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JET SCHEMES OF COMPLEX PLANE BRANCHES
AND EQUISINGULARITY

by Hussein MOURTADA (*)

Abstract. — For m ∈ N, we determine the irreducible components of the
m−th Jet Scheme of a complex branch C and we give formulas for their number
N(m) and for their codimensions, in terms of m and the generators of the semigroup
of C. This structure of the Jet Schemes determines and is determined by the
topological type of C.
Résumé. — Pour m ∈ N, nous déterminons les composantes irréductibles des

m−èmes espaces des jets d’une branche plane complexe C et nous donnons des
formules pour leur nombre N(m) et leurs codimensions, en fonction de m et des
générateurs du semigroupe de C. Cette structure des espaces des jets détermine et
elle est déterminée par le type topologique de C.

1. Introduction

Let K be an algebraically closed field. The space of arcs X∞ of an al-
gebraic K−variety X is a non-noetherian scheme in general. It has been
introduced by Nash in [10]. Nash has initiated its study by looking at its
image by the truncation maps X∞ −→ Xm in the jet schemes of X. The
mth−jet schemeXm ofX is a K− scheme of finite type which parmametizes
morphisms Spec K[t]/(t)m+1 −→ X. From now on, we assume char K = 0.
In [10], Nash has derived from the existence of a resolution of singularities
of X, that the number of irreducible components of the Zariski closure of
the set of the m−truncations of arcs on X that send 0 into the singular
locus of X is constant for m large enough. Besides a theorem of Kolchin
asserts that if X is irreducible, then X∞ is also irreducible. More recently,

Keywords: Jet schemes, singularities of plane curves.
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and comments.
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the jet schemes have attracted attention from various viewpoints. In [9],
Mustata has characterized the locally complete intersection varieties having
irreducible Xm for m > 0. In [2], a formula comparing the codimensions of
Ym in Xm with the log canonical threshold of a pair (X,Y ) is given. In this
work, we consider a curve C in the complex plane C2 with a singularity at
0 at which it is analytically irreducible (i.e. the formal neighborhood(C, 0)
of C at 0 is a branch). We determine the irreducible components of the
space C0

m := π−1
m (0) where πm : Cm −→ C is the canonical projection, and

we show that their number is not bounded as m grows. More precisely, let
x be a transversal parameter in the local ring OC2,0, i.e. the line x = 0 is
transversal to C at 0 and following [2], for e ∈ N, let

Conte(x)m(resp.Cont>e(x)m) := {γ ∈ Cm | ordtx ◦ γ = e(resp. > e)},

where Cont stands for contact locus. Let Γ(C) =< β0, · · · , βg > be the
semigroup of the branch (C, 0) and let ei = gcd(β0, · · · , βi), 0 6 i 6 g.

Recall that Γ(C) and the topological type of C near 0 are equivalent data
and characterize the equisingularity class of (C, 0) as defined by Zariski in
[13]. We show in theorem 4.9 that the irreducible components of C0

m are

CmκI = Contκβ̄0(x)m,

for 1 6 κ and κβ̄0β̄1 + e1 6 m,

Cjmκv = Cont
κβ̄0
ej−1 (x)m

for 2 6 j 6 g, 1 6 κ, κ 6≡ 0 mod ej−1
ej

and κ β̄0β̄1
ej−1

+ e1 6 m < κβ̄j ,

Bm = Cont>
β̄0
e1
q(x)m,

if q β̄0
e1
β̄1 + e1 6 m < (q + 1)n1β̄1 + e1.

These irreducible components give rise to infinite and finite inverse sys-
tems represented by a tree. We recover < β0, · · · , βg > from the tree and
the multiplicity β0 in corollary 4.13, and we give formulas for the num-
ber of irreducible components of C0

m and their codimensions in terms of m
and (β0, · · · , βg) in proposition 4.7 and corollary 4.10. We recover the fact
coming from [2] and [6] that

minm
codim(C0

m,C2
m)

m+ 1 = 1
β0

+ 1
β1
.

The structure of the paper is as follows: The basics about Jet schemes
and the results that we will need are presented in section 2. In section 3
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we present the definitions and the reults we will need about branches. The
last section is devoted to the proof of the main result and corollaries.

2. Jet schemes

Let K be an algebraically closed field of arbitrary characteristic. Let X
be a K−scheme of finite type over k and let m ∈ N. The functor Fm :
K− Schemes −→ Sets which to an affine scheme defined by a K−algebra
A associates

Fm(Spec(A)) = HomK(SpecA[t]/(tm+1), X)

is representable by a K−scheme Xm [12]. Xm is the m−th jet scheme of
X, and Fm is isomorphic to its functor of points. In particular the closed
points of Xm are in bijection with the K[t]/(tm+1) points of X.
For m, p ∈ N,m > p, the truncation homomorphism A[t]/(tm+1) −→
A[t]/(tp+1) induces a canonical projection πm,p : Xm −→ Xp. These mor-
phisms clearly verify πm,p ◦ πq,m = πq,p for p < m < q.
Note that X0 = X. We denote the canonical projection πm,0 : Xm −→ X0
by πm.

Example 2.1. — Let X = Spec K[x0,··· ,xn]
(f1,··· ,fr) be an affine K−scheme. For

a K-algebra A, to give a A-point of Xm is equivalent to give a K−algebra
homomorphism

ϕ : K[x0, · · · , xn]
(f1, · · · , fr)

−→ A[t]/(tm+1).

The map ϕ is completely determined by the image of xi, i = 0, · · · , n

xi 7−→ ϕ(xi) = x
(0)
i + x

(1)
i t+ · · ·+ x

(m)
i tm

such that fl(φ(x0), · · · , φ(xn)) ∈ (tm+1), l = 1, · · · , r.
If we write

fl(φ(x0), · · · , φ(xn)) =
m∑
j=0

F
(j)
l (x(0), · · · , x(j)) tj mod (tm+1)

where x(j) = (x(j)
0 , · · · , x(j)

n ), then

Xm = Spec
K[x(0), · · · , x(m)]

(F (j)
l )j=0,··· ,m

l=1,··· ,r

TOME 61 (2011), FASCICULE 6



2316 Hussein MOURTADA

Example 2.2. — From the above example, we see that the m-th jet
scheme of the affine space AnK is isomorphic to A(m+1)n

k and that the pro-
jection πm,m−1 : (AnK)m −→ (AnK)m−1 is the map that forgets the last n
coordinates.

Let char(K) = 0, S = K[x0, · · · ., xn] and Sm = K[x(0), · · · ., x(m)]. Let
D be the K−derivation on Sm defined by D(x(j)

i ) = x
(j+1)
i if 0 6 j < m,

and D(x(m)
i ) = 0. For f ∈ S let f (1) := D(f) and we recursively define

f (m) = D(f (m−1)).

Proposition 2.3. — Let X = Spec(S/(f1, · · · , fr)) = Spec(R) and
Rm = Γ(Xm). Then

Rm = Spec(K[x(0), · · · ., x(m)]
(f (j)
i )j=0,··· ,m

i=1,··· ,r

.

Proof. — For a K−algebra A, to give an A−point of Xm is equivalent
to give an homomorphism

φ : K[x0, · · · ., xn] −→ A[t]/(tm+1)

which can be given by

xi −→
x

(0)
i

0! + x
(1)
i

1! t+ · · ·+ x
(m)
i

m! t
m.

Then for a polynomial f ∈ S, we have

φ(f) =
m∑
j=0

f (j)(x(0), · · · , x(j))
j! tj .

To see this, it is sufficient to remark that it is true for f = xi, and that
both sides of the equality are additive and multiplicative in f , and the
proposition follows. �

Remark 2.4. — Note that the proposition shows the linearity of the
equations F ji (x(0), · · · , x(j)) defining Xm with respect to the new variables
i.e x(j). We can deduce from this that if X is a nonsingular K−variety
of dimension n, then the projections πm,m−1 : Xm −→ Xm−1 are locally
trivial fibrations with fiber AnK. In particular, Xm is a non singular variety
of dimension (m+ 1)n.

