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GENERIC NEKHOROSHEV THEORY WITHOUT
SMALL DIVISORS

by Abed BOUNEMOURA & Laurent NIEDERMAN

Dedicated to the memory of N.N. Nekhoroshev (1946-2008)

Abstract. — In this article, we present a new approach of Nekhoroshev’s the-
ory for a generic unperturbed Hamiltonian which completely avoids small divisors
problems. The proof is an extension of a method introduced by P. Lochak, it
combines averaging along periodic orbits with simultaneous Diophantine approx-
imation and uses geometric arguments designed by the second author to handle
generic integrable Hamiltonians. This method allows to deal with generic non-
analytic Hamiltonians and to obtain new results of generic stability around linearly
stable tori.
Résumé. — Dans cet article, nous présentons une nouvelle approche de la théo-

rie de Nekhoroshev pour un hamiltonien intégrable générique, qui évite complète-
ment le problème des petits diviseurs. La preuve est une extension d’une méthode
introduite par Lochak, elle n’utilise que des moyennisations périodiques et de l’ap-
proximation diophantienne simultanée, ainsi que des arguments géométriques intro-
duit par le second auteur. Notre méthode permet également d’obtenir des résultats
de stabilité pour des hamiltoniens génériques non-analytiques, ainsi que de nou-
veaux résultats de stabilité au voisinage des tores invariants linéairement stables.

1. Introduction

In this article, we are concerned with the stability properties of near-
integrable analytic Hamiltonian systems. According to a classical theorem
of Liouville-Arnold (see [2]), such systems are locally governed by a Hamil-
tonian of the form {

H(θ, I) = h(I) + f(θ, I)
|f | < ε << 1

where (θ, I) ∈ Tn × Rn are action-angle coordinates for h and f is a small
perturbation in some suitable topology. For the integrable system, that is

Keywords: Hamiltonian systems, perturbation of integrable systems, effective stability.
Math. classification: 37J25, 37J40, 70H08, 70H09, 70K45, 70K60, 70K65.



278 Abed BOUNEMOURA & Laurent NIEDERMAN

when f = 0, the action variables of solutions are trivially constant for all
times, but when f 6= 0 they are no longer constant of motions and we are
interested in studying their evolution for long intervals of time.
But first it is important to understand the integrable case. When H = h

depends only on the action variables, as the latter are constant for all times,
the phase space is trivially foliated into invariant tori TI0 = Tn × {I0}, for
I0 ∈ Rn, and on each torus TI0 the flow is quasi-periodic with frequency
vector ω0 = ∇h(I0) ∈ Rn. The dynamics of such a flow is completely
understood and depends on the frequency vector ω0, more precisely on its
resonant module

M(ω0) = {k ∈ Zn | k.ω0 = 0},

where the dot denotes the Euclidean scalar product. If M(ω0) is trivial,
then the dynamics is minimal and uniquely ergodic. Otherwise, we have a
relation of the form k.ω0 = 0 for some k ∈ Zn \ {0}, which is usually called
a resonance, and denoting by m the rank ofM(ω0), the torus T0 splits into
a continuous m-parameter family of invariant sub-tori of dimension n−m,
on which the dynamics is minimal and uniquely ergodic. These are called
resonant tori, and in case of maximal resonances (i.e. m = n− 1 if h does
not have critical points), the tori are foliated into periodic orbits. Under
some non-degeneracy assumption on h, both resonant and non-resonant
tori form a dense subset of the phase space.
Returning to the perturbed system, since Poincaré we know that resonant

tori do not survive (actually he proved that for a periodic tori, generically
only a finite number of periodic orbits persist). But it was a remarkable
idea of Kolmogorov ([19]) to focus on non-resonant tori to prove that a
set of large measure of invariant tori survives under some regularity and
non-degeneracy assumptions. This has now become a rich and vast subject
called KAM theory (see [39], [20] or [6] for some nice introductions on this
theory). Such tori persist in a

√
ε-neighbourhood of the unperturbed ones

and therefore for a set of large measure of initial conditions, the variation
of the actions is of order

√
ε for all time. But on the other hand, this set

of KAM tori is typically a Cantor family (hence with no interior) and the
theory gives no information on the complement, except when n = 2 where
these two-dimensio nal invariant tori disconnect the three-dimensional en-
ergy level leaving all solutions stable for all time. However for n > 3, it is
still possible to find solutions for which the variation of the action compo-
nents is of order one. A proof of this fact was outlined by Arnold in his
famous paper ([1]) where he proposed a mechanism to produce examples of
near-integrable Hamiltonian systems where such a drift occurs no matter
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GENERIC NEKHOROSHEV THEORY WITHOUT SMALL DIVISORS 279

how small the perturbation is. This phenomenon is usually called Arnold
diffusion.
Hence for n > 3, results of stability for near-integrable Hamiltonian sys-

tems which are valid for an open set of initial conditions can only be proved
over finite times. This picture was completed by Nekhoroshev in the seven-
ties (see [29],[30] and [35] for a recent overview of the theory) who proved
the following: if the system is analytic and the unperturbed Hamiltonian h
satisfies some quantitative transversality condition called steepness, then
there exist positive constants a, b, ε0, c1, c2 and c3 depending only on h,
such that every solution (θ(t), I(t)) of the perturbed system starting at
time t = 0 satisfies

(1.1) |I(t)− I(0)| 6 c1εb, |t| 6 c2 exp
(
c3ε
−a) ,

provided that the size of the perturbation ε is smaller than the threshold ε0.
The constants a and b are called the stability exponents. If property (1.1)
is satisfied, we shall say that the integrable Hamiltonian h is exponentially
stable. Hence, KAM and Nekhoroshev’s theory yield different type of sta-
bility results, but they both ultimately rely on the same tool which is the
construction of normal forms, and we shall described it below.
The basic idea is to look at a “more integrable” Hamiltonian which yields

a good approximation of the perturbed system. By the averaging principle
(see [2]), this simpler Hamiltonian is given by the time average of the system
along the unperturbed flow, that is

[H] = h+ [f ],

where

[f ] = lim
t→∞

(
1
t

∫ t

0
f ◦ Φhsds

)
,

and Φhs is the Hamiltonian flow of the integrable part h. Actually, this
average depends on the dynamics of the unperturbed Hamiltonian and
hence on resonant modules associated to frequencies. So given a sub-module
M⊆ Zn, we define its resonant manifold by

SM = {I ∈ Rn | k.∇h(I) = 0 for k ∈M} .

Due to the ergodic properties of the linear flow with vector ∇h(I) over the
torus Tn, the time average over SM equals the space average along a torus
of dimension n−m if m is the multiplicity of the resonance (i.e. the rank
ofM), hence n−m angles have been removed in this case. From a physical
point of view, the guiding principle is that rapidly oscillating terms dis-
carded in averaging cause only small oscillations which are superimposed
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280 Abed BOUNEMOURA & Laurent NIEDERMAN

to the solutions of the averaged system. In order to prove this claim, one
should check that any solution of the perturbed system remains close to
the solution of the averaged system with the same initial condition. Espe-
cially, this will be the case if one finds a canonical transformation ε-close to
identity which conjugates the perturbed Hamiltonian to its average. Hence
we are reduced to a problem of normal form where one tries to conjugate
the system to a simpler one, that is we look for a convenient system of
coordinates.
However, constructing such a good system of coordinates is not an easy

task. The linearised equation of conjugation reads

{χ, h} = f − [f ],

if χ is the function generating the conjugation. This is usually called a
homological equation and to solve it we need to invert the linear operator
Lh = {., h} acting on a suitable space of functions. Here our operator is
invertible, but its inverse is generally unbounded: this is the small divisors
phenomenon. To see this, just note that once an action I ∈ SM is fixed
(and hence a frequency ω = ∇h(I) satisfying k.ω 6= 0 for k /∈ M), the
homological equation is a just a first-order, linear with constant coefficients
partial differential equation on Tn, namely

ω.∇χ = f − [f ].

Such equations are known to be well-suited for Fourier analysis, in our case
the operator Lh is easily diagonalized in a Fourier basis and we find that
the eigenvalues are proportional to the scalar products k.ω, for k ∈ Zn.
More precisely, expanding χ and f as

χ(θ) =
∑
k∈Zn

χ̂ke
i2πk.θ, f(θ) =

∑
k∈Zn

f̂ke
i2πk.θ,

then
[f ] =

∑
k∈M

f̂ke
i2πk.θ,

and so formally

(1.2) χ̂k =
{

(i2πk.ω)−1
f̂k, k /∈M,

0, k ∈M.

The scalar products k.ω appearing in the denominators of (1.2) are not
zero by assumption, but they can be arbitrarily small and this is inevitable
for large integers k (see the estimate (1.3) below). This can cause the di-
vergence of the Fourier series of χ and hence the unboundedness of the
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inverse of Lh. Classical small divisors techniques are concerned with ob-
taining lower bounds for these scalar products to ensure the convergence of
the series and this leads necessarily to complicated estimates. Furthermore,
to obtain a result applying to all solutions, a partition of the phase space
into resonant manifolds associated to different modules, usually called the
geometry of resonances, has to be achieved and this is a delicate task. All
these techniques are very important, in particular to study Arnold diffusion
and related problems, however we will show that they are not necessary to
prove Nekhoroshev’s estimates.
Indeed, all these problems are completely bypassed if we only average

along periodic orbits of the unperturbed flow. We first recall the following
definition.

Definition 1.1. — A vector ω ∈ Rn is said to be periodic if there exists
a real number t > 0 such that tω ∈ Zn. In this case, the number

T = inf{t > 0 | tω ∈ Zn}

is called the period of ω.

A basic example is given by a vector with rational components, the pe-
riod of which is just the least common multiple of the denominators of its
components. Geometrically, if ω is T -periodic, an invariant torus with a
linear flow with vector ω is filled with T -periodic orbits. In this case, the
average along such a periodic solution is given by

[f ] = lim
t→∞

(
1
t

∫ t

0
f ◦ Φlsds

)
= 1
T

∫ T

0
f ◦ Φlsds,

where l denotes the linear Hamiltonian with frequency ω, that is l(I) = ω.I.
Then the homological equation {χ, l} = f−[f ] is easily solved without using
Fourier expansions and is given by an explicit integral formula

χ = 1
T

∫ T

0
(f − [f ]) ◦ Φlssds.

So in this case, there is no small divisors. To understand more concretely
the previous sentence, consider a vector ω ∈ Rn and multi-integers k that
do not resonate with ω (that is k /∈ Zn ∩ ω⊥). Then in general we don’t
have a lower bound on the divisors k.ω that appears in (1.2), and by a
theorem of Dirichlet one has the upper bound

(1.3) min
0<|k|6K

|k.ω| 6 |ω|
Kn−1 .

In that context, small divisors techniques use Diophantine vectors for which
|k.ω| > γ|k|−τ1 , with γ > 0, τ > n−1 and where | . |1 stands for the `1-norm,
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but nevertheless the lower bound deteriorates as |k|1 increases, causing
extra difficulties (which are usually handled by the so-called ultra-violet
cut-off). However if the vector ω is T -periodic, one simply has |k.ω| > T−1

and the lower bound is uniform in |k|1.
Lochak ([21], see also [23] and [24] for refinements) has shown that aver-

aging along the periodic orbits of the integrable Hamiltonian is enough to
obtain Nekhoroshev’s estimates of stability when the unperturbed Hamil-
tonian is strictly convex (or strictly quasi-convex, that is the Hamilton-
ian is strictly convex when restricted to its energy sub-levels). Indeed, us-
ing convexity, Lochak obtains open sets around periodic orbits over which
exponential stability holds. Then, Dirichlet’s theorem about simultaneous
Diophantine approximation ensures easily that these open sets recover the
whole action space and yields the global result, avoiding the difficult ge-
ometry of resonances. Put it differently, in the convex case one only needs
dynamical informations near resonances of maximal multiplicities, which
are completely characterized by periodic orbits.
The goal of this paper is to extend Lochak’s approach for a generic set of

integrable Hamiltonians. To do so, we will have to analyze the dynamics in
a neighbourhood of suitable resonances of any multiplicities by using only
successive averagings along periodic orbits together with Dirichlet’s theo-
rem, and this will lead to exponential estimates of stability for perturbation
of a generic integrable Hamiltonian, as stated below.

Theorem 1.2. — Consider an arbitrary real analytic integrable Hamil-
tonian h defined on a neighbourhood of a closed ball in Rn. Then for almost
any ξ ∈ Rn, the integrable Hamiltonian hξ(x) = h(I)− ξ.I is exponentially
stable with the exponents a = b = 3−1(2n)−3n.

This will be a direct consequence of Theorems 2.2 and 2.4, see below
in section 2.1. This result is not new, see [34], but the novelty here is our
method of proof, which avoids completely the fundamental problem of small
divisors and hence all the associated technicalities (non-resonant domains,
Fourier series, Fourier norm, ultra-violet cut-off and so on). The analytic
part of our proof of Nekhoroshev’s estimates is therefore reduced to its
bare minimum, it is nothing but a classical one-phase averaging, while our
geometric part is based on a clever use of Dirichlet’s theorem along each
solution. Applications of our method to other problems will be discussed
below, in section 2.2.

To conclude this introduction, we point out that the method of averaging
along periodic orbits has also been used successfully to re-prove recently
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some KAM theorems without small divisors (see [17] and [18]), even though
their techniques are much more complicated.

