,S ,W (χ′)〈1− e〉)

for each i > 0.
By our assumptions, Lp,S(e, χ′, k′) is defined and non-zero, so by the case

l = 0 the theorem is true for χ′ and k′. Therefore the group in (5.12) is
finite for i = 0, 1, trivial for i = 2, and

ÊCp,S(e, χ′, k′) = |Lp,S(e, χ′, k′)|p .

From Remark 5.3(1) we conclude that Hi(Ok,S , N2 ⊗Zp Qp/Zp〈1 − e〉) is
finite for i = 0, 1, 2, hence trivial for i = 2 by Proposition 2.26. The same
statement therefore holds for each summand Hi(Ok,S ,W (ϕ)〈1− e〉). From
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parts (3) and (4) of Remarks 5.3 we obtain

(5.13)

∏
ϕ∈I

ÊCp,S(e, ϕ, k) = ÊCp,S(e, χ′, k′)

= |Lp,S(e, χ′, k′)|p

=
∏
ϕ∈I
|Lp,S(e, ϕ, k)|p ,

with the last equality by (5.11) and the compatibility of Lp and Eul〈〉v with
induction (see Remark 3.14). Note that the p-adic L-functions involved
here are of Abelian characters so cannot have a pole except possibly at 1,
hence by our assumptions on e and χ′, Lp,S(e, ϕ, k) exists and is non-zero
for every ϕ.
Let I0 denote the subset of I consisting of all ϕ with order divisible by pl.

If ϕ ∈ I \ I0 then [kϕ : k] divides pl−1m, hence by the induction hypothesis
the theorem is true for ϕ. Thus from (5.13) we obtain

(5.14)
∏
ϕ∈I0

|Lp,S(e, ϕ, k)|p =
∏
ϕ∈I0

ÊCp,S(e, ϕ, k) .

Using Remark 5.3(2) we may replace E with its Galois closure over Qp if
necessary. All ϕ in I0 are in the orbit of χ under the action of Gal(E/Qp)
since this group acts transitively on the roots of unity of order pl. But
for σ in Gal(E/Qp) we have Lp,S(e, χσ, k) = Lp,S(e, χ, k)σ by [3, p.413],
hence |Lp,S(e, χσ, k)|p = |Lp,S(e, χ, k)|p. On the other hand, σ induces an
isomorphism M(χ) 'M(χσ) of sheaves for the étale topology on Ok,S , so
that ÊCp,S(e, χσ, k) = ÊCp,S(e, χ, k). Taking roots of both sides in (5.14)
we find |Lp,S(e, χ, k)|p = ÊCp,S(e, χ, k). This finishes the proof of the in-
duction step, and of the theorem. �

We now extend the statements of Theorem 5.5 to arbitrary Artin char-
acters for all but finitely many e, which is the last main ingredient needed
for the proof of Theorem 1.8.

Theorem 5.15. — Let k be a totally real number field, p a prime num-
ber, E a finite extension of Qp, and χ : Gk → E an even Artin character
realizable over E. Assume that S contains P as well as all the finite primes
of k where χ is ramified. The following hold for all but finitely many e in
Bk(E) where for part (2) we make Assumption 4.4 if p = 2.

(1) Hi(Ok,S ,W (E,χ)〈1− e〉) is finite for i = 0, 1 and trivial for i = 2.
(2) |Lp,S(e, χ, k)|p = ÊCp,S(e, χ, k).
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Proof. — Part (1) follows from Lemma 5.4 and Proposition 2.26. For
part (2), note that we may enlarge E if we want because of Remark 5.3(2).
Using Brauer’s Theorem we can then write

χ+
∑
i

Indkki(ϕi) =
∑
j

Indkk′
j
(ϕ′j)

for 1-dimensional E-valued Artin characters ϕi (resp. ϕ′j) of Gki (resp.
Gk′

j
) with all ki, k′j intermediate fields of the extension kχ/k, so that Gkχ

is in the kernel of all ϕi and ϕ′j . Since kχ is totally real, so are all ki and
k′j , and all ϕi and ϕ′j are even. Because Bk(E) is contained in all Bki(E)
and Bk′

j
(E), we may apply Theorem 5.5 to each pair (ϕi, ki) or (ϕ′j , k′j)

for all but finitely many e in Bk(E). For all such e, parts (3) and (4) of
Remarks 5.3 give that

