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Abstract. — Let A 6 G be a subgroup of a group G. An A–complement of
G is a subgroup H of G such that G = AH and A ∩ H = {1}. The classifying
complements problem asks for the description and classification of all A–comple-
ments of G. We shall give the answer to this problem in three steps. Let H be
a given A–complement of G and (., /) the canonical left/right actions associated
to the factorization G = AH. First, H is deformed to a new A–complement of
G, denoted by Hr, using a deformation map r : H → A of the matched pair
(A, H, ., /). Then the description of all complements is given: H is an A–comple-
ment of G if and only if H is isomorphic to Hr, for some deformation map r : H →
A. Finally, the classification of complements proves that there exists a bijection
between the isomorphism classes of all A–complements of G and a cohomological
object D (H, A | (., /)). As an application we show that the theoretical formula for
computing the number of isomorphism types of all groups of order n arises only
from the factorization Sn = Sn−1Cn.
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Résumé. — Soit G un groupe et A 6 G un sous-groupe de G. Un A–complément
de G est un sous-groupe H de G tel que G = AH et A ∩ H = {1}. Le problème
auquel on s’intéresse est de classifier et décrire tous les A–compléments de G. Nous
donnons la réponse à ce problème en trois étapes. Fixons H un A–complément de
G et soient (., /) les actions canoniques associées à la factorisation G = AH. On
commence par déformer H en un nouveau A–complément Hr à l’aide d’une cer-
taine fonction r : H → A appelée fonction de déformation de (A, H, ., /). Ensuite
on donne la description de tous les A–compléments : H 6 G est un A–complément
de G si et seulement si H est isomorphe à Hr pour une certaine fonction de défor-
mation r : H → A. Enfin, la classification des A–compléments prouve qu’il existe
une bijection entre les classes d’isomorphisme de tous les A–compléments de G et
un objet cohomologique D (H, A | (., /)). Comme application, on démontre que la
formule qui calcule le nombre de classes d’isomorphisme des groupes d’ordre n peut
être retrouvée à partir de la factorisation Sn = Sn−1Cn.

Introduction

Group factorizations have been intensively studied starting with the clas-
sical papers by Szép [20, 22, 21], Douglas [6] and Ito [13] but the problem
goes back to Maillet [17] and the 1900 Minkowski conjecture on tiling (an-
other name for factorizations) proved 40 years later by Hajós [12]. Let
A 6 G be a subgroup of G. An A–complement of G is a subgroup H 6 G

such that G factorizes through A and H, that is G = AH and A∩H = {1}.
F(A,G) will denote the (possibly empty) set of isomorphism types of all
A–complements of G. We define the factorization index of A in G to be the
cardinal of F(A,G) and it will be denoted by [G : A]f := | F(A,G) |.

The problem of existence of complements has to be treated ”case by
case” for every given subgroup A of G, a computational part of it can not
be avoided. It was studied in its global form: find all factorizations of a
given group G. Particular attention was given to finding all factorizations
of simple groups. Starting with the 1970’s a very rich literature on the
subject was developed: see for instance [4, 5], [7, 8, 9, 10, 11], [15], [18],
[24, 25]. For more details on this problem we refer to the two fundamental
monographs [14], [16] and the references therein. The present paper deals
with the following question:

Classifying complements problem (CCP): Let A be a subgroup of
G. If an A–complement of G exists, describe explicitly, classify all A–com-
plements of G and compute the factorization index [G : A]f .
We shall give the answer to the CCP in three steps called: deformation

of complements, description of complements and classification of comple-
ments. First of all, in Section 1 we recall briefly the definition of a matched
pair of groups and the construction of the bicrossed product of two groups
as defined by Takeuchi [23]. Let H be a given A–complement of G and (., /)
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the canonical left/right actions associated to the factorizationG = AH such
that (A,H, ., /) is a matched pair of groups and G = A ./ H. Theorem 2.4
is called the deformation of complements: if r : H → A is a deformation
map of the matched pair (A,H, ., /), then the group H is deformed to a
new group Hr, called the r-deformation of H, such that Hr remains an
A–complement of G = A ./ H. The key point is Theorem 2.5 called the
description of complements: H is an A–complement of G if and only if H
is isomorphic to Hr, for some deformation map r : H → A of the canoni-
cal matched pair (A,H, ., /). Finally, the classification of complements is
proven in Theorem 2.9: there exists a bijection between the set of isomor-
phism types of all A–complements of G and a cohomological type object
D (H,A | (., /)) which is explicitly constructed. In particular, the factor-
ization index is computed by the formula [G : A]f = | D(H,A | (., /)) |.
In Section 3 we provide some explicit examples. Let Sn be the symmet-
ric group and Cn the cyclic group of order n. By applying our results to
the factorization Sn = Sn−1Cn we obtain the following: (1) any group H
of order n is isomorphic to (Cn)r, the r-deformation of the cyclic group
Cn for some deformation map r : Cn → Sn−1 of the canonical matched
pair (Sn−1, Cn, ., /) and (2) the number of isomorphism types of all groups
of order n is equal to | D(Cn, Sn−1 | (., /)) |. Therefore, we obtain a com-
binatorial formula for computing the number of isomorphism types of all
groups of order n which arises from a minimal set of data: the factorization
Sn = Sn−1Cn.