2. Statement of results

2.1. Set-up and results

Let B = BR be the open ball centered at the origin of Rn of radius R
with respect to the supremum norm, the domain D = Tn × B will be our
phase space. To avoid trivial situations, we assume n > 2. Our Hamiltonian
function H is real-analytic and bounded on D and it admits a holomorphic
extension to some complex neighbourhood of D of the form

Dr,s = {(θ, I) ∈ (Cn/Zn)× Cn | |I(θ)| < s, d(I,B) < r},

with two fixed numbers r > 0, s > 0, and where I(θ) is the imaginary
part of θ, | . | the supremum norm on Cn and d the associated distance
on Cn. Equivalently, one can start with a Hamiltonian H, defined and
holomorphic on Dr,s and which preserves reality, that is H is real-valued
for real arguments. Without loss of generality, we may assume that r < 1
and s < 1. The space of such analytic functions on Dr,s, equipped with the
supremum norm | . |r,s, is obviously a Banach algebra with respect to the
multiplication of functions, and we shall denote it by Ar,s.
Our Hamiltonian H ∈ Ar,s is assumed to be close to integrable, that is

of the form

(∗)
{
H(θ, I) = h(I) + f(θ, I)
|f |r,s < ε << 1,

where h is the integrable part and f a small perturbation. Moreover, the
derivatives up to order 3 of h are assumed to be bounded by some constant
M > 1, that is

|∂kh(I)| 6M, 1 6 |k|1 6 3, I ∈ B,

where |k|1 = |k1|+ · · ·+ |kn|.
In order to obtain results of exponential stability, we do need to im-

pose some non-degeneracy condition on the unperturbed Hamiltonian. Let
G(n, k) be the set of all vector subspaces of Rn of dimension k. We equip
Rn with the Euclidean scalar product, ‖ . ‖ stands for the Euclidean norm,
and given an integer L ∈ N∗, we define GL(n, k) as the subset of G(n, k)
consisting of those subspaces whose orthogonal complement can be spanned
by vectors k ∈ Zn with |k|1 6 L.

TOME 62 (2012), FASCICULE 1
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Definition 2.1. — A function h ∈ C2(B) is said to be SDM if there
exist γ > 0 and τ > 0 such that for any L ∈ N∗, any k ∈ {1, . . . , n}
and any Λ ∈ GL(n, k), there exists (e1, . . . , ek) (resp. (f1, . . . , fn−k)), an
orthonormal basis of Λ (resp. of Λ⊥), such that the function hΛ defined on
B by

hΛ(α, β) = h (α1e1 + · · ·+ αkek + β1f1 + · · ·+ βn−kfn−k) ,

satisfies the following: for any (α, β) ∈ B,

‖∂αhΛ(α, β)‖ 6 γL−τ =⇒ ‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖

for any η ∈ Rn \ {0}.

In other words, for any (α, β) ∈ B, we have the following alternative:
either ‖∂αhΛ(α, β)‖ > γL−τ or ‖∂ααhΛ(α, β).η‖ > γL−τ‖η‖ for any η ∈
Rn \ {0}. This technical definition, which is a slight variation of a notion
introduced in [34], is basically a quantitative transversality condition which
is stated in adapted coordinates. It is inspired on the one hand by the
steepness condition introduced by Nekhoroshev ([29]) where one has to look
at the projection of the gradient map ∇h onto affine subspaces, and on the
other hand by the quantitative Morse-Sard theory of Yomdin ([41], [42])
where critical or “nearly-critical” points of h have to be quantitatively non
degenerate. The abbreviation SDM stands for “Simultaneous Diophantine
Morse” functions, and we refer to Appendix B for more explanations on
this condition and some justifications on the latter terminology.
The set of SDM functions on B with respect to γ > 0 and τ > 0 will be

denoted by SDMτ
γ (B), and we will also use the notations

SDMτ (B) =
⋃
γ>0

SDMτ
γ (B), SDM(B) =

⋃
τ>0

SDMτ (B).

The following result states that SDM functions are generic among suffi-
ciently smooth functions.

Theorem 2.2. — Let τ > 2(n2 + 1) and h ∈ C2n+2(B). Then for
Lebesgue almost all ξ ∈ Rn, the function hξ(I) = h(I) − ξ.I belongs to
SDMτ (B).

More precisely, there is a good notion of “full measure” in an infinite
dimensional vector space, which is called prevalence (see [36] and [14] for
nice surveys), and the previous theorem immediately gives the following
result.

Corollary 2.3. — For τ > 2(n2 + 1), SDMτ (B) is prevalent in
C2n+2(B).
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Now we can state the main result of the paper.

Theorem 2.4. — Let H as in (∗) and assume that the integrable part h
belongs to SDMτ

γ (B) with τ > 2 and γ 6 1. Then there exist positive
constants a and b depending only on n and τ , and ε0 depending only on h,
such that if ε 6 ε0, for every initial action I(0) ∈ BR/2 the following
estimates

|I(t)− I(0)| < (n+ 1)2εb, |t| < exp(ε−a),
hold true.

More precisely, we can choose the exponents

a = b = 3−1(2(n+ 1)τ)−n,

and ε0 depending on the whole set of parameters n,R, r, s,M, γ and τ , but
no efforts was made to improved the stability exponents since the optimality
of the constants involved is not our goal. Actually, this optimality is not
relevant for generic integrable Hamiltonians.
Let us add that the only property used on the integrable part h to derive

these estimates is a specific steepness property, therefore the proof is also
valid, and in fact simpler, assuming the original steepness condition of
Nekhoroshev (see Appendix B). However, note that this is precisely this
“weaker” genericity assumption that allows new results of stability near
linearly stable invariant tori (see [7]).
We emphasized again that this is not the result itself, but the method of

proof which is new and leads to many improvements as we explain below.

2.2. Comments and prospects

To conclude this section we mention other problems for which our method
should apply, mainly the study of elliptic fixed points, Nekhoroshev’s esti-
mates in lower regularity and finally estimates in large or infinite dimen-
sional Hamiltonian systems. In all these topics, the method of periodic
averagings have already proved to be very useful.

First our analytic arguments are very intrinsic and this is important in
the study of the stability of elliptic fixed points in Hamiltonian systems.
Actually, in this case the transformation in action-angle variables (via the
symplectic polar coordinates) admits singularities which do not allow to
derive directly stability results from Nekhoroshev’s theory. In the convex
case, this problem has been overcomed independently by Fassò, Guzzo and
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Benettin([13]) and by Niederman ([31]). Both study use Cartesian coordi-
nates, the first one uses the classical approach and adapted Fourier expan-
sions while the second one relies on periodic averagings and simultaneous
Diophantine approximation. The latter proof was clarified by Pöschel ([38]).
With our approach, we can remove the convexity hypothesis to have expo-
nential stability around an elliptic fixed point under a generic assumption
on the non-linear part. Furthermore, assuming a Diophantine condition
on the normal frequency it is well-known since Morbidelli and Giorgilli
([26]) that one can even obtain super-exponential stability by combining
a sufficiently large number of Birkhoff normalizations with Nekhoroshev’s
estimates. Here, with our method generic results of super-exponential sta-
bility around elliptic fixed points are also available, and similarly around
invariant Diophantine Lagrangian tori and even isotropic reducible linearly
stable tori. All this results are contained in [7].
Furthermore, one should mention that periodic averagings are well-suited

for non-analytic Hamiltonians and our formalism should also carry on in
this context. The advantage of periodic averagings is clear already at the
linear level when solving the homological equation: if the system is of fi-
nite differentiability, then for a Diophantine frequency vector the solution
of the homological equation is subjected to a disastrous loss of derivatives
(larger than the number of degrees of freedom) and one has to use rather
cumbersome Fourier expansions, while for a periodic frequency vector, this
loss of derivatives is minimal and one can use a more elegant integral for-
mula. Hence in finite differentiability, for a convex or generic unperturbed
Hamiltonian system, we can expect a proof of stability estimates (with of
course a polynomial bound on the time of stability) which is both simple
(no small divisors) and direct (no need to use the result in the analytic case
and smoothing techniques, which is the usual approach in KAM theory in
finite differentiability). Note that the analyticity of the studied system is
only needed for the construction of normal forms up to an exponentially
small remainder, but our steepness condition is generic for Hamiltonians of
finite but sufficiently high regularity. Concerning Gevrey regularity, Marco
and Sauzin ([25]) have already proved exponential estimates of stability in
the convex case and for the Ck regularity, polynomial estimates of stability
are indeed available (see [8]). Both results use only periodic averagings, so
with our method they should also hold for a generic integrable Hamilton-
ian. It can also be noticed that the analytical properties of the expansions
arising in periodic averagings are accurately known ([28],[40]).
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Finally, results of stability for large Hamiltonian systems as a model for
statistical mechanics have been obtained by Bambusi and Giorgilli ([4]) and
Bourgain ([9]), and for non-linear evolution PDE seen as an infinite dimen-
sional Hamiltonian system mostly by Bambusi ([3], [5]) and then clarified
by Pöschel ([37]). All these works use Lochak’s approach in the convex
case. We believe that our method should allow to remove the convexity
assumption in those results to obtain more general statements.

The paper is organized as follows. In the next section, we state our normal
form and explain the main ideas, and then we give the proof of Theorem 2.4.
The complete proof of the normal form is deferred to Appendix A, and in
Appendix B we collect the basic properties of SDM functions that we shall
need and we prove Theorem 2.2 and Corollary 2.3.

In the text, we shall adopt the following notation taken from [38]: we
will write u<· v if there exists a constant C > 1 such that u < Cv, where C
depends only on n,R, r, s,M , but not on τ and on the small parameters ε
and γ. Similarly, we will use the notations u ·<v, u=· v and u ·= v.

We shall use the following norms for vectors v ∈ Rn or v ∈ Cn: | . |
will be the supremum norm, | . |1 the `1-norm and ‖ . ‖ the Euclidean (or
Hermitian) norm.

3. Proof of Theorem 2.4

In this section, we consider the Hamiltonian (∗), that is{
H(θ, I) = h(I) + f(θ, I)
|f |r,s < ε

with H ∈ Ar,s. As usual, the proof of exponential stability estimates splits
into an analytic part and a geometric part.

The analytic part is contained in section 3.1. It consists in the construc-
tion of normal forms on a neighbourhood of specific resonances, that is
suitable coordinates which display the relevant part of the perturbation on
such a neighbourhood. Basically, we will reduce the perturbation to a so-
called resonant term which is dynamically significant, and a general term
which will only cause exponentially small deviations.

The geometric part is expanded in section 3.2, and it is mainly based
on the properties of the underlying integrable system. The strategy will
be first to define a class of solutions, which we call restrained, and for
which it is obvious from our normal forms that they are stable for an
exponentially long time. Using this intermediate result, we will then show
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that all solutions are in fact exponentially stable, and our main tools to
do this will be an adapted steepness property satisfied by our integrable
system, as well as a basic theorem of Dirichlet on simultaneous Diophantine
approximation.

3.1. Analytical part

Let us begin by describing the neighbourhoods of resonances we will con-
sider. Given a sequence of linearly independent periodic vectors(ω1, . . . , ωn),
with periods (T1, . . . , Tn), we define in the complex phase space, for j ∈
{1, . . . , n}, the domains

Drj ,sj (ωj) = {(θ, I) ∈ Drj ,sj | |∇h(I)− ωj |<· rj},

with two sequences (r1, . . . , rn) and (s1, . . . , sn).

Remark 3.1. — It is important to note that there is an implicit constant
in the previous definition represented by the dot, and we will not make it
explicit in order to avoid cumbersome and meaningless expressions. We
just mention that it depends only on n, M and j ∈ {1, . . . , n} and for
subsequent arguments it has to be chosen sufficiently large.

Informally, one has to view the domain Drj ,sj (ωj) as a neighbourhood,
in frequency space, of a periodic torus with a linear flow of frequency ωj .
Such domains will therefore be called nearly-periodic tori. We will also use
the real part of those domains, which are Tn × Brj (ωj) where

Brj (ωj) = {I ∈ Brj | |∇h(I)− ωj |<· rj},

with Brj = {I ∈ Rn | d(I,B) < rj}.
Given an analytic function f defined on Drj ,sj (ωj), we simply denote its

supremum norm by
|f |rj ,sj = |f |Drj,sj (ωj).

For vector-valued functions, this definition is extended component-wise,
that is

|∂θf |rj ,sj = max
16i6n

|∂θif |rj ,sj , |∂If |rj ,sj = max
16i6n

|∂Iif |rj ,sj .

We will write lj for the linear integrable Hamiltonian with frequency ωj ,
that is lj(I) = ωj .I for j ∈ {1, . . . , n}. For any function f , we will denote
[f ]j its average along the periodic flow generated by lj , that is

[f ]j = 1
Tj

∫ Tj

0
f ◦ Φljs ds.
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Our interest here is to obtain normal forms on nearly-periodic tori up to
an exponentially small remainder with respect to some parameter m ∈ N,
that we will choose later of order ε−1 (during the proof of Theorem 2.4).
To this end, we will need the following conditions (Aj), for j ∈ {1, . . . , n},
where (A1) is

(A1)
{
mT1ε ·<r2

1, mT1r1 ·<s1, 0 < r1<· s1,

Br1(ω1) 6= ∅, r1 ·<r, s1 ·<s,

and for j ∈ {2, . . . , n}, (Aj) is

(Aj)
{
mTjε ·<r1rj , mTjrj ·<sj , 0 < rj <· sj ,
Brj (ωj) 6= ∅, Drj ,sj (ωj) ⊆ D2rj−1/3,2sj−1/3(ωj−1).

