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RIEMANNIAN MANIFOLDS NOT QUASI-ISOMETRIC
TO LEAVES IN CODIMENSION ONE FOLIATIONS

by Paul A. SCHWEITZER (*)

Abstract. — Every open manifold L of dimension greater than one has com-
plete Riemannian metrics g with bounded geometry such that (L, g) is not quasi-
isometric to a leaf of a codimension one foliation of a closed manifold. Hence no
conditions on the local geometry of (L, g) suffice to make it quasi-isometric to a leaf
of such a foliation. We introduce the ‘bounded homology property’, a semi-local
property of (L, g) that is necessary for it to be a leaf in a compact manifold in
codimension one, up to quasi-isometry. An essential step involves a partial gener-
alization of the Novikov closed leaf theorem to higher dimensions.
Résumé. — Chaque variété ouverte L de dimension plus grande que 1 possède

des métriques Riemanniennes complètes g avec géométrie bornée telles que (L, g)
n’est pas quasi-isométrique à une feuille d’un feuilletage de codimension un d’une
variété fermée. Donc il n’y a pas de conditions sur la géométrie locale de (L, g) qui
suffisent pour qu’elle soit quasi-isométrique à une feuille de tel feuilletage. Nous
introduisons la « propriété d’homologie bornée », une propriété semi-locale de (L, g)
qui est nécessaire pour qu’elle puisse être feuille d’un feuilletage de codimension
1 d’une variété compacte, à une quasi-isométrie près. Une étape essentielle de la
démonstration utilise une généralisation partielle du théorème de la feuille fermée
de Novikov aux dimensions plus grandes.

1. Introduction

The question of when an open (i.e. noncompact) connected manifold can
be realized up to diffeomorphism as a leaf in a foliation of a compact differ-
entiable manifold was first posed by Sondow [21] for surfaces in 3-manifolds.
It was solved positively for all open surfaces by Cantwell and Conlon [5] (al-
though Ghys [8] showed afterwards that only six surfaces occur generically).

Keywords: codimension one foliation, Reeb component, non-leaf, geometry of leaves,
bounded homology property.
Math. classification: 57R30, 53C12, 53B20, 53C40.
(*) Supported in early stages of this work by the CNPq, FAPERJ, PRONEX of the
Ministry of Science and Technology of Brazil, and the Clay Mathematics Institute.
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In the opposite direction, Ghys [7] and independently Inaba, Nishimori,
Takamura and Tsuchiya [13] constructed an open 3-manifold (an infinite
connected sum of lens spaces for all odd primes) that cannot be a leaf in a
foliation of a compact 4-manifold. Attie and Hurder [3] gave an uncount-
able family of smooth simply connected 6-dimensional manifolds, all having
the homotopy type of an infinite connected sum of copies of S2 × S4, that
are not diffeomorphic to leaves in a compact 7-manifold. It is still an open
problem whether every smooth open manifold of dimension greater than 2
is diffeomorphic to a leaf of a codimension two (or higher) foliation.
In the related question of when an open Riemannian manifold can be

realized up to quasi-isometry as a leaf in a foliation of a compact mani-
fold, Attie and Hurder [3] also produced an uncountable family of quasi-
isometry types of Riemannian metrics on the 6-manifold S3×S2×R, each
with bounded geometry, which cannot be leaves in any codimension one
foliation of a compact 7-manifold. On these and other 6-manifolds they
also defined Riemannian metrics that have positive ‘entropy’, and hence
cannot be leaves in any C2,0 codimension one foliation, or in any C1 fo-
liation of arbitrary codimension, on any compact manifold. Zeghib [24]
adapted this result to surfaces with exponential growth. Attie and Hurder
prove their various results using the bounded Pontryagin classes defined by
Januskiewicz [14], who had already used them to construct open manifolds
that could not be leaves in certain compact manifolds, extending earlier
results of Phillips and Sullivan [16].
The Attie-Hurder results extend to codimension one foliations of dimen-

sions greater than 6, but their Question 2 asks for examples in the lower
dimensions 3, 4, and 5. In this paper we respond to this question by showing
that every open manifold of dimension at least 3 admits complete Riemann-
ian metrics of bounded geometry, and of every possible growth type, that
are not quasi-isometric to leaves of codimension one foliations of compact
manifolds. The same result for surfaces had already been proven in [18]
(where the present paper was announced). Thus no set of local bounds on
the geometry of an open Riemannian p-manifold L with p > 2 can be suffi-
cient to guarantee that it be quasi-isometric to a leaf of a C2,0 codimension
one foliation of a closed (p+ 1)-manifold.
We define a C2,0 foliation to be one in which the leaves are smooth of

class C2, and their C2 differentiable structure varies continuously in the
transverse direction along the leaves of a transverse foliation T (Definition
2.5). Attie and Hurder [3] call such foliations C0. A bound on the geometry
of L is local if it only depends on the Riemannian geometry of the ε-balls
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RIEMANNIAN MANIFOLDS THAT ARE NOT LEAVES 1601

around the points of L, for some constant ε > 0. For example, bounds on
the various curvatures and on the injectivity radius of L are local geometric
bounds.
We define two Riemannian manifolds to be quasi-isometric if there

is a diffeomorphism f from one to the other such that both f and f−1

produce only bounded distortion of the metrics, up to a constant D, as
formulated precisely in Definition 2.1 below and in [3]. It is easy to see that
a leaf in a foliation of a smooth compact manifoldM , with any Riemannian
metric induced by a metric on M , must have bounded geometry, in the
sense that the sectional curvature is uniformly bounded above and below,
and the injectivity radius has a uniform positive lower bound. Because
of the term D in Definition 2.1, quasi-isometry does not always preserve
this property, but in this paper we consider only Riemannian metrics with
bounded geometry. Then the following theorem, which is our main result,
involves a restriction on the global geometry of an open manifold for it to
be quasi-isometric to a leaf.

Theorem 1.1. — Every connected non-compact smooth p-manifold L
with p > 2 possesses C∞ complete Riemannian metrics g with bounded
geometry that are not quasi-isometric to any leaf of a codimension one
C2,0 foliation on any compact differentiable (p+ 1)-manifold.
Furthermore g can be chosen such that no end is quasi-isometric to an

end of a leaf of such a foliation, and also to have any growth type compatible
with bounded geometry. Hence there are uncountably many quasi-isometry
classes of such metrics g on every such manifold L.

When p = 2, Theorem 1.1 was proven in [18], so in this paper we shall as-
sume that p > 3. The proof for p > 3 depends on Theorem 2.6 below, which
states that the leaves of a C2,0 codimension one foliation of a compact man-
ifold M of dimension greater than 3, with Riemannian metrics that vary
continuously in the transverse direction, have a certain bounded homol-
ogy property, a property which we define for open Riemannian manifolds
of dimension at least 3. In Theorem 2.8 we show how to modify a given
complete Riemannian metric on a connected smooth open manifold, with-
out changing its growth type, so that the new metric does not have the
bounded homology property. The construction involves introducing spheri-
cal ‘balloons’ of arbitrarily large size, but with ‘necks’ of uniformly bounded
size, as in [18]. (See Figures 1.1 and 1.2.)
The proof of Theorem 2.6 (in Section 3) involves a Finiteness Lemma

(Lemma 3.2, proved in Section 5) and a partial extension to higher di-
mensions of Novikov’s theorem [15, 11, 4] that vanishing cycles only occur
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1602 Paul A. SCHWEITZER

Figure 1.1. The manifold L with the original metric.

Figure 1.2. The manifold L with “balloons”.

on the boundary of Reeb components (Theorem 2.13, proved in Section
7). Definitions and statements of results are given in Section 2 and the
construction of Riemannian manifolds that cannot be leaves is given in
Section 4.
The first three theorems of this paper constitute an extension to higher

dimensions of three similar theorems for open surfaces in [18]. That paper,
using a different bounded homotopy property for surfaces involving con-
tractible loops rather than bounding submanifolds, showed that all open
surfaces have complete Riemannian metrics with bounded geometry that
cannot be leaves in C2,0 foliations of compact 3-manifolds.
It is a pleasure to thank my student Fabio Silva de Souza for preparing

the figures.

2. Definitions and statements of results

In this section we give several definitions leading up to the definition of
the bounded homology property, and then we state Theorem 2.6 (which
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RIEMANNIAN MANIFOLDS THAT ARE NOT LEAVES 1603

states that, under certain hypotheses, leaves have this property), Theorem
2.8, and Theorem 2.13 (a partial generalization of Novikov’s Theorem on
the existence of Reeb components). In this paper, all manifolds are smooth
of class C2, except that in the proof of Theorem 2.13 it suffices to assume
that M and F are C0.

Definition 2.1. — A diffeomorphism f : L → L′ between two Rie-
mannian manifolds L and L′ is a quasi-isometry if there exist constants
C,D > 0 such that the distance functions d and d′ on L and L′ satisfy

C−1d′(f(x), f(y))−D 6 d(x, y) 6 Cd′(f(x), f(y)) +D

for all points x, y ∈ L. When such a diffeomorphism exists we say that L
and L′ are quasi-isometric.

For example, any diffeomorphism between compact smooth Riemannian
manifolds is a quasi-isometry. Note that quasi-isometry is an equivalence
relation.