ÊCp,S(e, χ, k)
∏
i

ÊCp,S(e, ϕi, ki) =
∏
j

ÊCp,S(e, ϕ′j , k′j) ,

whereas Remark 3.14 implies

Lp,S(e, χ, k)
∏
i

Lp,S(e, ϕi, ki) =
∏
j

Lp,S(e, ϕ′j , k′j) ,

so that ÊCp,S(e, χ, k) = |Lp,S(e, χ, k)|p. �

We can now give the proof of Theorem 1.8. We make extensive use of
a counting argument while approximating a fixed e with suitable e′. In
particular, this method enables us to treat the finitely many e excluded in
Theorem 5.15.
Proof of Theorem 1.8. — The first statement is Theorem 5.15(1). For

the remaining statements we make Assumption 4.4 if p = 2.
Let ri = ri,S(1 − e, χ) = corankOEHi(Ok,S ,W (E,χ)〈1 − e〉). By The-

orem 1.4(3), r0(1 − e, χ) is zero if e 6= 1 and equals the multiplicity of
the trivial character in χ otherwise. Since r2 > 0, the statements about
analyticity and poles of Lp,S(s, χ, k) in part (2) follow from the inequal-
ity r2 − r0 6 ν in part (1) and Remark 3.15. The claims in part (2) for
Lp(s, χ, k) then follow from this in turn by using Remark 3.15, (3.12), Re-
mark 3.11, and Proposition 2.18 (note that for e = 0 we have r0 = 0 and
r1 = r2 by parts (2) and (3) of Theorem 1.4). It thus suffices to prove
parts (1) and (3).

For the proof of (1), let r = r2 − r0. We shall prove the inequalities
min(1 − r0, ν) 6 r 6 ν in (1) when e = 1 and χ contains the trivial
character later. So let us fix e in Bχ(E), hence r0 = 0 by Theorem 1.4(3)
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and therefore r = r1 = r2 by Proposition 2.27. Let X be a finite OE-
module of size c1 such that H1(Ok,S ,W (E,χ)〈1 − e〉)∨ ' OrE × X and
hence H1(Ok,S ,W (E,χ)〈1 − e〉) ' (E/OE)r ×X∨ as OE-modules. Using
Theorem 1.4(3) for condition (b) below, and Theorem 5.15 for condition (c),
we now only consider n > 0 such that

(a) c1 divides pn;
(b) #H0(Ok,S ,W (E,χ)〈1− e′〉) equals a constant c0 if |e′− e|p 6 p−n,

and c0 divides pn;
(c) if 0 < |e′−e|p 6 p−n then e′ is in Bχ(E), Hi(Ok,S ,W (E,χ)〈1−e′〉)

is finite for i = 0, 1, 2, Lp,S(e′, χ, k) 6= 0, and |Lp,S(e′, χ, k)|p =
ÊCp,S(e′, χ, k).

Recall that, for a 6= 0 in OE , W (E,χ)[a] = ker(W (E,χ) a→ W (E,χ)). For
|e′ − e|p 6 p−n the long exact sequence associated to (2.11) gives

#H1(Ok,S ,W (E,χ)〈1− e′〉)[pn] = #H1(Ok,S ,W (E,χ)[pn]〈1− e′〉)
#H0(Ok,S ,W (E,χ)〈1− e′〉) .

For |e′ − e|p 6 p−n we have W (E,χ)[pn]〈1 − e′〉 ' W (E,χ)[pn]〈1 − e〉 as
Gk-modules, hence

(5.16)

#H1(Ok,S ,W (E,χ)〈1− e′〉)[pn]

= #H1(Ok,S ,W (E,χ)〈1− e〉)[pn]

= c1p
nr[E:Qp] ,

so if also e′ 6= e then by (c) and (b) we find

(5.17)

|Lp,S(e′, χ, k)|[E:Qp]
p = ÊCp,S(e′, χ, k)[E:Qp]

= #H0(Ok,S ,W (E,χ)〈1− e′〉)
#H1(Ok,S ,W (E,χ)〈1− e′〉)

6 c0c
−1
1 p−nr[E:Qp] .