Let us explain briefly our assumptions.
First, the condition on the inclusion of nearly-periodic tori is really

crucial. Indeed, since ω1 is periodic, the nearly-periodic torus Dr1,s1(ω1)
describes a neighbourhood of a resonance of multiplicity n − 1. Now for
j ∈ {2, . . . , n}, since (ω1, . . . , ωj) are periodic and independent, the inclu-
sion assumption, together with the non triviality assumption, imply that
the nearly-periodic torus Drj ,sj (ωj) also describes a neighbourhood of a
resonance, but of multiplicity n − j. Note that such a condition will put
an important restriction on our choice of the sequence (ω1, . . . , ωn) as they
will have to be sufficiently close to each other to ensure these inclusions.
Then, the condition on our parameter m ∈ N,

mTjrj ·<sj , j ∈ {1, . . . , n},

is also important as it will later determine m in terms of ε and hence the
precise size of the exponentially small term.
Finally, the other conditions are only technical (and will be easily ar-

ranged in the sequel), as they only give smallness conditions on ε.
Our normal form is described in the next proposition.

Proposition 3.2. — ConsiderH = h+f as in (∗) and let j ∈{1, . . . , n}.
If (Ai) is satisfied for any i ∈ {1, . . . , j}, then there exists an analytic
symplectic transformation

Ψj : D2rj/3,2sj/3(ωj)→ Dr1,s1(ω1)

such that
H ◦Ψj = h+ gj + fj ,

with {gj , li} = 0 for i ∈ {1, . . . , j} and the estimates

|∂θgj |2rj/3,2sj/3<· ε, |∂θfj |2rj/3,2sj/3<· e
−mε.
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Moreover, we have Ψj = Φ1 ◦ · · · ◦ Φj with

Φi : D2ri/3,2si/3(ωi)→ Dri,si(ωi)

such that |Φi − Id|2ri/3,2si/3 ·<ri, for i ∈ {1, . . . , j}.

The proof of Proposition 3.2 goes by induction, it is not difficult but quite
long, and so it is deferred to Appendix A. Here we will try to give a sketch
in the case j = 2, explaining the main ideas without any technicalities.
The first step is to prove the case j = 1, that is to find a transforma-

tion Ψ1 such thatH◦Ψ1 = h+g1+f1 with {g1, l1} = 0 and f1 exponentially
small with m. This is very classical. First observe that we can write our
original Hamiltonian as H = h + g0 + f0, where g0 = 0 trivially satisfies
{g0, l1} = 0 and f0 = f is order ε. Now it is easy to produce a transforma-
tion ϕ0 such that H ◦ ϕ0 = h + g1 + f1, with {g1, l1} = 0, but thanks to
our assumption (A1) the remainder f1 can be made smaller, of order e−1ε:
this is an averaging process, g1 = [f0]1 and the remainder is estimated by
Cauchy inequality. Now we only have to iterate this process m times, and
writing Ψ1 = Φ1 = ϕ0 ◦ . . . ϕm−1, g1 = gm and f1 = fm, we end up with
H ◦Ψ1 = h+ g1 + f1 with the required properties.
For the second step, we use the first one and consider H ◦Ψ1 = h+g1+f1

which, by our assumption on the inclusion of domains (this is part of (A2)),
is also defined on Dr2,s2(ω2). We can forget for a moment about f1 which
is already exponentially small and consider g1 as the new perturbation.
Now as in the first step, we can construct a transformation Φ2 such that
(h+ g1) ◦Φ2 = h+ g2 + f2 with {g2, l2} = 0 and f2 is exponentially small:
we start with h+ g1 = h+ g0

1 + f0
1 , where g0

1 = 0, f0
1 = g1 and we find ϕ1

such that (h+ g1) ◦ ϕ1 = h+ g1
1 + f1

1 where g1
1 = [f0

1 ]2. After m iterations
we finally have g2 = gm1 and f2 = fm1 . Assuming we still have {g2, l1} = 0,
the conclusion follows: let Ψ2 = Ψ1 ◦ Φ2 = Φ1 ◦ Φ2 and f2 = f2 + f1 ◦ Φ2,
then H ◦Ψ2 = h+ g2 + f2 has the desired properties.
So it remains to explain why {g2, l1} = 0. The key observation is the

following: if g1 satisfies {g1, l1} = 0, then

[g1]2 = 1
T2

∫ T2

0
g1 ◦ Φl2s ds

and

χ = 1
T2

∫ T2

0
(g1 − [g1]2) ◦ Φl2s sds

also satisfy {[g1]2, l1} = 0 and {χ, l1} = 0. In Appendix A, this will be done
by direct computations, but this is in fact a more general phenomenon in
normal form theory and it is not restricted to the situation we consider here.
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Indeed, since {l1, l2} = 0, the linear operators Ll1 = {., l1} and Ll2 = {., l2}
commute, so that the kernel of Ll1 is invariant by Ll2 , and as Ll2 is semi-
simple, it is also invariant under the projection onto the kernel of Ll2 which
is given by the map [.]2. This explains why {[g1]2, l1} = 0. Now g1 − [g1]2
is in the kernel of Ll1 , and its unique pre-image by Ll2 is given by χ, hence
{χ, l1} = 0.

Remark 3.3. — Note that this property was actually used by Bambusi
([3], Lemma 8.4).

Let us now examine the dynamical consequences of our normal form. As
usual, it will be used to control the directions, if any, in which the action
variables in these new coordinates can actually drift, and we shall come
back to our original coordinates at the beginning of section 3.2.

Under the assumptions of Proposition 3.2, consider the Hamiltonian

Hj = H ◦Ψj = h+ gj + fj

on the domain D2rj/3,2sj/3(ωj). LetMj be the Z-module

Mj = {k ∈ Zn | k.ωi = 0, i ∈ {1, . . . , j}},

whose rank is n− j, and Λj =Mj ⊗ R the vector space spanned byMj .
The following lemma is completely obvious using the definition of the

Poisson bracket.

Lemma 3.4. — The equality {gj , li} = 0, for all i ∈ {1, . . . , j}, is equiv-
alent to ∂θgj ∈ Λj .

Now consider a solution (θj(t), Ij(t)) of Hj with an initial action Ij(tj) ∈
B2rj/3(ωj) for some tj ∈ R, and define the time of escape of this solution
as the smallest time t̃j ∈]tj ,+∞] for which Ij(t̃j) /∈ B2rj/3(ωj). The only
information we shall use from our normal form is contained in the next
proposition.

Proposition 3.5. — Let Πj be the projection onto the linear sub-
space Λj , then with the previous notations, we have

|Ij(t)− Ij(tj)−Πj(Ij(t)− Ij(tj))|<· ε, t ∈ [tj , em[∩[tj , t̃j [.

In particular,
|In(t)− In(tn)|<· ε, t ∈ [tn, em[.

Proof. — Let Π⊥j be the projection onto the orthogonal complement
of Λj , so that Πj + Π⊥j is the identity and therefore

|Ij(t)− Ij(tj)−Πj(Ij(t)− Ij(tj))| = |Π⊥j (Ij(t)− Ij(tj))|.
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Now, as long as t < t̃j , the equations of motion for Hj = h + gj + fj and
the mean value theorem give

|Ij(t)− Ij(tj)| 6 |t− tj ||∂θ(gj + fj)|2rj/3,2sj/3.

But {gj , li} = 0 for i ∈ {1, . . . , j}, so by Lemma 3.4 we have ∂θgj ∈ Λj ,
hence if we first project the equations onto the orthogonal complement
of Λj we have

|Π⊥j (Ij(t)− Ij(tj))| 6 |t− tj ||∂θfj |2rj/3,2sj/3.

Now since |t− tj | < em and |∂θfj |2rj/3,2sj/3<· e−mε, the previous estimate
gives

|Π⊥j (Ij(t)− Ij(tj))|<· ε,

and therefore

|Ij(t)− Ij(tj)−Πj(Ij(t)− Ij(tj))|<· ε

for t ∈ [tj , em[∩[tj , t̃j [.
Finally, note that Πn is identically zero, so that the mean value theorem

immediately gives t̃n > em and the estimate

|In(t)− In(tn)|<· ε, t ∈ [tn, em[,

follows easily. This concludes the proof. �

The interpretation of the above proposition is the following: if λj is the
affine subspace passing through Ij(tj) with direction space Λj , then as long
as Ij(t) remains in the domain Brj (ωj), it is ε-close to λj for an exponen-
tially long time with respect to m. This means that for that interval of
time, there is almost no variation of the action components in the direction
transversal to λj , so that any potential drift has to occur along that space.

3.2. Geometric part.

In this section we will give the proof of Theorem 2.4 using the method
introduced by Niederman in [32] and [34]. Without loss of generality, we
will consider only solutions (θ(t), I(t)) starting at time t0 = 0 and evolving
in positive time t > 0. We will first show that some specific solutions are
exponentially stable, but to define them we shall need some extra notations.
Consider a sequence of linearly independent periodic vectors (ω1, . . . , ωn),

with periods (T1, . . . , Tn), and two decreasing sequences of real numbers
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(r1, . . . , rn) and (s1, . . . , sn) satisfying conditions (Aj), for j ∈ {1, . . . , n}.
Recall that from Proposition 3.2 we have a transformation

Ψj : D2rj/3,2sj/3(ωj)→ Dr1,s1(ω1), j ∈ {1, . . . , n},

such that Ψj = Φ1 ◦ · · · ◦ Φj , where

Φi : D2ri/3,2si/3(ωi)→ Dri,si(ωi), i ∈ {1, . . . , j},

satisfies the estimate |Φi − Id|2ri/3,2si/3 ·<ri.
By construction, our transformations preserve reality so that

Φi : Tn × B2ri/3(ωi)→ Tn × Bri(ωi), i ∈ {1, . . . , j},

with |Φi − Id|2ri/3 ·<ri. In particular, arranging the implicit constant in
the previous estimate ensure that the image of B2ri/3(ωi) under Φi contains
the smaller domain Bri/3(ωi). From now on, we shall simply write

Bi = Bri/3(ωi), i ∈ {1, . . . , n},

and for completeness B0 = B.
Given a solution (θ(t), I(t)) ∈ B starting at time t0 = 0, we can define

inductively the “averaged” solution (θi(t), Ii(t)) for i ∈ {1, . . . , n} by

Φi(θi(t), Ii(t)) = (θi−1(t), Ii−1(t))

as long as Ii−1(t) ∈ Bi, with (θ0(t), I0(t)) = (θ(t), I(t)). Moreover, using
our estimate on Φi we have

(3.1) |Ii(t)− Ii−1(t)| ·<ri, i ∈ {1, . . . , n},

during that time interval.
We can finally make our definition.

Definition 3.6. — Given r0 > 0 and m ∈ N, a solution (θ(t), I(t)) of
the Hamiltonian (∗), starting at time t0 = 0, is said to be restrained (by r0,
up to time em) if we can find sequences of:

(1) radii (r1, . . . , rn), with 0 < rn < · · · < r1 < r0;
(2) widths (s1, . . . , sn), with 0 < sn < · · · < s1;
(3) independent periodic vectors (ω1, . . . , ωn), with periods (T1, . . . , Tn);
(4) times (t1, . . . , tn), with 0 = t0 6 t1 6 · · · 6 tn 6 tn+1 = em,

satisfying, for j ∈ {0, . . . , n− 1}, conditions (Aj+1) and the following con-
ditions (Bj) defined by

(Bj)
{
|Ij(t)− Ij(tj)| < rj , t ∈ [tj , tj+1],
|∇h(Ij(tj+1))− ωj+1| < rj+1.
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Before explaining this definition, we need to make several remarks. First,
for j ∈ {0, . . . , n − 2} we will see that the first condition of (Bj+1) is well
defined by the second condition of (Bj). Furthermore, for j ∈ {0, . . . , n−1}
the last condition in (Bj) implies in particular that the set Bj+1(ωj+1) is
non-empty so we may remove this assumption from (Aj+1). Finally, we can
choose the same sequence of widths (s1, . . . , sn) for all solutions, therefore
we may already fix si ·= s with a suitable constant and this simplifies some
conditions (for instance, the condition mTjrj ·<sj appearing in (Aj) will
be replaced by mTjrj ·< 1).
We have chosen the word “restrained” because for such a solution the

actions I(t) (or some properly normalized actions Ij(t)) are forced to pass
close to a resonance at the time t = tj , the multiplicity of which decreases
as j increases, and moreover the variation of these (normalized) actions
is controlled on each time interval [tj , tj+1]. Hence after the time tn, the
actions are in a domain free of resonances and they are easily confined in
view of the last part of Proposition 3.5. This is reminiscent of the original
mechanism of Nekhoroshev, but the fact that we consider each solution
individually will greatly simplify this geometric part.
Let us see how the actions of a restrained solution are easily confined for

an exponentially long time with respect to m. We shall write

ρj = r1 + · · ·+ rj ,

for j ∈ {1, . . . , n}.

Proposition 3.7. — Consider a restrained solution (θ(t), I(t)), with an
initial action I(0) ∈ BR/2. If

(i) ε ·<rn;
(ii) r0 ·<R,

then the estimates

|I(t)− I(0)| < (n+ 1)2r0, 0 6 t < em,

hold true.