Let L be a p-dimensional Riemannian manifold, S a subset of L, and β
a positive number. The open β-ball Vβ(x) at a point x ∈ L is defined to
be the set of points on L whose distance from x is less than β. Note that
Vβ(x) may fail to be a topological ball, if β is greater than the injectivity
radius at x.

Definition 2.2. — The β-volume Volβ(S) = Volβ,L(S) ∈ N ∪ {∞} of
S on L is the smallest integer K such that S can be covered by K open
β-balls in L, or ∞ if no such finite number exists.

The β-volume of S depends on its embedding in L, but the ambient
manifold L will be clear from the context, so it will not be made explicit
in the notation.

Definition 2.3. — Let C be a compact Riemannian p-manifold with
boundary B and let β be a constant greater than 0. Then we define the
Morse β-volumeM(C, β) to be the smallest positive integerM for which
there is a Morse function f : C → [0,∞) such that f(B) = 0 and each level
set f−1(t) for t ∈ [0,∞) has Volβ(f−1(t)) 6 M on C. (See Figure 2.1,
where various level sets are shown.)

This definition makes sense since it is evident that the β-volumes of the
level sets of a fixed Morse function f on a compact manifold are uniformly
bounded, so that M(C, β) is finite. For a set S contained in a Riemannian
manifold L, we define the open β-neighborhood of S, Vβ(S), to be the
set of all points in L whose distance from S, measured along geodesics in

TOME 61 (2011), FASCICULE 4
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Figure 2.1. Morse β-volume of a compact manifold C with boundary B.

L, is less than β. We can now define the bounded homology property, the
fundamental tool used in this paper.

Definition 2.4. — A Riemannian p-manifold L (p > 3) has the
bounded homology property if there exists a constant β0 > 0 such
that for every pair of constants β > β0 and k > 0 there is an integer
K = K(β, k) such that if

(1) B ⊂ L is a 1-connected smooth closed (p− 1)-submanifold embed-
ded in L,

(2) there is a closed neighborhood V of B that fibers over B as a smooth
tubular neighborhood and contains the β-neighborhood Vβ(B) of B
in L,

(3) B has β-volume Volβ(B) 6 k on L, and
(4) B bounds a compact 1-connected region C on L,

then the Morse β-volume of C satisfies M(C, β) 6 K.

Comments. A neighborhood V of B is a tubular neighborhood of B
if there is a smooth retraction V → B which is a (locally trivial) fibration.
In particular, it is well-known that for a smooth compact submanifold B
of a Riemannian manifold Vβ(B) is a tubular neighborhood of B for every
sufficiently small positive number β. On the other hand, because of the
term D in Definition 2.1, we must require β to be ‘sufficiently large’, i.e.,
greater than some given β0, in order for the bounded homology property to
be invariant under quasi-isometry (see Proposition 2.10). We also require
that B and C be 1-connected (i.e., connected and simply connected) so
that when they are subsets of a leaf L of a foliation F , they can be lifted
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in the transverse direction to leaves of F near to L. Recall that for any C0

codimension one foliation F there always exists a 1-dimensional foliation
T topologically transverse to F [12], [19].

Definition 2.5. — A codimension one foliation F of a smooth manifold
M is a C2,0-foliation if the leaves are smooth submanifolds of class C2 and
the transverse foliation T can be chosen so that the C2-structures on the
leaves are preserved by the local homeomorphisms obtained by lifting open
sets from one leaf to another along leaves of T .

Theorem 2.6. — Let F be a C2,0 codimension one foliation of dimen-
sion p > 3 on a closed smooth manifold M and let T be a foliation trans-
verse to F chosen as in Definition 2.5. Then the leaves of F have the
bounded homology property with β0 = 0, and for every k > 0 and β > 0,
the same integer K = K(k, β) > 0 can be chosen for all the leaves of F .

Corollary 2.7. — If F is a C2,0 codimension one foliation of dimen-
sion p > 3 of a closed smooth manifoldM , then the leaves have the bounded
homology property for any Riemannian metric induced on the leaves by a
Riemannian metric on M .

The proof of Theorem 2.6 is given in Section 3 using results proven in
Sections 5 and 7. In Section 4 we show that every smooth open manifold
of dimension at least 3 admits complete Riemannian metrics with bounded
geometry such that the bounded homology property does not hold, thus
giving the following result.

Theorem 2.8. — Let L be a complete open connected Riemannian p-
manifold of dimension p > 3 whose metric g0 has bounded geometry. Then
L has other complete Riemannian metrics g with bounded geometry and
the same growth type as g0 that do not possess the bounded homology
property, and such that no end of L has the bounded homology property.
Furthermore there are such metrics with uncountably many distinct growth
types, and hence in uncountably many distinct quasi-isometry classes.

We recall that the growth function f : [0,∞)→ [0,∞) of a connected
Riemannian p-manifold (L, g) with basepoint x0 ∈ L is defined to be f(r) =
Vol(B(x0, r)), the p-dimensional volume of the ball of radius r centered at
x0. Given two increasing continuous functions f1, f2 : [0,∞) → [0,∞), we
say that f1 has growth type less than or equal to that of f2 (denoted
f1 � f2) if there exist constants A,B,C > 0 such that for all r ∈ [0,∞),
f1(r) 6 Af2(Br + C) [11]. They have the same growth type if f1 � f2
and f2 � f1. We write f1 ≺ f2 if f1 � f2 but it is false that f2 � f1. For

TOME 61 (2011), FASCICULE 4
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example, I ≺ exp where I is the identity function I(r) = r and exp(r) =
er on [0,∞). The growth type of (L, g) (i.e., of its growth function) is
clearly invariant under quasi-isometry and change of the basepoint. Then
the following observation proved in Section 4 establishes the last assertions
of Theorems 1.1 and 2.8, since the growth types of the functions fk(r) = rk

for every real number k > 1 are distinct and can all be realized.

Proposition 2.9. — Let f : [0,∞)→ [0,∞) be any increasing contin-
uous function of growth type greater than linear and at most exponential,
i.e. I ≺ f � exp. Then every smooth connected open manifold L of di-
mension at least two admits a complete Riemannian metric with bounded
geometry whose growth type is the growth type of f .

Theorem 1.1 follows immediately from Theorems 2.8 and 2.6 with the
following fact.

Proposition 2.10. — If L and L′ are quasi-isometric complete Rie-
mannian manifolds with bounded geometry and L has the bounded homol-
ogy property, then so does L′.

To prove this proposition we need the following result. Both will be
proven in Section 6.

Proposition 2.11. — Let L be a complete Riemannian manifold with
bounded sectional curvature. Then given constants 0 < a < b, there exists
an integer n > 0 such that every open b-ball Vb(x) on L centered at x ∈ L
can be covered by at most n open a-balls.

As mentioned above, Vb(x) may fail to be a topological ball.

One step in the proof of Theorem 2.6 (Proposition 3.3 below) will use a
weak generalization of the second half of Novikov’s theorem on the existence
of Reeb components and a Corollary 2.14, which we shall state after the
following definition.

Definition 2.12. — A compact (p + 1)-dimensional manifold with a
codimension one foliation R is a (generalized) Reeb component if the
boundary ∂R is a nonempty finite union of leaves, the interior Int(R) fibers
over the circle with the leaves as fibers, and there is a transverse orientation
pointing inwards along all the components of ∂R.

It is clear that the boundary leaves are compact and the interior leaves
non-compact. In this paper, we shall usually consider Reeb components
with connected boundary ∂R, and then the existence of the transverse
orientation pointing inwards along ∂R is automatic.

ANNALES DE L’INSTITUT FOURIER
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Now let F be a p-dimensional foliation of a compact (p+ 1)-dimensional
manifoldM and let B be a compact connected (p−1)-dimensional manifold.
The horizontal foliation H of B × [0, 1] is given by the leaves B × {t} for
t ∈ [0, 1]. Consider a foliated map

h : (B × [0, 1],H)→ (M,F)

and suppose that h0 : B → L0 is an embedding, where for all t Lt is the
leaf containing h(B × {t}) and ht : B → Lt is the map defined ht(b) =
h(b, t). Note that now we are not supposing any differentiability, but there
does exist a 1-dimensional foliation T of M topologically transverse to
F . Then we have the following weak generalization of the second half of
Novikov’s theorem. (A stronger generalization is given in [2]. The idea of
using homological vanishing cycles is due to Sullivan [22].)

Theorem 2.13. — An Extension of Novikov’s Theorem. Suppose
that one of the following conditions holds for every t > 0 sufficiently close
to 0 but does not hold for t = 0:

(1) Bt = ht(B) is the boundary of a compact 1-connected region Ct ⊂
Lt;

(2) Bt = ht(B) is the boundary of a compact region Ct ⊂ Lt;
(3) B is oriented and 0 = ht∗([B]) ∈ Hp−1(Lt) (where [B] is the fun-

damental homology class of B); or
(4) 0 = ht∗([B]) ∈ Hp−1(Lt;Z2) (where [B] is the fundamental homol-

ogy class of B with coefficients modulo 2).
Then the leaf L0 is the boundary of a Reeb component R whose interior
Int(R) is the union of the leaves Lt for which t > 0. (See Figure 2.2.)

B
0

Figure 2.2. The classical Reeb component with vanishing cycle B0.
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Corollary 2.14. — Assume the same hypotheses and also that F is
a C2,0 foliation. Then for any β > 0, and for any choice of Riemannian
metrics on the leaves in the Reeb component that vary continuously along
the transverse foliation T , there is a constant K > 0 such that the Morse
β-volume M(Ct, β) 6 K for all t ∈ (0, 1]. (See Figure 2.3.)

f (t’)
-1

f (t)
-1

f (0)=B
-1

Figure 2.3. The Morse β-volume of a set C in a leaf of a Reeb component.

