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ABSTRACT. Let A < G be a subgroup of a group G. An A-complement of
G is a subgroup H of G such that G = AH and AN H = {1}. The classifying
complements problem asks for the description and classification of all A—comple-
ments of G. We shall give the answer to this problem in three steps. Let H be
a given A—complement of G and (>,<) the canonical left/right actions associated
to the factorization G = AH. First, H is deformed to a new A—complement of
G, denoted by Hy, using a deformation map r : H — A of the matched pair
(A, H,>,<). Then the description of all complements is given: H is an A—comple-
ment of G if and only if H is isomorphic to H,, for some deformation map r : H —
A. Finally, the classification of complements proves that there exists a bijection
between the isomorphism classes of all A—complements of G and a cohomological
object D (H,A|(>,<)). As an application we show that the theoretical formula for
computing the number of isomorphism types of all groups of order n arises only
from the factorization S, = S,_1Ch.
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RESUME. — Soit G un groupe et A < G un sous-groupe de G. Un A—complément
de G est un sous-groupe H de G tel que G = AH et AN H = {1}. Le probléme
auquel on s’intéresse est de classifier et décrire tous les A—compléments de G. Nous
donnons la réponse & ce probléme en trois étapes. Fixons H un A—complément de
G et soient (>, <) les actions canoniques associées & la factorisation G = AH. On
commence par déformer H en un nouveau A—complément H, a l’aide d’une cer-
taine fonction r : H — A appelée fonction de déformation de (A, H,>,<). Ensuite
on donne la description de tous les A—compléments : H < G est un A—complément
de G si et seulement si H est isomorphe a H, pour une certaine fonction de défor-
mation r : H — A. Enfin, la classification des A—compléments prouve qu’il existe
une bijection entre les classes d’isomorphisme de tous les A—compléments de G et
un objet cohomologique D (H, A| (>, <)). Comme application, on démontre que la
formule qui calcule le nombre de classes d’isomorphisme des groupes d’ordre n peut
étre retrouvée a partir de la factorisation Sy, = S,_1Ch.

Introduction

Group factorizations have been intensively studied starting with the clas-
sical papers by Szép [20, 22, 21], Douglas [6] and Tto [13] but the problem
goes back to Maillet [17] and the 1900 Minkowski conjecture on tiling (an-
other name for factorizations) proved 40 years later by Hajds [12]. Let
A < G be a subgroup of G. An A-complement of G is a subgroup H < G
such that G factorizes through A and H, that is G = AH and ANH = {1}.
F(A,G) will denote the (possibly empty) set of isomorphism types of all
A-—complements of G. We define the factorization index of A in G to be the
cardinal of F(A,G) and it will be denoted by [G : A} := | F(4,G)|.

The problem of existence of complements has to be treated ”case by
case” for every given subgroup A of G, a computational part of it can not
be avoided. It was studied in its global form: find all factorizations of a
given group G. Particular attention was given to finding all factorizations
of simple groups. Starting with the 1970’s a very rich literature on the
subject was developed: see for instance [4, 5], [7, 8, 9, 10, 11], [15], [18],
[24, 25]. For more details on this problem we refer to the two fundamental
monographs [14], [16] and the references therein. The present paper deals
with the following question:

Classifying complements problem (CCP): Let A be a subgroup of
G. If an A—complement of G exists, describe explicitly, classify all A—com-
plements of G and compute the factorization index [G : A}/ .