For n � 0 the left-hand side equals c|e′ − e|ν[E:Qp]
p for some c 6= 0 and so

by choosing e′ with |e′ − e|p = p−n we get ν > r.
For proving that min(1, ν) 6 r we may take r = 0. For |e′− e|p 6 p−n−1

we see from (5.16) that the part of H1(Ok,S ,W (E,χ)〈1− e′〉) annihilated
by pn is the same as that annihilated by pn+1. Hence this is the entire
group, and #H1(Ok,S ,W (E,χ)〈1 − e′〉) = c1 for such e′. From (5.17) we
then see that |Lp,S(e′, χ, k)|[E:Qp]

p = c0/c1 for e′ 6= e close enough to e, so
by continuity we have |Lp,S(e, χ, k)|[E:Qp]

p = c0/c1 6= 0 and ν = 0.
We now assume e = 1 and χ contains the trivial character χ0. Note

that the two sides of the inequality r(e, χ) 6 ν(e, χ) are additive in χ,
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therefore it is enough to prove this for χ = χ0. In this case we may take
E = Qp and M = Zp. Moreover, we may take S = P by Theorem 1.4(2)
because Eul〈〉v (1, χ0ω

−1
p , k) 6= 0. Clearly H0(Ok,P ,Qp/Zp) = Qp/Zp, hence

r0(0, χ0) = 1. On the other hand, by the discussion after (5.8) and (5.9) we
have r1(0, χ0) = 1 + rankZpM, whereM is the Galois group of the maxi-
mal extension of k∞ unramified outside of the primes above p and infinite
primes. SinceM is isogenous to

⊕r
i=1 Zp/πmi ⊕

⊕s
j=1 Zp/(gj(0)), we find

rankZpM 6 ordT=0(g̃χ0(T )) by Theorem 4.2 if p 6= 2, and Assumption 4.4
if p = 2. As hχ0(T ) = T , ordT=0(g̃χ0(T )) = ν(0, χ0) + 1. Thus we have
r1(0, χ0) 6 ν(0, χ0) + 2 and r2(0, χ0) 6 ν(0, χ0) + 1 by Theorem 1.4(2).
Thus r(0, χ0) 6 ν(0, χ0). This proves the inequality r 6 ν in all the cases.
The inequality min(1− r0, ν) 6 r = r2− r0 is trivial unless r2 = 0. Write

χ = χ′ + sχ0 with χ′ not containing the trivial character and s > 1, then
r2(0, χ) = r2(0, χ′)+sr2(0, χ0). This is zero only if r2(0, χ′) = r2(0, χ0) = 0.
We have just proved Theorem 1.8(1) for χ′, so using Theorem 1.4(3) for
χ′ we see Lp(1, χ′, k) 6= 0. Moreover, r2(0, χ0) = 0 implies that r0(0, χ0) =
r1(0, χ0) = 1 by parts (2) and (3) of Theorem 1.4. Hence rankZpM = 0,
g̃χ0(0) 6= 0 and therefore ν(0, χ0) = −1. This proves ν(0, χ) = −s and
min(1− r0, ν) = −s = r2 − r0. This completes the proof of part (1) of the
theorem.
For part (3), we fix e in Bχ(E), so r0 = 0 by Theorem 1.4(3). Then the

equivalences follow from the case r2 = 0 in part (1) and Proposition 2.26.
For the very last formula, we observe that this is covered by the case r = 0
in the paragraph following (5.17) since #Hi(Ok,S ,W (E,χ)〈1 − e〉) = ci
for i = 0, 1 and r1 = r2 by Theorem 1.4(2). This concludes the proof of
Theorem 1.8. �

Note that if the equality

(5.18) νS(1− e, χ) = r2,S(1− e, χ)− r0,S(1− e, χ)

holds in Theorem 1.8(1) for some S then it holds for every choice of S by
Proposition 2.17(2), Theorem 1.4(2) and Remark 3.11. If it holds for all
totally real k and all 1-dimensional even Artin characters χ : Gk → E with
[kχ : k] not divisible by p, then it holds for all even Artin characters of Gk
for all totally real k. This is because such an equality is preserved under
the induction argument in the proof of Theorem 5.5 and also under the
arguments involving Brauer induction in the proof of Theorem 5.15. Since
r0,S(1− e, χ) is independent of S as stated in Theorem 1.4(2), we see from
Proposition 2.17(2) and Remark 3.11, the proof of the case l = 0 of Theo-
rem 5.5, and the proof of Lemma 4.6, that the equality in (5.18) for such
an Artin character χ is equivalent to all distinguished polynomials gj(T ) in
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OE [T ] having order at most 1 at T = qe−1
k − 1, where Y =M⊗Zp[G]M(χ)

as in the application of Lemma 4.6 in the proof of Theorem 5.5 is isogenous
to
⊕r

i=1
O[[T ]]
(πµi ) ⊕

⊕s
j=1

O[[T ]]
(gj(T )) . We therefore formulate the following (partly

folklore) conjecture.