The factorization problem as well as the bicrossed product were intro-
duced and studied in other fields such as topological groups, local compact
groups, Hopf algebras, groups and Lie algebras etc. The results presented
here for groups can be used as a model for developing similar theories in
the fields listed above. For Hopf algebras and Lie algebras we refer to [2]
and for associative algebras to [1].

1. Preliminaries

Let G, G′ be two groups containing A as a subgroup. We say that a
morphism of groups ψ : G→ G′ stabilizes A if ψ(a) = a, for all a ∈ A. Let
A and H be two groups and . : H ×A→ A and / : H ×A→ H two maps.
The map . (resp. /) is called trivial if h . a = a (resp. h / a = h), for all
a ∈ A and h ∈ H. A matched pair [23] of groups is a quadruple (A,H, ., /),
where A and H are groups, . : H ×A→ A is a left action of the group H
on the set A, / : H ×A→ H is a right action of the group A on the set H
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satisfying the following compatibilities for any a, b ∈ A, h, g ∈ H:

h . (ab) = (h . a)((h / a) . b)(1.1)
(hg) / a = (h / (g . a))(g / a)(1.2)

If (A,H, ., /) is a matched pair then the following normalizing conditions
hold:

(1.3) 1 . a = a, h / 1 = h, h . 1 = 1, 1 / a = 1

for all a ∈ A and h ∈ H. Let . : H ×A→ A, / : H ×A→ H be two maps
and A ./ H := A×H with the binary operation defined by the formula:

(1.4) (a, h) · (b, g) :=
(
a(h . b), (h / b)g

)
for all a, b ∈ A, h, g ∈ H. The following is [23, Proposition 2.2.]:

Proposition 1.1. — Let A and H be groups and . : H × A → A,
/ : H × A→ H two maps. Then A ./ H is a group with unit (1, 1) if and
only if (A,H, ., /) is a matched pair of groups. In this case A ./ H is called
the bicrossed product of A and H.

If A ./ H is a bicrossed product then iA : A → A ./ H, iA(a) = (a, 1)
and iH : H → A ./ H, iH(h) = (1, h) are morphisms of groups. A and H
will be viewed as subgroups of A ./ H via the identifications A ∼= A×{1},
H ∼= {1} × H. If the right action / of a matched pair (A,H, ., /) is the
trivial action then the bicrossed product A ./ H is just the semidirect
product AnH of A and H. Thus, the bicrossed product is a generalization
of the semidirect product to the case when none of the factors is required
to be normal.
We recall that a group G factorizes through two subgroups A and H

if G = AH and A ∩ H = {1}. The bicrossed product A ./ H factorizes
through A ∼= A×{1} and H ∼= {1}×H as for any a ∈ A and h ∈ H we have
that (a, h) = (a, 1) · (1, h). Conversely, the main motivation for defining the
bicrossed product of groups is the following:

Proposition 1.2. — A group G factorizes through two subgroups A
and H if and only if there exists a matched pair of groups (A,H, ., /) such
that the multiplication map

mG : A ./ H → G, mG(a, h) = ah

for all a ∈ A and h ∈ H is an isomorphism of groups that stabilizes A.