We shall give the answer to the CCP in three steps called: deformation
of complements, description of complements and classification of comple-
ments. First of all, in Section 1 we recall briefly the definition of a matched
pair of groups and the construction of the bicrossed product of two groups
as defined by Takeuchi [23]. Let H be a given A—complement of G and (>, <)
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the canonical left /right actions associated to the factorization G = AH such
that (A, H,>,<) is a matched pair of groups and G = A >t H. Theorem 2.4
is called the deformation of complements: if r : H — A is a deformation
map of the matched pair (A4, H,>, <), then the group H is deformed to a
new group H,., called the r-deformation of H, such that H, remains an
A—complement of G = A <t H. The key point is Theorem 2.5 called the
description of complements: H is an A—complement of G if and only if H
is isomorphic to H,, for some deformation map r : H — A of the canoni-
cal matched pair (A, H,>,<). Finally, the classification of complements is
proven in Theorem 2.9: there exists a bijection between the set of isomor-
phism types of all A—complements of G and a cohomological type object
D (H,A|(r,<)) which is explicitly constructed. In particular, the factor-
ization index is computed by the formula [G : A)f = |D(H,A|(>,<))].
In Section 3 we provide some explicit examples. Let S, be the symmet-
ric group and C), the cyclic group of order n. By applying our results to
the factorization S,, = S,_1C,, we obtain the following: (1) any group H
of order n is isomorphic to (Cy),, the r-deformation of the cyclic group
C,, for some deformation map r : C;,, — S,_1 of the canonical matched
pair (Sp—1,Cp,>, <) and (2) the number of isomorphism types of all groups
of order n is equal to | D(Cy, Sp—1] (>, <)) |. Therefore, we obtain a com-
binatorial formula for computing the number of isomorphism types of all
groups of order n which arises from a minimal set of data: the factorization
Spn = Sp—1Ch.

The factorization problem as well as the bicrossed product were intro-
duced and studied in other fields such as topological groups, local compact
groups, Hopf algebras, groups and Lie algebras etc. The results presented
here for groups can be used as a model for developing similar theories in
the fields listed above. For Hopf algebras and Lie algebras we refer to [2]
and for associative algebras to [1].

1. Preliminaries

Let G, G’ be two groups containing A as a subgroup. We say that a
morphism of groups ¢ : G — G’ stabilizes A if {(a) = a, for all a € A. Let
A and H be two groups and>: H X A — Aand <: H x A — H two maps.
The map > (resp. <) is called trivial if h>a = a (resp. h<a = h), for all
a € Aand h € H. A matched pair [23] of groups is a quadruple (A, H,>, <),
where A and H are groups, >: H x A — A is a left action of the group H
on the set A, <: H x A — H is a right action of the group A on the set H
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1352 Ana-Loredana AGORE & Gigel MILITARU

satisfying the following compatibilities for any a, b € A, h, g € H:
(1.1) h(ab) = (hr>a)((h<a)>b)
(1.2) (hg)<a = (ha(gra))(g<a)

If (A, H,>, <) is a matched pair then the following normalizing conditions
hold:

(1.3) lba=a, h<al=h, hrl=1 1l<a=1

foralla e Aand he H. Let>: Hx A— A, <: Hx A— H be two maps
and A H := A x H with the binary operation defined by the formula:

(14) (aa h) ! (b7 g) = (a(hbb)v (h<]b)g)
for all a, b € A, h, g € H. The following is [23, Proposition 2.2.]:

PROPOSITION 1.1. — Let A and H be groups and > : H x A — A,
<: H x A— H two maps. Then A< H is a group with unit (1,1) if and
only if (A, H,>, <) is a matched pair of groups. In this case A <1 H is called
the bicrossed product of A and H.

If A H is a bicrossed product then i : A — A<t H, is(a) = (a,1)
and ig : H - A H, ig(h) = (1, h) are morphisms of groups. A and H
will be viewed as subgroups of A 1 H via the identifications A = A x {1},
H = {1} x H. If the right action < of a matched pair (A, H,>,<) is the
trivial action then the bicrossed product A <t H is just the semidirect
product A x H of A and H. Thus, the bicrossed product is a generalization
of the semidirect product to the case when none of the factors is required
to be normal.

We recall that a group G factorizes through two subgroups A and H
if G = AH and AN H = {1}. The bicrossed product A <1 H factorizes
through A =2 Ax {1} and H = {1} x H as for any a € A and h € H we have
that (a, h) = (a,1)- (1, h). Conversely, the main motivation for defining the
bicrossed product of groups is the following:

PrROPOSITION 1.2. — A group G factorizes through two subgroups A
and H if and only if there exists a matched pair of groups (A, H,1>,<) such
that the multiplication map

mg: A H — G, mg(a, h) = ah
for all a € A and h € H is an isomorphism of groups that stabilizes A.