Conjecture 5.19. — Let k be a totally real number field, p a prime
number, E a finite extension ofQp, and χ : Gk → E an even Artin character
realizable over E. If χ is 1-dimensional then let M(χ) = OE on which Gk
acts through χ. Assume that S contains the primes above p as well as the
finite primes of k at which kχ/k is ramified. LetM be the Galois group of
the maximal Abelian extension of (kχ)∞ that is unramified outside of the
primes above p and infinity. Then for e in Bk(E) we have the following.

(1) If χ is 1-dimensional of order prime to p, then the gj corresponding
to Y =M⊗Zp[G] M(χ) are square-free.

(2) If χ is 1-dimensional of order prime to p, then the gj corresponding
to Y = M⊗Zp[G] M(χ) have no multiple roots z in E for which
|z − 1|p < p−1/(p−1).

(3) If χ is 1-dimensional of order prime to p, then equality holds in (5.18).
(4) Equality holds in (5.18).

For the same k, e and χ, (1) implies (2), and, as discussed before the
statement of the conjecture, (2) is equivalent to (3). As also implied by the
discussion there, if we fix e, then (3) for all k, χ and E implies (4), and the
converse is clear.

Remarks 5.20. — In this remarks we make Assumption 4.4 if p = 2.
(1) If e = 1 and χ is the trivial character then parts (2) and (3) of

Theorem 1.4 and Theorem 1.8(1) imply the following are equivalent:
(a) ζp(s, k) has a simple pole at s = 1;
(b) corankZpH

1(Ok,S ,Qp/Zp) = 1;
(c) H2(Ok,S ,Qp/Zp) = 0.
Those statements are all equivalent with the Leopoldt conjecture for
k (see [27, Theorem 10.3.6]).
Clearly, an equality νS(0, χ) = −r0,S(0, χ) with χ the trivial char-

acter implies (a) by Theorem 1.4(3), hence the Leopoldt conjec-
ture for k. For other characters, recall that by Brauer’s theorem
χ =

∑
i ai IndGHi(χi) for some non-zero integers ai and 1-dimensional

characters χi of certain solvable subgroups Hi. If Hi is nontrivial
and χi = 1H , then IndG[Hi,Hi](1[Hi,Hi]) = IndGHi(1Hi) +

∑
j IndGHi(χj)

where the sum runs through the non-trivial 1-dimensional characters
of Hi. Repeating this process if necessary, we may assume that χi is
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trivial only if Hi is trivial. In that case, Frobenius reciprocity for 1G
implies that if χ does not contain the trivial character of G, then all χi
are non-trivial. Therefore the Leopoldt conjecture for all totally real
number fields implies Lp(s, χ, k), for an even character χ of Gk not
containing the trivial character, is defined and non-zero at s = 1, so
by Theorem 1.4(3) and Theorem 1.8(3), νS(0, χ) = −r0,S(0, χ) = 0.
Since the Leopoldt conjecture for k implies νS(0, χ) = −r0,S(0, χ) if
χ is the trivial character, the Leopoldt conjecture for all totally real
k implies equality for all k and all even Artin characters χ of Gk.

(2) For e in Bχ(E), H1(Ok,S ,W (E,χ)〈1 − e〉) is finite if and only if
Lp,S(e, χ, k) is defined and non-zero by Theorem 1.8(3). If χ contains
the trivial character and e = 1, then H1(Ok,S ,W (E,χ)〈1 − e〉) is
infinite by parts (2) and (3) of Theorem 1.4. The Leopoldt conjecture
(for all totally real k) would imply that then Lp,S(e, χ, k) should not
be defined at e = 1, extending this equivalence to e in Bk(E).

To conclude this section, we briefly discuss the case of 1-dimensional χ.