Proof. — The detailed proof is given in [23, Proposition 2.4]. We only
indicate the construction of the matched pair (A,H, ., /) associated to the
factorization G = AH. Indeed, if G factorizes through A and H then for
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any g ∈ G there exists a unique pair (a, h) ∈ A × H such that g = ah.
This allows us to attach to any (a, h) ∈ A ×H a unique pair of elements
(h . a, h / a) ∈ A×H such that

(1.5) h a = (h . a)(h / a) ∈ AH

Then (A,H, ., /) is a matched pair of groups and mG : A ./ H → G is an
isomorphism of groups that stabilizes A. �

Remark 1.3. — Let A 6 G be a given subgroup of G. We will see that
a factorization G = AH is not necessarily unique as there may exist other
subgroups H ′ 6 G, not isomorphic to H, such that G = AH ′. Such an
example is presented below. Let k be a positive integer. In what follows
we view A4k−1 as a subgroup of A4k by letting 4k to be a fixed point
in the alternating group A4k. Then we have two factorizations: A4k =
A4k−1D4k = A4k−1(C2 ×C2k), where D4k is the dihedral group and Cm is
the cyclic group of orderm. Indeed, let σ, τ ∈ A4k be the even permutations

σ = (1, 3, 5, · · · , 4k − 1)(2, 4, 6, · · · , 4k)
τ = (1, 2k + 2)(2, 2k + 1)(3, 2k + 4)(4, 2k + 3) · · · (2k − 1, 4k)(2k, 4k − 1)

It is straightforward to check that σ and τ generate a subgroup of A4k

isomorphic to the dihedral group D4k of order 4k and A4k = A4k−1D4k.
On the other hand, let σ′, τ ′ ∈ A4k given by

σ′ = (1, 2, · · · , 2k)(2k + 1, 2k + 2, · · · , 4k)
τ ′ = (1, 2k + 1)(2, 2k + 2) · · · (2k, 4k)

Then σ′τ ′ = τ ′σ′ and the subgroup of A4k generated by σ and τ is C2 ×
C2k. Moreover, we have A4k = A4k−1(C2 ×C2k). This example reveals yet
another important fact: a possible attempt to generalize the Krull-Schmidt
decomposition of groups into direct products ([19, Theorem 6.36]) fails for
bicrossed products since A4k = A4k−1 ./ D4k

∼= A4k−1 ./ (C2 × C2k), and
of course the direct product C2 × C2k is not isomorphic to the dihedral
group D4k.

From now on, the matched pair constructed in (1.5) will be called the
canonical matched pair associated to the factorization G = AH. We use the
above terminology in order to distinguish this matched pair among other
possible matched pairs (A,H, .′, /′) such that A ./′ H ∼= G (isomorphism
of groups that stabilizes A), where A ./′ H is the bicrossed product associ-
ated to the matched pair (A,H, .′, /′). The following result provides more
details: it can be obtained from [3, Proposition 2.1] for σ = IdH . However,
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we state the result below for the sake of completeness as it will be used in
the sequel.

Proposition 1.4. — Let (A,H, ., /) and (A,H ′, .′, /′) be two matched
pairs of groups. There exists a bijection between the set of all morphisms of
groups ψ : A ./′ H ′ → A ./ H that stabilize A and the set of all pairs (r, v),
where r : H ′ → A, v : H ′ → H are two unit preserving maps satisfying the
following compatibilities for any h′, g′ ∈ H ′, a ∈ A:

h′ .′ a = r(h′)
(
v(h′) . a

)
r(h′ /′ a)−1(1.6)

v(h′ /′ a) = v(h′) / a(1.7)
r(h′g′) = r(h′)

(
v(h′) . r(g′)

)
(1.8)

v(h′g′) =
(
v(h′) / r(g′)

)
v(g′)(1.9)

Under the above correspondence the morphism of groups ψ : A ./′ H ′ →
A ./ H corresponding to (r, v) is given by:

(1.10) ψ(a, h′) =
(
a r(h′), v(h′)

)
for all a ∈ A, h′ ∈ H ′ and ψ : A ./′ H ′ → A ./ H is an isomorphism of
groups if and only if the map v : H ′ → H is bijective.

2. Classifying complements

This section contains the main results of the paper. First we need to
introduce the following:

Definition 2.1. — Let A 6 G be a subgroup of G. An A–complement
of G is a subgroup H 6 G such that G factorizes through A and H. We
denote by F(A,G) the set of isomorphism types of all A–complements of G.
We define the factorization index of A in G as the cardinal of F(A,G) and
it will be denoted by [G : A]f := | F(A,G) |. We shall write [G : A]f = 0, if
F(A,G) is empty.

