Annales de l'institut Fourier

Pawan Kumar Kamthan

On entire functions represented by Dirichlet series. IV

Annales de l'institut Fourier, tome 16, no 2 (1966), p. 209-223

http://www.numdam.org/item?id=AIF_1966_16_2_209_0
© Annales de l'institut Fourier, 1966, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

ON ENTIRE FUNCTIONS REPRESENTED BY DIRICHLET SERIES (IV)

by Pawan Kumar KAMTHAN

1. Let

$$
f(s)=\sum_{n=1}^{\infty} \mathcal{X}_{n} e^{s \lambda_{n}}, \quad s=\sigma+i t
$$

represent an entire function, where

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty} n / \lambda_{n}=\mathrm{D}<\infty ; \tag{1.1}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}^{n \rightarrow \infty}\left(\lambda_{n+1}-\lambda_{n}\right)=h>0, \tag{1.2}
\end{equation*}
$$

such that ([10], p. 201) $h \mathrm{D} \leqslant 1$, and

$$
\begin{equation*}
0=\lambda_{0}<\lambda_{1}<\cdots<\lambda_{n} \rightarrow \infty \tag{1.3}
\end{equation*}
$$

as $n \rightarrow \infty$. Now $f(s)$ represents an entire function and so its abscissa of absolute convergence must be infinite, that is

$$
\varlimsup_{n \rightarrow \infty} \log \left|\mathfrak{Q}_{n}\right| / \lambda_{n}=-\infty
$$

Let us define γ_{n} as follows:

$$
\chi_{n}=\frac{\log \left|\mathfrak{Q}_{n-1}\right| \mathfrak{Q}_{n} \mid}{\lambda_{n}-\lambda_{n-1}}
$$

Then χ_{n} is a non-decreasing function of n (see [1]) and $\rightarrow \infty$ as $n \rightarrow \infty$. The fact is similar to what G. Valiron describes about rectified ratio in his book ([12], p. 32). So we have:

$$
0 \leqslant \chi_{1} \leqslant \chi_{2} \leqslant \cdots \leqslant \chi_{n} \leqslant \cdots ; \quad \chi_{n} \rightarrow \infty, n \rightarrow \infty
$$

Let $\mu(\sigma)$ be the maximum term in the representation of $\Sigma\left|\mathcal{O}_{n}\right| e^{\sigma \lambda_{n}}$ and call it as the maximum term of $f(\mathrm{~S})$. Let $\lambda_{\gamma(\sigma)}$
be that value of λ_{n} which makes $\left|\mathcal{Q}_{n}\right| e^{\sigma \lambda_{n}}$ the maximum term and call $\lambda_{\gamma(\sigma)}$ as the rank of $\mu(\sigma)$. Let us similarly correspond $\mu_{(m)}(\sigma)$ and $\lambda_{\nu(m)(\sigma)}$ to $f^{(m)}(\mathrm{S})$, the m-th derivative of $f(\mathrm{~S})$ as we have done about $\mu(\sigma)$ and $\lambda_{\gamma(\sigma)}$ connecting them with $f(\mathrm{~S})$, where $\mu_{(0)}(\sigma) \equiv \mu(\sigma), \quad \lambda_{\nu^{(0)}(\sigma)} \equiv \lambda_{y(\sigma)}$. It is well-known that ([13]; [4], pp. 1-2)

$$
\begin{equation*}
\log \mu(\sigma)=\int_{1}^{\sigma} \lambda_{\nu(x)} d x . \tag{1.4}
\end{equation*}
$$

We define the order (R) ρ and lower order (R$) \lambda$ of $f(s)$ as follows:

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log M(\sigma)}{\sigma}=\frac{\rho}{\lambda} ;
$$

where $\mathrm{M}(\sigma)=\underset{-\infty<t<\infty}{\text { l.u.b. }}|f(s)|$.
According to Mandelbrojt ([10], p. 216) we call ρ as the Ritt order (to be written as order (R$)_{\rho}$) of $f(s)$. We, therefore, naturally call the lower limit in $\log \log \mathrm{M}(\sigma) / \sigma$ as $\sigma \rightarrow \infty$ to be the lower order (R) λ. However, I shall drop the word (R) in the sequel. The results starting after Theorem C and onwards are expected to be new; Theorems A and B have already appeared but the secretary wishes them to incorporate here. This paper is to be considered as a sequel to my previous papers [$6 ; 7 ; 8$ et 9$]$. For the sake of completeness I start with the following result ([4], Th. 1).
2. Theorem A. - For an entire function $f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}$ where $\left\{\lambda_{n}\right\}$ satisfies (1.2), then

$$
\begin{equation*}
\mu(\sigma) \leqslant M(\sigma)<\mu(\sigma)\left[\left(1+\frac{1}{L \sigma}\right) \lambda_{\gamma\left(\sigma+\sigma / \lambda_{r(\sigma)}\right.}+1\right], \tag{2.1}
\end{equation*}
$$

where $\mathrm{L}=h-\varepsilon, \varepsilon$ being an arbitrarily taken small positive number.