Proof. — The detailed proof is given in [23, Proposition 2.4]. We only
indicate the construction of the matched pair (A, H,>,<) associated to the
factorization G = AH. Indeed, if G factorizes through A and H then for
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any g € G there exists a unique pair (a,h) € A x H such that g = ah.
This allows us to attach to any (a,h) € A x H a unique pair of elements
(h>a, h<a) € A x H such that

(1.5) ha= (h>a)(h<a) € AH

Then (A, H,>,<) is a matched pair of groups and mg : A<t H — G is an
isomorphism of groups that stabilizes A. |

Remark 1.3. — Let A < G be a given subgroup of G. We will see that
a factorization G = AH is not necessarily unique as there may exist other
subgroups H' < G, not isomorphic to H, such that G = AH’. Such an
example is presented below. Let k be a positive integer. In what follows
we view Ayp_1 as a subgroup of Ay, by letting 4k to be a fixed point
in the alternating group Ax. Then we have two factorizations: Ay =
Aup—1Dy, = Aa—1(Co x Ca), where Dy is the dihedral group and C,, is
the cyclic group of order m. Indeed, let o, 7 € A4y, be the even permutations

o=(1,3,5,--,4k — 1)(2,4,6, - ,4k)
7= (1,2k +2)(2,2k + 1)(3, 2k + 4)(4, 2k + 3) - - - (2k — 1, 4k)(2k, 4k — 1)

It is straightforward to check that o and 7 generate a subgroup of Ay
isomorphic to the dihedral group Dy of order 4k and Ay, = Ayp_1Dyy.
On the other hand, let o/, 7/ € A4y given by

o' = (1,2, ,2k)(2k + 1,2k +2,--- ,4k)
= (1,2k +1)(2,2k +2) - (2k, 4k)

Then o'’ = 7’0’ and the subgroup of A4 generated by o and 7 is Co X
Csg. Moreover, we have Ay, = Agi—1(Cy X Cai). This example reveals yet
another important fact: a possible attempt to generalize the Krull-Schmidt
decomposition of groups into direct products ([19, Theorem 6.36]) fails for
bicrossed products since Ay = Agp—1 X< Dap = Aygp—1 X (Cy x Cyi), and
of course the direct product Cy x Cy is not isomorphic to the dihedral
group Dyy.

From now on, the matched pair constructed in (1.5) will be called the
canonical matched pair associated to the factorization G = AH. We use the
above terminology in order to distinguish this matched pair among other
possible matched pairs (A, H,>',<') such that A <’ H = G (isomorphism
of groups that stabilizes A), where A >’ H is the bicrossed product associ-
ated to the matched pair (4, H,>',<’). The following result provides more
details: it can be obtained from [3, Proposition 2.1] for ¢ = Idy. However,
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we state the result below for the sake of completeness as it will be used in
the sequel.

PROPOSITION 1.4. — Let (A, H,>,<) and (A, H',>', <) be two matched
pairs of groups. There exists a bijection between the set of all morphisms of
groups ¢ : A<’ H' — A< H that stabilize A and the set of all pairs (r,v),
wherer : H — A, v: H' — H are two unit preserving maps satisfying the
following compatibilities for any h', ¢’ € H', a € A:

(1.6) We'a = r(W)(v(h)>a)r(h <a)™"
(1.7) v(h'<da) = wv(h)<a

(1.8) r(l'g’) = (W) (v(l')>r(g))

(1.9) o(l'g') = (v(W)ar(g )) v(g')

Under the above correspondence the morphism of groups v : A<’ H —
A H corresponding to (r,v) is given by:

(1.10) U(a, By = (ar(), v(h))

foralla e A, € H and vy : A<’ H — A< H is an isomorphism of
groups if and only if the map v : H' — H is bijective.