For the results of this paper, we only use condition (1) of Theorem 2.13,
but the other three conditions are mentioned since they are of some interest
and involve little extra work. In the Corollary we assume F to be smooth of
class C2,0 in order for the leaves to admit Riemannian metrics and Morse
functions on the regions Ct. Note that as t approaches 0, the Riemannian
volume of Ct and also its β-volume Volβ(Ct) both tend to infinity, as is
easily seen from the structure of the Reeb component. That is the reason for
using the Morse β-volumeM(Ct, β), which is uniformly bounded according
to the Corollary, rather than one of the other two volumes, which are not,
in the Definition 2.4 of the bounded homology property.
The proofs of Theorem 2.13 and its Corollary are given in Section 7. We

observe that the proof in this case, in which B is an embedded “vanishing
cycle”, is much easier than in the general case when B is only assumed
to be immersed. (See Haefliger [10] or Camacho-Lins Neto [4] for good
expositions of the proof of Novikov’s original theorem [15] that treat the
problem of double points of the immersion clearly, and [20] for the C0 case.)
In a paper in preparation [2], we give a stronger generalization of Novikov’s
theorem. In the course of the proof of Theorem 2.13, we find a construction
of Reeb components that is used in the proof of the Corollary. In [1], where
the structure of generalized Reeb components is studied in detail, it is

ANNALES DE L’INSTITUT FOURIER
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shown that this construction actually produces all Reeb components, up to
foliated homeomorphism.

3. Leaves have the bounded homology property

In this section we prove Theorem 2.6 using results that will be proven in
Sections 5 (the Finiteness Lemma 3.2) and 7 (the extension of Novikov’s
Theorem 2.13 and Corollary 2.14). The idea of the proof is to consider a
(p− 1)-dimensional submanifold B that satisfies the hypotheses of Defini-
tion 2.4 and approximate it by a subcomplex X of a triangulation on the
same leaf. Then we show that there is a finite set of “transverse families”
of subcomplexes that suffice in this process (the Finiteness Lemma 3.2).
Finally we show that there is a constant K that is an upper bound for all
the resulting Morse β-volumes.
Let F be a codimension one foliation of a compact manifoldM of dimen-

sion at least 4, so that the leaf dimension p > 3, and suppose that constants
k > 0 and β > 0 are given. Suppose that the leaves are smooth (of class C2)
and their C2 differentiable structure varies continuously in the transverse
direction along leaves of a fixed transverse foliation T , so that F is C2,0,
as in Definition 2.5. As a consequence, it is possible to choose Riemannian
metrics on the leaves of F which vary continuously in the transverse direc-
tion along T , and we fix such Riemannian metrics. Thus the hypotheses
of Theorem 2.6 are satisfied. All these structures remain fixed throughout
this section.

As usual, a region in a smooth manifold L is a compact connected
submanifold with smooth boundary that is the closure of an open set in L.
If L has a Riemannian metric, then the diameter of a smooth submanifold
S in L (possibly with boundary and corners, such as a simplex) is the
supremum of distances between pairs of points of S, as measured along
geodesics in S. The mesh of a triangulation of a region is the maximum
of the diameters of its simplexes. A triangulation is an ε-triangulation if
its mesh is less than a positive number ε. All of the triangulations we shall
consider will be β′-triangulations with β′ = β/4.

The Simplicial Approximation Process (SAP). Let B be the set of all
submanifolds B of leaves of F that satisfy the conditions (1), (2), and (3) of
Definition 2.4 for the fixed constants k and β. Given B ∈ B on a leaf L of F ,
choose a smooth β′-triangulation of a region in L that contains the tubular
neighborhood V given by condition (2), and give B a smooth triangulation

TOME 61 (2011), FASCICULE 4
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that is sufficiently fine so that the open star of each vertex v of B lies in
the open star of some vertex, say g(v), of the triangulation of L. Then the
function g taking the vertices of B to those of L extends to a simplicial map
ḡ : B → L, which is a simplicial approximation to the inclusion B ↪→ L.
Note that the image XB = ḡ(B) is a (p−1)-dimensional complex contained
in Vβ′(B). (See Figure 3.1, which shows B and its simplicial approximation
g(B) in the tubular neighborhood V which is contained in the region Ω.)

We say that XB is obtained from B by the SAP, the simplicial approx-
imation process.

g(B)
B

V

Figure 3.1. B and its simplicial approximation ḡ(B) in the neighbor-
hood V .

Transverse families and the Finiteness Lemma. Recall that a product
manifold X × Y has two product foliations H and V, the horizontal and
vertical foliations, given respectively by the leaves X × {y} for y ∈ Y and
{x} × Y for x ∈ X. A map f : (X × Y,H,V)→ (M,F , T ) is bifoliated if
it takes leaves of H and V into leaves of F and T , respectively.

We recall that the foliations F and T and the constants k and β are
fixed for the rest of this Section.

Definition 3.1. — A triple (X,Ω, f) will be called a transverse fam-
ily if Ω is a smoothly triangulated compact p-manifold with boundary,
X ⊂ Ω is a (p− 1)-dimensional subcomplex, and

f : (Ω× [0, 1],H,V)→ (M,F , T )

is a smooth bifoliated embedding, such that if we set Ωt = f(Ω× {t}) and
Xt = f(X × {t}), then, for every t ∈ [0, 1], relative to the metric on the
leaf Lt that contains Ωt and Xt,

ANNALES DE L’INSTITUT FOURIER
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(1) Ωt contains V2β′(Xt), the 2β′-neighborhood of Xt (with β′ = β/4),
and

(2) the triangulation induced on Ωt by the triangulation on Ω is a
smooth β′-triangulation.

We say that a transverse family (X,Ω, f) is good if there is a submanifold
B ⊂ L0 with B ∈ B and a smooth bifoliated embedding

h : (B × [0, 1],H,V)→ (M,F , T )

such that for every t ∈ [0, 1] the submanifold Bt = h(B ×{t}) is contained
in Lt, B0 = B, and Xt can be obtained from Bt by the SAP described
above.
The following Finiteness Lemma will be proven in Section 5.

Lemma 3.2. — (Finiteness Lemma). There is a finite set of good
transverse families (Xi,Ωi, fi), 1 6 i 6 `, such that, for each B ∈ B, the
complex XB obtained from B by the SAP can be chosen to be Xi,t =
fi(Xi × {t}) for some i ∈ {1, . . . , `} and t ∈ [0, 1].

For 1 6 i 6 `, let Bi be the set of B ∈ B for which there exists some
t ∈ [0, 1] for such that the SAP can yield the complex XB = Xi,t.

Proposition 3.3. — For each i, 1 6 i 6 `, there exists an integer Ki

such that, for each B ∈ Bi that satisfies condition (4) of Definition 2.4, the
region C with ∂C = B given by condition (4) has Morse β-volumeM(C, β)
less than or equal to Ki.

Supposing Lemma 3.2 and Proposition 3.3, we can now prove Theorem
2.6.

Proof of Theorem 2.6. — By the Finiteness Lemma, we obtain a finite
set of good transverse families (Xi,Ωi, fi), 1 6 i 6 `. The Proposition
gives a common upper bound Ki for the Morse β-volumes of the regions C
corresponding to all the submanifolds B ∈ Bi. Since every B ∈ B belongs
to some Bi, K = K(k, β) = max16i6`Ki is an upper bound for the Morse
β-volumes M(C, β) of the regions C corresponding to all submanifolds B
that satisfy the hypotheses of the Theorem, as claimed. �

Proof of Proposition 3.3. —
First of all, we observe that if some B ∈ B bounds 1-connected regions on

both sides in its leaf L, then the leaf L is compact, and by the Van Kampen
Theorem it is also 1-connected. Then by the Reeb Stability Theorem for
codimension one, all the leaves are compact and the foliation F fibers over
the circle with the leaves as fibers. Thus there is a common upper bound
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for the β-volumes of the leaves, and hence for all the regions C, so that the
conclusion of the Proposition holds. (In fact, the conclusion of Theorem
2.6 also holds.) Hence we may assume that each B ∈ B bounds a compact
1-connected region on at most one side.

Now fix an index i as in the Finiteness Lemma 3.2 and consider the good
transverse family (Xi,Ωi, fi), which for simplicity we denote by (X,Ω, f)
(without indicating the index i). Set

J = {t ∈ [0, 1] | ∃ a 1−connected region Ct ⊂ Lt such that ∂Ct = Bt}.