3. Semigroup of complex branches

The main references for this section are [14],[8],[1],[11],[5],[4],[7]. Let f ∈
C[[x, y]] be an irreducible power series, which is y-regular (i.e f(0, y) =

ANNALES DE L’INSTITUT FOURIER
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yβ0u(y) where u is invertible in C[[y]]) and such that mult0f = βo and let
C be the analytically irreducible plane curve(branch for short) defined by
f in Spec C[[x, y]]. By the Newton-Puiseux theorem, the roots of f are

y =
∞∑
i=0

aiw
ix

i
βo (1)

where w runs over the β0 − th-roots of unity in C.This is equivalent to the
existence of a parametrization of C of the form

x(t) = tβ0

y(t) =
∑
i>β0

ait
i.

We recursively define βi = min{i, ai 6= 0, gcd(β0, · · · , βi−1) is not a divisor
of i}.
Let e0 = β0 and ei = gcd(ei−1, βi), i > 1. Since the sequence of positive
integers

e0 > e1 > · · · > ei > · · ·
is strictly decreasing, there exists g ∈ N, sucht that eg = 1. The sequence
(β1, · · · ., βg) is the sequence of Puiseux exponents of C. We set

ni := ei−1

ei
,mi := βi

ei
, i = 1, · · · , g

and by convention, we set βg+1 = +∞ and ng+1 = 1.
On the other hand, for h ∈ C[[x, y]], we define the intersection number

(f, h)0 = (C,Ch)0 := dimC
C[[x, y]]
(f, h) = ordt h(x(t), y(t))

where Ch is the Cartier divisor defined by h and {x(t)), y(t)} is as above.
The mapping vf : C[[x,y]]

(f) −→ N, h 7−→ (f, h)0 defines a divisorial valuation.
We define the semigroup of C to be the semigroup of vf i.e Γ(C) = Γ(vf ) =
{(f, h)0 ∈ N, h 6≡ 0 mod(f)}.
The following propositions and theorem from [14] characterize the structure
of Γ(C).

Proposition 3.1. — There exists a unique sequence of g + 1 positive
integers (β̄0, · · · , β̄g) such that:
i) β̄0 = β0,

ii) β̄i = min{Γ(C)\ < β̄0, · · · , βi−1 >}, 1 6 i 6 g,
iii) Γ(C) =< β̄0, · · · , β̄g >,
where for i = 1, · · · , g + 1,< β̄0, · · · , βi−1 > is the semigroup generated by
β̄0, · · · , βi−1. By convention, we set β̄g+1 = +∞.

TOME 61 (2011), FASCICULE 6
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Proposition 3.2. — The sequence (β̄0, · · · , β̄g) verifies:
i) ei = gcd(β̄0, · · · , β̄i), 0 6 i 6 g,
ii) β̄0 = β0,β̄1 = β1 and β̄i = ni−1βi−1+βi−βi−1. In particular niβ̄i < βi+1,

for i = 2, · · · , g.

Theorem 3.3. — The sequence (β̄0, · · · , β̄g) and the sequence
(β0, · · · ., βg) are equivalent data. They determine and are determined by
the topological type of C.

Then from the appendix of [14], [1] or [11], we can choose a system of
approximate roots (or a minimal generating sequence) {x0, · · · , xg+1} of
the divisorial valuation vf . We set x = x0, y = x1; for i = 2, · · · , g+ 1, xi ∈
C[[x, y]] is irreducible; for 1 6 i 6 g, the analytically irreducible curve
Ci = {xi = 0} has i − 1 Puiseux exponents and Cg+1 = C. This sequence
also verifies
i) vf (xi) = β̄i, 0 6 i 6 g,
ii) Γ(Ci) =< β̄0

ei−1
, · · · , β̄i−1

ei−1
> and the Puiseux sequence of Ci is

( β1
ei−1

, · · · , βi−1
ei−1

),2 6 i 6 g + 1.
iii) for 1 6 i 6 g, there exists a unique system of nonnegative integers
bij , 0 6 j < i such that for 1 6 j < i, bij < nj and niβ̄i = Σ06j<ibij β̄j .
Furthermore, for 1 6 i 6 g, one can choose xi such that they satisfy
identities of the form

xi+1 = xnii − cix
bi0
0 · · ·x

bi(i−1)
i−1 −

∑
γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i , (?)

with, 0 6 γj < nj , for 1 6 j 6 i, and Σjγj β̄j > niβ̄i and with ci,γ , ci ∈
C and ci 6= 0. These last equations (?) let us realize C as a complete
intersection in Cg+1 = Spec C [[x0, · · · , xg]] defined by the equations

fi = xi+1 − (xnii − cix
bi0
0 · · ·x

bi(i−1)
i−1 −

∑
γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i )

for 1 6 i 6 g, with xg+1 = 0 by convention.
Let h ∈ C[[x, y]] be a y-regular irreducible power series with multiplicity

p = ordyh(0, y). Let y(x
1
β0 ) and z(x

1
p ) be respectively roots of f and h as

in (1). We call contact order of f and h in their Puiseux series the following
rational number

of (h) := max{ordx(y(wx
1
β0 )− z(λx

1
p ));wβ0 = 1, λp = 1} =

max{ordx(y(wx
1
β0 )− z(x

1
p );wβ0 = 1} =

max{ordx(y(x
1
β0 )− z(λx

1
p );λp = 1} = oh(f).

The following formula is from [8], see also [5] .

ANNALES DE L’INSTITUT FOURIER
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Proposition 3.4. — Assume that f and h are as above; let (β1, · · · , βg)
the sequence of Puiseux exponents of f and let i 6 g + 1 be the smallest
strictly positive integer such that of (h) 6 βi

β0
. Then

(f, h)0

p
=

i−1∑
k=1

ek−1 − ek
β0

βk + ei−1of (h)

= (β̄i−1ei−2 + (β0of (h)− βi−1)ei−1) 1
β0
.

Corollary 3.5. — [1][5] Let i > 0 be an integer.Then of (h) 6 βi
β0

iff
(f,h)0
p 6 ei−1

β̄i
β0
. Moreover of (h) = βi

β0
iff (f,h)0

p = ei−1
β̄i
β0
. In particular

of (xi) = βi
β0
, 1 6 i 6 g. We say that Cixi = 0 has maximal contact with C.

4. Jet schemes of complex branches

We keep the notations of sections 2 and 3. We consider a curve C ⊂ C2

with a branch of multiplicity β0 > 1 at 0, defined by f . Note that in suitable
coordinates we can write

f(x0, x1) = (xn1
1 −cx

m1
0 )e1 +

∑
aβ0+bβ1>β0β1

cabx
a
0x
b
1; c ∈ C? and cab ∈ C. (�)

We look for the irreducible components of C0
m := (π−1

m (0)) for everym ∈ N,
where πm : Cm → C is the canonical projection. Let J0

m be the radical of
the ideal defining (π−1

m (0)) in C2
m.

In the sequel, we will denote the integral part of a rational number r by
[r].

Proposition 4.1. — For 0 < m < n1β̄1, we have that

(C0
m)red = (π−1

m (0))red = Spec
C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ]

(x(0)
0 , · · · , x

([ m
β̄1

])
0 , x

(0)
1 , · · · , x

([ mβ0
])

1 )
,

and
(C0

n1β̄1
)red=(π−1

n1β̄1
(0))red

=Spec
C[x(0)

0 , · · · , x(n1β̄1)
0 , x

(0)
1 , · · · , x(n1β̄1)

1 ]
(x(0)

0 , · · · , x(n1−1)
0 , x

(0)
1 , · · · , x(m1−1)

1 , x
(m1)
1

n1
− cx(n1)

0
m1

)
.