We now proceed to prove it. The left-hand inequality in (2.1) is obvious in view of Ritt's inequality :

$$
\left|a_{n}\right| e^{\sigma \lambda_{n}} \leqslant M(\sigma)
$$

Let

$$
\mathrm{W}(\sigma)=\sum_{n=1}^{\infty} e^{-G_{n}+\delta \lambda_{n}}, \quad \mathrm{G}_{n}=-\log \left|a_{n}\right| .
$$

Suppose p is a positive integer $>\lambda_{\gamma(\sigma)}$, such that $\chi_{p}>\sigma$. Let $q \geqslant p$. Now

$$
\begin{aligned}
e^{-\mathrm{G}_{q} \sigma \lambda^{\sigma \lambda_{q}}} & <e^{-\mathrm{G}_{p-1} e^{\sigma \lambda_{p-1}} \exp \left\{\left(\sigma-\lambda_{p}\right)\left(\lambda_{q}-\lambda_{p-1}\right)\right\}} \\
& \leqslant \mu(\sigma) \exp \left\{\left(\sigma-\chi_{p}\right)\left(\lambda_{q}-\lambda_{p-1}\right)\right\} .
\end{aligned}
$$

Hence

$$
\mathrm{W}(\sigma)<\mu(\sigma)\left[p+\sum_{q=p}^{\infty}\left(\frac{e^{\sigma}}{e^{\chi_{p}}}\right)^{\lambda_{q}-\lambda_{p-1}}\right] .
$$

Hence in view of (1.2), if we write $x=\exp \left(\chi_{p}-\sigma\right)$, then $\chi>1$ and so

$$
\sum_{q=p}^{\infty}\left(\frac{e^{\sigma}}{e^{\chi_{p}}}\right)^{\lambda_{q}-\lambda_{p-1}}<\chi^{-\mathrm{L}}+\chi^{-2 \mathrm{~L}}+\cdots=\frac{1}{x^{\mathrm{L}}-1}
$$

Therefore

$$
\mathrm{W}(\sigma)<\mu(\sigma)\left[p+\frac{e^{\mathrm{L} \sigma}}{e^{\mathrm{L} \boldsymbol{L}_{P}}-e^{\mathrm{L} \sigma}}\right] .
$$

Let

$$
p=\lambda_{v\left(\sigma+\sigma / \lambda_{Y(\sigma)}\right)}+1,
$$

we find that

$$
e^{\mathrm{I} \chi_{p}}-e^{\mathrm{I} \sigma}>e^{\mathrm{L} \sigma}\left\{e^{\mathrm{I} \sigma / \lambda_{1}(\sigma)}-1\right\}
$$

and therefore the right-hand part in (2.1) follows.
Making use of Theorem A, we prove ([4], Th. 2, p. 5):
Theorem B. - Let $f(s)$ be an entire function of order p and lower order $\lambda ; \lambda_{n}$ satisfies (1.2) in the expansion of $f(s)$. Then

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \lambda_{v(\sigma)}}{\sigma}=\frac{\rho}{\lambda} ; \quad(0 \leqslant \rho \leqslant \infty ; 0 \leqslant \lambda \leqslant \infty) . \tag{2.2}
\end{equation*}
$$

As regards the proof, the upper limit is similar to a result proved by Valiron ([12], p. 33), care is only to be taken that during the course of proof, we use the fact that $\log \mu(\sigma)$ is a covex function of σ [2]. From the previous theorem and the fact that if ρ is finite, we notice that

$$
\log \mathrm{M}(\sigma) \sim \log \mu(\sigma), \quad \sigma \rightarrow \infty .
$$

Let

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \lambda_{v(\sigma)}}{\sigma}=\rho<\infty,
$$

so that from (1.4), for $\sigma \geqslant \sigma_{0}$

$$
\log \mu(\sigma)<\mathrm{K}+\frac{e^{(\rho+\varepsilon) \sigma}}{\rho+\varepsilon}
$$

Therefore

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log M(\sigma)}{\sigma} \leqslant \rho
$$

Let us suppose now

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log M(\sigma)}{\sigma}=\rho_{1}(\leqslant \rho)
$$

Therefore from (1.4) and the relation $\mu(\sigma) \leqslant M(\sigma)$, we find that

$$
2 \lambda_{v(\sigma)} \leqslant \int_{\sigma}^{\sigma+2} \lambda_{v(x)} d x<(1+\varepsilon) e^{(\sigma+2)\left(\rho_{1}+\varepsilon\right)}
$$

and so we find that

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \lambda_{v(\sigma)}}{\sigma} \leqslant \rho_{1}
$$

Therefore $\rho=\rho_{1}$. Therefore the ratios $\log \log M(\sigma) / \sigma$ and $\log \lambda_{y(\sigma)} / \sigma$ have the same upper limit. To prove that

$$
\varliminf_{\sigma \rightarrow \infty} \frac{\log \lambda_{v(\sigma)}}{\sigma}=\lambda
$$

we proceed in some other way. Let

$$
\varliminf_{\sigma \rightarrow \infty} \frac{\log \lambda_{\nu(\sigma)}}{\sigma}=\alpha
$$