Thus the indices t ∈ J are those for which Bt = Bi,t satisfies condition
(4) of Definition 2.4. It is clear that J is open in the interval [0, 1], since
the region Ct is 1-connected by hypothesis, and therefore lifts along T to
nearby leaves.
Observe that no connected component of J can be an open interval

(a, b), for then the submanifolds Ba and Bb do not bound 1-connected
regions (since a, b /∈ J), but the leaves Lt for t in the interval (a, b) do.
Then, by the extension of Novikov’s Theorem, Theorem 2.13, the leaves
La and Lb bound Reeb components, with interior leaves Lt for t ∈ (a, 1]
in the first Reeb component, and Lt for t ∈ [0, b) in the second one. But
then La is compact as the boundary of the first Reeb component, but it is
non-compact, since it is an interior leaf of the second one, a contradiction.
Consequently the only possibilities for the connected components of J

are [0, b), (a, 1], and [0, 1]. In the first two cases, Lb or La is the boundary
of a Reeb component with the leaves in the indicated interval as interior
leaves, and then Corollary 2.14 gives a common upper bound for the Morse
β-volumes of the corresponding regions Ct. Note that if for some t1 ∈
J, M(Ct1 , β) 6 K for a certain integer K, then M(Ct, β) 6 K for all t in a
small neighborhood of t1, since the compact regions Ct vary continuously
and Ct1 is covered by K open β-balls. Thus the Morse β-volumesM(Ct, β)
are locally bounded, and if J = [0, 1], the compactness of [0, 1] gives the
desired common upper bound. If J = ∅, then there is nothing to be proven.
Putting all these cases together, we get a common upper bound K ′i for all
the Ct with boundary Bt ∈ Bi, t ∈ J ⊂ [0, 1].

To complete the proof of the proposition we need the following lemma,
whose proof is given in Section 5.

Lemma 3.4. — There is an integer K0 that depends on k, β, and the
upper bound on the scalar curvature of the leaves of F , such that if the same
complex Xt can be obtained by the SAP from each of two submanifolds
B,B′ ∈ B, and B satisfies condition (4) of Definition 2.4, i.e., there is
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a compact 1-connected region C on the leaf L containing B such that
∂C = B, then B′ also satisfies condition (4), so there is a compact 1-
connected region C ′ ⊂ L whose boundary is B′, and we have

(3.1) |M(C ′, β)−M(C, β)| 6 K0.

Every B ∈ Bi yields a complex Xi,t under the SAP for some t ∈ [0, 1],
and the submanifold Bt = Bi,t yields the same complex, so the lemma
shows that Ki = K ′i + K0 is an upper bound for the Morse β-volumes of
all the regions C with ∂C = B ∈ Bi, as claimed. �

4. Modifying the metric on a manifold by inserting
balloons.

In this section we prove Theorem 2.8 by showing how the Riemann-
ian metric on any complete open Riemannian manifold L of dimension at
least three with bounded geometry can be modified without changing the
growth type, so that L with the new metric does not have the bounded
homology property, and hence cannot be a leaf in a C2,0 codimension one
foliation of a closed manifold. The construction is an obvious adaptation of
the construction for surfaces in Section 2 of [18], which we follow closely.
We insert p-dimensional “balloons” of unbounded size with “necks” of uni-
formly bounded size into L. The balloons are widely spaced so that the
original growth type of L does not change.
Proof of Theorem 2.8. — Let L be a smooth connected noncompact p-

dimensional manifold (p > 3) and let g0 be a complete Riemannian metric
on L with globally bounded sectional curvature, with injectivity radius
greater than some small constant d > 0, and with a given growth type.
Hence the exponential map expx : Bx(0, d)→ L is injective for every point
x in L, where Bx(0, r) denotes the open ball of radius r centered at the
origin in the tangent space at x. Consequently expx is a diffeomorphism
from Bx(0, d) onto the open ball Vd(x) in L.

We fix a basepoint x0 ∈ L and consider a sequence of positive numbers
dn, n = 1, . . . , with dn+ 2d < dn+1 for each n. Choose a sequence of points
x1, x2, . . . such that d(x0, xn) = dn and consequently the balls Vd(xn) are
disjoint. Since the metric g0 has bounded geometry, there is no loss of
generality in supposing, as we do, that the balls Vd(xn) are isometric to
the balls Vd(0) in Euclidean p-space Rp. In fact, it suffices to modify g0
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slightly (perhaps replacing d by a smaller radius) with care to preserve the
growth type and globally bounded geometry.
Choose an increasing sequence of positive numbers rn such that rn →∞

as n → ∞. Let Sp(rn) be the the sphere of radius rn in Rp+1 centered at
the origin and let S = (0, . . . , 0,−rn) be its basepoint at the south pole.
Choose a diffeomorphism φ : Vd(xn)→ Sp(rn) r {S} by setting

φ(expxn
(tv)) = expS((d− t)h(v))

for d/2 6 t < d and every unit tangent vector v to L at xn, where h is a
linear isometry from the tangent space to L at xn to the tangent space to
Sp(rn) at S, and then extending φ as a diffeomorphism over the comple-
mentary disk Vd/2(xn). Define a new metric g on Vd(xn) by interpolating
between the given metric g0 and the metric g1 obtained as the pullback
under φ of the round metric on Sp(rn), so that g coincides with g0 near
the boundary of Vd(xn) and with g1 on Vd/2(xn). This defines the new
“balloon” metric on the balls Vd(xn), and outside these balls g is defined to
coincide with the original metric g0, as shown in Figure 1.2. The uniform
manner of carrying out this construction as n varies ensures that (L, g)
has globally bounded geometry. Note that the metric g on the closed ball
Vd/2(xn) of radius d/2 in the original metric g0 is now the round metric of
Sp(rn) from which a small neighborhood of S has been removed.

We claim that the new metric g does not have the bounded homology
property. In fact, suppose that β0 > 0 is given and fix a number β > β0.
Take n0 sufficiently large so that rn0 > 2β + 2d, and consider only the
balloons for n > n0. Let Bn be the (p − 1)-sphere on this balloon with
radius β + d centered at the south pole S in the original metric on the
sphere. Note that Bn has (p − 1)-volume less than ap−1(β + d)p−1, where
am denotes the m-volume of the unit m-sphere Sm in Rm+1, and Bn is
1-connected since p > 3. Choose k to be sufficiently large so that Sp−1 can
be covered by k open balls of radius β; it follows that the same is true for
Bn. Furthermore, it is clear that the closed β-neighborhood V = Vβ(Bn)
of Bn in the new metric is a tubular neighborhood fibered over Bn that
contains Vβ(Bn). The closed complementary component Cn of Bn that
contains the north pole N = (0, . . . , rn) is a compact 1-connected region
on L with boundary ∂Cn = Bn. Hence the four conditions of Definition 2.4
are satisfied by Bn, but we shall see that the Morse volumes of the Cn are
unbounded.
Let fn : Cn → [0,∞) be a Morse function with fn(Bn) = 0. As t increases

from 0, there is a 1-parameter family of closed complementary regions
An(t) = f−1

n ([t,∞)) of f−1
n (t), beginning with An(0) = Cn and ending with
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An(t) = ∅ for sufficiently large values of t. Note that An(0) covers more
than half of the balloon and the p-volume of the sets An(t) varies continu-
ously, so for some value of t, say t′n, An(t′n) will have p-volume aprnp/2, i.e.
An(t′n) will have half the p-volume of the round sphere of radius rn, which
is aprnp. Then, by the isoperimetric inequality on the sphere, the boundary
f−1
n (t′n) = ∂An(t′n) must have (p− 1)-volume at least equal to ap−1rn

p−1,
the (p − 1)-volume of the equator. (See Figure 4.1.) As n increases these
(p− 1)-volumes tend to infinity, so each β-volume Volβ(f−1

n (t′n)) is greater
than some constant Mn such that limn→∞Mn = ∞. It follows that the
Morse β-volume of Cn satisfies M(Cn, β) > Mn, so (L, g) does not have
the bounded homology property.

t
1

0

t
2

t
3

t
4

f

B

C

Figure 4.1. The Morse β-volume of a balloon C.

The points dn can be chosen so that no end of L has the bounded homol-
ogy property. In fact, if the points xi have been chosen for i 6 n, let k be
the number of connected components of the complement of Vdn

(x0) with
noncompact closure, and choose xn+1, . . . , xn+k so that one of them is in
each of these components. Continue inductively, repeating this procedure
with n + k in place of n. This guarantees that each end will contain an
infinite number of the points xn and therefore does not have the bounded
homology property.
We can choose the sequence {dn} to grow sufficiently fast, relative to

the sequence {rn}, so that the growth functions f0 of g0 and f of g satisfy
f0(r) 6 f(r) 6 2f0(r). Hence g will have the same growth type as g0, so
the process of inserting balloons can be carried out so as to preserve the
growth type.
The last conclusion, that there are uncountably many quasi-isometry

classes of Riemannian metrics on L that do not have the bounded homology
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property, follows from Proposition 2.9, which realizes the distinct growth
types x 7→ xk for every k > 1. �

Proof of Proposition 2.9. — We outline the argument, leaving precise
details to be filled in by the reader. Given a smooth connected non-compact
manifold L of dimension p > 2 with basepoint x0 and any continuous
increasing function f : [0,∞) → [0,∞) such that I ≺ f � exp, we shall
find a metric g2 on L such that the growth function is equivalent to f .