Proof. — We write f = Σ(a,b)cabfab where (a, b) ∈ N2, fab = xa0x
b
1, cab ∈

C and aβ0 + bβ̄1 > β0β̄1(the segment [(0, β0)(β̄1, 0)] is the Newton Polygon
of f). Let supp(f) = {(a, b) ∈ N2; cab 6= 0}.

TOME 61 (2011), FASCICULE 6
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For 0 < m < n1β̄1, the proof is by induction on m. For m = 1,we have that

F (1) = Σ(a,b)∈supp(f)cabF
(1)
ab

where (F (0), · · · , F (i)) (resp.(F (0)
ab , · · · , F

(i)
ab )) is the ideal defining the i-th

jet scheme Ci of C(resp. Cabi the i-th jet scheme of Cab = {fab = 0}) in C2
i

.Then we have

F
(1)
ab =

∑∑
ik=1

x
(i1)
0 · · ·x(ia)

0 x
(ia+1)
1 · · ·x(ia+b)

1

where β̄1(a + b) > aβ0 + bβ̄1 > β0β̄1 so a + b > β0 > 1. Then for ev-
ery (a, b) ∈ supp(f) and every (i1, · · · , ia, · · · , ia+b) ∈ Na+b such that∑a+b
k=1 ik = 1 there exists 1 6 k 6 a + b such that ik 6= 0, this means

that F (1)
ab ∈ (x(0)

0 , x
(0)
1 ) and since we are looking over the origin, we have

that (x(0)
0 , x

(0)
1 ) ⊆ J0

1 therefore (π−1
1 (0))red = Spec

C[x(0)
0 ,x

(1)
0 ,x

(0)
1 ,x

(1)
1 ]

(x(0)
0 ,x

(0)
1 )

(In fact
this is nothing but the Zariski tangent space of C at 0).
Suppose that the lemma holds until m− 1 i.e.

(π−1
m−1(0))red = Spec

C[x(0)
0 , · · · , x(m−1)

0 , x
(0)
1 , · · · , x(m−1)

1 ]

(x(0)
0 , · · · , x

([m−1
β̄1

])
0 , x

(0)
1 , · · · , x

([m−1
β0

])
1 )

.

First case: If [m−1
β̄1

] = [m
β̄1

] and [m−1
β0

] = [mβ0
]. We have

F (m) =
∑

(a,b)∈supp(f)

cab
∑∑
ik=m

x
(i1)
0 · · ·x(ia)

0 x
(ia+1)
1 · · ·x(ia+b)

1

Let (a, b) ∈ supp(f); if for every k = 1, · · · , a, we had ik > [m
β̄1

] + 1, and
for every k = a+ 1, · · · , a+ b, we had ik > [mβ0

] + 1, then

m > a([m
β̄1

] + 1) + b([m
β0

] + 1) > m

β̄1
a+ m

β0
b = m

aβ0 + bβ̄1

β0β̄1
> m.

The contradiction means that there exists 1 6 k 6 a such that ik 6 [m
β̄1

]
or there exists a + 1 6 k 6 a + b such that ik 6 [mβ0

]. So F (m) lies in
the ideal generated by J0

m−1 in C[x(0)
0 , · · · , x(m)

0 , x
(0)
1 , · · · , x(m)

1 ] and J0
m =

J0
m−1.C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ].
Second case: If [m−1

β̄1
] = [m

β̄1
] and [m−1

β0
] + 1 = [mβ0

] (i.e. β0 divides m). We
have that

F (m) = F
(m)
0β0

+
∑

(a,b)∈supp(f);(a,b)6=(0,β0)

F
(m)
ab , (??)

ANNALES DE L’INSTITUT FOURIER
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where

F
(m)
0β0

=
∑∑
ik=m

x
(i1)
1 · · ·x(iβ0 )

1

= x
( mβ0

)
1

β0

+
∑∑

ik=m;(i1,··· ,iβ0 ) 6=( mβ0
,··· , mβ0

)

x
(i1)
1 · · ·x(iβ0 )

1 ;

but
∑
ik = m and (i1, · · · , iβ0) 6= (mβ0

, · · · , mβ0
) implies that there exists

1 6 k 6 β0 such that ik < m
β0
, so∑∑

ik=m;(i1,··· ,iβ0 )6=( mβ0
,··· , mβ0

)

x
(i1)
1 · · ·x(iβ0 )

1

∈ J0
m−1.C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ].

For the same reason as above, we have that∑
(a,b)∈supp(f);(a,b) 6=(0,β0)

F
(m)
ab ∈ J

0
m−1.C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ].

From (??) we deduce that x
( mβ0

)
1 ∈ J0

m and

F (m) ∈ (x(0)
0 , · · · , x

([ m
β̄1

])
0 , x

(0)
1 , · · · , x

( mβ0
)

1 ).

Then J0
m = (x(0)

0 , · · · , x
([ m
β̄1

])
0 , x

(0)
1 , · · · , x

( mβ0
)

1 ).
The third case i.e. if [m−1

β̄1
] + 1 = [m

β̄1
] and [m−1

β0
] = [mβ0

] is discussed as
the second one. Note that these are the only three possible cases since
m < n1β̄1 = lcm(β0, β̄1)(here lcm stands for the least common multiple).
For m = n1β̄1, we have that F (m) is the coefficient of tm in the expansion
of

f(x(0)
0 + x

(1)
0 t+ · · ·+ x

(m)
0 tm, x

(0)
1 + x

(1)
1 t+ · · ·+ x

(m)
1 tm).

But since we are interested in the radical of the ideal defining the m-th
jet scheme, and we have found that x(0)

0 , · · · , x(n1−1)
0 , x

(0)
1 , · · · , x(m1−1)

1 ∈
J0
m−1 ⊆ J0

m, we can annihilate x(0)
0 , · · · , x(n1−1)

0 , x
(0)
1 , · · · , x(m1−1)

1 in the
above expansion. Using (�), we see that the coefficient of tm is (x(m1)

1
n1
−

cx
(n1)
0

m1
)e1 . �

In the sequel if A is a ring, I ⊆ A an ideal and f ∈ A, we denote by
V (I) the subvariety of Spec A defined by I and by D(f) the open set in
SpecA, D(f) := SpecAf .
The proof of the following corollary is analogous to that of proposition 4.1.
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Corollary 4.2. — Let m ∈ N; let k > 1 be such that m = kn1β̄1 +
i; 1 6 i 6 n1β̄1. Then if i < n1β̄1, we have that

Cont>kn1(x0)m = (π−1
m,kn1β̄1

(V (x(0)
0 , · · · , x(kn1)

0 )))red =

Spec
C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ]

(x(0)
0 , · · · , x(kn1)

0 , · · · , x
(kn1+[ i

β̄1
])

0 , x
(0)
1 , · · · , x(km1)

1 , · · · , x
(km1+[ iβ0

])
1 )

and if i = n1β̄1

(π−1
m,kn1β̄1

(V (x(0)
0 , · · · , x(kn1)

0 )))red =

Spec
C[x(0)

0 , · · · , x(m)
0 , x

(0)
1 , · · · , x(m)

1 ]
(x(0)

0 , · · · , x((k+1)n1−1)
0 , x

(0)
1 , · · · , x((k+1)m1−1)

1 , x
((k+1)m1)
1

n1
− cx((k+1)n1)

0
m1

)
.

We now consider the case of a plane branch with one Puiseux exponent.

Lemma 4.3. — Let C be a plane branch with one Puiseux exponent.
Let m, k ∈ N, such that k 6= 0 and m > kn1β̄1 +1, and let πm,kn1β̄1

: Cm →
Ckn1β̄1

be the canonical projection. Then

Ckm := π−1
m,kn1β̄1

(V (x(0)
0 , · · · , x(kn1−1)

0 ) ∩D(x(kn1)
0 ))red

is irreducible of codimension k(m1 + n1) + 1 + (m− kn1β̄1) in C2
m.