Let H be a given A–complement of G and (A,H, ., /) the canonical
matched pair associated to it as in (1.5) of Proposition 1.2. We shall
describe all A–complements of G in terms of (H, /, .) and certain maps
r : H → A, called deformation maps. The classification of all A–comple-
ments of G is also given by proving that F(A,G) is in bijection with a
cohomological object.

ANNALES DE L’INSTITUT FOURIER
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Examples 2.2. — 1. Many group extensions A 6 G have the factoriza-
tion index [G : A]f equal to 0 (that is there exists no factorization G = AH)
or 1. For instance, if G is an abelian group, then [G : A]f ∈ {0, 1}, for any
subgroup A of G ([G : A]f = 1 if and only if A is a direct summand of G).

Group extensions A 6 G of factorization index 1 are exactly those for
which the factorization is unique. In other words, for these extensions the
Krull-Schmidt theorem [19, Theorem 6.36] for bicrossed products holds: if
G ∼= A ./ H ∼= A ./ H ′, then H ∼= H ′. A generic example of an extension
of factorization index 1 is provided in Corollary 2.7 below: if A nH is an
arbitrary semidirect product of A and H, then [AnH : A]f = 1.

2. Examples of extensions A 6 G for which [G : A]f > 2 are quite
rare, which makes them tempting to identify. Remark 1.3 proves in fact
that [A4k : A4k−1]f > 2. We provide below an example of an extension of
factorization index 2.
The extension S3 6 S4 has factorization index 2. Indeed, let C4 =<

(1234) > be the cyclic group of order 4 and C2 × C2 the Klein’s group
viewed as a subgroup of S4 being generated by (12)(34) and (13)(24). Then
S4 has two factorizations: S4 = S3C4 = S3(C2 × C2). Since there are no
other groups of order four we obtain that [S4 : S3]f = 2.

3. Example (2) above can be generalized as follows: the factorization
index [Sn : Sn−1]f = g(n), the number of isomorphism types of groups of
order n. Indeed, let H be a group of order n. We see H as a subgroup of Sn

through the regular representation, i.e. T : H → Sn given by T (h) = σh,
where σh(x) = hx, for all h, x ∈ H. It is now obvious that through this
representation n is not fixed by any other element in H besides 1. Since we
consider Sn−1 as a subgroup in Sn by letting n to be a fixed point we have
H ∩ Sn−1 = 1 and therefore Sn = Sn−1H.

Definition 2.3. — Let (A,H, ., /) be a matched pair of groups. A de-
formation map of the matched pair (A,H, ., /) is a function r : H → A

such that r(1) = 1 and for all g, h ∈ H we have:

(2.1) r
((
h / r(g)

)
g
)
= r(h)

(
h . r(g)

)
Let DM (H,A | (., /)) be the set of all deformation maps of the matched

pair (A,H, ., /). The trivial map H → A, h 7→ 1, for any h ∈ H is a
deformation map. If both actions (., /) of the matched pair are trivial then
a deformation map is just a morphism of groups r : H → A. The following
result is called the deformation of complements: it shows that any A–com-
plement can be deformed to a new A–complement using a deformation map
r : H → A.

TOME 65 (2015), FASCICULE 3
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Theorem 2.4. — Let (A,H, ., /) be a matched pair of groups and r :
H → A a deformation map. The following hold:

(1) Let Hr := H, as a set, with the new multiplication • on H defined
for any h, g ∈ H as follows:

(2.2) h • g :=
(
h / r(g)

)
g

Then (Hr, •) is a group called the r-deformation of H.
(2) The map

(2.3) .r : Hr ×A→ A, h .r a := r(h)
(
h . a

)
r(h / a)−1

for all h ∈ Hr, a ∈ A is a left action of the group Hr on the set A and
(A,Hr, .

r, /) is a matched pair of groups. Furthermore, the map

(2.4) ψ : A ./r Hr → A ./ H, ψ(a, h) = (a r(h), h)

for all a ∈ A and h ∈ H is an isomorphism of groups, where A ./r Hr is
the bicrossed product associated to the matched pair (A,Hr, .

r, /).
(3) Hr is an A–complement of A ./ H.