Let q : L→ [0,∞) be a proper smooth Morse function such that q−1(0) =
{x0}. Choose Riemannian metrics on each level set q−1(t) such that they
vary smoothly in t away from the singularities of q and the geometry of these
level sets is uniformly bounded. We construct a Riemannian metric g1 on L
so that, away from the singularities of q, the level sets are totally geodesic,
the gradient flow of φ ◦ f (for a diffeomorphism φ : [0,∞) → [0,∞) to be
chosen later) is orthogonal to the level sets, and the distance between the
level sets q−1(s) and q−1(t) is |φ(t)−φ(s)|; the metric must be adjusted in
small neighborhoods of the singularities. If the function φ grows sufficiently
rapidly, the level sets will be spread far apart in comparison with the growth
of their volumes, and the growth function f1 of the metric g1 will satisfy
f1 � f . Here we must use the hypothesis that f grows more than linearly,
since the requirement of globally bounded geometry and the topology of
the level sets q−1(t) may make it impossible to have a uniform upper bound
on their volumes.
Now if f1 ≺ f we can increase the growth type by inserting sufficiently

many large balloons in balls Vd(xn) (and possibly in other disjoint balls
Vd(y) that are closer together, including balls on balloons already inserted)
to change g1 to a new metric g2 so that the new growth function f2 will
have the same growth type as the given function f . Note that it is possible
to get the exponential growth type by inserting so many balloons that their
number grows exponentially as a function of the distance from the basepoint
x0, but since the geometry is required to have bounded sectional curvature,
it is impossible to get any greater growth type. Clearly any intermediate
growth type can be realized by choosing an appropriate distribution of
inserted balloons. �

Remark 4.1. — It is an open question whether or not leaves of foliations
of codimension greater than one on closed manifolds have the bounded
homology property. Tsuboi’s construction of a codimension two foliation
whose 2-dimensional leaves do not have the bounded homotopy property
(see the last section of [18]) uses the fact that certain loops on the leaves
and are of unbounded length since they are connected and have unbounded
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diameter. That construction cannot be adapted to give leaves that do not
have the bounded homology property, since the level sets of Morse functions
need not be connected. In fact, the obvious adaptation of the 2-dimensional
construction to higher dimensions gives leaves that do possess the bounded
homology property.

5. Proof of two lemmas

In this Section we prove Lemmas 3.2 and 3.4. We assume all the condi-
tions indicated in the first two paragraphs of Section 3.

Proof of the Finiteness Lemma 3.2. — Given a point x ∈M in a leaf Lx,
let Dx = B(x, ε) be the closed p-dimensional ball centered at x of radius
ε for some positive ε less than the injectivity radius at x, so that Dx is
actually homeomorphic to a closed ball. We may lift Dx along T to disks
Dy on nearby leaves Ly for y ∈ J , where J is an open interval embedded
in a leaf of T and containing x, thus obtaining a bifoliated map

h : (Dx × J,H,V)→ (M,F , T )

such that h(x, y) = y ∈ Ly. Fix a larger smooth compact region E ⊂ Lx
that contains Vd(Dx), where d = (2k + 1)β, and give E a smooth β′-
triangulation, where as before β′ = β/4.
If B ∈ B meets Dx, then Vβ(B) ⊂ E since B is connected and has β-

volume less than or equal to k and therefore diameter less than 2kβ. Then
the SAP applied to B will yield a (p−1)-dimensional subcomplex XB ⊂ E.
Let ΩB be a smooth compact region containing V2β′(B) in its interior and
contained in V3β′(B), and give ΩB a smooth β′-triangulation that agrees
with the triangulation on E for all the simplices contained in V2β′(B). The
closed tubular neighborhood V of B given by condition (2) of Definition
2.4 satisfies ΩB ⊂ V3β′(B) ⊂ V and is 1-connected, since by hypothesis B
is. Therefore ΩB can be lifted along T to ΩB,y on every leaf Ly sufficiently
close to Lx. Hence we get a bifoliated embedding

hB : (ΩB × J ′,H,V)→ (M,F , T )
such that hB(x′, y) = y ∈ Ly for every point y in a sufficiently small open
subinterval J ′ ⊂ J containing x and for some x′ ∈ B ∩Dx.
Now since E is compact there are only finitely many (p− 1)-dimensional

subcomplexes of E; let X1, . . . Xm be those that are obtained by the SAP
as XB for some B ∈ B that meets Dx. Choose a submanifold Bi for each
Xi, so that Xi = XBi

, ie., Xi is obtained from Bi by the SAP. We may
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choose J ′ small enough so that for every B ∈ {B1, . . . , Bm} and y ∈ J ′,
the lifted triangulation on ΩB,y = hB(ΩB×{y}) has mesh less than β′ and
ΩB,y contains the the 2β′-neighborhood V2β′(XB,y) of the lifted complex
XB,y = hB(XB×{y}) of XB . Thus the conditions (1) and (2) of Definition
3.1 are satisfied for ΩB,y and XB,y on their leaves, for every y ∈ J ′. Now
if we let g : [0, 1] → J ′ be an embedding such that x = g(t) for some t ∈
(0, 1), the triple (XB ,ΩB , fB), where fB(t, y) = hB(g(t), y), will be a good
transverse family. Thus we get m good transverse families corresponding to
Dx. Every B ∈ B that meets Dy for y ∈ g([0, 1]) will yield an XB,y under
the SAP.
For each point x ∈M we get an open set h(Int(Dx)× g(0, 1)) containing

x. Such open sets cover M , so finitely many of them suffice to cover M ,
say for x1, . . . , xn. The union of the sets of triples (XB ,ΩB , fB) where B
varies over all the B′is for all the points x1, . . . , xn, will be a finite set of
good transverse families. It satisfies the conclusion of the Finiteness Lemma
since every B ∈ B will meet one of the sets h(Int(Dx)× g(0, 1)), for some
x ∈ {x1, . . . , xn}, and so will yield one of the complexes XBi

for that x. �

Proof of Lemma 3.4. We suppose the hypotheses of the Lemma. Observe
that the SAP moves points of each of B and B′ a distance less than β′, since
the triangulation on the leaf has mesh less than β′. Hence B ⊂ Vβ′(Xt) and
Xt ⊂ Vβ′(B), and similarly for B′. Thus B′ ⊂ V2β′(B) and B ⊂ V2β′(B′).
Now each of the two connected submanifolds B and B′ separates the leaf
L into two connected components. For B they are the interior of C and
LrC. Since B′ ⊂ V2β′(B), one of the two connected components of LrB′
must be contained in V2β′(C) = C ∪ V2β′(B); call its closure C ′. Since
B ⊂ V2β′(B′), we must have C ⊂ V2β′(C ′) = C ′ ∪ V2β′(B′).

Clearly ∂C ′ = B′ and C ′ is connected. We must show that its fundamen-
tal group is trivial. By hypothesis, there is a closed tubular neighborhood
V ′ of B′ containing Vβ(B′). Set C ′− = C ′ r Int(V ′) and C ′+ = C ′ ∪ V ′, so
that C ′− ⊂ C ′ ⊂ C ′+. These inclusions induce isomorphisms on the funda-
mental groups, since C ′ is the union of C ′− with a collar neighborhood of
its boundary that is homeomorphic to ∂C ′× I while C ′+ is the union of C ′
with a collar neighborhood of its boundary also homeomorphic to ∂C ′× I.
Since B ⊂ V2β′(B′), (C ′rV2β′(B′))∩B = ∅, so C ′rV2β′(B′) ⊂ C, and we
have C ′− ⊂ C ′ r V2β′(B′) ⊂ C ⊂ C ′ ∪ V2β′(B′) ⊂ C ′+. Thus the inclusion
C ′− ⊂ C ′+, which induces an isomorphism of fundamental groups, factors
through C, which is 1-connected by hypothesis, so the homeomorphic sets
C ′−, C

′, and C ′+ are also 1-connected.
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Finally, we must show that there exists a constant K0 such that
M(C ′, β) 6 M(C, β) + K0, which by symmetry will establish the sec-
ond conclusion. Since the foliated manifold M is compact, there is an
upper bound for the sectional curvature of the leaves of F . By Propo-
sition 2.11 there is a constant n0, depending only on F , k, and β, such
that every open 2β-ball V2β(x) in a leaf of F can be covered by n0 open
β-balls in the leaf, and we set K0 = kn0. Now let f : C → [0,∞) be a
Morse function on C such that f(B) = 0 and every level set f−1(t) has
β-volume Volβ(f−1(t)) 6 M(C, β). Since C r V2β′(B) ⊂ Int(C ′), we may
extend the Morse function f + 1 restricted to C r V2β′(B) to a Morse
function f ′ : C ′ → [0,∞) such that f ′−1(0) = B′. By hypothesis there
are k points y1, . . . , yk ∈ L such that the union of the β-balls Vβ(yj)
covers B′, and then the union of the 2β-balls V2β(yj) covers V2β′(B′).
Each of these 2β-balls can be covered by at most n0 β-balls, so the β-
volume of V2β′(B′) is at most K0 = kn0. Finally, each level set f ′−1(t)
is contained in the union f−1(t + 1) ∪ V2β′(B′), whose β-volume is at
most Volβ(f−1(t + 1)) + Volβ(V2β′(B′)) 6 M(C, β) + K0, showing that
M(C ′, β) 6M(C, β) +K0, as claimed. �

6. Invariance under quasi-isometry

The goal of this section is to prove Proposition 2.10, which states that
the bounded homology property is invariant under quasi-isometry. We shall
use Proposition 2.11 and the following result, which is certainly well known.

Proposition 6.1. — Let L be a complete Riemannian manifold with
sectional curvature between −c and c for a constant c > 1 and let v1, v2 ∈
S ⊂ TxL be points on the unit sphere in the tangent plane at a point x ∈ L.
Then the distance between the points expxtv1 and expxtv2 on L is at most
ect times the distance between v1 and v2 on S.