Proof. — First note that since e1 = 1, we have m1 = β̄1
e1

= β̄1. Let I0k
m

be the ideal defining Ckm in C2
m ∩D(x(kn1)

0 ). Since m > kn1β̄1, by corollary
4.2, x(0)

1 , · · · , x(km1−1)
1 ∈ I0k

m .So I0k
m is the radical of the ideal I∗0km :=

(x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F (0), · · · , F (m)). Now it follows from
� and proposition 2.3 that

F (l) ∈ (x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ) for 0 6 l < kn1m1,

F (kn1m1) ≡ x(km1)
1

n1

− cx(kn1)
0

m1
mod (x(0)

0 , · · · , x(kn1−1)
0 , x

(0)
1 , · · · , x(km1−1)

1 ),

F (kn1m1+l) ≡ n1x
(km1)
1

n1−1
x

(km1+l)
1 −m1cx

(kn1)
0

m1−1
x

(kn1+l)
0

+Hl(x(0)
0 , · · · , x(kn1+l−1)

0 , x
(0)
1 , · · · , x(km1+l−1)

1 ) mod (x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 ),

for 1 6 l 6 m− kn1m1.

This implies that

I∗0km = (x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F (kn1m1), · · · , F (m)).
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Moreover the subscheme of C2
m ∩D(x(kn1)

0 ) defined by I∗0km is isomorphic
to the product of C∗(C∗ is isomorphic to the regular locus of x(km1)

1
n1
−

cx
(kn1)
0

m1
) by an affine space and its codimension is k(m1 + n1) + 1 +

(m − kn1m1); so it is reduced and irreducible, and it is nothing but Ckm,
or equivalently I0k

m = I∗0km . �

Corollary 4.4. — Let C be a plane branch with one Puiseux expo-
nent. Letm ∈ N,m 6= 0. let q ∈ N be such thatm = qn1β̄1+i; 0 < i 6 n1β̄1.
Then C0

m = π−1
m (0) has q + 1 irreducible components which are:

CmkI = Ckm, 1 6 k 6 q,

and Bm = Cont>qn1(x)m = π−1
m,qn1β̄1

(V (x(0)
0 , · · · , x(qn1)

0 )).

We have that

codim(CmkI ,C2
m) = k(m1 + n1) + 1 + (m− kn1m1)

and

codim(Bm,C2
m) = q(m1 +n1)+[ i

β0
]+[ i

β̄1
]+2 = [m

β0
]+[m

β̄1
]+2 if i < n1β̄1

codim(Bm,C2
m) = (q + 1)(m1 + n1) + 1 if i = n1β̄1.

Proof. — The codimensions and the irreducibility of Bm and CmkI follow
from corollary 4.2 and lemma 4.3. This shows that if 1 6 k < k′ 6 q, we
have codim(Cmk′I ,C2

m) < codim(CmkI ,C2
m), then Cmk′I * CmkI . On the

other hand, since Cmk′I ⊆ V (x(kn1)
0 ) and CmkI 6⊆ V (x(kn1)

0 ), we have that
CmkI * Cmk′I . This also shows that dim Bm > dim CmkI for 1 6 k 6 q,
therefore Bm 6⊆ CmkI , 1 6 k 6 q.But CmkI 6⊆ Bm because Bm ⊆ V (x(qn1)

0 )
and CmkI 6⊆ V (x(qn1)

0 ) for 1 6 k 6 q. We thus have that CmkI 6⊆ Bm and
Bm 6⊆ CmkI . We conclude the corollary from the fact that by construction
C0
m = ∪qk=1CmkI ∪Bm. �

To understand the general case, i.e. to find the irreducible components of
C0
m where C has a branch with g Puiseux exponents at 0, since for kn1β̄1 <

m 6 (k+1)n1β̄1,m, k ∈ N we know by corollary 4.2 the structure of the m-
jets that project to V (x(0)

0 , · · · , x(kn1)
0 )∩C0

kn1β̄1
, we have to understand for

m > kn1β̄1 the m-jets that projects to V (x(0)
0 , · · · , x(kn1−1)

0 ) ∩ D(x(kn1)
0 ),

i.e. Ckm := π−1
m,kn1β̄1

(V (x(0)
0 , · · · , x(kn1−1)

0 ) ∩D(x(kn1)
0 ))red.

Let m, k ∈ N be such that m > kn1β̄1. Let j = max{l, n2 · · ·nl−1 divides
k}(we set j = 2 if the greatest common divisor (k, n2) = 1 or if g = 1). Set
κ such that k = κn2 · · ·nj−1, then we have kn1 = κ β0

nj ···ng .
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Proposition 4.5. — Let 2 6 j 6 g + 1; for i = 2, .., g, and kn1β̄1 <

m < κei−1
β̄i
ej−1

, we have that

Ckm = π̄−1
m,[ m

ni···ng
](C

k
i,[ m
ni···ng

]),

where π̄m,[ m
ni···ng

] : C2
m −→ C2

[ m
ni···ng

] is the canonical map. For j < g + 1

and m > κβ̄j ,we have that
Ckm = ∅

Proof. — Let φ ∈ Ckm. Let φ̃ : Spec C[[t]] −→ (C2, 0) be such that
φ = φ̃ mod tm+1. Let f̃ ∈ C[[x, y]] be a function that defines the branch
C̃ image of φ̃. we may assume that the map SpecC[[t]] −→ C̃ induced by
φ̃ is the normalization of C̃. Since ordtx0 ◦ φ̃ = kn1, ordtx1 ◦ φ̃ = km1 the
multiplicity m(f̃) of C̃ at the origin is ordx1 f̃(0, x1) = kn1 = κ β0

nj ···ng .

Claim: If (f, f̃)0 < κei−1
β̄i
ej−1

then (f, f̃)0 = ni · · ·ng(xi, f̃)0.

Indeed, we have that (f,f̃)0
ordy f̃(0,y) < ei−1

β̄i
β0
, therefore by corollary 3.5 we have

that
of (f̃) < βi

β0
= of (xi).

We will prove that of (f̃) = oxi(f̃). (It was pointed by the referee that this
follows from [1]. For the convenience of the reader we give a detailed proof
below.)
Let y(x

1
β0 ), z(x

1
n1···ni−1 ) and u(x

1
m(f̃) ) be respectively Puiseux-roots of f ,xi

and f̃ . There exist w, λ ∈ C such that w
β0

ni···ng = 1, λm(f̃) = 1 and

of (f̃) = ordx(u(λx
1

m(f̃) )− y(x
1
β0 ))

and
of (xi) = ordx(y(x

1
β0 )− z(wx

1
n1···ni−1 )).

Since of (f̃) < of (xi), we have that

of (f̃) = ordx(u(λx
1

m(f̃) )− y(x
1
β0 ) + y(x

1
β0 )− z(wx

1
n1···ni−1 ))

= ordx(u(λx
1

m(f̃) )− z(wx
1

n1···ni−1 )) 6 oxi(f̃).

On the other hand, there exist λ and δ ∈ C, such that λm(f̃) = 1, δβ0 = 1
and such that

oxi(f̃) = ordx(u(λx
1

m(f̃) )− z(x
1

n1···ni−1 ))

and
of (xi) = ordx(y(δx

1
β0 )− z(x

1
n1···ni−1 )).
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We have then that

oxi(f̃) = ordx(u(λx
1

m(f̃) )− y(δx
1
β0 ) + y(δx

1
β0 )− z(wx

1
n1···ni−1 )).

Now

ordx(u(λx
1

m(f̃) )− y(δx
1
β0 )) 6 of (f̃)

< of (xi) = ordx(y(δx
1
β0 )− z(wx

1
n1···ni−1 )).