Proof. — (1) Using the normalizing conditions (1.3) and the fact that
r : H → A is a unitary map, 1 remains the unit for the new multiplication
• given by (2.2). On the other hand for any h, g, t ∈ H we have:

(h • g) • t =
[(
h / r(g)

)
g
]
• t =

((
(h / r(g))g

)
/ r(t)

)
t

(1.2)=
((
h / r(g)

)
/
(
g . r(t)

))(
g / r(t)

)
t

=
(
h /
(
r(g)(g . r(t))

))(
g / r(t)

)
t

(2.1)=
(
h / r

(
(g / r(t)) t

)) (
g / r(t)

)
t

= h •
[(
g / r(t)

)
t
]
= h • (g • t)

Thus, the multiplication • is associative and has 1 as a unit. We prove now
that the inverse of an element h ∈ Hr is given by h−1 = h−1 / r(h)−1, for
all h ∈ H. Indeed, for any h ∈ H we have:

h−1 • h =
(
h−1 / r(h)−1) •h =

((
h−1 / r(h)−1)/ r(h)

)
h

=
(
h−1 /

(
r(h)−1r(h)

))
h = h−1 h = 1

Thus we proved that (Hr, •) is a monoid in which every element has a left
inverse. Hence (Hr, •) is a group.

(2) Instead of using a rather long computation to prove that (A,Hr, .
r, /)

satisfies the axioms (1.1)-(1.2) of a matched pair we proceed as follows:
first, observe that the map ψ : A ×Hr → A ./ H, ψ(a, h) = (a r(h), h) is

ANNALES DE L’INSTITUT FOURIER
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a bijection between the set A×Hr and the group A ./ H with the inverse
given by

ψ−1 : A ./ H → A×Hr, ψ−1(a, h) = (a r(h)−1, h)

for all a ∈ A and h ∈ H. Thus, there exists a unique group structure � on
the set A × Hr such that ψ becomes an isomorphism of groups and this
unique group structure � is obtained by transferring the group structure
from the group A ./ H via the bijection of sets ψ, i.e. is given by:

(a, h) � (b, g) := ψ−1(ψ(a, h) · ψ(b, g)
)

for all a, b ∈ A and h, g ∈ Hr = H. If we prove that this group struc-
ture � on the direct product of sets A × Hr is exactly the one given by
(1.4) associated to the pair of maps (.r, /) the proof is finished by using
Proposition 1.1. Indeed, for any a, b ∈ A and g, h ∈ H we have:

(a, h) � (b, g) = ψ−1(ψ(a, h) · ψ(b, g)
)

= ψ−1
((
a r(h), h

)
·
(
b r(g), g

))
= ψ−1

(
a r(h)

(
h . br(g)

)
,
(
h / br(g)

)
g
)

=
(
a r(h)

(
h . br(g)

)
r
((
h / br(g)

)
g
)−1

,
(
h / br(g)

)
g
)

=
(
a r(h)

(
h . br(g)

)
r
((

(h / b) / r(g)
)
g
)−1

,
(
h / br(g)

)
g
)

(2.1)=
(
a r(h)

(
h . br(g)

)[
r
(
h / b

)((
h / b

)
.r(g)

)]−1
,(

h / br(g)
)
g
)

(1.1)=
(
a r(h)

(
h . b

)((
h / b

)
.r(g)

)((
h / b

)
.r(g)

)−1
r
(
h / b

)−1
,(

h / br(g)
)
g
)

=
(
a r(h)

(
h . b

)
r
(
h / b

)−1
,
(
h / br(g)

)
g
)

(2.2)=
(
a r(h)

(
h . b

)
r
(
h / b

)−1
,
(
h / b

)
•g
)

(2.3)=
(
a (h .r b), (h / b) • g

)
= (a, h) ·r (b, g)

where ·r is the multiplication given by (1.4) associated to the new pair of
maps (.r, /). Now we apply Proposition 1.1.
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(3) First we remark that the isomorphism of groups ψ : A ./r Hr → A ./

H given by (2.4) stabilizes A. Hence A ∼= ψ(A) = A × {1} 6 A ./ H and
Hr
∼= ψ({1} × Hr) = {(r(h), h) |h ∈ H} is a subgroup of A ./ H. Now,

A ./ H factorizes through A and Hr since in A ./ H we have:

(a, h) = (ar(h)−1, 1) · (r(h), h)

for all a ∈ A and h ∈ H. Of course, A× {1} and {(r(h), h) |h ∈ H} ∼= Hr

have trivial intersection in A ./ H as r is a unitary map. The proof is now
completely finished. �

Now we prove the converse of Theorem 2.4 which gives the description
of all A–complements of G in terms of a fixed one H.

Theorem 2.5. — Let A 6 G be a subgroup of G and H a given A–com-
plement of G. Then H is an A–complement of G if and only if there exists
an isomorphism of groups H ∼= Hr, for some deformation map r : H → A

of the canonical matched pair (A,H, ., /) associated to the factorization
G = AH.