Proof. — First observe that for each j ∈ {1, . . . , n− 1}, for t ∈ [tj , tj+1]
we have

|I(t)− I(tj)| 6 |I(t)− Ij(t)|+ |Ij(t)− Ij(tj)|+ |Ij(tj)− I(tj)|,

so the first part of (Bj) and (3.1) yields

(3.2) |I(t)− I(tj)| < 2ρj + rj
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while for t ∈ [0, t1], the first part of (B0) reads

(3.3) |I(t)− I(0)| < r0.

Now let t ∈ [0, em], then t ∈ [tj , tj+1] for some j ∈ {0, . . . , n} (recall that
tn+1 = em), and we will distinguish three cases.
First assume that t ∈ [0, t1], in this case the conclusion follows by (3.3)

since (n+1)2 > 1. Now assume that t ∈ [tj , tj+1] for some j ∈ {1, . . . , n−1},
then we can write

|I(t)− I(0)| 6 |I(t)− I(tj)|+
j−1∑
i=0
|I(ti+1)− I(ti)|,

and by (3.2) and (3.3)

|I(t)− I(0)| <
j∑
i=1

(2ρi + ri) + r0 < (n+ 1)2r0,

since ri < r0 for i ∈ {1, . . . , j}. Finally, assume that t ∈ [tn, tn+1], then we
can apply the second inequality of Proposition 3.5 and (i) to estimate

|In(t)− In(tn)|<· ε < rn,

and so
|I(t)− I(tn)| < 2ρn + rn

which gives

|I(t)− I(0)| <
n∑
i=1

(2ρi + ri) + r0 < (n+ 1)2r0.

To conclude, just note that I(0) ∈ BR/2 and (ii) ensure that I(t) remains
in BR for t < em. �

Restrained solutions are exponentially stable, and now we will show that
this is in fact true for all solutions. However, to use our steepness argu-
ments this will be done quite indirectly, and so it is useful to introduce the
following definition.

Definition 3.8. — Given r0 > 0 and m ∈ N, a solution (θ(t), I(t)) of
the Hamiltonian (∗), starting at time t0 = 0, is said to be drifting (to r0,
before time em) if there exists a time t∗ satisfying

|I(t∗)− I(0)| = (n+ 1)2r0, 0 < t∗ < em.

Of course, this definition makes sense only if (n+1)2r0 < R/2. In view of
Proposition 3.7, drifting solutions cannot be restrained. However, we will
prove below that if such a drifting solution exists, it has to be restrained

TOME 62 (2012), FASCICULE 1



296 Abed BOUNEMOURA & Laurent NIEDERMAN

under some assumptions on r0, m and ε, which will eventually prove that
all solutions are in fact exponentially stable.
More precisely, assuming the existence of a drifting solution, we will

construct a sequence of radii (r1, . . . , rn), an increasing sequence of times
(t1, . . . , tn) and a sequence of linearly independent vectors (ω1, . . . , ωn),
with periods (T1, . . . , Tn) satisfying, for j ∈ {0, . . . , n − 1}, assumptions
(Aj+1) and (Bj). All sequences will be built inductively, and we first de-
scribe the tools that we shall need.
For j ∈ {1, . . . , n}, recall that Λj is the vector space spanned by

Mj = {k ∈ Zn | k.ωi = 0, i ∈ {1, . . . , j}},

and that Πj (resp. Π⊥j ) is the projection onto Λj (resp. Λ⊥j ). Let us define
the integer

Lj = sup
i∈{1,...,j}

{|Tiωi|} ∈ N∗, j ∈ {1, . . . , n}.

For completeness, we set Λ0 = Rn, L0 = 1 and in this case Π0 is nothing
but the identity. To construct the sequence of times, we will rely on the
fact that our integrable part h belongs to SDMτ

γ (B), so that it satisfies
the following steepness property (see Appendix B).

Lemma 3.9. — For j ∈ {0, . . . , n−1}, let λj be any affine subspace with
direction Λj , and take r < 1. Then for any continuous curve Γ : [0, 1] →
λj ∩B with length

|Γ(0)− Γ(1)| = r ·<γL−τj ,

there exists a time t∗ ∈ [0, 1] such that{
|Γ(t)− Γ(0)| < r, t ∈ [0, t∗],
|Πj(∇h(Γ(t∗)))| ·>r2.

Proof. — For any j ∈ {1, . . . , n − 1}, the orthogonal complement of Λj
is spanned by ω1, . . . , ωj , hence by the integer vectors T1ω1, . . . , Tjωj , so
that Λj belongs to GLj (n, n− j) with the integer Lj defined above. There-
fore one can apply the Proposition B.2 in Appendix B to get the required
properties (note that here we are using the supremum norm instead of the
Euclidean norm, so the implicit constants are different).
For j = 0, Γ : [0, 1]→ B = B∩Rn, but since the orthogonal complement

of Rn is trivial one can take L0 = 1. �

To construct the sequence of periodic vectors, we shall use the following
lemma, which is a straightforward application of Dirichlet’s theorem on
simultaneous Diophantine approximation (see [10]).
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Lemma 3.10. — Given any vector v ∈ Rn and any real number Q > 0,
there exists a T -periodic vector ω satisfying

|v − ω| 6 T−1Q−
1

n−1 , |v|−1 6 T 6 Q|v|−1.

Proof. — Fix any real number Q > 0. We can write the vector v, up to
re-ordering its components, as v = |v|(±1, x) with x ∈ Rn−1, and it will be
enough to approximate x by a periodic vector. By a theorem of Dirichlet,
we can find an integer q, with 1 6 q < Q, such that

|qx− p| 6 Q−
1

n−1 ,

for some p ∈ Zn−1. The vector q−1p is trivially q-periodic, hence the vector
ω = |v|(±1, q−1p) is T -periodic, with T = |v|−1q, therefore

|v|−1 6 T 6 Q|v|−1,

and we have the estimate

|v − ω| 6 T−1|qx− p| 6 T−1Q−
1

n−1 .

�

Now we can finally prove that drifting solutions are in fact restrained
under some assumptions. This will be done inductively, and for techni-
cal reasons we separate the first step (Proposition 3.11) from the general
inductive step (Proposition 3.12).

Proposition 3.11. — Let (θ(t), I(t)) be a drifting solution. If r0 ·<γ,
then there exist a time t1, a T1-periodic vector ω1 and r1 =·T−1

1 εa1 for
some constant a1, satisfying (B0). Moreover, we have the estimates

(3.4) 1<·T1<· ε−a1(n−1)r−2
0 , 1 6 L1<· ε−a1(n−1)r−2

0 .

Proof. — We need to construct t1, ω1 and r1 satisfying
(a) |I(t)− I(0)| < r0, t ∈ [0, t1];
(b) |∇h(I(t1))− ω1| < r1,

and the estimate (3.4). Consider the curve

Γ1 : t ∈ [0, t∗] 7−→ I(t) ∈ B ⊆ Rn.

Since we have a drifting solution, we can select t∗0 ∈ [0, t∗] such that

|Γ1(t∗0)− Γ1(0)| = r0.

Now using the fact that h ∈ SDMτ
γ (B) and r0 ·<γ (recall that L0 = 1), we

can apply Lemma 3.9 (the case j = 0) to the curve Γ1 restricted to [0, t∗0]
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to find a time t1 ∈ [0, t∗0] for which

(3.5)
{
|I(t)− I(0)| < r0, t ∈ [0, t1],
|∇h(I(t1))| ·>r2

0.

The first inequality of (3.5) gives (a).
Now choose Q1 = ε−a1(n−1), for some constant a1 yet to be chosen, and

apply Lemma 3.10 to approximate ∇h(I(t1)) by a T1-periodic vector ω1,
that is

(3.6) |∇h(I(t1))− ω1| 6 T−1
1 Q

− 1
n−1

1 = T−1
1 εa1 .

Moreover, since
r2
0 <· |∇h(I(t1))|<· 1,

the period T1 satisfies the following estimate

(3.7) 1<·T1<· ε−a1(n−1)r−2
0 .

Now choose r1 =·T−1
1 εa1 so that (3.6) gives (b). Finally, as L1 = |T1ω1|

and
|ω1| 6 |∇h(I(t1))|+ |∇h(I(t1))− ω1|<· 1

we obtain

(3.8) 1 6 L1<· ε−a1(n−1)r−2
0

where the lower bound follows from the fact that T1ω1 is a non-zero integer
vector. The estimates (3.7) and (3.8) give (3.4). �

Proposition 3.12. — Let (θ(t), I(t)) be a drifting solution,

j ∈ {1, . . . , n− 1}

and assume that there exist sequences (t1, . . . , tj), (ω1, . . . , ωj) linearly in-
dependent and (r1, . . . , rj), satisfying assumptions (Ai) and (Bi−1), for
i ∈ {1, . . . , j}. Assume also that

(i) rj ·< min{r, s};
(ii) mTjε ·<r1rj ;

(iii) mTjrj ·< 1 ;
(iv)

(
TjrjL

−1
j

)τ ·<γL−τj ;
(v)

(
TjrjL

−1
j

)τ ·<rj ;
(vi) ε ·<

(
TjrjL

−1
j

)2τ ;
(vii) r1 ·<r2

0.
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Then there exist a time tj+1, a Tj+1-periodic vector ωj+1 and rj+1 =·T−1
j+1

εaj+1 for some constant aj+1, satisfying (Aj+1) and (Bj). Moreover, we
have the estimates

1<·Tj+1<· ε−aj+1(n−1)r−2
0 ,

1 6 Lj+1<· max
i∈{1,...,j+1}

{ε−ai(n−1)}r−2
0 ,

(3.9)

and if
(viii) rj+1 ·<

(
TjrjL

−1
j

)2τ ,
then ωj+1 is linearly independent of (ω1, . . . , ωj).

Proof. — First note that for j = 1, we do not require that t1, ω1 and r1
satisfy (A1) since this is implied by the conditions (i), (ii) and (iii), and
for j > 1, the same conditions reduce assumption (Aj+1) to the inclusion
of real domains Brj+1(ωj+1) ⊆ B2rj/3(ωj) (recall that by condition (Bj−1)
these domains are non-empty, and that we have already fixed sj ·= s).

Therefore, we need to construct tj+1, ωj+1 and rj+1 satisfying
(a) |Ij(t)− Ij(tj)| < rj , t ∈ [tj , tj+1];
(b) |∇h(Ij(tj+1))− ωj+1| < rj+1;
(c) ωj+1 is independent of (ω1, . . . , ωj);
(d) Brj+1(ωj+1) ⊆ B2rj/3(ωj),

and the estimates (3.9).
Let t̃j be the maximal time of existence within Bj of the solution Ij(t)

starting at Ij(tj). Since (Aj) is satisfied, we can apply Proposition 3.5 and
for t ∈ [tj , t̃j ] ∩ [tj , em], we have

(3.10) |Ij(t)− Ij(tj)−Πj(Ij(t)− Ij(tj))|<· ε.

Now consider the curve

Γj+1 : t ∈ [tj , t̃j ] ∩ [tj , em] 7−→ Ij(tj) + Πj(Ij(t)− Ij(tj)) ∈ λj ∩B,

where λj is the affine subspace Ij(tj) + Λj .

Claim. — There exists a time t∗j ∈ [tj , t̃j ] ∩ [tj , em] such that

|Γj+1(t∗j )− Γj+1(tj)| = |Πj(Ij(t∗j )− Ij(tj))| =
(
TjrjL

−1
j

)τ
.

Let us prove the claim. We have to distinguish two cases.

First case: t̃j 6 em. — We have

|∇h(Ij(tj))− ωj | 6 |∇h(Ij(tj))−∇h(Ij−1(tj))|+ |∇h(Ij−1(tj))− ωj |,

and therefore
|∇h(Ij(tj))− ωj |<· rj ,

TOME 62 (2012), FASCICULE 1



300 Abed BOUNEMOURA & Laurent NIEDERMAN

while by definition,
|∇h(Ij(t̃j))− ωj |=· rj

with a sufficiently larger implicit constant (see Remark 3.1). Hence

|∇h(Ij(t̃j))−∇h(Ij(tj))|>· rj ,

and this implies

(3.11) |Ij(t̃j)− Ij(tj)|>· rj .

But conditions (v) and (vi) give in particular

ε ·<rj ,

so that (3.10) and (3.11) yields

|Πj(Ij(t̃j)− Ij(tj))|>· rj .

Now using (v) again, this gives

|Πj(Ij(t̃j)− Ij(tj))|>·
(
TjrjL

−1
j

)τ
,

and so we can certainly find a time t∗j ∈ [tj , t̃j ] such that

|Πj(Ij(t∗j )− Ij(tj))| =
(
TjrjL

−1
j

)τ
.

Second case: t̃j > em. — We will first prove that t∗ ∈ [tj , em]. Indeed,
otherwise t∗ belongs to [tk, tk+1] for some k ∈ {0, . . . , j − 1} and we can
write

(3.12) |I(t∗)− I(0)| 6 |I(t∗)− I(tk)|+
k−1∑
i=0
|I(ti+1)− I(ti)|.

Each term of the right-hand side of (3.12) is easily estimated: using (Bi)
for i ∈ {0, . . . , k − 1} we have

|Ii(ti+1)− Ii(ti)| < ri, |Ik(t∗)− Ik(tk)| < rk,

which implies, by the triangle inequality and the estimate (3.1)

|I(ti+1)− I(ti)| < 2ρi + ri, |I(t∗)− I(tk)| < 2ρk + rk.