So
oxi(f̃) = ordx(u(λx

1
m(f̃) )− y(δx

1
β0 )) 6 of (f̃).

We conclude that of (f̃) = oxi(f̃), and since the sequence of Puiseux
exponents of Ci is ( β0

ni···ng , · · · ,
βi−1
ni···ng ), applying proposition 3.4 to C and

Ci, we find that (f, f̃)0 = ni · · ·ng(xi, f̃)0 and claim follows.
On the other hand by the corollary 3.5 applied to f and f̃ ,(f, f̃)0 >

κei−1
β̄i
ej−1

if and only if of (f̃) > βi
β0

= oxi(f) = of (xi) so of (f̃) > βi
β0

if and only if oxi(f̃) > βi
β0
, therefore (xi, f̃)0 > κ β̄i

ej−1
. This proves the first

assertion.
The second assertion is a direct consequence of lemma 5.1 in [5]. �

To further analyse the Ckm’s, we realize, as in section 3, C as a complete
intersection in Cg+1 = Spec C[x0, · · · , xg] defined by the ideal (f1, · · · , fg)
where

fi = xi+1 − (xnii − cix
bi0
0 · · ·x

bi(i−1)
i−1 −

∑
γ=(γ0,··· ,γi)

ci,γx
γ0
0 · · ·x

γi
i )

for 1 6 i 6 g and xg+1 = 0. This will let us see the Ckm’s as fibrations over
some reduced scheme that we understand well.
We keep the notations above and let I0

m be the radical of the ideal defining
C0
m in Cg+1

m and let I0k
m be the ideal defining

Ckm = (V (I0
m, x

(0)
0 , · · · , x(kn1−1)

0 ) ∩D(x(kn1)
0 ))red in D(x(kn1)

0 ).

Lemma 4.6. — Let k 6= 0, j and κ as above. For 1 6 i < j 6 g

(resp.1 6 i < j − 1 = g) and for κni · · ·nj−1β̄i 6 m < κni+1 · · ·nj−1βi+1,
we have

I0k
m = (x(0)

0 , · · · , x
( κβ̄0
nj ···ng

−1)
0 ,

x
(0)
l , · · · , x

( κβ̄l
nj ···ng

−1)
l , F

(κ nlβ̄l
nj ···ng

)
l , · · · , F (m)

l , 1 6 l 6 i,

x
(0)
i+1, · · · , x

([ m
ni+1···ng

])
i+1 ,

F
(0)
l , · · · , F (m)

l , i+ 1 6 l 6 g − 1).
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Moreover for 1 6 l 6 i,

F
(κ nlβ̄l
nj ···ng

)
l ≡ −(x

(κ β̄l
nj ···ng

)
l

nl

− clx
(κ β̄0
nj ···ng

)
0

bl0

· · · . x
(κ

βl−1
nj ···ng

)
l−1

bl(l−1)

)

mod ((x(0)
l , · · · , x

(κ β̄l
nj ···ng

−1)
l )06l6i, x

(0)
i+1, · · · , x

([ m
ni+1···ng

])
i+1 ),

for 1 6 l < i and κ nlβ̄l
nj ···ng < n < κ

βl+1
nj ···ng (resp. l = i and κ niβ̄i

nj ···ng < n 6

[ m
ni+1···ng ])

F
(n)
l ≡ −(nlx

(κ β̄l
nj ···ng

)nl−1

l x
(κ β̄l
nj ···ng

+n−κ nlβ̄l
nj ···ng

)
l −

cl
∑

06h6l−1
blhx

(κ β̄0
nj ···ng

)bl0

0 · · ·x
(κ β̄h
nj ···ng

)blh−1

h x
(κ β̄h
nj ···ng

+n−κ nlβ̄l
nj ···ng

)
h · · ·x

(κ
βl−1
nj ···ng

)bl(l−1)

l−1 +

Hl(· · · , x
(κ β̄h
nj ···ng

+n−κ nlβ̄l
nj ···ng

−1)
h , · · · ))

mod ((x(0)
l , · · · , x

(κ β̄l
nj ···ng

−1)
l )06l6i, x

(0)
i+1, · · · , x

([ m
ni+1···ng

])
i+1 ),

for 1 6 l < i and κ βl+1
nj ···ng 6 n 6 m(resp. l = i and [ m

ni+1···ng ] < n 6 m),
or i+ 1 6 l 6 g − 1 and 0 6 n 6 m,

F
(n)
l = x

(n)
l+1 +Hl(x(0)

0 , · · · , x(n)
0 , · · · , x(0)

l , · · · , x(n)
l ).

For i = j − 1 = g and m > κngβ̄g,

I0k
m = (x(0)

0 , · · · , x(κβ̄0−1)
0 ,

x
(0)
l , · · · , x(κβ̄l−1)

l , F
(κnlβ̄l)
l , · · · , F (m)

l ), 1 6 l 6 g,

where for 1 6 l < g and κnlβ̄l 6 n 6 m, the above formula for F (n)
l remains

valid,

F (κngβ̄g)
g ≡ −(x(κβ̄g)ng

g − cgx(κβ̄0)bg0

0 · · · . x(κβg−1)bg(g−1)

g−1 )

mod ((x(0)
l , · · · , x(κβ̄l−1)

l ))06l6g

and for κngβ̄g < n 6 m,

F (n)
g ≡ −(ngx(κβ̄g)ng−1

g x(κβ̄g+n−κngβ̄g)
g −

cg
∑

06h6g−1
bg0x

(κβ̄0)bgh
0 · · ·x(κβ̄h)bgh−1

h x
(κβ̄h+n−κnhβ̄h)
h · · ·x(κβg−1)bg(g−1)

g−1 +

Hg(· · · , x(κβ̄h+n−κnhβ̄h)
h , · · · ))

mod ((x(0)
l , · · · , x(κβ̄l−1)

l ))06l6g
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Proof. — First assume that κni · · ·nj−1β̄i 6 m < κni+1 · · ·nj−1β̄i+1 for
1 6 i < j 6 g (resp. 1 6 i < j − 1 = g). By proposition 4.5, we have that
Ckm = π̄−1

m,[ m
ni+1···ng

](C
k
i+1,[ m

ni+1···ng
]) where π̄m,[ m

ni+1···ng
] : C2

m −→ C2
[ m
ni+1···ng

]

is the canonical map. Now C2 = Spec C[x0, x1](resp. Ci+1 = V (xi+1)) is re-
alized as the complete intersection in Cg+1 = Spec C[x0, · · · , xg] defined by
the ideal (f1, · · · , fg−1)(resp. (f1, · · · , fg−1, xi+1)). So sincem > kn1β̄1, I

0k
m

is the radical of the ideal I∗0km =

(x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , F
(0)
1 , · · · , F (m)

1 ,

· · · , F (0)
g−1, · · · , F

(m)
g−1 , x

(0)
i+1, · · · , x

([ m
ni+1···ng

])
i+1 ).

We first observe that F (n)
1 ≡x(n)

2 mod(x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 )
for 0 6 n < kn1β̄1. Now since m

n2···ng > [ m
n2···ng ] > kn1m1, we have

F
(kn1m1)
1 ≡ −(x(km1)n1

1 − c1x(kn1)m1

0 )

mod (x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , x
(0)
2 , · · · , x

([ m
n2···ng

])
2 )

and

F
(n)
1 ≡ −(n1x

(km1)n1−1

1 x
(km1+n−kn1m1)
1 −m1c1x

(kn1)m1−1

0 x
(kn1+n−kn1m1)
0 )

+H1(x(0)
0 , · · · , x(kn1+n−kn1m1−1)

0 , x
(0)
1 , · · · , x(km1+n−kn1m1−1)

1 )

mod (x(0)
0 , · · · , x(kn1−1)

0 , x
(0)
1 , · · · , x(km1−1)

1 , x
(0)
2 , · · · , x

([ m
n2···ng

])
2 )

for kn1β̄1 < n 6 [ m
n2···ng ]. Finally, for l = 1 and [ m

n2···ng ] < n 6 m, or
2 6 l 6 g − 1 and 0 6 n 6 m, we have

F
(n)
l = x

(n)
l+1 +Hl(x(0)

0 , · · · , x(n)
0 , · · · , x(0)

l , · · · , x(n)
l ).