2. Classifying complements

This section contains the main results of the paper. First we need to
introduce the following:

DEFINITION 2.1. — Let A < G be a subgroup of G. An A—complement
of G is a subgroup H < G such that G factorizes through A and H. We
denote by F(A, Q) the set of isomorphism types of all A-complements of G.
We define the factorization index of A in G as the cardinal of F(A,G) and
it will be denoted by [G : A} :=| F(A,G)|. We shall write [G : A]f =0, if
F(A,G) is empty.

Let H be a given A—complement of G and (A, H,>,<) the canonical
matched pair associated to it as in (1.5) of Proposition 1.2. We shall
describe all A—complements of G in terms of (H,<,>) and certain maps
r: H — A, called deformation maps. The classification of all A—comple-
ments of G is also given by proving that F(A,G) is in bijection with a
cohomological object.

ANNALES DE L’INSTITUT FOURIER
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Examples 2.2. — 1. Many group extensions A < G have the factoriza-
tion index [G : A} equal to 0 (that is there exists no factorization G = AH)
or 1. For instance, if G is an abelian group, then [G : A]/ € {0, 1}, for any
subgroup A of G (|G : A]f = 1 if and only if A4 is a direct summand of G).

Group extensions A < G of factorization index 1 are exactly those for
which the factorization is unique. In other words, for these extensions the
Krull-Schmidt theorem [19, Theorem 6.36] for bicrossed products holds: if
G2 A HX A H', then H= H'. A generic example of an extension
of factorization index 1 is provided in Corollary 2.7 below: if A x H is an
arbitrary semidirect product of A and H, then [A x H : A} = 1.

2. Examples of extensions A < G for which [G : A]f > 2 are quite
rare, which makes them tempting to identify. Remark 1.3 proves in fact
that [A4 : Agx_1]7 > 2. We provide below an example of an extension of
factorization index 2.

The extension S3 < Sy has factorization index 2. Indeed, let Cy =<
(1234) > be the cyclic group of order 4 and Cy x Cs the Klein’s group
viewed as a subgroup of Sy being generated by (12)(34) and (13)(24). Then
Sy has two factorizations: Sy = S3Cy = S3(Cs x C3). Since there are no
other groups of order four we obtain that [S, : S3]7 = 2.

3. Example (2) above can be generalized as follows: the factorization
index [S, : S,_1]¥ = g(n), the number of isomorphism types of groups of
order n. Indeed, let H be a group of order n. We see H as a subgroup of .S,
through the regular representation, i.e. T : H — S,, given by T'(h) = oy,
where op,(x) = ha, for all h, x € H. It is now obvious that through this
representation n is not fixed by any other element in H besides 1. Since we
consider S,,_1 as a subgroup in .S,, by letting n to be a fixed point we have
HNS,_1 =1 and therefore S,, =S, _1H.

DEFINITION 2.3. — Let (A, H,1>,<) be a matched pair of groups. A de-
formation map of the matched pair (A, H,1>,<) is a function r : H — A
such that r(1) = 1 and for all g, h € H we have:

(2.1) r((h <1r(g)) g): r(h) (hl> r(g))

Let DM (H, A| (>,<)) be the set of all deformation maps of the matched
pair (A, H,>,<). The trivial map H — A, h — 1, for any h € H is a
deformation map. If both actions (>, <) of the matched pair are trivial then
a deformation map is just a morphism of groups r : H — A. The following
result is called the deformation of complements: it shows that any A—com-
plement can be deformed to a new A—complement using a deformation map
r: H— A

TOME 65 (2015), FASCICULE 3
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THEOREM 2.4. — Let (A, H,>,<) be a matched pair of groups and r :
H — A a deformation map. The following hold:

(1) Let H, := H, as a set, with the new multiplication e on H defined
for any h, g € H as follows:

(2.2) heg:=(har(g)yg
Then (H,,e) is a group called the r-deformation of H.
(2) The map

(2.3) o't H, x A= A, ho" a:=r(h) (h>a)r(haa)™

for all h € H., a € A is a left action of the group H, on the set A and
(A, H,, >" <) is a matched pair of groups. Furthermore, the map

(2.4) Y: A" H. — A H, (a, h) = (ar(h), h)

for all a € A and h € H is an isomorphism of groups, where A <" H,. is
the bicrossed product associated to the matched pair (A, H,., ", <).
(3) H, is an A—complement of A< H.