Proof. — If the distance on the unit sphere S ⊂ TxL from v1 to v2 is
d, then there exists a geodesic v : [0, d] → S from v1 to v2 parametrized
by arclength, so that |v′(s)| ≡ 1. Define f : [0,∞) × [0, d] → L to be
f(t, s) = expxtv(s), where expx is the exponential map. Then for each s,
Js(t) = ∂f

∂s (t, s) is a Jacobi vector field (see do Carmo [6]) and satisfies the
Jacobi equation

D2J

dt2
+R(γ′s(t), Js(t))γ′s(t) = 0

where R is the curvature operator, D
dt is the covariant derivative, and

γs(t) = expxtv(s) is the geodesic starting at x with initial velocity γ′s(0) =
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v(s). Fix a parallel orthonormal frame e1, . . . , ep along each γs, expand
Js(t) as

Js(t) =
p∑
i=1

fs,i(t)ei(t),

and set as,ij = < R(γ′s(t), ei(t))γ′s(t), ej(t) >, where < ·, · > denotes the
Riemannian metric. Then the Jacobi equation translates to the system of
p ordinary differential equations f ′′s,j(t) = −

∑
i as,ij(t)fs,i(t) (see [6]) or

a system of 2p first order differential equations Y ′(t) = B(t)Y (t), where
Y (t) = (y1(t), . . . , y2p(t)) with yi(t) = fs,i(t) and yi+p(t) = f ′s,i(t) for
1 6 i 6 p, and B(t) is a 2p× 2p matrix of the form

B(t) =
[

0 I

−A(t) 0

]
where A(t) = [as,ij(t)] and I is the identity matrix. Now A(t) is symmetric
(by the symmetry properties of the curvature R), and so we can diagonalize
it to Ā(t) in a new orthonormal frame ē1, . . . , ēn. Since R is multi-linear,
each diagonal coefficient of the new diagonal matrix Ā(t) will be

ās,ii = < R(γ′s(t), ēi(t))γ′s(t), ēi(t) >

which is just the sectional curvature in the plane of γ′s(t) and ēi(t), so that
|ās,ii| 6 c. Hence the matrix A(t) has norm |A(t)| = |Ā(t)| 6 c and so B(t)
also has norm |B(t)| 6 c (since |I| = 1 6 c). Note that Js(0) = 0 and
J ′s(0) = ∂2f

∂t∂s (0, s) = v′(s) with |v′(s)| = 1, so |Y (0)| = 1. Then Theorem
1.5.1 of [25] shows that |Js(t)| 6 |Y (t)| 6 exp(

∫ t
0 |B(r)|dr) 6 ect. We have

shown that the velocity of the curve s 7→ expxtv(s) is at most ect times
that of the curve v(s) on S, so the distance between the points expxtv1 and
expxtv2 on L is at most ectd. �

Proof of Proposition 2.11. — Let L be a complete Riemannian p-dimensio-
nal manifold with sectional curvature between −c and c for some constant
c > 1 and suppose that constants 0 < a < b are given. Take points
0 6 t1 < t2 < · · · < tr 6 b so that every t ∈ [0, b] lies within a dis-
tance less than a/2 of one of the points tj . Let c0 = 2ecb and choose a
set {v1, . . . , vm} ⊂ S so that every point of the unit sphere S ⊂ TxL is at
most at a distance a/c0 on S from one of the points vi. Then every point
y = expxt′v in the open ball B(x, b) of radius b centered at x (for some
v ∈ S and t′ ∈ [0, b]) lies within a distance less than ect′a/c0 6 a/2 from a
point expx(t′vi) on a geodesic t 7→ expx(tvi), and this point is at a distance
at most a/2 from one of the points expx(tjvi). Therefore y lies in one of the
open balls B(expx(tjvi), a). Thus the open balls of radius a centered at the
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mr points expx(tjvi), i = 1, . . . ,m, j = 1, . . . , r cover the ball B(x, b). The
same argument applies with the same values m and r around any other
point x′ ∈ L, so every open b-ball on L can be covered by at most n = mr

a-balls, as claimed. �

Proof of Proposition 2.10. — Let h : L′ → L be a quasi-isometry of
two Riemannian manifolds with bounded geometry, as in Definition 2.1, so
that there are constants C0 > 1 and D > 0 such that the quasi-isometry
inequalities

C−1
0 d(h(x′), h(y′))−D 6 d′(x′, y′) 6 C0d(h(x′), h(y′)) +D

hold for all x′, y′ ∈ L′. Suppose that L has the bounded homology property,
so there is a fixed β0 > 0 such that for all β > β0 and k > 0, there is
an integer K = K(k, β) such that any B = ∂C ⊂ L satisfying the four
conditions of Definition 2.4 must have M(C, β) < K. Let β′0 = C0β0 + D

and suppose that numbers k′ > 0 and β′ > β′0 are given. We must find an
integer K ′ = K ′(k′, β′) satisfying the bounded homology property on L′.

Set β = C−1
0 (β′ − D) > C−1

0 (β′0 − D) = β0, k = n1k
′ and K ′ = K,

where n1 is a constant given by Proposition 2.11 such that on L every ball
of radius C0(β′ +D) is covered by at most n1 balls of radius β.

Note that if Vr(x) and V ′r (x′) are the open r-balls on L and L′ centered
at x ∈ L and x′ ∈ L′, then by the quasi-isometry inequalities

h(V ′β′(x′)) ⊂ VC0(β′+D)(h(x′))

and
h−1(Vβ(h(x′))) ⊂ V ′β′(x′)

since d′(x′, y′) < β′ implies that d(h(x′), h(y′)) < C0(β′ + D) and
d(h(x′), h(y′)) < β implies that d′(x′, y′) < C0β +D = β′.
Consider any (p− 1)-submanifold B′ of L′ satisfying the four conditions

of Definition 2.4 for the constants k′ and β′, so that there exists a tubular
neighborhood V ′ of B′ containing the β′-neighborhood V ′β′(B′) of B′, B′
has β′-volume Volβ′(B′) 6 k′ on L′, and there exists a compact 1-connected
region C ′ in L′ with ∂C ′ = B′. We shall show that M(C ′, β′) 6 K ′.

Set B = h(B′), V = h(V ′), and C = h(C ′). Note that Vβ(B) is contained
in the tubular neighborhood V of B, for if d(h(x′), h(y′)) < β with h(x′) ∈
B = h(B′), then by the quasi-isometry inequality d′(x′, y′) < C0β+D = β′

so that y′ ∈ Vβ′(B′) ⊂ V ′ and h(y′) ∈ V = h(V ′). Also Volβ(B) 6 k = n1k
′

since the image under h of a β′-ball on L′ is contained in a C0(β′+D)-ball
which is covered by n1 β-balls, and k′ β′-balls cover B′. Thus B satisfies
the four conditions of Definition 2.4.
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By the bounded homology property for L, C has Morse β-volume
M(C, β) less than or equal to K, so that there exists a Morse function
f : C → [0,∞) on C whose level sets have β-volume at most K. Now
f ◦ h is a Morse function on C ′ whose level sets are taken onto those of
f by h. Since K balls of radius β on L suffice to cover each level set of
f , their images under h−1 are contained in K balls of radius β′ on L′,
and these balls cover the corresponding level set of f ◦ h. In other words,
M(C ′, β′) 6 K = K ′, as claimed. �

7. Novikov’s Theorem for embedded vanishing cycles

In this Section we prove the extension of Novikov’s Theorem (Theo-
rem 2.13, on the existence of Reeb components) and the Corollary 2.14
which asserts that for every 1-parameter family of connected closed (p−1)-
submanifolds embedded in leaves in the interior of a Reeb component, each
bounding a compact region on its leaf, and for every β > 0, there is a com-
mon upper bound for the Morse β-volumes of the regions that they bound,
relative to any fixed Riemannian metric on the Reeb component.
Throughout this section, we assume that F is a p-dimensional topological

foliation of a compact (p + 1)-dimensional manifold M (so no differentia-
bility is assumed before Proposition 7, where we shall assume that F is
C2,0), B is a compact connected (p − 1)-dimensional manifold, and there
is a foliated map

h : (B × [0, 1],H)→ (M,F)

where the horizontal and vertical foliations H and V of B× [0, 1] are given
by the leaves B × {t} for t ∈ [0, 1] and {x} × [0, 1] for x ∈ B, respectively.
Furthermore we assume that h0 : B → L0 is an embedding, where for all
t ∈ [0, 1], ht : B → Lt is the map defined by ht(b) = h(b, t) and Lt is the leaf
containing Bt = ht(B). Recall that a mapping is a topological immersion
if it is a local embedding.
The principal step in the Proof of Theorem 2.13 is the following result.

Let C be a compact connected p-dimensional manifold with boundary B.