Proof. — Let A ./ H be the bicrossed product of the canonical matched
pair (A,H, ., /). Then the multiplication map mG : A ./ H → G is an
isomorphism of groups that stabilizes A. Consider (A,H, .′, /′) to be the
canonical matched pair associated to the factorization G = AH; hence the
multiplication map m′G : A ./′ H → G is also an isomorphism of groups
that stabilizes A. Then ψ := m−1

G ◦ m′G : A ./′ H → A ./ H is a group
isomorphism that stabilizes A as a composition of such morphisms. Now
by applying Proposition 1.4 it follows that ψ is uniquely determined by a
pair of maps (r, v) consisting of a unitary map r : H → A and a unitary
bijective map v : H→ H satisfying the compatibility conditions

h′ .′ a = r(h′)
(
v(h′) . a

)
r(h′ /′ a)−1(2.5)

v(h′ /′ a) = v(h′) / a(2.6)
r(h′g′) = r(h′)

(
v(h′) . r(g′)

)
(2.7)

v(h′g′) =
(
v(h′) / r(g′)

)
v(g′)(2.8)

for all h′, g′ ∈ H and a ∈ A. Moreover, ψ : A ./′ H→ A ./ H is given by:

ψ(a, h′) = (a r(h′), v(h′))

for all a ∈ A and h′ ∈ H. We define

r : H → A, r := r ◦ v−1

and we will prove that r is a deformation map of the matched pair (A,H,.,/)
and v : H→ Hr is an isomorphism of groups. First, notice that r is unitary
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as r, v are both unitary. We have to show that the compatibility condition
(2.1) holds for r. Indeed, from (1.8) and (1.9) we obtain:

r ◦ v−1[
(
v(h′) / r(g′)

)
v(g′) ] = r(h′)

(
v(h′) . r(g′)

)
(2.9)

for all h′, g′ ∈ H. Let h, g ∈ H and write the compatibility condition (2.9)
for h′ = v−1(h) and g′ = v−1(g). We obtain

r
((
h / r(g)

)
g
)

= r(h)
(
h . r(g)

)
that is (2.1) holds and hence r : H → A is a deformation map. Finally,
v : H → Hr is a bijective map as H = Hr as sets. Hence, we are left to
prove that v is also a morphism of groups. Indeed, for any h′, g′ ∈ H we
have:

v(h′g′) (1.9)=
(
v(h′) / r(g′)

)
v(g′) (2.2)= v(h′) • v(g′)

where • is the multiplication on Hr as defined by (2.2). Hence v : H→ Hr

is an isomorphism of groups and the proof is finished. �

Remark 2.6. — Assume that in Theorem 2.4 the deformation map r :
H → A is the trivial one or the right action / is the trivial action of A
on H. Then Hr = H as groups. In general, the new group Hr may not
be isomorphic to H as groups. Example 3.3 shows how the Klein’s group
C2 × C2 can be constructed as an r-deformation of the cyclic group C4,
for some deformation map r : C4 → S3. On the other hand, there are
also examples of non-trivial deformation maps, with a non-trivial action /,
such that Hr is a group isomorphic to H. Such an example is provided in
Example 3.5.

Corollary 2.7. — Let A and H be two groups, A n H an arbitrary
semidirect product of A and H. Then the factorization index [A n H :
A]f = 1.
In particular, the following Krull-Schmidt type theorem for bicrossed

product holds: if AnH ∼= A ./ H ′ (isomorphism of groups that stabilizes
A), then the groupsH ′ andH are isomorphic, where A ./ H ′ is an arbitrary
bicrossed product.

Proof. — Indeed, H ∼= {1} × H is an A–complement of the semidirect
product A n H. Moreover, the right action / of the canonical matched
pair (A,H, ., /) constructed in (1.5) for the factorization A n H = (A ×
{1})({1}×H) is the trivial action. Thus, using Remark 2.6, any r-deforma-
tion of H ∼= {1} ×H coincides with H.

The rest follows from Theorem 2.5. �
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In order to provide the classification of complements we need one more
definition:

Definition 2.8. — Let (A,H, ., /) be a matched pair of groups. Two
deformation maps r, R : H → A are called equivalent and we denote this
by r ∼ R if there exists σ : H → H a permutation on the set H such that
σ(1H) = 1H and for all g, h ∈ H we have:

(2.10) σ
(
(h / r(g)) g

)
=
(
σ(h) / R(σ(g))

)
σ(g)

As a conclusion of all the above results, our main theorem which gives
the classification of all A–complements of a group G now follows.