Proof. — (1) Using the normalizing conditions (1.3) and the fact that
r: H — A is a unitary map, 1 remains the unit for the new multiplication
e given by (2.2). On the other hand for any h, g, t € H we have:

(heg)et = [(har(g)g)et=(((har(g)g)ar(t))t
= ((har(g)slgerit ))(gﬂr )t
- (h<1( (g5 r(t )g<lr
D (har((gar®) ) (gar) ¢
= hef(gar®)t]=he(get)

Thus, the multiplication e is associative and has 1 as a unit. We prove now
that the inverse of an element h € H,. is given by h™! = h=t ar(h)~!, for
all h € H. Indeed, for any h € H we have:

hleh = (hlar(h))eh= ((if1 qr(h)*l)qr(h)) h

- (h—l a (r(h)—lr(h))) h=hlh=1

Thus we proved that (H,.,e) is a monoid in which every element has a left
inverse. Hence (H,,e) is a group.

(2) Instead of using a rather long computation to prove that (A, H,, >, <)
satisfies the axioms (1.1)-(1.2) of a matched pair we proceed as follows:
first, observe that the map ¢ : A x H, — A H, ¢(a, h) = (ar(h), h) is
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a bijection between the set A x H, and the group A <t H with the inverse
given by

' A H = Ax Hy, ¢ 'a, h) = (ar(h)”", h)

for all a € A and h € H. Thus, there exists a unique group structure ¢ on
the set A x H, such that ¢ becomes an isomorphism of groups and this
unique group structure ¢ is obtained by transferring the group structure
from the group A <t H via the bijection of sets v, i.e. is given by:

(a, h) o (b, g) == (¢(a, h) - (b, g))

for all a, b € A and h, g € H, = H. If we prove that this group struc-
ture ¢ on the direct product of sets A x H, is exactly the one given by
(1.4) associated to the pair of maps (>",<) the proof is finished by using
Proposition 1.1. Indeed, for any a, b € A and g, h € H we have:

(a, h)o (b, g) = ¥~ (¥(a, h) ( , 9))

(arm), b) - (br(9), 9))
(arth

Ch
Pt ar( hl>brg)7 (h<1br )g)

ar(h)(h>br(g r( (habr(g g) ' , (habr(g)) )

(
(ar hl>br 7‘( h<1b <17’g g)_l, (thr(g))g)
(arth

@D (ar(h) (k> br(g)) {r(hqb)((hqb)br(g))}*l’
(h<br(9)) 9)
) (ar(h) (hob) ( (hab)or(e)) ((hab)or(e) r(hab) ™,

h<1br

v

1

ar(h)(he>b)r(hab)” ,W)

= (arth
2 (ar(h)(hob)r(hab) ", (hab)eg)
= o
= (a

NJ

2.2)

l\')

2D (0 (ho b, hqb)og)

h)-" (b, g)

is the multiplication given by (1.4) associated to the new pair of
maps (>",<). Now we apply Proposition 1.1.

where -"

TOME 65 (2015), FASCICULE 3
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(3) First we remark that the isomorphism of groups ¢ : A <" H, — A<
H given by (2.4) stabilizes A. Hence A = ¢(A) = A x {1} < A H and
H, = ¢({1} x H,) = {(r(h),h)|h € H} is a subgroup of A 1 H. Now,
A1 H factorizes through A and H,. since in A 1 H we have:

(a,h) = (ar(h)~",1) - (r(h), )
for all a € A and h € H. Of course, A x {1} and {(r(h),h)|h € H} = H,

have trivial intersection in A <t H as r is a unitary map. The proof is now
completely finished. O

Now we prove the converse of Theorem 2.4 which gives the description
of all A—complements of G in terms of a fixed one H.

THEOREM 2.5. — Let A < G be a subgroup of G and H a given A—com-
plement of G. Then H is an A—complement of G if and only if there exists
an isomorphism of groups H = H,., for some deformation map r : H — A
of the canonical matched pair (A, H,>,<) associated to the factorization
G = AH.