Proposition 7.1. — If h : (C × (0, 1]∪B× [0, 1],H,V)→ (M,F , T ) is
a bifoliated topological immersion that cannot be extended over C × [0, 1]
and h0 : B →M (defined by setting h(x, 0) = h0(x)) is an embedding into
a leaf L0, then the leaf L0 is the boundary of a Reeb component whose
interior is the union of the leaves meeting h(B × (0, 1]).
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Proof of Theorem 2.13 from Proposition 7.1. — In addition to the gen-
eral hypotheses mentioned at the beginning of this section, we suppose that
one of the following conditions holds for every t > 0 sufficiently close to 0
but not for t = 0:

(1) Bt = ht(B) is the boundary of a compact 1-connected region Ct ⊂
Lt;

(2) Bt = ht(B) is the boundary of a compact region Ct ⊂ Lt;
(3) F and B are oriented and 0 = ht∗([B]) ∈ Hp−1(Lt) (where [B] is

the fundamental homology class of B); or
(4) 0 = ht∗([B]) ∈ Hp−1(Lt;Z2) (where [B] is the fundamental homol-

ogy class of B with coefficients modulo 2),
and then we must show that the leaf L0 is the boundary of a Reeb com-
ponent R whose interior Int(R) is the union of the leaves Lt for which
t > 0.
Fix a 1-dimensional foliation T topologically transverse to F . We shall

show that it is possible to modify h to a bifoliated topological immersion
h′′ : (B × [0, 1],H,V) → (M,F , T ) with h′′0 = h0. First, observe that it is
possible to modify h by a foliated homotopy, moving h(B×{t}) in the leaf
Lt, with the homotopy fixed on B × {0}, so that the resulting mapping
h : (B × [0, 1],H) → (M,F) restricts to a bifoliated mapping h′ : (B ×
[0, ε],H,V) → (M,F , T ) for some ε > 0. Fix a basepoint b0 ∈ B and note
that the points a = h′(b0, 0) and b = h′(b0, ε) must be distinct, for otherwise
the maps h′0 and h′ε would agree on all of B, which contradicts each of the
conditions (1) through (4). Let f be a homeomorphism from [0, 1] onto
the segment [a, b] which is contained in a leaf of T , say with f(0) = a.
Define h′′ : B × [0, 1] → M by setting h′′(b, t) = h′(b, g(t)) where g(t) =
min{s ∈ [0, ε] | h′(b0, s) = f(t)}. In general, g will be monotone increasing
but not continuous, but t 7→ h′′(b0, t) = f(t) is the homeomorphism f from
[0, 1] onto [a, b]. Furthermore, since h′′ is bifoliated, it follows from the local
product structure given by F and T that

h′′ : (B × [0, 1],H,V)→ (M,F , T )

is a bifoliated topological immersion with h′′0 = h0. It is clear that any of
the conditions (1) through (4) that was satisfied by the original mapping
h will still hold for the new bifoliated immersion, which for simplicity we
shall still denote by h.

Next, we observe that each of the conditions (1), (3), and (4) implies
condition (2). Suppose (1), so that Bt must be the boundary of a compact
1-connected region Ct ⊂ Lt for every t > 0. If B0 bounded a compact
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region C0 on L0, then by the Reeb Stability Theorem C0 would have a
product foliated neighborhood and therefore C0 would be homeomorphic
to Ct with t > 0 and hence 1-connected, contrary to (1). Thus (1) implies
(2).
Condition (3) implies that for t > 0, Bt must be the boundary of a

compact region Ct contained in the leaf Lt, since the (p − 1)-dimensional
cycle carried by Bt is a boundary on the p-dimensional leaf Lt. We are
supposing in this case that the foliation F is oriented, so if B0 bounds a
compact region C0 in L0, then C0 carries a relative homology class [C0] ∈
Hp(Ct, Bt) with ∂[C0] = [B0], thus making [B0] = 0 ∈ Hp−1(Lt), contrary
to hypothesis. This shows that (3) implies (2). The proof that (4) implies
(2) is similar. Thus we assume only condition (2), which includes the other
three cases.
Now if for some values of t, Bt bounds compact regions on both sides in

Lt, then Lt will be a compact leaf. If there were such values tn converging
to 0, then L0 would also be a compact leaf and for a sufficiently small tn,
the leaves L0 and Ltn would bound an I-bundle fibered by segments in the
leaves of T . Then Ctn would project along T onto a homeomorphic region
C0 ⊂ L0 so that ∂C0 = B0, contrary to hypothesis. Hence there is an ε > 0
such that for each t ∈ (0, ε) Bt bounds a compact region on exactly one
side in Lt. Let S0 be the set of t ∈ (0, ε) for which Bt bounds a compact
region Ct on the positive side in Lt, and S1 the set for which Bt bounds a
compact region Ct on the negative side, according to a coherent transverse
orientation of Bt in Lt which we choose arbitrarily. Then S0 ∩ S1 = ∅ and
S0 ∪ S1 = (0, ε).

If there exists 0 < ε′ 6 ε such that (0, ε′] ⊂ S0 (or (0, ε′] ⊂ S1), then
each of the corresponding compact regions Ct must have trivial holonomy
and consequently each Ct will have a product neighborhood foliated as a
product. Joining these regions Ct together we obtain a bifoliated immersion

h : (C × (0, ε′] ∪B × [0, ε′],H,V)→ (M,F , T )

which does not extend over C × [0, ε′]. Reparametrizing the interval and
applying Proposition 7.1 shows that L0 is the boundary of a Reeb com-
ponent with the leaves Lt for t ∈ (0, ε′] in its interior, as claimed. The
remaining leaves containing h(B×{t} for the original mapping h must also
be contained in the interior of the Reeb component, since the transverse
orientation points inwards along the boundary L0.
In the remaining case, 0 is a limit point of both S0 and S1, so we can

find a strictly decreasing sequence tn ↘ 0 with tn ∈ S0∩S1. Suppose some
tn ∈ S0 is a limit point of S1 on the right. Considering the holonomy of
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Ctn , there must be an open interval (t′n, t′n + δ) ⊂ S1 for some δ > 0 and
some t′n ∈ S0 near to (and possibly equal to) tn. Applying the Proposition
as before we find that Lt′n bounds a Reeb component. The same conclusion
holds if tn is a limit point of S1 on the left, and similarly if tn ∈ S1. Thus
we find a sequence t′n ↘ 0 such that every Lt′n bounds a Reeb component,
which is impossible since the boundary leaf of a Reeb component is compact
and the interior leaves are not. Hence this case does not occur, and the
Theorem is proven. �

Proof of Proposition 7.1. — Suppose that

h : (C × (0, 1] ∪B × [0, 1],H,V)→ (M,F , T )

is a bifoliated immersion that cannot be extended over C × [0, 1] and its
restriction h|B×{0} is an embedding, as in the Proposition. There must be
a point x0 ∈ C r B such that h does not extend to the point (x0, 0). (If
not, h would extend uniquely and continuously over C × [0, 1], contrary
to hypothesis.) Note that t 7→ h(x0, t) is an immersion of (0, 1] into a leaf
of T . Let {sn} be a sequence in (0, 1] converging to 0. Then, since M is
compact, there exists a strictly decreasing subsequence {tn} such that the
points yn = h(x0, tn) converge to some point y0 of M as n→∞. Let V be
a connected open neighborhood of y0 on the leaf L of F that contains y0.

Lemma 7.2. — It is possible to choose the sequence {tn}, the limit point
y0, its neighborhood V ⊂ L, and ε > 0, so that

(1) the leaf L containing y0 is distinct from L0;
(2) for every n, tn < ε and yn = h(x0, tn) ∈ V ; and
(3) V is disjoint from h(B × [0, ε]).

Proof. — If it happens that y0 ∈ L0, by a small change of the values of
the numbers tn, we may move the points yn = h(x0, tn) along T so that the
sequence yn converges to another point (still denoted y0) on another leaf L.
Then since y0 /∈ h(B×{0}), for a sufficiently small ε > 0, y0 will not lie on
the set h(B × [0, ε]), and we may choose an open connected neighborhood
V of y0 on its leaf L whose closure V̄ is disjoint from the compact set
h(B× [0, ε]). Then, slightly changing the values of the numbers tn (to move
the points yn along leaves of T ) and possibly passing to a subsequence, we
may guarantee that yn = h(x0, tn) ∈ V and tn < ε. �

Now yn lies on the intersection of V with the region C(n) = h(C×{tn})
on L, and V is disjoint from its boundary B(n) = h(B × {tn}) = ∂C(n),
so V ⊂ C(n). The connected submanifolds B(m) = ∂C(m)) are pairwise
disjoint and y0 ∈ C(n) ∩ C(m), so either C(n) ⊂ C(m) or C(m) ⊂ C(n).
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The sets B(m) are separated by a positive distance on the leaf L, so only
finitely many of the C(m)’s can be contained in the compact set C(n).
Thus for each n there exists some n′ > n such that C(n) ⊂ C(n′).

Lemma 7.3. — The leaf L0 is compact.