Moreover,
|I(t1)− I(0)| < r0,

hence we find

|I(t∗)− I(0)| <
k∑
i=1

(2ρi + ri) + r0 < (n+ 1)2r0,

which of course contradicts the definition of our drifting time t∗.
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Now to prove the claim, we argue by contradiction and suppose that

|Πj(Ij(t)− Ij(tj))| <
(
TjrjL

−1
j

)τ
, t ∈ [tj , em].

Since t∗ ∈ [tj , em], we can use the previous inequality together with the
estimate (3.10) and both conditions (v) and (vi) to first obtain

|Ij(t∗)− Ij(tj)| < rj ,

and then with the triangle inequality

|I(t∗)− I(tj)| < 2ρj + rj .

Now, as the argument above, writing

|I(t∗)− I(0)| 6 |I(t∗)− I(tj)|+
j−1∑
i=0
|I(ti+1)− I(ti)|

we find the same contradiction on the time t∗, which completes the proof
of the claim.

Now consider the restriction of the curve Γj+1 on the interval [tj , t∗j ]. Us-
ing our claim together with conditions (iv) and (v), we can apply Lemma 3.9
to find a time tj+1 ∈ [tj , t∗j ] such that

(3.13)
{
|Πj(Ij(t)− Ij(tj))| <

(
TjrjL

−1
j

)τ
, t ∈ [tj , tj+1],

|Πj(∇h(Γj+1(tj+1)))| ·>
(
TjrjL

−1
j

)2τ
.

The first inequality of (3.13), together with (3.10) and conditions (v) and
(vi) give

|Ij(t)− Ij(tj)| < rj

for t ∈ [tj , tj+1], hence (a) is verified. Now as in the first step, choose
Qj+1 = ε−aj+1(n−1) for some constant aj+1 to be chosen later, and apply
Lemma 3.10 to approximate ∇h(Ij(tj+1)) by a Tj+1-periodic vector ωj+1,
that is

(3.14) |∇h(Ij(tj+1))− ωj+1| 6 T−1
j+1Q

− 1
n−1

j+1 = T−1
j+1ε

aj+1 .

Let rj+1 =·T−1
j+1ε

aj+1 so that (b) is verified by (3.14). To estimate the period
Tj+1 and the number Lj , we need a lower bound for |∇h(Ij(tj+1))| and we
will use the fact that we have such a lower bound for |∇h(I(t1)| (see the
second inequality of (3.5)). First note that one has easily

|Ij(tj+1)− I(t1)|<· r1,

since ri < r1 for i ∈ {1, . . . , j}, and therefore

|∇h(Ij(tj+1))−∇h(I(t1))|<· r1,
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so choosing properly the constant in the condition (vii) we can ensure that

|∇h(Ij(tj+1))−∇h(I(t1))| ·<r2
0

and hence

(3.15) |∇h(Ij(tj+1))| > |∇h(I(t1)| − |∇h(Ij(tj+1))−∇h(I(t1))| ·>r2
0.

By Lemma 3.10, this gives the estimate

(3.16) 1<·Tj+1<· ε−aj+1(n−1)r−2
0 .

Now as |ωj |<· 1 this easily implies that

(3.17) 1 6 Lj+1<· max
i∈{1,...,j+1}

{ε−ai(n−1)}r−2
0 .

The estimates (3.16) and (3.17) give (3.9).
Next having built rj+1, we need to check that ωj+1 is independent of

(ω1, . . . , ωj). First, by using the mean value theorem, the estimate (3.10)
and our condition (vi), we have

|∇h(Ij(tj+1))−∇h(Γj+1(tj+1))| ·<
(
TjrjL

−1
j

)2τ
,

and together with the second estimate of (3.13), this gives

(3.18) |Πj(∇h(Ij(tj+1)))| ·>
(
TjrjL

−1
j

)2τ
.

Furthermore, using (3.14)

|Πj(∇h(Ij(tj+1))− ωj+1)| 6 |∇h(Ij(tj+1))− ωj+1| ·<rj+1

hence with (viii), we get

(3.19) |Πj(∇h(Ij(tj+1))− ωj+1)| ·<
(
TjrjL

−1
j

)2τ
.

Now by the estimates (3.18) and (3.19)

|Πj(ωj+1)| > |Πj(∇h(Ij(tj+1)))|−

|Πj(∇h(Ij(tj+1))− ωj+1)| ·>
(
TjrjL

−1
j

)2τ
and so Πj(ωj+1) is non zero, which means that ωj+1 is not a linear combi-
nation of {ω1, . . . , ωj}. This proves (c).

Finally we can write

|ωj+1 − ωj | 6 |ωj+1 −∇h(Ij(tj+1))|+ |∇h(Ij(tj+1))−∇h(Ij(tj))|

+ |∇h(Ij(tj))−∇h(Ij−1(tj))|+ |∇h(Ij−1(tj))− ωj |,

and hence
|ωj+1 − ωj |<· (rj + rj+1)<· rj .
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So given any I ∈ Brj+1(ωj+1), we have

|∇h(I)− ωj | 6 |∇h(I)− ωj+1|+ |ωj+1 − ωj |<· rj ,

so that I ∈ B2rj/3(ωj), which gives (d). This ends the proof. �

Now we can eventually complete the proof of the main Theorem 2.4.
Proof of Theorem 2.4. — As a consequence of Propositions 3.7, 3.11

and 3.12, we know that

|I(t)− I(0)| < (n+ 1)2r0, 0 6 t < em

provided that the parameters r0, m and ε satisfy the following eleven con-
ditions:

(i) rj+1 ·<
(
TjrjL

−1
j

)2τ , j ∈ {1, . . . , n− 1};
(ii) ε ·<

(
TjrjL

−1
j

)2τ , j ∈ {1, . . . , n− 1};
(iii)

(
TjrjL

−1
j

)τ ·<rj , for j ∈ {1, . . . , n− 1};
(iv) mTjrj ·< 1, for j ∈ {1, . . . , n};
(v) r1 ·<r2

0;
(vi) mTjε ·<r1rj , for j ∈ {1, . . . , n};

(vii) ε ·<rn;
(viii)

(
TjrjL

−1
j

)τ ·<γL−τj , for j ∈ {1, . . . , n− 1};
(ix) r0 ·<γ;
(x) r0 ·<R;

(xi) rj ·< min{r, s}, for j ∈ {1, . . . , n},
where rj =·T−1

j εaj , with aj to be defined for j ∈ {1, . . . , n}, and

(3.20) 1<·Tj <· ε−aj(n−1)r−2
0 , 1 6 Lj <· max

i∈{1,...,j}
{ε−ai(n−1)}r−2

0 .

So let us choose m ·= ε−a and r0 = εb, for two constants a and b also to be
determined.
Using the estimates (3.20) on the periods Tj , j ∈ {1, . . . , n} and the

numbers Lj , j ∈ {1, . . . , n−1}, as well as the form of r0, rj for j ∈ {1, . . . , n}
and m, one can see that conditions (i) to (xi) are implied by the following
conditions:

(i′) aj+1 − 2nτ
(
maxi∈{1,...,j}{ai}

)
− 4τb > 0, j ∈ {1, . . . , n− 1};

(ii′) 1− 2nτaj − 4τb > 0, j ∈ {1, . . . , n− 1};
(iii′) (τ − 1)aj − 2b > 0, for j ∈ {1, . . . , n− 1};
(iv′) aj > a, for j ∈ {1, . . . , n};
(v′) a1 − 2b > 0;

(vi′) 1− a− (2n− 1)aj − na1 − 6b > 0, for j ∈ {1, . . . , n};
(vii′) 1− nan − 2b > 0;

(viii′) ε < γ(τaj)−1 , for j ∈ {1, . . . , n− 1};
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(ix′) ε < γb
−1 ;

(x′) ε < Rb
−1 ;

(xi′) ε < (min{r, s})(naj+2b)−1 , for j ∈ {1, . . . , n}.

So we need to choose constants aj , j ∈ {1, . . . , n}, a and b such that the
previous conditions are satisfied. First note that by (i′), the sequence aj ,
for j ∈ {1, . . . , n}, has to be increasing, hence

max
i∈{1,...,j}

{ai} = aj , j ∈ {1, . . . , n}.

Then using (v′), we observe that (i′) is satisfied if aj+1 = 2τ(n + 1)aj for
j ∈ {1, . . . , n− 1}, that is

aj = (2τ(n+ 1))j−1a1.

Now for (ii′) to be satisfied, one can choose

a1 = (2τ(n+ 1))−n,

so aj , for j ∈ {2, . . . , n}, is determined by

aj = (2τ(n+ 1))−n−1+j .

Then, since τ > 2, we may choose

b = 3−1a1 = 3−1(2τ(n+ 1))−n

and (iii′) easily holds. Finally, we may also choose

a = b = 3−1(2τ(n+ 1))−n

so that (iv′) is satisfied. With those values, it is easy to check that (v′),
(vi′) and (vii′) holds, recalling that τ > 2 and n > 2. To conclude, just note
that (viii′), (ix′), (x′) and (xi′) are satisfied if ε 6 ε0 with a sufficiently
small ε0 depending on n,R, r, s,M, γ and τ . This ends the proof. �

Appendix A. Proof of the normal form

In this first appendix we will give the proof of the normal form 3.2.
We will closely follow the method of [38] and deduce our result from an
equivalent version in terms of vector fields (Proposition A.4 below).
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A.1. Preliminary estimates

Before giving the proof, we will need some general estimates based on
the classical Cauchy inequality.

First consider the case of a function f analytic on some domain Dr,s,
and recall that

|∂θf |r,s = max
16i6n

|∂θif |r,s, |∂If |r,s = max
16i6n

|∂Iif |r,s.

We take r′, s′ such that 0 < r′ < r and 0 < s′ < s. The first estimate is
classical, but we repeat the proof for convenience.

Lemma A.1. — Under the previous assumptions, we have

|∂If |r−r′,s <
1
r′
|f |r,s, |∂θf |r,s−s′ <

1
s′
|f |r,s.

Proof. — For x = (θ, I) ∈ Dr−r′,s and any unit vector v ∈ Cn, consider
the function

Fx,v : t ∈ C 7−→ f(θ, I + tv) ∈ C.

This function is well-defined and holomorphic on the disc |t| < r′, so the
classical Cauchy estimate gives

|F ′x,v(0)| < 1
r′
|f |r,s,

from which the inequality for ∂If follows easily by optimizing with respect
to x and v. The estimate for ∂θf is completely similar. �

Now let j ∈ {1, . . . , n}, and let f and g be analytic functions defined on
the domain

Drj ,sj (ωj) = {(θ, I) ∈ Drj ,sj | |∇h(I)− ωj |<· rj},

where ωj is a periodic vector. We can define a vector field norm onDrj ,sj (ωj)
by

|Xf |rj ,sj = max
(
|∂If |rj ,sj , |∂θf |rj ,sj

)
.

However, it will be more convenient to use the following “weighted" norm

||Xf ||rj ,sj = max
(
|∂If |rj ,sj , s1r

−1
1 |∂θf |rj ,sj

)
,

since the components |∂If |rj ,sj and |∂θf |rj ,sj may have very different sizes
when estimated from the size of f by a Cauchy estimate (this idea is used
in [12]).
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Remark A.2. — Note that under assumption (A), s1r
−1
1 > 1, so we have

the inequality
|Xf |rj ,sj 6 ||Xf ||rj ,sj

and the equality holds if f is integrable. Moreover, note that each norm
|| . ||rj ,sj is normalized with s1r

−1
1 (and not with sjr−1

j ): by our inclusions
of domains, this implies in particular that

|| . ||rj+1,sj+1 6 || . ||2rj/3,2sj/3.

It is well-known how to use the Cauchy inequality to estimate the size
of the Poisson bracket {f, g} in terms of f and g. Similarly, our second
estimate is concerned with the size of the vector field [Xf , Xg] in terms of
Xf and Xg. We take r′, s′ such that 0 < r′ < rj and 0 < s′ < sj .

Lemma A.3. — Under the previous assumptions, we have

||[Xf , Xg]||rj−r′,sj−s′ <
1
r′
||Xf ||rj ,sj ||Xg||rj ,sj ,

and moreover, if g is integrable, then

||[Xf , Xg]||rj−r′,sj−s′ <
1
s′
||Xf ||rj ,sj ||Xg||rj .

Proof. — First recall that

[Xf , Xg] = d

dt
(Φgt )∗Xf

∣∣∣∣
t=0

.

Now fix x ∈ Drj−r′,sj−s′ , and let us define the vector-valued function

Fx : t ∈ C 7−→ (Φgt )∗Xf (x) ∈ C2n.

Clearly, the map Φgt is analytic, and it sends Drj−r′,sj−s′(ωj) into Drj ,sj (ωj)
for complex values of t satisfying

|t| < r′||Xg||−1
rj ,sj ,

hence the function Fx is well-defined and analytic on the disc

|t| < r′||Xg||−1
rj ,sj .

So applying the classical Cauchy estimate to each component of Fx and
optimizing with respect to x ∈ Drj−r′,sj−s′ we obtain the desired inequality

||[Xf , Xg]||rj−r′,sj−s′ <
1
r′
||Xg||rj ,sj ||Xf ||rj ,sj .

In case g where is integrable, the map Φgt leaves invariant the action com-
ponents, so the same reasoning can be applied on the larger disc

|t| < s′||Xg||−1
rj ,sj ,
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giving the improved estimate

||[Xf , Xg]||rj−r′,sj−s′ <
1
s′
||Xf ||rj ,sj ||Xg||rj .