Proof. — Let A <t H be the bicrossed product of the canonical matched
pair (A, H,>,<). Then the multiplication map mg : A <t H — G is an
isomorphism of groups that stabilizes A. Consider (A, H,>’,<’) to be the
canonical matched pair associated to the factorization G = AH; hence the
multiplication map my, : A >’ H — G is also an isomorphism of groups
that stabilizes A. Then ¢ := mg' oml, : At H — A > H is a group
isomorphism that stabilizes A as a composition of such morphisms. Now
by applying Proposition 1.4 it follows that v is uniquely determined by a
pair of maps (7,7) consisting of a unitary map 7 : H — A and a unitary
bijective map v : H — H satisfying the compatibility conditions

(2.5) We'a = 7(W)(@0)>a)T(h <a)™"
(2.6) W da) = v(h)<a

(2.7) m(h'g) = 7(h) (W) >T(g"))

(2.8) o(h'g') = (o(h')ar(g")v(g")

for all b/, ¢’ € H and a € A. Moreover, 1) : A<’ H — A1 H is given by:
U(a, 1) = (a7(h'), v(h))

for all @ € A and b/ € H. We define
r:H—A, r:=Tov !

and we will prove that 7 is a deformation map of the matched pair (A, H,>,<)
and v : H — H., is an isomorphism of groups. First, notice that r is unitary
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as 7, U are both unitary. We have to show that the compatibility condition
(2.1) holds for r. Indeed, from (1.8) and (1.9) we obtain:

(29)  Fou [(T(W)aT(g") B(g)] =T(R)(@(h) > T(g"))

for all B’, ¢’ € H. Let h, g € H and write the compatibility condition (2.9)
for B = v 1(h) and ¢’ = v !(g). We obtain

r((h <1r(g)) g): r(h) (hbr(g))

that is (2.1) holds and hence r : H — A is a deformation map. Finally,
v : H — H, is a bijective map as H = H, as sets. Hence, we are left to
prove that 7 is also a morphism of groups. Indeed, for any A/, ¢’ € H we
have:

a(t'g) = () a7() alg") 50 0 19
where o is the multiplication on H, as defined by (2.2). Hence 7 : H — H,
is an isomorphism of groups and the proof is finished. O

Remark 2.6. — Assume that in Theorem 2.4 the deformation map r :
H — A is the trivial one or the right action < is the trivial action of A
on H. Then H, = H as groups. In general, the new group H, may not
be isomorphic to H as groups. Example 3.3 shows how the Klein’s group
Cs x Cy can be constructed as an r-deformation of the cyclic group Cy,
for some deformation map r : C4 — S3. On the other hand, there are
also examples of non-trivial deformation maps, with a non-trivial action <,
such that H, is a group isomorphic to H. Such an example is provided in
Example 3.5.

COROLLARY 2.7. — Let A and H be two groups, A x H an arbitrary
semidirect product of A and H. Then the factorization index [A x H :
A =1

In particular, the following Krull-Schmidt type theorem for bicrossed
product holds: if A x H = A H' (isomorphism of groups that stabilizes
A), then the groups H' and H are isomorphic, where A <1 H' is an arbitrary
bicrossed product.

Proof. — Indeed, H = {1} x H is an A-complement of the semidirect
product A x H. Moreover, the right action < of the canonical matched
pair (A, H,>, <) constructed in (1.5) for the factorization A x H = (A x
{1} ({1} x H) is the trivial action. Thus, using Remark 2.6, any r-deforma-
tion of H & {1} x H coincides with H.

The rest follows from Theorem 2.5. O
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In order to provide the classification of complements we need one more
definition:

DEFINITION 2.8. — Let (A, H,1>,<) be a matched pair of groups. Two
deformation maps r, R : H — A are called equivalent and we denote this
by r ~ R if there exists o : H — H a permutation on the set H such that
o(ly) =1y and for all g, h € H we have:

(2.10) a((har(g)) g)= (o(h) < R(a(g))) o(9)

As a conclusion of all the above results, our main theorem which gives
the classification of all A—complements of a group G now follows.