Example 5.21. — With notation as in Theorem 1.8, suppose that k is
totally real, χ is a 1-dimensional even Artin character, and e is in Bχ(E)
with Lp(e, χ, k) 6= 0. Then hχ(T ) = 1 unless kχ ⊆ k∞, in which case
hχ(T ) = χ(γ0)(T + 1)− 1. Note that in the latter case

H0(Ok,S ,W (E,χ)〈1− e〉) = ker
(
W (E,χ)〈1− e〉 1−γ0−→ W (E,χ)〈1− e〉

)
.

Since γ0 acts onW (E,χ)〈1−e〉 as multiplication by q1−e
k χ(γ0) in this case,

we have #H0(Ok,S ,W (E,χ)〈1−e〉) = |hχ(q1−e
k −1)|−[E:Qp]

p . Hence for any
1-dimensional χ we always have

(5.22) #H0(Ok,S ,W (E,χ)〈1− e〉)) > |hχ(q1−e
k − 1)|−[E:Qp]

p .

So by (3.6) and Theorem 1.8(3) we also have

(5.23) #H1(Ok,S ,W (E,χ)〈1− e〉)) > |πµχ g̃χ(q1−e
k − 1)|−[E:Qp]

p .

We distinguish three cases, with the third motivating why one needs to use
ÊCp,S(e, χ, k) rather than the individual cohomology groups (and to some
extent necessitating the complexity of our proofs).
(1) [kχ : k] is divisible by a prime other than p: then hχ(T ) = 1 and H0 is

trivial because it is contained in the kernel of multiplication by 1−ξq
where ξq is a root of unity of order a prime q 6= p. Therefore both
entries in (5.22) are 1, and equality holds in both (5.22) and (5.23)
because of Theorem 1.8(3).
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(2) [kχ : k] is a power of p and kχ ⊆ k∞. As already mentioned, equality
holds in (5.22), hence it also holds in (5.23), but in (5.22) both sides
are bigger than 1.

(3) [kχ : k] is a power of p but kχ * k∞. In this case hχ(T ) = 1. Note that
any g in G acts on W (E,χ)〈1− e〉 ' E/OE〈1− e〉 as multiplication
by an element of O×E that reduces to 1 in the residue field of OE ,
hence H0(Ok,S ,W (E,χ)〈1 − e〉) is non-trivial, and the inequalities
in (5.22) and (5.23) are strict.

6. Numerical examples

The approximations P̃ (T ) of the distinguished polynomials P (T ) and the
triviality of the µ-invariants in the following examples were kindly provided
to us by X.-F. Roblot. In all cases we have a totally real field K such that
K/Q is Galois with dihedral Galois group G of order 8. If k is the fixed field
of the cyclic subgroup H of order 4 then we consider L5(s) := L5(s, χ, k) =
L5(s, IndQ

k (χ),Q) where χ is a 1-dimensional character of order 4 of H
with values in µ4 ⊂ Q5. Note that IndQ

k (χ) is the irreducible 2-dimensional
character of Gal(K/Q) for either possibility for χ, so L5(s) is the same for
either χ.
With notation as in (3.6) we have hχ(T ) = 1, and used qk = 1 + 5. In all

cases below Roblot found that mχ = 0, so L5(s) = P (61−s − 1)u(61−s − 1)
for s in Bk = {s in Cp with |s|5 < 53/4}, where u(T ) is in Z5[[T ]]× and
P (T ) = g̃χ(T ) is a distinguished polynomial in Z5[T ]. So, in particular,
|L5(s)|5 = |P (61−s − 1)|5.
Note that if S is a finite set of primes of Q that includes 5 and the primes

where K/Q is ramified, then by Remark 2.13(3) we have, for E/Q5 a finite
extension and e in Bχ(E) = Bk(E), with the appropriate choice of lattices,

Hi(OQ,S ,W (E, IndQ
k (χ))〈1− e〉) ' Hi(Ok,S ,W (E,χ)〈1− e〉) .

We recall from Remark 2.2(1) that the coefficients in the right-hand side
are unique but that this does not necessarily hold in the left-hand side.
In the examples, K/k is unramified outside of the primes above 5. We

discuss Hi(Ok,S ,W (E,χ)〈1 − e〉) only when S consists of those primes.
The sizes of those groups for larger S can be calculated similarly by taking
into account various |Eul〈〉v (e, χω−1

5 , k)|5 as in (3.12). We leave this to the
interested reader.
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Example 6.1. — k = Q(
√

145), K is the Hilbert class field of k, where
P (T ) = 1. Taking e in Bk(Q5) = Z5, one sees from Case (1) of Exam-
ple 5.21 that Hi(Ok,S ,W (E,χ))〈1 − e〉) with E = Q5 is trivial for i = 0,
hence the same holds for i = 1 and i = 2 by Theorem 1.8. In fact, the same
statements are true if we use any finite extension E of Q5 and take e in
Bk(E).