As a consequence for i = 1, the subscheme of Cg+1 ∩ D(x(kn1)
0 ) defined

by I∗0km is isomorphic to the product of C∗ by an affine space, so it is re-
duced and irreducible and I∗0km = I0k

m is a prime ideal in
C[x(0)

0 , · · · , x(m)
0 , · · · , x(0)

g , · · · , x(m)
g ]

x
(kn1)
0

, generated by a regular sequence,
i.e the proposition holds for i = 1.
Assume that it holds for i < j − 1 < g(resp. i < j − 2 = g − 1). For
κni+1 · · ·nj−1βi+1 6 m < κni+2 · · ·nj−1βi+2, the ideal in
C[x(0)

0 , · · · , x(m)
0 , · · · , x(0)

g , · · · , x(m)
g ]

x
(kn1)
0

generated by I0k
κni+1···nj−1βi+1−1

is contained in I0k
m . By the inductive hypothesis, x(0)

l , · · · , x
( κβ̄l
nj ···ng

−1)
l ∈
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I0k
κni+1···nj−1βi+1−1

for l = 1, · · · , i+ 1. So I0k
m is the radical of

I∗0km = (x(0)
0 , · · · , x

( κβ̄0
nj ···ng

−1)
0 ,

x
(0)
l , · · · , x

( κβ̄l
nj ···ng

−1)
l , F

(0)
l , · · · , F (m)

l , 1 6 l 6 i+ 1,

x
(0)
i+2, · · · , x

([ m
ni+2···ng

])
i+2 ,

F
(0)
l , · · · , F (m)

l , i+ 2 6 l 6 g − 1).

Now for 0 6 n < κnlβ̄l
nj ···ng ,we have

F
(n)
l ≡ x(n)

l+1 mod (x(0)
0 , · · · , x

( κβ̄0
nj ···ng

−1)
l , x

(0)
l , · · · , x

( κβ̄l
nj ···ng

−1)
l ,

1 6 l 6 i+ 1).

Here since βl+1 > nlβ̄l, for 1 6 l 6 i and m
ni+2···ng > [ m

ni+2···ng ] > κni+1βi+1
nj ···ng ,

we can delete F (n)
l , 1 6 l 6 i+1, 0 6 n < κnlβ̄l

nj ···ng from the above generators
of I∗0km . The identities relative to the F (n)

l for 1 6 l 6 i+1, κnlβ̄lnj ···ng 6 n 6 m

or i+ 2 6 l 6 g− 1 and 0 6 n 6 m follow immediately from (�). Hence the
subscheme of Cg+1∩D(x(kn1)

0 ) defined by I∗0km is isomorphic to the product
of C∗ by an affine space, so it is reduced and irreducible and I∗0km = I0k

m is
a prime ideal in C[x(0)

0 , · · · , x(m)
0 , · · · , x(0)

g , · · · , x(m)
g ]

x
(kn1)
0

, generated by a
regular sequence, i.e the proposition holds for i+ 1.
The case i = j − 1 = g and m > κngβg follows by similar arguments. �

As an immediate consequence we get

Proposition 4.7. — Let C be a plane branch with g Puiseux expo-
nents. Let k 6= 0, j and κ as above. For m > kn1β̄1, let πm,kn1β̄1

: Cm →
Ckn1β̄1

be the canonical projection and let Ckm := π−1
m,kn1β̄1

(D(x(kn1)
0 ) ∩

V (x(0)
0 , · · · , x(kn1−1)

0 ))red. Then for 1 6 i < j 6 g (resp.1 6 i < j − 1 = g)
and κni · · ·nj−1β̄i 6 m < κni+1 · · ·nj−1βi+1, Ckm is irreducible of codi-
mension

κ

nj · · ·ng
(β̄0 + β̄1 +

i−1∑
l=1

(βl+1 − nlβl)) + ([ m

ni+1 · · ·ng
]− κniβ̄i

nj · · ·ng
) + 1

in C2
m. (We suppose that the sum in the formula is equal to 0 when i = 1.)

For j 6 g and m > κβ̄j (resp.j = g + 1 and m > κngβ̄g),

Ckm = ∅
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(resp. Ckm is of codimension

κ(β̄0 + β̄1 +
g−1∑
l=1

(βl+1 − nlβl)) +m− κngβ̄g + 1)

in C2
m.

The referee kindly pointed out that for m ∈ N such that κni · · ·nj−1β̄i 6
m < κni+1 · · ·nj−1βi+1, the codimension of Ckm can also be written as :

κ

ej−1
(β̄0 + βi+1 − βi+1) + [m

ei
] + 1.

For k′ > k and m > k′n1β̄1, we now compare codim(Ckm,C2
m) and

codim(Ck′m ,C2
m).

Corollary 4.8. — For k′ > k > 1 and m > k′n1β̄1, if Ckm and Ck′m are
nonempty, we have

codim(Ck
′

m ,C2
m) 6 codim(Ckm,C2

m).

Proof. — Let γk : [kn1β̄1,∞[−→ [k(n1 +m1),∞[ be the piecewise linear
function given by

γk(m) = k

e1
(β̄0 + β̄1 +

i−1∑
l=1

(βl+1 − nlβl)) + (m
ei
− kniβ̄i

e1
) + 1

for 1 6 i 6 g and kβ̄i
n2···ni−1

6 m <
kβi+1
n2···ni . (Recall that by convention

βg+1 =∞)
In view of proposition 4.7, we have that codim(Ckm,C2

m) = [γk(m)] for
k ≡ 0 mod n2 · · ·nj−1 and k 6≡ 0 mod n2 · · ·nj with 2 6 j 6 g and any
integer m ∈ [kn1β̄1,

kβj
n2···nj−1

[ or for k ≡ 0 mod n2 · · ·ngand any integer
m > kn1β̄1. Similarly we define γk′ : [k′n1β̄1,∞[−→ [k′(n1 + m1),∞[ by
changing k to k′.
Let Γk(resp.Γk′) be the graph of γk(resp γk′) in R2.Now let τ : R2 −→ R2

be defined by τ(a, b) = (a, b − 1) and let λk′/k : R2 −→ R2 be defined
by λk

′/k(a, b) = k′

k (a, b). We note that τ(Γk′) = λk
′/k(τ(Γk)); we also

note that the endpoints of τ(Γk) and τ(Γk′) lie on the line through 0 with
slope β0+β̄1

e1n1β̄1
= 1

e1
n1+m1
n1m1

< 1
e1
. Since k′

k > 1, the image of τ(Γk) by λk′/k

lies in the interior subset of R2
>0 whith boundary the union of τ(Γk), of

the segment joining its endpoint (kn1β̄1,
k
e1

(β0 + β̄1)) to (kn1β̄1, 0) and of
[kn1β̄1,∞[ × 0. This implies that γk′(m) 6 γk(m) for m > k′n1β̄1, hence
[γk′(m)] 6 [γk(m)] and the claim. �
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Theorem 4.9. — Let C be a plane branch with g > 2 Puiseux expo-
nents. Letm ∈ N. For 1 6 m < n1β̄1+e1,C0

m = Cont>0(x0)m is irreducible.
For qn1β̄1 + e1 6 m < (q + 1)n1β̄1 + e1,with q > 1 in N, the irreducible
components of C0

m are :

CmκI = Contκβ̄0(x0)m

for 1 6 κ and κβ̄0β̄1 + e1 6 m,

Cjmκv = Cont
κβ̄0

nj ···ng (x0)m

for j = 2, · · · , g, 1 6 κ and κ 6≡ 0 mod nj and such that κn1 · · ·nj−1β̄1 +
e1 6 m < κβ̄j ,

Bm = Cont>n1q(x0)m.