Theorem 2.9. — Let A 6 G be a subgroup of G, H a given A–comple-
ment of G and (A,H, ., /) the associated canonical matched pair. Then:

(1) ∼ is an equivalence relation on DM(H,A | (., /)) and the map

D (H,A | (., /)) → F (A,G), r 7→ Hr

is a bijection between sets, where D (H,A | (., /)) := DM (H,A | (., /))/ ∼
is the quotient set through the relation ∼ and r is the equivalence class of
r via ∼.

(2) The factorization index [G : A]f is computed by the formula:

[G : A]f = |D (H,A | (., /))|

Proof. — It follows from Theorem 2.5 that if H is an arbitrary A–com-
plement of G, then there exists an isomorphism of groups H ∼= Hr, for some
deformation map r : H → A of the matched pair (A,H, ., /). Thus, in order
to classify all A–complements on G we can consider only r-deformations of
H, for various deformation maps r : H → A. Now let r, R : H → A be two
deformation maps of the matched pair (A,H, ., /). As Hr and HR coincide
as sets, the groups Hr and HR are isomorphic if and only if there exists
σ : H → H a unitary bijective map such that σ : Hr → HR is a morphism of
groups. Taking into account the definition of the multiplication on Hr given
by (2.2) it follows that σ is a group morphism if and only if the compatibility
condition (2.10) of Definition 2.8 holds, i.e. r ∼ R. Hence, r ∼ R if and
only if there exists a map σ such that σ : Hr → HR is an isomorphism
of groups. Therefore ∼ is an equivalence relation on DM(H,A | (., /)) and
the map

D (H,A | (., /))→ F (A,E), r 7→ Hr

is well defined and a bijection between sets, where r is the equivalence
class of r via the relation ∼. (2) follows from (1) and the proof is now
finished. �
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3. Examples

Let n be a positive integer. In this section we apply the results obtained
in Section 2 to the factorization Sn = Sn−1Cn. As a consequence, we derive
a combinatorial formula for computing the number of types of groups of
order n as well as an explicit description for the multiplication on any
group of order n. In what follows we consider the usual presentation of the
symmetric group Sn:

Sn = 〈s1, s2, . . . , sn−1 |

s2
i = 1, si si+1 si = si+1 si si+1, si sj = sj si, |i− j| > 1〉

We shall see the cyclic group Cn as a subgroup of Sn generated by x :=
s1 s2 . . . sn−1 while Sn−1 will be seen as the subgroup of Sn generated
by s1, s2, . . . sn−2. To start with, we describe the canonical matched pair
associated to the factorization Sn = Sn−1Cn. It is enough to define the two
actions . : Cn × Sn−1 → Sn−1 and / : Cn × Sn−1 → Cn on the generators
of Sn−1 and Cn as they can be extended to the entire group by using the
compatibilities (1.1) and (1.2).

Proposition 3.1. — The canonical matched pair (Sn−1, Cn, ., /) asso-
ciated to the factorization Sn = Sn−1Cn is given as follows:

x . si =
{

si+1, if i < n− 2
sn−2 sn−3 . . . s1, if i = n− 2

x / si =
{

x, if i < n− 2
x2, if i = n− 2

where x := s1 s2 . . . sn−1.

Proof. — We compute the canonical matched pair by using the approach
highlighted in the proof of Proposition 1.2. We start by computing the xsi’s,
for al i ∈ 1, 2, . . . , n− 2. If i < n− 2 we have:

xsi = s1 . . . si−1 si si+1 si+2 . . . sn−1 si

= s1 . . . si−1 (si si+1 si) si+2 . . . sn−1

= s1 . . . si−1 (si+1 si si+1) si+2 . . . sn−1

= si+1 s1 . . . sn−1 = si+1x
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If i = n− 2 we obtain:

xsn−2 = s1 . . . sn−3 (sn−2 sn−1 sn−2)
= s1 . . . sn−3 (sn−1 sn−2 sn−1)
= sn−1 s1 . . . sn−1

= sn−2 sn−3 . . . s1(s1 s2 . . . sn−1)2 = x′x2

where x′ := sn−2 sn−3 . . . s1 and the conclusion follows easily. �

By applying Theorem 2.5 and Theorem 2.9 for the factorization Sn =
Sn−1Cn we obtain the following result concerning the structure and the
number of types of groups of finite order.