Example 6.2. — k = Q(
√

41), K is the ray class field of k modulo 5.
Here P̃ (T ) = T − (5 + ε) with |ε|5 6 5−10. But Eul∗P (s, χω−1

5 , k) = 1 −
5−s, so that L5(0, χ, k) = 0 by (3.5), and P (T ) = T − 5. Fix a finite
extension E of Q5 and e in Bk(E). Again by Example 5.21 we have that
H0(Ok,S ,W (E,χ))〈1 − e〉) = 0. Taking e 6= 0, so that L5(e) 6= 0, by
Theorem 5.5 we have #H1(Ok,S ,W (E,χ))〈1 − e〉) = #OE/(61−e − 6) =
#OE/(6−e − 1) = #OE/(5e).
In fact, any Z5[[T ]]-submodule of finite index in Z5[[T ]]/(T − 5) ' Z5 is

isomorphic with Z5 as Z5[[T ]]-module, so that, in the proof of Theorem 5.5
for l = 0, the part ofM on which H acts through χ isM⊗Z5[H] Z5(χ) '
Z5 with the action of γ0 given by multiplication by 6. So by the proof
of Lemma 4.6 (in particular (4.7)) we have H1(Ok,S ,W (E,χ))〈1 − e〉) '
OE/(5e), also when e = 0.

Remark 6.3. — Note that the calculation in Example 6.2 for each of the
two possibilities for χ implies the existence of Lχ/K∞, such that Lχ/k is
Galois with Galois group isomorphic to (H × (1 + 5Z5)) n Z5, where the
action of (h, u) on Z5 (the part ofM on which H acts through χ) is given
by multiplication by χ(h)u.
Working over Q we find that the two Lχ together give rise to extensions

L∞/K∞/Q with Gal(L∞/Q) isomorphic to (G × (1 + 5Z5)) n Z2
5 where

G acts on Z2
5 as on the irreducible 2-dimensional representation of G, and

1 + 5Z5 by multiplication.

Example 6.4. — k = Q(
√

793), K is the Hilbert class field of k, and

P̃ (T ) = T 2 + ((0.341430342)5 + ε1)T + ((0.103034211)5 + ε2) ,

with |εi|5 6 5−10. Here (0.a1 · · · am)5 =
∑m
i=1 ai5m. Therefore P (T ) is

Eisenstein, hence is irreducible over Z5 and |L5(s)|5 = 1 for s in Z5. But
Z5[[T ]]/(P (T )) ' Z5[

√
5] = OQ5(

√
5) so any Z5[[T ]]-submodule of finite

index is isomorphic to Z5[[T ]]/(P (T )) with γ0 acting as multiplication
by 1 + T . As in Example 6.2 we find that H1(Ok,S ,W (E,χ))〈1 − e〉) '
OE/(P (61−e − 1)) for each finite extension E of Q5 and e in Bk(E) as
H0(Ok,S ,W (E,χ))〈1− e〉) is trivial. Unless |61−e − 1− α|5 6 5−19/2 for a
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root
α = (0.104202323)5 ± (3.41423114)5

√
5 + ε

of P (T ) (with |ε|5 6 5−19/2), we may replace P (61−e−1) with P̃ (61−e−1).

Remark 6.5. — Just as in Remark 6.3, the calculation in Example 6.4
for each of the two possibilities implies the existence of Lχ/K∞, such that
Lχ/k is Galois with Galois group isomorphic to (H × (1 + 5Z5))nZ5[

√
5],

where the action of (h, u) on Z5[
√

5] (the part of M on which H acts
through χ) is given by multiplication by χ(h)(1 + α)log(u)/ log(6) for α in
Z5[
√

5] a root of P (T ).
Working over Q we find that the two Lχ together give rise to extensions

L∞/K∞/Q with Gal(L∞/Q) isomorphic to (G×(1+5Z5))nZ5[
√

5]2 where
G acts as on Z5[

√
5]2 as on the irreducible 2-dimensional representation of

G, and u in 1 + 5Z5 as multiplication by (1 + α)log(u)/ log(6) for α a root of
P (T ) in Z5[

√
5].