Proof. — We first observe that for any integer k 6= 0 and anym > kn1β̄1,

(C0
m)red = ∪16h6kC

h
m ∪ Cont>kn1(x0)m

where Chm := Conthn1(x0)m. Indeed, for k = 1, we have that (C0
m)red ⊂

V (x(0)
0 , · · · , x(n1−1)

0 ) by proposition 4.1. Arguing by induction on k, we may
assume that the claim holds for m > (k− 1)n1β̄1.Now by corollary 4.2, we
know that for m > kn1β̄1, Cont>(k−1)n1(x0)m ⊂ V (x(0)

0 , · · · , x(kn1−1)
0 ),

hence the claim for m > kn1β̄1.
We thus get that for qn1β̄1 + e1 6 m < (q + 1)n1β̄1 + e1,

(C0
m)red = ∪16k6qC

k
m ∪ Cont>qn1(x0)m.

By proposition 4.7, for 1 6 k 6 q, Ckm is either irreducible or empty. We
first note that if Ckm 6= ∅, then Ckm 6⊂ Cont>qn1(x0)m. Similarly, if 1 6 k <
k′ 6 q and if Ckm and Ck

′

m are nonempty, then Ckm 6⊂ Ck′m . On the other
hand by corollary 4.8, we have that codim(Ck′m ,C2

m) 6 codim(Ckm,C2
m). So

Ck′m 6⊂ Ckm. Finally we will show that Cont>qn1(x0)m 6⊂ Ckm if Ckm 6= ∅
for 1 6 k 6 q. To do so, it is enough to check that codim(Ckm,C2

m) >
codim(Cont>qn1(x0)m,C2

m). For m ∈ [qn1β̄1 + e1, (q + 1)n1β̄1[, we have

δq(m) := codim(Cont>qn1(x0)m,C2
m)

= 2 + q(n1 +m1) + [m− qn1β̄1

β0
] + [m− qn1β̄1

β̄1
]
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by corollary 4.2. Let λq : [qn1β̄1 + e1[−→ [q(n1 + m1),∞[ be the function
given by λq(m) = q(n1 + m1) + m−qn1β̄1

e1
+ 1. For simplicity, set i = m −

qn1β̄1.For any integer i such that e1 6 i < n1β̄1 = n1m1e1, we have
1 + [ i

n1e1
] + [ i

m1e1
] 6 [ ie1 ]. Indeed this is true for i = e1 and it follows by

induction on i from the fact that for any pair of integers (b, a), we have
[ b+1
a ] = [ ba ] if and only if b + 1 6≡ 0 mod a and [ b+1

a ] = [ ba ] + 1 otherwise,
since i < n1m1e1. So δq(m) 6 [λq(m)].
But in the proof of corollary 4.8, we have checked that if Ckm 6= ∅, then
codim(Ckm,C2

m) = [γk(m)]. We have also checked that for q > k and m >
qn1β, γ

k(m) > γq(m). Finally in view of the definitions of γq and λq, we
have γq(m) > λq(m), so [γq(m)] > [λq(m)] > δq(m).
For m = (q + 1)n1β̄1, we have δq(m) = (q + 1)(n1 + m1) + 1 by corollary
4.2. For m ∈ [(q + 1)n1β̄1, (q + 1)n1β̄1 + e1[, we have

Cont>qn1(x0)m = Cq+1
m ∪ Cont>(q+1)n1(x0)m

and

Cont>(q+1)n1(x0)m = V (x(0)
0 , · · · , x((q+1)n1)

0 , x
(0)
1 , · · · , x((q+1)m1)

1 )

again by corollary 4.2. If in addition we have m < (q + 1)β̄2, then by
proposition 4.5 Cq+1

m = V (x(0)
0 , · · · , x((q+1)n1−1)

0 , x
(0)
1 , · · · , x((q+1)m1−1)

1 ,

x
((q+1)m1)n1

1 − c1x((q+1)n1)m1

0 )∩D(x((q+1)n1)
0 , thus we have Cont>qn1(x0)m

= Cq+1
m and δq(m) = (q + 1)(n1 + m1) + 1. We have (q + 1)n1β̄1 + e1 6

(q + 1)β2 if q + 1 > n2, because β2 − n1β1 ≡ 0 mod (e2) . If not , we may
have (q+ 1)β2 < (q+ 1)n1β̄1 + e1, so for (q+ 1)β2 6 m < (q+ 1)n1β̄1 + e1,

we have Cq+1
m = ∅, Cont>qn1(x0)m = Cont>(q+1)n1(x0)m and δq(m) =

(q + 1)(n1 +m1) + 2.
In both cases, for m ∈ [(q + 1)n1β̄1, (q + 1)n1β̄1 + e1[, we have δq(m) 6
(q+ 1)(n1 +m1) + 2. Since [λq(m)] = q(n1 +m1) + n1m1 + 1, we conclude
that [λq(m)] > δq(m), so for 1 6 k 6 q, if Ckm 6= ∅, we have [γk(m)] >
δq(m). This proves that the irreducible components of C0

m are the Ckm for
1 6 k 6 q and Ckm 6= ∅, and Cont>qn1(x0)m, hence the claim in view of the
characterization of the nonempty Ck′sm ’s given in proposition 4.5. �

Corollary 4.10. — Under the assumption of theorem 4.9, let q0 +1 =
min{α ∈ N;α(β2 − n1β1) > e1}. Then 0 6 q0 < n2. For 1 6 m < (q0 +
1)n1β̄1 + e1, C

0
m is irreducible and we have codim(C0

m,C2
m) =

2 + [m
β0

] + [m
β̄1

] for 0 6 q 6 q0 and qn1β̄1 + e1 6 m < (q + 1)n1β̄1

or 0 6 q 6 q0 and (q + 1)β2 6 m < (q + 1)n1β̄1 + e1.
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1 + [m
β0

] + [m
β̄1

] for 0 6 q < q0 and (q + 1)n1β̄1 6 m < (q + 1)β2

or (q0 + 1)n1β̄1 6 m < (q0 + 1)n1β̄1 + e1.

For q > q0 + 1 in N and qn1β̄1 + e1 6 m < (q+ 1)n1β̄1 + e1, the number
of irreducible components of C0

m is:

N(m) = q + 1−
g∑
j=2

([m
β̄j

]− [ m

nj β̄j
])

and codim(C0
m,C2

m) =

2 + [m
β0

] + [m
β̄1

] for qn1β̄1 + e1 6 m < (q + 1)n1β̄1.

1 + [m
β0

] + [m
β̄1

] for (q + 1)n1β̄1 6 m < (q + 1)n1β̄1 + e1.

Proof. — We have already observed that n2(β2 − n1β1) > e1 because
β2 − n1β1 ≡ 0 mod (e2), so 1 6 q0 + 1 6 n2.
For qn1β̄1 + e1 6 m < (q + 1)n1β̄1 + e1, with q > 1, we have seen in the
proof of theorem 4.9 that the irreducible components of C0

m are the Ckm for
1 6 k 6 q and Ckm 6= ∅, and Contqn1(x0)m. We thus have to enumerate
the empty Ckm for 1 6 k 6 q. By proposition 4.5, Ckm = ∅ if and only if
j := max{l; l > 2 and k ≡ 0 mod n2 · · ·nl−1} 6 g and m > k

n2···nj−1
βj .