THEOREM 2.9. — Let A < G be a subgroup of G, H a given A—comple-
ment of G and (A, H,1>, <) the associated canonical matched pair. Then:
(1) ~ is an equivalence relation on DM(H, A| (>, <)) and the map

D(H,A|(b,<) - F(AG), T H,

is a bijection between sets, where D (H, A | (>,<)) := DM (H, A|(>,<))/ ~
is the quotient set through the relation ~ and 7 is the equivalence class of
T via ~.

(2) The factorization index [G : A}/ is computed by the formula:

(G A) =|D(H,A|(>9)|

Proof. — Tt follows from Theorem 2.5 that if H is an arbitrary A-com-
plement of G, then there exists an isomorphism of groups H = H,., for some
deformation map r : H — A of the matched pair (A, H,>,<). Thus, in order
to classify all A-complements on G we can consider only r-deformations of
H, for various deformation maps r : H — A. Now let r, R : H — A be two
deformation maps of the matched pair (A, H,>,<). As H,. and Hg coincide
as sets, the groups H, and Hpg are isomorphic if and only if there exists
o : H — H aunitary bijective map such that o : H, — Hp is a morphism of
groups. Taking into account the definition of the multiplication on H,. given
by (2.2) it follows that o is a group morphism if and only if the compatibility
condition (2.10) of Definition 2.8 holds, i.e. 7 ~ R. Hence, r ~ R if and
only if there exists a map o such that o : H, — Hpg is an isomorphism
of groups. Therefore ~ is an equivalence relation on DM(H, A | (>, <)) and
the map

D(H,A|(b,<) = F(AE), 7 H,
is well defined and a bijection between sets, where 7 is the equivalence
class of r via the relation ~. (2) follows from (1) and the proof is now
finished. |
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3. Examples

Let n be a positive integer. In this section we apply the results obtained
in Section 2 to the factorization S,, = S,,_1C,,. As a consequence, we derive
a combinatorial formula for computing the number of types of groups of
order n as well as an explicit description for the multiplication on any
group of order n. In what follows we consider the usual presentation of the
symmetric group Sy,:

Sp = <Sla 82, vy Sp—1 |

2 . o . .
Si = 1, Si Si4+1 Si = Si4+1 Si Si+1, Si Sj = Sj Si, |Z 7]| > 1>

We shall see the cyclic group C,, as a subgroup of S, generated by z :=
8189 ... S,_1 while S,,_; will be seen as the subgroup of S, generated
by s1, S2, ... Sn_2. To start with, we describe the canonical matched pair
associated to the factorization S,, = S,,_1C,. It is enough to define the two
actions > : C,, X S,,_1 = S,_1 and <: Cp, X S,,_1 — C,, on the generators
of S,_1 and C), as they can be extended to the entire group by using the
compatibilities (1.1) and (1.2).

PROPOSITION 3.1. — The canonical matched pair (Sp—1,Chp,>,<) asso-
ciated to the factorization S, = S,_1C, is given as follows:
i if -2
r>s; = i 1 z'<n
Sn—928n_3 ... 81, If 1=n—2
vas — x, if i<n-—2
v 22, if i=n-—2

where x := 8182 ... Sp_1-

Proof. — We compute the canonical matched pair by using the approach
highlighted in the proof of Proposition 1.2. We start by computing the xs;’s,
foralie 1,2,...,n—2. If i <n — 2 we have:

rs; = 81...8;—-185iSi4+1Si+2---Sn—15;
= S1...8i—1 (Si Si+1 Sz) Si+2 -+ -Sn—1
S1...8i-1 (5i+1 S; Si+1) Si4+2 -+ -Sn—1

= Si4181--- Spn—1 = Si4+1T
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If i = n — 2 we obtain:
TSp_2 = 81...57-3(5n—28n-15n_2)
= 51...5,-3(Sp—15p—25n—1)
= Sp—1S81..--8Sp—1

2 ,2
= Sp—28n-3...51(8182...8p-1)" =2’z

where 2’ := s5,,_25,_3 ... s1 and the conclusion follows easily. O

By applying Theorem 2.5 and Theorem 2.9 for the factorization S, =
Sn_1Cy we obtain the following result concerning the structure and the
number of types of groups of finite order.