Proof. — If L0 is not compact, then there is a simple closed curve γ
transverse to F in the positive direction that intersects L0 in a single point
γ(0) = z; we can choose z to be near to but not on the set B0, and on
the side of B0 in L0 on which each submanifold Bt bounds Ct. We may
isotope γ slightly so that for some small positive numbers ε1 and ε2 6 ε, the
segment γ([0, ε1]) lies on a leaf of T and γ is disjoint from h(B × [0, ε2]).
Then for a sufficiently large index n, with tn′ < tn < ε2, γ will enter
into the immersed region h(C × [tn′ , tn]) at a point γ(s) ∈ C(n′) for some
s ∈ (0, ε1). Now γ can never exit from that region, whose boundary is
contained in C(n′) r Int C(n) ∪ h(B × [tn′ , tn]), for γ cannot exit along
C(n′) r C(n) where the transverse orientation enters, and γ is disjoint
from h(B× [tn′ , tn]) ⊂ h(B, [0, ε2]). This contradiction shows that L0 must
be compact. �

Let N be a positive one-sided tubular neighborhood of L0 fibered by
segments in leaves of T with projection map p : N → L0. Let L′0 ⊂ N ′ be
the result of cutting L0 along B0 and cutting N along p−1(B0) to get N ′,
so that ∂L′0 = B+

0 ∪B
−
0 , two disjoint copies of B0, and N ′ is a positive one-

sided tubular neighborhood of L′0. The positive holonomy of the compact
leaf L′0 must be trivial, for the leaves near to L′0 are contained in the
compact sets Ct and thus are compact. Hence some smaller compact tubular
neighborhood N ′0 ⊂ N ′ will be foliated as a product, say by leaves Dt with
boundary ∂Dt = B+

t ∪ B−f(t), where f is a function defined on a small
positive one-sided neighborhood of 0 in [0, ε2) and p(B±s ) = B±0 for every
sufficiently small s. For definiteness we choose the notation so that f(t) < t

and consequently Ct ⊂ Cf(t). This holds for all t less than or equal to
some t0 6 ε2. As t varies in [0, t0] there is defined a continuous function
f : [0, t0] → [0, t0] such that f(t) < t for every t > 0, while in the limit
f(0) = 0. Then it is clear that Ct ∪Dt = Cf(t) with Ct ∩Dt = Bt.
Observe that the inclusion it : Ct ⊂ Cf(t) defines an embedding φ =

h−1
f(t) ◦ it ◦ ht : C → C that does not depend on t ∈ (0, t0], since moving

along the leaves of T produces the same result for each t. Thus h : C ×
(0, t0] → M passes to a quotient immersion h̄ : R0 → M , where R0 =
C × (0, t0]/{(x, t) ∼ (φ(x), f(t))}. For each t ∈ (0, t0], let L(t) be the
image of the set ∪∞n=0 C × {fn(t)} in R0. Then h̄|L(t) : L(t) → Lt is a
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homeomorphism, for the identifications correspond to the inclusions Ct ⊂
Cf(t); there cannot be any further identifications, since the regions Ct were
chosen to be embedded in leaves of F inM , and the union of the sets Cfn(t)
exhausts the leaf Lt. No region Cs with s > t that is not one of the sets
Cfn(t) can meet the leaf Lt, for then there would be an index n > 0 such
that Cfn(t) ⊂ Cs ⊂ Cfn+1(t), which is impossible since Dfn(t) contains no
Bs in its interior. Consequently h̄ : R0 → ∪ {Lt| t ∈ (0, t0)} is a bijection,
which is easily seen to be a homeomorphism.

C

�(C)

�

Figure 7.1. φ : C ↪→ Int C.

The map p : R0 → S1 = [t, f(t)]/{t ∼ f(t)}, defined by setting p(Ls) = s

if s ∈ [t, f(t)], is well defined, and it is a fibration whose local product
structure is given by translations by holonomy mappings along leaves of T .
A small positive compact tubular neighborhood N0 of L0 will meet R0 in
N0 rL0. Hence R = N0 ∪R0 is compact, since it coincides with the union
of the two compact sets N0 and h(C× [t1, f(t1)]) for some sufficiently small
positive t1; furthermore R = L0 ∪ R0 and ∂R = L0. Thus we have shown
that R is a compact manifold with boundary L0, and its interior R0 fibers
over the circle. Since the boundary is connected, there exists a transverse
orientation pointing inwards, so R is a Reeb component. Finally, all the
leaves Lt for t ∈ (0, 1] in the original parametrization of the interval are
contained in R0 because the transverse orientation points inwards along
∂R; for any point z ∈ B the curve t 7→ h(z, t) lies in R0 for small values of
t and as t increases it must be entirely contained in R0. �

Note that in the preceding proof the Reeb component R shown to exist
was obtained from the map φ : C → Int C and the contraction f : [0, t0]→
[0, t0], by a construction which we shall now describe. It is not difficult to
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show that such a construction gives all Reeb components, up to foliated
homeomorphism (see [1] for the proof), although we shall not use that fact
here.

Construction of Reeb components. Let C be a connected compact p-
manifold C with connected boundary ∂C = B and let φ : C → Int C be an
embedding of C into its own interior. (See Figure 7.1.) This construction
generalizes to the case in which B is not connected, but an extra condition
is required, and we do not need this generalization here, so we omit it.
Consider the product C × [0, 1] with the product foliation whose leaves are
C × {t}.

A

Cx{t }
0

B

Cx{f(t )}
0C

Figure 7.2. C × [f(t0), t0] with identifications.

On the submanifold

C ′ = C × [0, 1] r φ(Int C)× {0}

let ∼ be the equivalence relation generated by setting (x, s) ∼ (φ(x), f(s))
for every (φ(x), f(s)) ∈ C ′, where f : [0, 1] → [0, 1] is a continuous em-
bedding such that f(0) = 0 and f(s) < s for every s > 0. The compact
set

(C r φ(Int C))× [0, 1] ∪ C × [f(1), 1]
projects onto the quotient R = C ′/ ∼, so R is compact. It is not difficult to
check that R is a compact (p + 1)-manifold with boundary endowed with
a codimension one foliation R induced by the horizontal foliation on C ′,
and that (R,R) is a Reeb component. Figure 7.2 shows part of the Reeb
component, the image of C× [f(t0), t0] with C×{t0} identified with φ(C)×
{f(t0)} by the equivalence relation ∼, foliated by the images of the sets
C×{t}. Figure 7.3 shows a diffeomorphic image of the same compact region
with corners, but this view suggests how the Reeb component is built up as
t0 decreases to 0. The set (Crφ(Int C))×{0} projects onto the boundary
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of the Reeb component. We remark that the foliated homeomorphism type
is independent of the choice of the embedding f since f is topologically
conjugate to any other embedding with the same properties.

A

B

C

Figure 7.3. A diffeomorphic image of the same set showing part of the
Reeb component.

Corollary 2.14 will follow from the following result, since the Reeb com-
ponent constructed in the Proof of Theorem 2.13 satisfies its hypotheses,
as long as F is assumed to be C2,0, so that the embedding φ will be C2.

Proposition 7.4. — Let C be a compact connected p-manifold with
connected boundary and let φ : C → Int(C) be a C2 embedding into
its interior. Endow the Reeb component (R,R) obtained by the above
construction with a Riemannian metric. Then for every β > 0 there is a
constant K > 0 such that M(Ct, β) 6 K for every region Ct appearing in
the above construction.

Proof. — Let (R,R) be the Reeb component constructed from φ : C →
Int(C), as above, where C and φ are smooth of class C2. The boundary
L0 = ∂R is diffeomorphic to D/{x ∼ φ(x)}, where D = C r φ(Int C).
Let B0 be the image of ∂D = ∂C ∪ ∂φ(C) in L0 under the identification.
Clearly B0 is two-sided in L0, so by using a tubular neighborhood of B0 in
L0 we may find a smooth map g0 : L0 → S1 with 1 ∈ S1 as a regular value
and such that g−1

0 (1) = B0. By a small perturbation we may suppose that
g0 is a smooth Morse function. (For convenience, we first consider Morse
functions with values in S1 rather than in R.) Since L0 is compact, there is
an upper bound K1 on the β-volumes Volβ(g−1

0 (z)) for all z ∈ S1. Extend
g0 to g : N → S1, where N is a small (one-sided) tubular neighborhood
of L0 in R, by setting g = g0 ◦ p where p : N → L0 is the projection
along leaves of the transverse foliation T induced by the vertical foliation
on C ′ = C × [0, 1] r φ(Int C) × {0}. Let Ñ be the cyclic cover of N
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corresponding to the map g0 : N → S1 = R/Z and let g̃ : Ñ → R be the
natural lift of g to the cyclic cover. We let Ct, Bt, and Dt be the images
in R of C ×{t}, ∂C ×{t}, and (C r ∂C)×{f(t)} under the identification.
As in the proof of Theorem 7, Ct ∪ Dt = Cf(t) with Ct ∩ Dt = Bt and
∂Dt = Bt∪Bf(t). For each t, the region Ct∩N can be lifted to Ñ by lifting
Dt, Df(t), etc., successively. For a sufficiently small tubular neighborhood
N of L0, g̃ will restrict to a Morse function g̃t on Ct ∩ N , and K1 will
be an upper bound for the β-volume Volβ(g̃−1

t (r)) of each level set g̃−1
t (r)

for r ∈ R, since g̃−1
t (r) is a compact set close to g−1

0 (r mod 1) which is
covered by at mostK1 open balls of radius β. Extend g̃t to a Morse function
ĝt : Ct → R.

Next, let Ss be the image of C × [f(s), s] in Int(R). The sets Ss are
nested and their interiors cover the compact set R r Int(N) (note that
L0 ⊂ Int(N)) so for a sufficiently small s > 0 the union Int(N) ∪ Int(Ss)
will be the whole manifold R. The images Ct of the sets C×{t} in the leaf
Lt of R are compact and vary continuously, so there is a common upper
bound K2 for their β-volumes for all t ∈ [f(s), s]. Finally each level set
ĝ−1
t (r) for r ∈ R is contained in the union of g̃−1

t (r) ⊂ Ñ and St, so its
β-volume is at most K1 + K2, a common upper bound for the β-volumes
of the level sets ĝ−1

t (r) for all t and r. It follows that K1 +K2 is a common
upper bound for the Morse volumes of the sets Ct, as claimed. �
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