Now recall that βi+1 > niβi for 1 6 i 6 g−1 and that β2−n1β1 > e2. This
implies that for 3 6 j 6 g, we have βj − n1 · · ·nj−1β1 > n2 · · ·nj−1(β2 −
n1β1) > n2 · · ·nj−1e2 > e1. So if j > 3 and κ is a positive integer such that
m > κβj , we have m−e1

n1β̄1
> κn2 · · ·nj−1, hence q = [m−e1

n1β̄1
] > κn2 · · ·nj−1.

Therefore for j > 3, there are exactly [m
βj

] integers κ > 1 such thatm > κβj
and κn2 · · ·nj−1 6 q, among them [ m

njβj
] are ≡ 0 mod (nj).

Similarly if (q+ 1)n1β̄1 + e1 6 (q+ 1)β2, or equivalently q > q0, and if κ is
a positive integer such that m > κβ2, we have κ 6 m

β2
< q + 1. Therefore

if q > q0 + 1, we conclude that there are
∑g
j=2([m

βj
]− [ m

njβj
]) empty Ckm’s

with 1 6 k 6 q. Moreover we have shown in the proof of theorem 4.9
that codim(C0

m,C2
m) = codim(Cont>qn1(x0)m,C2

m) = 2 + [mβ0
] + [m

β̄1
] if

m < (q + 1)n1β̄1(resp.1 + (q + 1)(n1 + m1) = 1 + [mβ0
] + [m

β̄1
] for m >

(q+1)n1β̄1).Also note that q0β2 < q0n1β̄1 +e1 < (q0 +1)n1β̄1 +e1 6 (q0 +
1)β2 6 n2β2 < β3 · · · . Therefore for q0n1β̄1 + e1 6 m < (q0 + 1)n1β̄1 + e1,

we have [ m
β2

] = q0, [ m

n2β2
] = [ m

β3
] = · · · = 0, so N(m) = 1, i.e. C0

m is
irreducible.
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Finally, assume that qn1β̄1 + e1 6 m < (q + 1)n1β̄1 + e1 with q > 1 and
q 6 q0. Since q0 < n2, for 1 6 k 6 q we have k 6≡ 0 mod(n2) and m >
qn1β̄1 + e1 > qβ2, hence for 1 6 k 6 q, Ckm = ∅ and C0

m = Contqn1(x0)m
is irreducible.(The case q = q0 was already known).So for n1β̄1 6 m <

(q0+1)n1β̄1+e1, C0
m is irreducible.( Recall that for 1 6 m < q0n1β̄1+e1, the

irreducibility of C0
m is already known).It only remains to check the codimen-

sions of C0
m for 1 6 m 6 q0n1β̄1+e1. Here again we have seen in the proof of

Theorem 4.9 that codim(C0
m,C2

m) = codim(Cont>qn1(x0)m,C2
m) =: δq(m)

for any q > 1 and qn1β̄1 + e1 6 m < (q + 1)n1β̄1 + e1 and that

δq(m) = 2 + [m
β0

] + [m
β̄1

] for any q > 1 and qn1β̄1 + e1 6 m < (q+ 1)n1β̄1

(q + 1)(n1 +m1) + 1 =

1 + [m
β0

] + [m
β̄1

] for q < q0 and (q + 1)n1β̄1 6 m < (q + 1)β2

(q + 1)(n1 +m1) + 2 =

2 + [m
β0

] + [m
β̄1

] for q < q0 and (q + 1)β2 6 m < (q + 1)n1β̄1 + e1.

This completes the proof. �

In [6], Igusa has shown that the log-canonical threshold of the pair
((C2, 0), (C, 0)) is 1

β0
+ 1

β̄1
. Here (C2, 0)(resp.(C, 0))) is the formal neigh-

berhood of C2 (resp. C) at 0. Corollary 4.10 allows to recover corollary B
of [2] in this special case.

Corollary 4.11. — If the plane curve C has a branch at 0, with mul-
tiplicity β0, and first Puiseux exponent β̄1, then

minm
codim(C0

m,C2
m)

m+ 1 = 1
β0

+ 1
β̄1
.

Proof. — For anym, p 6= 0 in N, we havem−p[mp ] 6 p−1 andm−p[mp ] =
p− 1 if and only if m+ 1 ≡ 0 mod (p); so for any m ∈ N, 2 + [mβ0

] + [m
β̄1

] >
(m + 1)( 1

β0
+ 1

β̄1
) and we have equality if and only if m + 1 ≡ 0 mod

(β0) and mod (β̄1) or equivalently m + 1 ≡ 0 mod (n1β̄1) since n1β̄1 is
the least common multiple of β0 and β̄1.If not we have 1 + [mβ0

] + [m
β̄1

] >
(m+1)( 1

β0
+ 1
β̄1

). Now if (q+1)n1β̄1 6 m < (q+1)n1β̄1 +e1 with q ∈ N,we
have (q + 1)n1β̄1 < m+ 1 6 (q + 1)n1β̄1 + e1 < (q + 2)n1β̄1, so m+ 1 6≡ 0
mod (n1β̄1). If (q + 1)n1β̄1 6 m < (q + 1)β2 with q ∈ N and q < q0, then
(q + 1)n1β̄1 < m+ 1 6 (q + 1)n1β̄1 + e1 < (q + 2)n1β̄1, so m+ 1 6≡ 0 mod
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(n1β̄1). So in both cases, we have 1 + [mβ0
] + [m

β̄1
] > (m+ 1)( 1

β0
+ 1

β̄1
). The

claim follows from corollary 4.10. �

It also follows immediately from corollary 4.10 .

Corollary 4.12. — Let q0 ∈ N as in corollary 4.10. There exists n1β̄1
linear functions, L0, · · · , Ln1β̄1−1 such that dim(C0

m) = Li(m) for any m ≡
i mod (n1β̄1) such that m > q0n1β̄1 + e1.

The canonical projections πm+1,m : C0
m+1 −→ C0

m,m > 1, induce infinite
inverse systems

· · ·Bm+1 −→ Bm · · · −→ B1

· · ·C(m+1)κI −→ CmκI · · · −→ C(κβ0β̄1+e1)κI −→ Bκβ0β̄1+e1−1

and finite inverse systems

Cj
(κβj−1)κv

−→ Cjmκv · · · −→ Cj(κn1···nj−1β̄1+e1)κv −→ Bκn1···nj−1β̄1+e1−1

for 2 6 j 6 g, and κ 6≡ 0 mod (nj).
We get a tree TC,0 by representing each irreducible component of C0

m,m >
1, by a vertex vi,m, 1 6 i 6 N(m), and by joining the vertices vi1,m+1 and
vi0,m if πm+1,m induces one of the above maps between the corresponding
irreducible components.
This tree only depends on the semigroup Γ.

Conversely, we recover β0, · · · , βg from this tree and
max{m, codim(Bm,C2

m) = 2} = β0−1. Indeed the number of edges joining
two vertices from which an infinite branch of the tree starts is β0β̄1.We thus
recover β1 and e1. We recover β2 − n1β1, · · · , βj − n1 · · ·nj−1β1, · · · , βg −
n1 · · ·ng−1β1, hence β2, · · · , βg from the number of edges in the finite
branches.

Corollary 4.13. — Let C be a plane branch with g > 1 Puiseux
exponents. The tree TC,0 described above and max{m, dim C0

m = 2m}
determines the sequence β0, · · · , βg or equivalently the equisingularity class
of C and conversely.

We represent below the tree for the branch defined by

f(x, y) = (y2 − x3)2 − 4x6y − x9 = 0,

whose semigroup is < β̄0 = 4, β̄1 = 6, β̄2 = 15) >, and for which we have
e1 = 2, e2 = 1 and n1 = n2 = 2.

ANNALES DE L’INSTITUT FOURIER



JET SCHEMES OF PLANE BRANCHES 2335

BIBLIOGRAPHY

[1] S. S. Abhyankar, “Irreducibility criterion for germs of analytic functions of two
complex variables”, Adv. Math. 74 (1989), p. 190-257.
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