�

A.2. Proof of Proposition 3.2

Now we can pass to the proof of Proposition 3.2. Given ε̃ > 0 which will
be the size of our perturbating vector field Xf , let us introduce a slightly
modified set of conditions (Ãj), for j ∈ {1, . . . , n}, where (Ã1) is

(Ã1)
{
mT1ε̃ ·<r1, mT1r1 ·<s1, 0 < r1<· s1,

Br1(ω1) 6= ∅,

and for j ∈ {2, . . . , n}, (Ãj) is

(Ãj)
{
mTj ε̃ ·<rj , mTjrj ·<sj , 0 < rj <· sj ,
Brj (ωj) 6= ∅, Drj ,sj (ωj) ⊆ D2rj−1/3,2sj−1/3(ωj−1).

These modifications take into account the fact that we will use the weighted
norms || . ||rj ,sj , for j ∈ {1, . . . , n}.
The normal form lemma in terms of vector fields is the following.

Proposition A.4. — Consider H = h + f on the domain Dr1,s1(ω1),
with ||Xf ||r1,s1 < ε̃, and let j ∈ {1, . . . , n}. If (Ãi) is satisfied for any
i ∈ {1, . . . , j}, then there exists an analytic symplectic transformation

Ψj : D2rj/3,2sj/3(ωj)→ Dr1,s1(ω1)

such that
H ◦Ψj = h+ gj + fj ,

with {gj , li} = 0 for i ∈ {1, . . . , j}, and the estimates

||Xgj ||2rj/3,2sj/3<· ε̃, ||Xfj ||2rj/3,2sj/3<· e
−mε̃.

Moreover, we have Ψj = Φ1 ◦ · · · ◦ Φj with

Φi : D2ri/3,2si/3(ωi)→ Dri,si(ωi)

such that |Φi − Id|2ri/3,2si/3 ·<ri.

Let us see how this implies our Proposition 3.2.
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Proof of Proposition 3.2. We know that |f |r,s < ε, so we can apply
Lemma A.1 with r′ = r1 and s′ = s1 to obtain

|∂If |r−r1,s < r−1
1 |f |r,s, |∂θf |r,s−s1 < s−1

1 |f |r,s,

and hence
||Xf ||r−r1,s−s1 < r−1

1 ε.

Now since r1 ·<r and s1 ·<s (this is part of assumption (A1)), we have the
inclusion Dr1,s1(ω1) ⊆ Dr−r1,s−s1 and hence

||Xf ||r1,s1 <· r−1
1 ε.

Set ε̃ = r−1
1 ε, then for any i ∈ {1, . . . , j}, (Ai) implies (Ãi) so that the

Proposition A.4 can be applied: there exists an analytic symplectic trans-
formation

Ψj : D2rj/3,2sj/3(ωj)→ Dr1,s1(ω1)
such that

H ◦Ψj = h+ gj + fj ,

with {gj , li} = 0 for i ∈ {1, . . . , j}, and the estimates

||Xgj ||2rj/3,2sj/3<· εr
−1
1 , ||Xfj ||2rj/3,2sj/3<· e

−mr−1
1 ε.

Recalling the definition of our norm || . ||rj ,sj , this readily implies

|∂θgj |2rj/3,2sj/3<· εs
−1
1 <· ε, |∂θfj |2rj/3,2sj/3<· e

−mεs−1
1 <· e−mε.

Moreover, we have Ψj = Φ1 ◦ · · · ◦ Φj with

Φi : D2ri/3,2si/3(ωi)→ Dri,si(ωi)

such that |Φi − Id|2ri/3,2si/3 ·<ri. �

Hence it remains to prove Proposition A.4. This will be done by induction
on j ∈ {1, . . . , n}, and for that we shall need two iterative lemmas. The first
iterative lemma is needed for the first step, that is to prove the statement
for j = 1, and it can be seen as an averaging process with respect to one
fast angle.

Lemma A.5 (First iterative lemma). — Consider H = h+ g+ f on the
domain Dr1,s1(ω1), with h integrable, {g, l1} = 0, and assume that

||Xg||r1,s1 <· ε̃, ||Xf ||r1,s1 < ε̃.

If we have
T1ε̃ < r′ < s′

with two real numbers r′, s′ satisfying 0 < r′ < r1 and 0 < s′ < s1, then
there exists an analytic symplectic transformation

ϕ1 : Dr1−r′,s1−s′(ω1)→ Dr1,s1(ω1)
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such that |ϕ1 − Id|r1−r′,s1−s′ < T1ε̃ and

H ◦ ϕ1 = h+ g+ + f+,

with {g+, l1} = 0 and the estimates

||Xg+ ||r1,s1 <· ε̃, ||Xg+ −Xg||r1,s1 < ε̃,

||Xf+ ||r1−r′,s1−s′ <·
(
r1

s′
+ ε̃

r′

)
T1ε̃.

Proof. — We have H = h+ g + f , with h integrable, g satisfying {g, l1}
and f a general term. Let us write

[f ]1 = 1
T1

∫ T1

0
f ◦ Φl1t dt,

the average of f along the Hamiltonian flow of l1.
Our transformation ϕ1 = Φχ1 will be the time-one map of the Hamiltonian

flow generated by some auxiliary function χ which satisfies

{χ, l1} = f − [f ]1.

The latter equation is easily solved by

(A.1) χ = 1
T1

∫ T1

0
(f − [f ]1) ◦ Φl1t tdt,

and by Taylor formula, our transformed Hamiltonian writes

H ◦ ϕ1 = h+ g+ + f+,

with

g+ = g + [f ]1, f+ =
∫ 1

0
{h− l1 + g + ft, χ} ◦ Φχt dt,

and ft = tf + (1 − t)[f ]1. By construction, g+ still satisfies {g+, l1} = 0,
and

Xg+ −Xg = X[f ]1 = 1
T1

∫ T1

0
(Φl1t )∗Xfdt.

Our hypothesis ||Xf ||r1,s1 < ε̃ immediately gives ||Xg+ −Xg||r1,s1 < ε̃ and
also ||Xg+ ||r1,s1 <· ε̃. Similarly using (A.1) we have the expression

Xχ = 1
T1

∫ T1

0
(Φl1t )∗Xf−[f ]1tdt,

and hence ||Xχ||r1,s1 < T1ε̃. By the hypothesis T1ε̃ < r′ < s′ our transfor-
mation ϕ1 maps Dr1−r′,s1−s′(ω1) into Dr1,s1(ω1) and

|ϕ1 − Id|r1−r′,s1−s′ < T1ε̃.
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Therefore it remains to estimate the vector field

Xf+ =
∫ 1

0
(Φχt )∗[Xh−l1 +Xg +Xft , Xχ]dt,

and for that it is enough to estimate the brackets [Xft , Xχ], [Xg, Xχ] and
[Xh−l1 , Xχ]. Using Lemma (A.3), we find

||[Xft , Xχ]||r1−r′,s1−s′ <
1
r′
||[Xft ||r1,s1 ||Xχ||r1,s1 <·

ε̃

r′
T1ε̃

and
||[Xg, Xχ]||r1−r′,s1−s′ <

1
r′
||[Xg||r1,s1 ||Xχ||r1,s1 <·

ε̃

r′
T1ε̃.

For the last bracket, note that h − l1 is integrable so that we can use the
improved estimate in Lemma (A.3). By definition of the domain Dr1,s1(ω1),
we have ||Xh−l1 ||r1 <· r1 and hence

||[Xh−l1 , Xχ]||r1−r′,s1−s′ <
1
s′
||Xh−l1 ||r1 ||Xχ||r1,s1 <·

r1

s′
T1ε̃.

Putting the last three estimates together we arrive at

||Xf+ ||r1−r′,s1−s′ <·
(
r1

s′
+ ε̃

r′

)
T1ε̃.

�

Our second iterative lemma is needed for the inductive step, that is to
go from j to j + 1. This is just a simple extension of the previous one. Let
j ∈ {1, . . . , n− 1}.

Lemma A.6 (Second iterative lemma). — Consider H = h+g+f on the
domain Drj+1,sj+1(ωj+1), with h integrable, {g, li} = 0 for i ∈ {1, . . . , j+1},
{f, li′} = 0 for i′ ∈ {1, . . . , j}, and assume that

||Xg||rj+1,sj+1 <· ε̃, ||Xf ||rj+1,sj+1 <· ε̃.

If we have
Tj+1ε̃ ·<r′ ·<s′

with two real numbers r′, s′ satisfying 0 < r′ < rj+1 and 0 < s′ < sj+1,
then there exists an analytic symplectic transformation

ϕj+1 : Drj+1−r′,sj+1−s′(ωj+1)→ Drj+1,sj+1(ωj+1)

such that |ϕj+1 − Id|rj+1−r′,sj+1−s′ <·Tj+1ε̃ and

H ◦ ϕj+1 = h+ g+ + f+,
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with {g+, li} = 0 for i ∈ {1, . . . , j+ 1}, {f+, li′} = 0 for i′ ∈ {1, . . . , j}, and
the estimates

||Xg+ ||rj+1,sj+1 <· ε̃, ||Xg+ −Xg||rj+1,sj+1 <· ε̃,

||Xf+ ||rj+1−r′,sj+1−s′ <·
(
rj+1

s′
+ ε̃

r′

)
Tj+1ε̃.

Proof. — Our Hamiltonian is H = h + g + f , h is integrable and we
have {g, li} = 0 for i ∈ {1, . . . , j + 1} and {f, li′} = 0 for i′ ∈ {1, . . . , j}.
Once again, our transformation ϕj+1 = Φχ1 will be the time-one map of the
Hamiltonian flow generated by some auxiliary function χ.

We choose

(A.2) χ = 1
Tj+1

∫ Tj+1

0
(f − [f ]j+1) ◦ Φlj+1

t tdt,

where [.]j+1 is the averaging along the Hamiltonian flow of lj+1. Introducing
the notation ft = tf + (1− t)[f ]j+1, like in Lemma A.5 we have

H ◦ ϕj+1 = h+ g+ + f+

with

g+ = g + [f ]j+1, f+ =
∫ 1

0
{h− lj+1 + g + ft, χ} ◦ Φχt dt.

We need to verify that we still have {g+, li} = 0 for i ∈ {1, . . . , j + 1} and
{f+, li′} = 0 for i′ ∈ {1, . . . , j}. By definition, {[f ]j+1, lj+1} = 0, and for
i′ ∈ {1, . . . , j}, we compute

{[f ]j+1, li′} = 1
Tj+1

∫ Tj+1

0
{f ◦ Φlj+1

t , li′}dt

= 1
Tj+1

∫ Tj+1

0
{f ◦ Φlj+1

t , li′ ◦ Φlj+1
t }dt

= 1
Tj+1

∫ Tj+1

0
{f, li′} ◦ Φlj+1

t dt

= 0.

This proves that {g+, li} = {g + [f ]j+1, li} = 0 for i ∈ {1, . . . , j + 1}. Now
a completely similar calculation shows that for i′ ∈ {1, . . . , j}, {χ, li′} = 0,
hence li′ ◦ Φχt = li′ and therefore

{f+, li′} =
∫ 1

0
{{h− lj+1 + g + ft, χ}, li′} ◦ Φχt dt.
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The double bracket in the expression above is zero, as a consequence of
Jacobi identity and the fact that {h − lj+1 + g + ft, li′} = {χ, li′} = 0,
hence {f+, li′} = 0 for i′ ∈ {1, . . . , j}.
To conclude, using our hypothesis Tj+1ε̃ ·<r′ ·<s′, as in Lemma A.5 we

can show that our transformation ϕj+1 maps Drj+1−r′,sj+1−s′(ωj+1) into
Drj+1,sj+1(ωj+1) with |ϕj+1 − Id|rj+1−r′,sj+1−s′ <·Tj+1ε̃ and the estimates

||Xg+ ||rj+1,sj+1 <· ε̃, ||Xg+ −Xg||rj+1,sj+1 <· ε̃,

||Xf+ ||rj+1−r′,sj+1−s′ <·
(
rj+1

s′
+ ε̃

r′

)
Tj+1ε̃,

are obtained in a completely analogous way. �

We can eventually complete the proof of our normal form A.4.
Proof of Proposition A.4. — The proof is by induction on j ∈ {1, . . . , n}.

First step. — Here we assume (Ã1) and we will apply m times our first
iterative Lemma A.5, starting with the Hamiltonian

H0 = H = h+ g0 + f0

where g0 = 0 and f0 = f and choosing uniformly at each step

r′ = (3m)−1r1, s′ = (3m)−1s1.

Since m > 1, we have 0 < r′ < r1, 0 < s′ < s1 and using (Ã1), we have

T1ε̃ < r′ < s′,

so that the lemma can indeed be applied at each step. For i ∈ {0, . . . ,m−1},
the Hamiltonian Hi = h+ gi + f i at step i is transformed into

Hi+1 = Hi ◦ ϕi1 = h+ gi+1 + f i+1.