7. The equivariant Tamagawa number conjecture

Let k be a number field, S a finite set of finite primes of k, Σ∞ the set of
infinite places of k and GS the Galois group of the maximal extension of k
that is unramified outside of S ∪ Σ∞. For any place v of k let Gwv be the
decomposition group in Gk of a prime wv of k lying above v. For a finitely
generated Zp-module A with continuous GS-action, define

RΓc(Ok,S , A) := Cone (C•(GS , A)→ ⊕v∈S∪Σ∞C
•(Gwv , A)) [−1],

where C• denotes the standard complex of (continuous) cochains, and the
morphism is induced by the natural maps Gwv → Gk → GS . We denote
the cohomology of RΓc(Ok,S , A) by H∗c(Ok,S , A). Applying inverse limits
to the resulting long exact sequence of cohomology groups with coefficients
A/pnA is exact because the H∗(GS , A/pnA) and H∗(Gwv , A/pnA) are fi-
nite. Therefore H∗c(Ok,S , A) ' lim←−nH

∗
c(Ok,S , A/pnA) by the five lemma.

If R is a commutative ring and Λ a perfect complex of R-modules then
Hi(Λ) is trivial for all but finitely many i and DetR Λ is defined (see [22]
for the definition and properties of the determinant functor). Moreover,
if Hi(Λ) is projective for all i, then by [7, Proposition 2.1(e)] there is a
canonical isomorphism DetR Λ → ⊗i Det(−1)i

R Hi(Λ). If R is the valuation
ring OE in a finite extension E of Qp, Hi(Λ) is finite for all i, and trivial
for all but finitely many i, then we have a canonical composition

(7.1) DetOE Λ ' ⊗i Det(−1)i
OE Hi(Λ)→ ⊗i Det(−1)i

E (Hi(Λ)⊗OE E) ' E .
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Theorem 7.2. — Let k be a totally real number field, p a prime number,
E a finite extension of Qp with valuation ring OE , m a negative integer, η
an Artin character of Gk realizable over E such that η(c) = (−1)m−1η(idk)
for every complex conjugation c in Gk, V (E, η∨) an Artin representation
of Gk over E with character η∨, M(E, η∨) an OE-lattice for η∨, and S a
finite set of primes of k containing the primes above p as well as all the
finite primes of k at which η is ramified. Then the following hold, where
for p = 2 we make Assumption 4.4.

(1) RΓc(Ok,S ,M(E, η∨)(m)) and RΓc(Ok,S , V (E, η∨)(m)) are perfect
complexes.

(2) Hi

c(Ok,S ,M(E, η∨)(m)) is finite for all i and trivial if i 6= 2, 3.
(3) In E we have

(7.3) L∗S(m, η, k) · OE = θ(DetOE RΓc(Ok,S ,M(E, η∨)(m))) ,

with L∗S(m, η, k) as in Section 3, and θ the composition (7.1) for
Λ = RΓc(Ok,S ,M(E, η∨)(m)).

Proof. — Part (1) follows from [12, Theorem 5.1]. For parts (2) and (3),
we abbreviate M(E, η∨)(m) to M , and begin by computing H∗c(Ok,S ,M).
We have H0

c(Ok,S ,M) = 0 because H0(GS ,M) → ⊕v∈SH0(Gwv ,M) is
injective. For a real place v in S, note that the complex conjugation cv in
Gal(kv/kv) acts onM as multiplication by−1, so thatH0(Gwv ,M/pnM) '
Ĥ0(Gwv ,M/pnM), where the right-hand side denotes Tate cohomology.
Therefore, for i > 1, Hi

c(Ok,S ,M/pnM) ' Hi
c(Ok,S ,M/pnM) where the

right-hand side denotes the cohomology with compact support as in [25,
Section II § 2, p.203]. Taking inverse limits and using (2.7) we have

H
i

c(Ok,S ,M) '
(
H3−i(Ok,S ,W (E, ηω1−m

p )〈1−m〉)
)∨

for i > 1, where W (E, η) and W (E, ηω1−m
p ) are obtained from M(E, η∨).