COROLLARY 3.2. — Let n be a positive integer and (Sy,—1,Cy,>,<) the
canonical matched pair associated to the factorization S,, = S,,_1C),. Then:

(1) Any group of order n is isomorphic to an r-deformation of the cyclic
group C,, for some deformation map r : C,, — S,_1 of the canonical
matched pair (Sp—1,Cp,>,<). The multiplication e on (C,,), is given by:
ey = (xqr(y)) y, for all x, y € (C,,),, where we denoted by juxtaposition
the multiplication in the cyclic group C,.

(2) The number of isomorphism types of all groups of order n is equal to

| D(Cps Sna | (>59)) |

Proof. — It follows from Theorem 2.5 and Theorem 2.9 taking into ac-
count that any group H of order n is an S,,_;—complement of S, according
to (3) of Example 2.2. O

Now we provide some explicit examples in order to see how Corollary 3.2
works.

Example 3.3. — Consider the extension S3 < 54 of factorization index
2. Then the canonical matched pair (S35, Cy,>, <) associated to the factor-
ization Sy = S3C4 from Proposition 3.1 takes the following form:

> 1 S1 S182 S281 S92 S1 82 81

1|1 S1 S182 S981 S9 S189 81

z |1 So S1 S182 8981 818281
22 |1 s9s81 So S1 S189 818281
2311 s1s9 S281 So S1 5189 81
< 1 S1 S1S2 S281 S2 S1S281
111 1 1 1 1 1
T | x T x? 3 2 x3
x? |22 23 2B T T x?
3| 23 2? T 2 28 T
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By a straightforward computation one can prove that there are two de-
formation maps for the canonical matched pair (S5, Cy,>,<): namely the
trivial one v’ : Cy — Ss3, 7'(¢) = 1, for any ¢ € C; and the map given by

r:Cy — Ss, r(1) = r(z?) = 1, r(z) = r(x®) = 51828

We consider the following presentation of the Klein’s group: Cy x Cy =
{a = (12)(34), b = (13)(24) | a® = b* = 1, ab = ba). Then we can easily
prove that the map:

p:C2xCo— (Ca)r, (1) =1, o)==z, ¢b)=2a? ¢(ab)=2a’
is an isomorphism of groups, that is Co x Cy = (Cy),..

Corollary 3.2 proves that any finite group of order n is isomorphic to an
r-deformation of the cyclic group C,,, for some deformation map r : C;, —
S,_1 of the canonical matched pair associated to the factorization S, =
Sn_1Cy. The next example shows how the symmetric group S3 appears as
an r-deformation of the cyclic group Cj arising from a given matched pair
(Cg, Cﬁ, >, <1).

Example 3.4. — Let C3 = {(a | a® = 1) and Cg = (b | b5 = 1) be the
cyclic groups of order 3 respectively 6. As a special case of [3, Proposition
4.2] we have a matched pair of groups (C3, Cg, >, <), where the actions (>, <)
on generators are defined by:

b a = a® baa:=b

By a rather long but straightforward computation it can be seen that the
map:

r:Cs—Cs, r(1)=r* =1, r0b)=r0)=d, r0*) =r0°)=a
is a deformation map of the matched pair (C3, Cg,>,<) and ¢ : S3 — (Cg),
given by:
(1) =1, @(s1)=b, ¢(s182) =0 (s2s1)=0b"
p(s2) =%, p(s15281) =0’

is an isomorphism of groups. Hence S3 is an r-deformation of the cyclic
group Cg.

Our last example provides a non-trivial deformation map r : H — A
such that H, = H.
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Example 3.5. — Let (C3,Cg,>,<) be the matched pair of Example 3.4.
Then the map

R:Cs — C3, R(1)=R(})=R0*) =1, R((b)=R®0D)=R0D)=a

is also a deformation map of (Cs, Cg,>,<). Then, one can easily check that
(Cé) R is a group isomorphic to Cg.
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