For each i ∈ {0, . . . ,m}, we obviously have {gi, l1} = 0 and we claim that
the estimates

(A.3) ||Xgi ||ri1,si1 <· ε̃, ||Xfi ||ri1,si1 < ε̃i,

hold true, where we have set ε̃i = e−iε̃, ri1 = r1 − ir′ and si1 = s1 − is′.
Assuming this claim, given i ∈ {0, . . . ,m− 1}, we have

ϕi1 : Dri+1
1 ,si+1

1
(ω1) −→ Dri1,si1(ω1),

so that Ψ1 = ϕ0
1 ◦ · · · ◦ ϕm−1

1 is well defined from D2r1/3,2s1/3(ω1) to
Dr1,s1(ω1). Setting g1 = gm and f1 = fm, we finally obtain

H ◦Ψ1 = h+ g1 + f1

ANNALES DE L’INSTITUT FOURIER



GENERIC NEKHOROSHEV THEORY WITHOUT SMALL DIVISORS 313

with the desired properties, that is {g1, l1} = 0 and the estimates

||Xg1 ||2r1/3,2s1/3 < ε̃, ||Xf1 ||2r1/3,2s1/3 < e−mε̃.

Note that since ||Xfi ||ri1,si1 < ε̃i for i ∈ {0, . . . ,m− 1}, we obtain

|ϕi1 − Id|ri+1
1 ,si+1

1
< T1ε̃i,

which gives

|Ψ1 − Id|2r1/3,2s1/3 6
m−1∑
k=0

T1ε̃k <·T1ε̃.

But recall that mT1ε̃ ·<r1 and hence we can arrange

|Ψ1 − Id|2r1/3,2s1/3 ·<r1.

Therefore to conclude the proof we need to establish the estimates (A.3),
and we may proceed by induction. For i = 0, g0 = 0 and f0 = f so there is
nothing to prove. Now assume that the estimates (A.3) are satisfied for each
k 6 i, where i ∈ {0, . . . ,m − 1}. For k ∈ {0, . . . , i}, since ||Xfk ||rk1 ,sk1 < ε̃k
we get that

||Xgk+1 −Xgk ||rk+1
1 ,sk+1

1
< ε̃k,

and therefore

||Xgi+1 ||ri+1
1 ,si+1

1
6

i∑
k=0

ε̃k <· ε̃,

so this gives the desired estimate for Xgi+1 . For Xfi+1 , note that

||Xfi+1 ||ri+1
1 ,si+1

1
<·T

(
r1

s′
+ ε̃

r′

)
||Xfi ||ri1,si1 ,

but
T1

(
r1

s′
+ ε̃

r′

)
=·
(
mT1r1

s1
+ mT1ε̃

r1

)
,

so choosing properly the implicit constants in (Ã1) we can ensure that

T1

(
r1

s′
+ ε̃

r′

)
·< 1

e

which implies the estimate for Xfi+1 and concludes this first step.

Inductive step. — Now assume that the statement holds true for some
j ∈ {1, . . . , n− 1}, and we have to show that it remains true for j + 1. By
assumptions, there exists an analytic symplectic transformation

Ψj : D2rj/3,2sj/3(ωj)→ Dr1,s1(ω1)

such that
H ◦Ψj = h+ gj + fj ,
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with {gj , li} = 0 for i ∈ {1, . . . , j} and the estimates

||Xgj ||2rj/3,2sj/3<· ε̃, ||Xfj ||2rj/3,2sj/3<· e
−mε̃.

Also, Ψj = Φ1 ◦ · · · ◦ Φj with

Φi : D2ri/3,2si/3(ωi)→ Dri,si(ωi)

such that |Φi − Id|2ri/3,2si/3 ·<ri for i ∈ {1, . . . , n}. Furthermore, (Ãj+1)
holds. Now consider the Hamiltonian h+gj , it is defined on D2rj/3,2sj/3(ωj),
hence by (Ãj+1), it is also defined on the domain Drj+1,sj+1(ωj+1) and it
satisfies {gj , li} = 0 for i ∈ {1, . . . , j}. Moreover, we have the estimate

||Xgj ||rj+1,sj+1 6 ||Xgj ||2rj/3,2sj/3<· ε̃.

As in the first step, starting this time with the Hamiltonian

h+ gj = h+ g0
j + f0

j ,

with g0
j = 0 and f0

j = gj , we can apply m times our second iterative
Lemma A.6 to have the following: there exists an analytic symplectic trans-
formation

Φj+1 : D2rj+1/3,2sj+1/3(ωj+1)→ Drj+1,sj+1(ωj+1)

of the form Φj+1 = ϕ0
j+1 ◦ · · · ◦ ϕ

m−1
j+1 such that

|Φj+1 − Id|2rj+1/3,2sj+1/3 ·<rj+1

and
(h+ gj) ◦ Φj+1 = h+ gmj + fmj ,

with {gmj , li} = 0 for i ∈ {1, . . . , j + 1}, and the estimates

||Xgm
j
||2rj+1/3,2sj+1/3<· ε̃, ||Xfm

j
||2rj+1/3,2sj+1/3<· e

−mε̃.

Now we set

Ψj+1 = Ψj ◦ Φj+1 : D2rj+1/3,2sj+1/3(ωj+1)→ Dr1,s1(ω1),

which is well-defined by (Ãj+1), to have

H ◦Ψj+1 = (H ◦Ψj) ◦ Φj+1

= (h+ gj + fj) ◦ Φj+1

= (h+ gj) ◦ Φj+1 + fj ◦ Φj+1

= h+ gmj + fmj + fj ◦ Φj+1

= h+ gj+1 + fj+1
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with gj+1 = gmj and fj+1 = fmj + fj ◦ Φj+1. The conclusions follow:
{gj+1, li} = 0 for i ∈ {1, . . . , j + 1}, we have the estimate

||Xgj+1 ||2rj+1/3,2sj+1/3<· ε̃,

and since

||Xfj◦Φj+1 ||2rj+1/3,2sj+1/3 6 ||Xfj ||rj+1,sj+1 6 ||Xfj ||2rj/3,2sj/3
we also have

||Xfj+1 ||2rj+1/3,2sj+1/3 6 ||Xfm
j
||2rj+1/3,2sj+1/3 + ||Xfj ||2rj/3,2sj/3

<· e−mε̃.

The proof is therefore complete. �

Appendix B. SDM functions

In this appendix, we will study our class of SDM functions. We will first
show in B.1 that they satisfy an adapted steepness property, which we used
in the proof of our exponential estimates, and then in B.2 we will prove
that they are generic. These results are similar to [34].

B.1. Steepness.

We denote by GAB(n, k) the set of all affine subspaces of Rn of dimen-
sion k intersecting the ball B, and by GALB(n, k) those subspaces with
direction in GL(n, k) (the latter is the space of linear subspaces of Rn of
dimension k whose orthogonal complement is spanned by integer vectors
of length less than or equal to L). Let us recall the classical steepness
condition, originally introduced by N.N. Nekhoroshev ([29]).

Definition B.1. — A function h ∈ C2(B) is said to be steep if it has
no critical points and if for any k ∈ {1, . . . , n − 1}, there exist an index
pk > 0 and coefficients Ck > 0, δk > 0 such that for any affine subspace
λk ∈ GAB(n, k) and any continuous curve Γ : [0, 1]→ λk ∩B with

‖Γ(0)− Γ(1)‖ = r < δk,

there exists t∗ ∈ [0, 1] such that:{
‖Γ(t)− Γ(0)‖ < r, t ∈ [0, t∗],
‖ΠΛk(∇h(Γ(t∗)))‖ > Ckr

pk
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where ΠΛk is the projection onto Λk, the direction of λk.
The function is said to be symmetrically steep (or shortly S-steep) if

the above property is also satisfied for k = n, with an index pn > 0 and
coefficients Cn > 0, δn > 0.

Let us remark that S-steep functions are allowed to have critical points.
Those definitions are rather obscure, but in fact it can be given a simpler
and more geometric interpretation, as was shown by Ilyashenko ([16]) and
Niederman ([33]). Important examples of steep functions are given by the
class of strictly convex (or quasi-convex) functions, with all the steepness
indices equal to one.

A typical example of non-steep function, which is due to Nekhoroshev, is
h(I1, I2) = I2

1 − I2
2 , and it is not exponentially stable: for the perturbation

hε(I1, I2) = I2
1 − I2

2 + ε sin(θ1 + θ2), any solution with I1(0) = I2(0) has
a fast drift, that is a drift of order one on a time scale of order ε−1 (this
is obviously the fastest drift possible). But adding a third order term in
the previous example (for example I3

2 ) we recover steepness, and this is in
fact a general phenomenon. Indeed, non-steep functions has infinite codi-
mension among smooth functions, or more precisely, if Jr(n) is the space
of r-jets of C∞ functions on an open set of Rn, then Nekhoroshev proved
in [30] that the set of r-jets of non-steep functions is an algebraic subset of
Jr(n) which codimension goes to infinity as r goes to infinity. In this sense,
steep functions are “generic”. However, for n > 3, a quadratic Hamiltonian
is steep only if it is sign definite, which is a strong assumption, and more
generally a polynomial is generically steep only if its degree is sufficiently
high (of order n2 if n is the number of degrees of freedom). Hence polyno-
mials of lower degree are generically non-steep (see [22]). This is clearly a
shortcoming, and we will see at the end of the next section the advantage
of our genericity condition.
Steepness (or S-steepness) is a sufficient condition to ensure exponential

stability, but this is not necessary, as was first noticed by Morbidelli and
Guzzo (see [27]). They considered the Hamiltonian h(I1, I2) = I2

1 − αI2
2 ,

which is non-steep for any value of α > 0, and noticed that a “fast drift" is
not possible if

√
α is “strongly” irrational. Therefore a Diophantine condi-

tion on
√
α should ensure exponential stability.

Such considerations were then generalized by Niederman who introduced
the class of “Diophantine Morse” functions and who proved that they are
exponentially stable ([34]). The only difference between these functions and
the “Simultaneous Diophantine Morse” functions we use in this paper is
that Diophantine Morse functions consider subspaces in GL(n, k), which
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are generated by integer vectors of length bounded by L, while here we
are looking at subspaces in GL(n, k) where the latter condition is imposed
on the orthogonal complement. This reflects the difference between the
method of proof: in ([34]) the analytic part was based on classical small di-
visors techniques (that is linear Diophantine approximation) and therefore
required an adapted geometric assumption, while here we simply rely on
the most basic theorem of simultaneous Diophantine approximation (and
this explains the name Simultaneous Diophantine Morse functions).
In both cases, the use of such a class of functions has two advantages.

The first one is that these functions are generic in a much more clearer
sense than steep functions, and this will be explained in the next section.
The second advantage is that they are in some sense more general than
the usual steep functions, since we only have to consider curves in some
specific affine subspaces. This is explained in the proposition below.

Proposition B.2. — Let h ∈ SDMτ
γ (B), assume that |h|C3(B) < M

and take r < 1. Then for any affine subspace λ ∈ GALB(n, k) and any
continuous curve Γ : [0, 1]→ λ ∩B with

‖Γ(0)− Γ(1)‖ = r < (2M)−1γL−τ ,

there exists t∗ ∈ [0, 1] such that:{
‖Γ(t)− Γ(0)‖ 6 r, t ∈ [0, t∗],
‖ΠΛ(∇h(Γ(t∗)))‖ > 1

2r
2

where ΠΛ is the projection onto Λ, the direction of λ.

Proof. — It is enough to check that these properties are satisfied for a
vector space Λ ∈ GL(n, k), since any affine subspace λ ∈ GALB(n, k) is of
the form λ = v + Λ with Λ ∈ GL(n, k) for some vector v. So consider a
continuous curve Γ : [0, 1]→ Λ ∩B with length r < 1 satisfying

‖Γ(0)− Γ(1)‖ = r < (2M)−1γL−τ .

We will denote by (α(t), β) the coordinates of Γ(t) for t ∈ [0, 1] in a basis
adapted to the orthogonal decomposition Λ⊕ Λ⊥. Therefore

‖ΠΛ(∇h(Γ(t)))‖ = ‖∂αhΛ(α(t), β)‖

for all t ∈ [0, 1]. We will distinguish distinguish two cases.
For the first one, we suppose that

‖∂αhΛ(α(0), β)‖ > 2−1r2,

so the conclusion trivially holds for t∗ = 0.
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For the second one, we have

(B.1) ‖∂αhΛ(α(0), β)‖ 6 2−1r2,

but since r2 < r < γL−τ , this gives

‖∂αhΛ(α(0), β)‖ 6 γL−τ .

Now h ∈ SDMτ
γ (B), so we can apply the definition at the point (α(0), β),

and for any η ∈ Rk \ {0} we obtain

(B.2) ‖∂ααhΛ(α(0), β).η‖ > γL−τ‖η‖.

Take any α̃ such that ‖α̃ − α(0)‖ < (2M)−1γL−τ . We can apply Taylor
formula with integral remainder to obtain

∂αhΛ(α̃, β)−∂αhΛ(α(0), β) =
∫ 1

0
∂ααhΛ(α(0)+t(α̃−α(0)), β).(α̃−α(0))dt.

Now since M bounds the third derivative of h, we have

‖∂ααhΛ(α(0) + t(α̃− α(0)), β)− ∂ααhΛ(α(0), β)‖

6Mt‖α̃− α(0)‖ 6 2−1γL−τ t,

and this yields

‖∂αhΛ(α̃, β)− ∂αhΛ(α(0), β)‖ > ‖∂ααhΛ(α(0), β).(α̃− α(0))‖

− 2−1γL−τ
∫ 1

0
t‖α̃− α(0)‖dt,

which in turns, using (B.2) with η = α̃− α(0), gives

‖∂αhΛ(α̃, β)− ∂αhΛ(α(0), β)‖ >
(
γL−τ − 2−1γL−τ

∫ 1

0
tdt

)
‖α̃− α(0)‖

> 2−1γL−τ‖α̃− α(0)‖.