We see as just after (1.1) that L∗S(m, η, k) 6= 0 because m < 0, and
hence Lp,S(m, ηω1−m

p , k) 6= 0 by (3.13). Then according to Theorem 1.8(3),
Hj(Ok,S ,W (E, ηω1−m

p )〈1 −m〉) is finite for j = 0, 1 and trivial for j = 2,
completing the proof of part (2).
For part (3), note that for any finite OE-module A, I [E:Qp] = (#A) · OE

with I the image of the composition DetOE A → DetE(A ⊗OE E) ' E.
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Therefore

θ (DetOE RΓc(Ok,S ,M))[E:Qp] = #H2
c(Ok,S ,M)

#H3
c(Ok,S ,M)

· OE

=
#H1(Ok,S ,W (E, ηω1−m

p )〈1−m〉)
#H0(Ok,S ,W (E, ηω1−m

p )〈1−m〉)
· OE

= ÊCp,S(m, ηω1−m
p , k)−[E:Qp] · OE

= Lp,S(m, ηω1−m
p , k)[E:Qp] · OE

= L∗S(m, η, k)[E:Qp] · OE ,

where the last two equalities follow from Theorem 1.8(3) and the interpo-
lation formula (3.13). �

Corollary 7.4. — Let k be a totally real number field, K/k a finite
Galois extension with Galois group G and m a negative integer. Assume
that K is totally real if m is odd and K is a CM field if m is even. Let
M denote a maximal Z[G]-order inside Q[G]. Let πm = 1 if m is odd and
πm = (1− c)/2 if m is even, where c is the unique complex conjugation in
G. Let p be a prime number and if p = 2 make Assumption 4.4. Then the
p-part of the equivariant Tamagawa number conjecture ([7, Conjecture 6,
p.535]) holds for the pair (πmh0(SpecK)(m), πmM).

Proof. — Let F be a finite extension of Q such that all the irreducible
Q-valued characters of G can be realized over F , and let MF be a maximal
OF [G]-order in F [G]. By [7, Theorem 4.1], the equivariant Tamagawa num-
ber conjecture for the pair (πmh0(SpecK)(m), πmM) is then equivalent to
that for the pair (πmh0(SpecK)(m), πmMF ), which can be decomposed
according to all irreducible characters ψ of G if K is totally real, and those
ψ satisfying ψ(c) = −ψ(idk) if K is a CM field. For such a character ψ,
if πψ = (#G)−1∑

g∈G ψ(g)g−1 is the standard idempotent in F [G] corre-
sponding to ψ, then the special value of the motivic L-function associated
to πψh0(SpecK)(m) is L(m,ψ, k) in F . If we fix an embedding σ : F → E,
with E a finite extension of Qp, then σ(L(m,ψ, k)) = L∗(m,σ ◦ ψ, k), so
the p-part of the equivariant Tamagawa number conjecture states that (7.3)
holds with η = σ◦ψ: in the formulation of the equivariant Tamagawa num-
ber conjecture in [7], the canonical composition θ in (7.1) is multiplied by∏
v∈S\P Eul∗v(m, η, k) (see [7, Section 3] for details). �

Remark 7.5. — Note that if the interpolation formula (3.13) holds for
m = 0 and L∗S(0, η, k) 6= 0 then the statements of Theorem 7.2 are also true
for m = 0. Moreover, Corollary 7.4 holds in this case if we further assume
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that the reciprocal Euler factors Eul∗v(0, η, k) are non-trivial for all primes
v in S.

Remarks 7.6.
(1) Assumption 4.4 holds if p = 2, k = Q and η is the trivial character

(see Remark 4.5), so Corollary 7.4 holds without any assumptions
when m is odd and k = K = Q.

(2) A stronger version of Corollary 7.4, with the maximal order replaced
by Z[G] but p 6= 2, is proven by Burns in [6, Corollary 2.10] under
the assumption that certain Iwasawa-theoretic p-adic µ-invariants
of K are trivial. (If G is Abelian then this was already proved un-
der similar assumptions in [1, Theorem 3.3].) This is also proved
without assumptions if k = Q and K/Q is Abelian by Burns and
Greither in [8, Corollary 8.1] for p 6= 2, and by Flach in [13, The-
orem 5.1] and [14, Theorem 1.2] for p = 2. Huber and Kings [18,
Theorem 1.3.1] have also proved Corollary 7.4 in the case k = Q,
K/Q Abelian and p odd. In fact, in each case the results hold at
every integer m, and in [8, 13, 14, 18] the results hold for the pair
(h0(SpecK)(m),M) instead of (πmh0(SpecK)(m), πmM).
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