Corollary 3.2. — Let n be a positive integer and (Sn−1, Cn, ., /) the
canonical matched pair associated to the factorization Sn = Sn−1Cn. Then:

(1) Any group of order n is isomorphic to an r-deformation of the cyclic
group Cn, for some deformation map r : Cn → Sn−1 of the canonical
matched pair (Sn−1, Cn, ., /). The multiplication • on (Cn)r is given by:
x•y =

(
x/r(y)

)
y, for all x, y ∈ (Cn)r, where we denoted by juxtaposition

the multiplication in the cyclic group Cn.
(2) The number of isomorphism types of all groups of order n is equal to

| D(Cn, Sn−1 | (., /)) |

Proof. — It follows from Theorem 2.5 and Theorem 2.9 taking into ac-
count that any group H of order n is an Sn−1–complement of Sn according
to (3) of Example 2.2. �

Now we provide some explicit examples in order to see how Corollary 3.2
works.

Example 3.3. — Consider the extension S3 6 S4 of factorization index
2. Then the canonical matched pair (S3, C4, ., /) associated to the factor-
ization S4 = S3C4 from Proposition 3.1 takes the following form:

. 1 s1 s1 s2 s2 s1 s2 s1 s2 s1
1 1 s1 s1 s2 s2 s1 s2 s1 s2 s1
x 1 s2 s1 s1 s2 s2 s1 s1 s2 s1
x2 1 s2 s1 s2 s1 s1 s2 s1 s2 s1
x3 1 s1 s2 s2 s1 s2 s1 s1 s2 s1

/ 1 s1 s1 s2 s2 s1 s2 s1 s2 s1
1 1 1 1 1 1 1
x x x x2 x3 x2 x3

x2 x2 x3 x3 x x x2

x3 x3 x2 x x2 x3 x
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By a straightforward computation one can prove that there are two de-
formation maps for the canonical matched pair (S3, C4, ., /): namely the
trivial one r′ : C4 → S3, r′(c) = 1, for any c ∈ C4 and the map given by

r : C4 → S3, r(1) = r(x2) = 1, r(x) = r(x3) = s1 s2 s1

We consider the following presentation of the Klein’s group: C2 × C2 =
〈a = (12)(34), b = (13)(24) | a2 = b2 = 1, ab = ba〉. Then we can easily
prove that the map:

ϕ : C2 × C2 → (C4)r, ϕ(1) = 1, ϕ(a) = x, ϕ(b) = x2, ϕ(ab) = x3

is an isomorphism of groups, that is C2 × C2 ∼= (C4)r.

Corollary 3.2 proves that any finite group of order n is isomorphic to an
r-deformation of the cyclic group Cn, for some deformation map r : Cn →
Sn−1 of the canonical matched pair associated to the factorization Sn =
Sn−1Cn. The next example shows how the symmetric group S3 appears as
an r-deformation of the cyclic group C6 arising from a given matched pair
(C3, C6, ., /).

Example 3.4. — Let C3 = 〈a | a3 = 1〉 and C6 = 〈b | b6 = 1〉 be the
cyclic groups of order 3 respectively 6. As a special case of [3, Proposition
4.2] we have a matched pair of groups (C3, C6, ., /), where the actions (., /)
on generators are defined by:

b . a := a2 b / a := b3

By a rather long but straightforward computation it can be seen that the
map:

r : C6 → C3, r(1) = r(b3) = 1, r(b) = r(b4) = a2, r(b2) = r(b5) = a

is a deformation map of the matched pair (C3, C6, ., /) and ϕ : S3 → (C6)r

given by:

ϕ(1) = 1, ϕ(s1) = b, ϕ(s1 s2) = b2, ϕ(s2 s1) = b4,

ϕ(s2) = b5, ϕ(s1 s2 s1) = b3

is an isomorphism of groups. Hence S3 is an r-deformation of the cyclic
group C6.

Our last example provides a non-trivial deformation map r : H → A

such that Hr
∼= H.
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Example 3.5. — Let (C3, C6, ., /) be the matched pair of Example 3.4.
Then the map

R : C6 → C3, R(1) = R(b2) = R(b4) = 1, R(b) = R(b3) = R(b5) = a

is also a deformation map of (C3, C6, ., /). Then, one can easily check that
(C6)R is a group isomorphic to C6.
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