(B.3)

Now we define
t∗ = inf

t∈[0,1]
{‖Γ(t)− Γ(0)‖ = r},

so trivially we have

‖Γ(t)− Γ(0)‖ 6 r, t ∈ [0, t∗].

Furthermore, we have

‖∂αhΛ(α(t∗), β)‖ > ‖∂αhΛ(α(t∗), β)− ∂αhΛ(α(0), β)‖ − ‖∂αhΛ(α(0), β)‖,
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and so using (B.1), (B.3) and recalling that ‖α(t∗)−α(0)‖ = r and γL−τ >
2r we obtain

‖∂αhΛ(α(t∗), β)‖ > 2−1γL−τr − 2−1r2

> r2 − 2−1r2

= 2−1r2,

and this is the desired estimate. �

B.2. Prevalence

Here we will prove our results of genericity concerning SDM functions,
that is Theorem 2.2 and Corollary 2.3. Our main tool is the following
lemma, which is proved in [34] and relies on the quantitative Morse-Sard
theory developed by Yomdin (see [42] and [41]). Let us denote by λk the
k-dimensional Lebesgue measure.

Lemma B.3. — Let g ∈ C2n+1(B,Rk). Then for any κ ∈]0, 1[ there
exist a subset Cκ ⊆ Rk with

λk(Cκ) 6 ck
√
κ,

where ck only depends on k, such that for any ζ /∈ Cκ, the function gζ

defined by gζ(x) = g(x)− ζ satisfies the following: for any x ∈ B,

‖gζ(x)‖ 6 κ =⇒ ‖dgζ(x).ν‖ > κ‖ν‖,

for any ν ∈ Rn \ {0}.

In the above statement, the set Cκ is a “nearly-critical set" for the func-
tion g.

Let us prove Theorem 2.2.
Proof of Theorem 2.2. — Recall that we are given a function h ∈

C2n+2(B). The proof is divided in two steps: first, we will describe the set of
parameters ξ ∈ Rn for which the function hξ, defined by hξ(I) = h(I)−ξ.I,
is not in SDMτ (B), and then, in a second step, we will show that this
set has zero Lebesgue measure, for τ > 2(n2 + 1). In the sequel, given
k ∈ {1, . . . , n}, we denote by λk the Lebesgue measure of Rk.

First step. — Given an element Λ ∈ GL(n, k), let ΠΛ the projection
onto this subspace and consider the associate function hΛ (recall that hΛ
is just the function h written in coordinates adapted to the orthogonal
decomposition Λ⊕ Λ⊥). Let us define the function

g = ∂αhΛ,
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which belongs C2n+1(B,Rk), and apply to this function Lemma B.3 with
the value κ = γL−τ . We find a “nearly-critical” set Cκ = Cγ,τ,L ⊆ Rk with
the measure estimate

(B.4) λk(Cγ,τ,L) 6 ckγ
1
2L−

τ
2 ,

such that for any ζ /∈ Cγ,τ,L and any (α, β) ∈ B,

(B.5) ‖gζ(α, β)‖ 6 κ =⇒ ‖dgζ(α, β).ν‖ > κ‖ν‖,

for any ν ∈ Rn \ {0}.

Now take any ζ /∈ Cγ,τ,L, any ξ ∈ Π−1
Λ (ζ) and consider the modified

function hξ as well as its version hξ,Λ. Since

∂αhξ,Λ = ∂αhΛ − ζ = g − ζ = gζ ,

and ∂α,αhξ,Λ = ∂α,αhΛ is just some restriction of dg, the estimate (B.5)
gives for any (α, β) ∈ B,

(B.6) ‖∂αhξ,Λ(α, β)‖ 6 γL−τ =⇒ ‖∂α,αhξ,Λ(α, β).η‖ > γL−τ‖η‖

for any η ∈ Rn \ {0}. So let Cγ,τ,L,Λ = Π−1
Λ (Cγ,τ,L), and define

Cγ,τ =
⋃
L∈N∗

⋃
k∈{1,...,n}

⋃
Λ∈GL(n,k)

Cγ,τ,L,Λ.

As a consequence of the estimate (B.6), the function hξ ∈ SDMτ
γ (B) pro-

vided that ξ /∈ Cγ,τ , hence hξ ∈ SDMτ (B) provided that ξ /∈ Cτ , where

Cτ =
⋂
γ>0
Cγ,τ .

Second step. — It remains to prove that Cτ has zero Lebesgue measure
under our assumption that τ > 2(n2 +1). For an integer m ∈ N∗, we define
Cmγ,τ,L,Λ (resp. Cmγ,τ and Cmτ ) as the intersection of Cγ,τ,L,Λ (resp. Cγ,τ and
Cτ ) with the ball of Rn of radius m centered at the origin. As a consequence
of (B.4) and Fubini-Tonelli theorem, one has

λn(Cmγ,τ,L,Λ) 6 Vn,mckγ
1
2L−

τ
2

where Vn,m = mnπn/2Γ(n/2 + 1)−1 is the volume of the ball of Rn of
radius m centered at the origin. Therefore

λn

 ⋃
Λ∈GL(n,k)

Cmγ,τ,L,Λ

 6 |GL(n, k)|Vn,mckL−
τ
2 γ

1
2 ,
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with |GL(n, k)| the cardinal of GL(n, k). But obviously |GL(n, k)| 6 Ln
2

and hence

λn

 ⋃
Λ∈GL(n,k)

Cmγ,τ,L,Λ

 6 Vn,mckLn2− τ2 γ
1
2 .

Now

λn

 ⋃
k∈{1,...,n}

⋃
Λ∈GL(n,k)

Cmγ,τ,L,Λ

 6 Vn,m( n∑
k=1

ck

)
Ln

2− τ2 γ
1
2 ,

and so

λn(Cmγ,τ ) 6 Vn,m

(
n∑
k=1

ck

)(+∞∑
L=1

Ln
2− τ2

)
γ

1
2

where the sum in the right-hand side of the last estimate is finite since we
are assuming τ > 2(n2 + 1). This shows that

λn(Cmτ ) = inf
γ>0

λn(Cmγ,τ ) = 0,

and as Cτ =
⋃
m>1 Cmτ we finally obtain

λn(Cτ ) = 0,

and this concludes the proof.

�

As we mentioned in the introduction, there is a notion of genericity in
infinite dimensional vector spaces called prevalence, first introduced in a
different setting by Christensen ([11]) and rediscovered by Hunt, Sauer and
Yorke ([15], see also [36] and [14]).

Definition B.4. — Let E be a completely metrizable topological vector
space. A Borel subset S ⊆ E is said to be shy if there exists a Borel measure
µ on E, with 0 < µ(C) < ∞ for some compact set C ⊆ E, and such that
µ(x+ S) = 0 for all x ∈ E.
An arbitrary set is called shy if it is contained in a shy Borel subset, and

finally the complement of a shy set is called prevalent.

The following “genericity” properties are easy to check ([36], [14]): a
prevalent set is dense, a set containing a prevalent set is also prevalent,
and prevalent sets are stable under translation and countable intersection.

Furthermore, we have an easy but useful criterion for a set to be preva-
lent.
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Proposition B.5 ([15]). — Let P be a subset of E. Suppose there exists
a finite-dimensional subspace F of E such that x+ P has full λF -measure
for all x ∈ E. Then P is prevalent.

Now we can prove our Corollary 2.3.
Proof of Corollary 2.3. — Let E = C2n+2(B), P = SDMτ (B) for τ >

2(n2 + 1) and F the space of linear forms of Rn restricted to B. Then F is
a linear subspace of C2n+2(B) of dimension n, and the conclusion follows
immediately from Theorem 2.2 and the above Proposition B.5. �

To conclude, let us compare our generic condition with the usual steep-
ness property. First, our condition is prevalent in the space Ck(B), with
k > 2n+ 2, and this is not true for steep functions. But more importantly,
as prevalence is nothing but “full Lebesgue measure” in finite dimension,
given any non zero integersm and n, Lebesgue almost all polynomial Hamil-
tonian hm of degree m with n degrees of freedom is SDM , but not steep
unless m is of order n2. This remark turns out to be very useful when
studying the stability of invariant tori under generic conditions (see [7]).

Acknowledgements. — The authors wish to thank Jacques Féjoz and
Jean-Pierre Marco for useful discussions, and A.B. also thanks the ASD
team at Observatoire de Paris for its hospitality, especially Alain Albouy
and Alain Chenciner for their kind support. Both authors thank the CRM
of Barcelona where this work was initiated during the semester “Stability
and Instability in Mechanical Systems”. Finally, the authors wish to thank
the referee for his careful reading.

BIBLIOGRAPHY

[1] V. I. Arnold, “Instability of dynamical systems with many degrees of freedom”,
Dokl. Akad. Nauk SSSR 156 (1964), p. 9-12.

[2] V. I. Arnold, V. V. Kozlov & A. I. Neishtadt, Mathematical aspects of classical
and celestial mechanics, third ed., Encyclopaedia of Mathematical Sciences, vol. 3,
Springer-Verlag, Berlin, 2006, [Dynamical systems. III], Translated from the Russian
original by E. Khukhro, xiv+518 pages.

[3] D. Bambusi, “Nekhoroshev theorem for small amplitude solutions in nonlinear
Schrödinger equations”, Math. Z. 230 (1999), no. 2, p. 345-387.

[4] D. Bambusi & A. Giorgilli, “Exponential stability of states close to resonance
in infinite-dimensional Hamiltonian systems”, J. Statist. Phys. 71 (1993), no. 3-4,
p. 569-606.

[5] D. Bambusi & N. N. Nekhoroshev, “Long time stability in perturbations of com-
pletely resonant PDE’s”, Acta Appl. Math. 70 (2002), no. 1-3, p. 1-22, Symmetry
and perturbation theory.

[6] J.-B. Bost, “Tores invariants des systèmes dynamiques hamiltoniens (d’après Kol-
mogorov, Arnol′d, Moser, Rüssmann, Zehnder, Herman, Pöschel, . . .)”, Astérisque
(1986), no. 133-134, p. 113-157, Seminar Bourbaki, Vol. 1984/85.

ANNALES DE L’INSTITUT FOURIER



GENERIC NEKHOROSHEV THEORY WITHOUT SMALL DIVISORS 323

[7] A. Bounemoura, “Generic super-exponential stability of invariant tori”, to appear,
2009.

[8] ———, “Nekhoroshev estimates for finitely differentiable quasi-convex Hamiltoni-
ans”, J. Differential Equations 249 (2010), no. 11, p. 2905-2920.

[9] J. Bourgain, “Remarks on stability and diffusion in high-dimensional Hamiltonian
systems and partial differential equations”, Ergodic Theory Dynam. Systems 24
(2004), no. 5, p. 1331-1357.

[10] J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge
Tracts in Mathematics and Mathematical Physics, No. 45, Cambridge University
Press, New York, 1957, x+166 pages.

[11] J. P. R. Christensen, “On sets of Haar measure zero in abelian Polish groups”, in
Proceedings of the International Symposium on Partial Differential Equations and
the Geometry of Normed Linear Spaces (Jerusalem, 1972), vol. 13, 1972, p. 255-260
(1973).

[12] A. Delshams & P. Gutiérrez, “Effective stability and KAM theory”, J. Differen-
tial Equations 128 (1996), no. 2, p. 415-490.

[13] F. Fassò, M. Guzzo & G. Benettin, “Nekhoroshev-stability of elliptic equilibria
of Hamiltonian systems”, Comm. Math. Phys. 197 (1998), no. 2, p. 347-360.

[14] B. R. Hunt & V. Y. Kaloshin, “Prevalence” (F. T. Henk Broer & B. Hasselblatt,
eds.), Handbook of Dynamical Systems, vol. 3, Elsevier Science, 2010, p. 43 - 87.

[15] B. R. Hunt, T. Sauer & J. A. Yorke, “Prevalence: a translation-invariant “almost
every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc. (N.S.) 27 (1992),
no. 2, p. 217-238.

[16] Y. S. Il’yashenko, “A criterion of steepness for analytic functions”, Uspekhi Mat.
Nauk 41 (1986), no. 1(247), p. 193-194.

[17] K. Khanin, J. Lopes Dias & J. Marklof, “Renormalization of multidimensional
Hamiltonian flows”, Nonlinearity 19 (2006), no. 12, p. 2727-2753.

[18] ———, “Multidimensional continued fractions, dynamical renormalization and
KAM theory”, Comm. Math. Phys. 270 (2007), no. 1, p. 197-231.

[19] A. N. Kolmogorov, “On conservation of conditionally periodic motions for a small
change in Hamilton’s function”, Dokl. Akad. Nauk SSSR (N.S.) 98 (1954), p. 527-
530.

[20] R. de la Llave, “A tutorial on KAM theory”, in Smooth ergodic theory and its
applications (Seattle, WA, 1999), Proc. Sympos. Pure Math., vol. 69, Amer. Math.
Soc., Providence, RI, 2001, p. 175-292.

[21] P. Lochak, “Canonical perturbation theory: an approach based on joint approxi-
mations”, Uspekhi Mat. Nauk 47 (1992), no. 6(288), p. 59-140.

[22] P. Lochak & C. Meunier, Multiphase averaging for classical systems, Applied
Mathematical Sciences, vol. 72, Springer-Verlag, New York, 1988, With applications
to adiabatic theorems, Translated from the French by H. S. Dumas, xii+360 pages.
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