With the help of (1.4) and $\mu(\sigma) \leqslant M(\sigma)$, one easily finds that for any constant $\mathrm{C}>0$.

$$
\mathrm{C} \lambda_{y(\sigma)} \leqslant \log \mu(\sigma+c) \leqslant \log \mathrm{M}(\sigma+c)<e^{(\lambda+\varepsilon)(\sigma+c)}
$$

for an arbitrarily large value of σ. This implies $\alpha \leqslant \lambda$. If $\lambda=0$, then $\alpha=0$ and there is nothing to prove. Let $0 \leqslant \alpha<\infty$. Choose β and γ, such that $\alpha<\beta$ and $\alpha / \beta<\gamma<1$. Hence

$$
\begin{equation*}
\lambda_{v(\sigma)}<e^{\beta \sigma}, \quad\left(\gamma \sigma_{n} \leqslant \sigma \leqslant \sigma_{n}\right) \tag{2.3}
\end{equation*}
$$

where $\left\{\sigma_{n}\right\}$ is a sequence of σ, such that $\sigma_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We shall show that

$$
\frac{\log M(\sigma)}{\log \mu(\sigma)} \rightarrow 1
$$

as $\sigma \rightarrow \infty$ through the sequence for which (2.3) holds (it is not assumed that ρ is finite: if ρ is finite we cannot claim necessarily that $\log M(\sigma) \sim \log \mu(\sigma))$.

Let δ and ε^{\prime} be two positive numbers such that

$$
\gamma<\delta<1 ; \quad \gamma / \delta<\varepsilon^{\prime}<1
$$

Put $\delta \sigma_{n}=\xi_{n}$. Then for $n \geqslant n_{0}, \gamma \sigma_{n}<\varepsilon^{\prime} \xi_{n}<\xi_{n}<\sigma_{n}-\frac{1}{2}$.
Further, let $\mu(0)=1$, which we may without loss of generality. Then from (1.4)

$$
\log \mu\left(\xi_{n}\right)=\log \mu\left(\xi_{n} \varepsilon^{\prime}\right)+\int_{\varepsilon^{\prime} \xi_{n}}^{\xi_{n}} \lambda_{v(x)} d x .
$$

But $\log \mu\left(\varepsilon^{\prime} \xi_{n}\right)<\varepsilon^{\prime} \xi_{n} \lambda_{y\left(\varepsilon^{\prime} \xi_{n}\right)}$, so

$$
\begin{aligned}
\log \mu\left(\xi_{n}\right)> & \log \mu\left(\varepsilon^{\prime} \xi_{n}\right)+\left(1-\varepsilon^{\prime}\right) \xi_{n} \lambda_{\nu\left(\varepsilon^{\prime} \xi_{n}\right)} \\
& >\frac{1}{\varepsilon^{\prime}} \log \mu\left(\varepsilon^{\prime} \xi_{n}\right) .
\end{aligned}
$$

Hence

$$
\begin{gather*}
\left(1-\varepsilon^{\prime}\right) \log \mu\left(\xi_{n}\right)<\int_{\varepsilon^{\prime} \xi_{n}}^{\xi_{n}} \lambda_{\nu(x)} d x \\
<\frac{1}{\beta}\left[e^{\beta \xi_{n}}-e^{\beta \varepsilon^{\prime} \xi_{n} n}\right] \tag{2.4}
\end{gather*}
$$

for all $n \geqslant n_{0}$. But from Theorem A

$$
\begin{aligned}
\log \mathrm{M}\left(\xi_{n}\right) & <\log \mu\left(\xi_{n}\right)+\log \lambda_{v\left(\xi_{\xi}+\xi_{n} \lambda_{n}\left(\xi_{n}\right)\right.}+0(1) \\
& <\log \mu\left(\xi_{n}\right)+\log \lambda_{(2)}+0(1) \\
& <\log \mu\left(\xi_{n}\right)+2 \beta \xi_{n}+0(1) .
\end{aligned}
$$

Hence we get for all $n \geqslant n_{0}$.

$$
\begin{aligned}
\log \log M\left(\xi_{n}\right) & <(1+0(1)) \log \log \mu\left(\xi_{n}\right) \\
& <(1+0(1)) \beta \xi_{n},
\end{aligned}
$$

from (2.4). Consequently $\lambda \leqslant \beta$ and as ($\beta-\alpha$) can be made arbitrarily small we see that $\lambda \leqslant \alpha$; and this, when combined with the already established inequality: $\lambda \geqslant \alpha$, gives the required result.

Next, I give the following result ([5], p. 45).

Theorem C. - Let

$$
f(s)=\sum_{n=1}^{\infty} a_{n} e^{s \lambda_{n}}
$$

be an entire function, where $\left\{\lambda_{n}\right\}$ satisfies (1.2), of order p and loswer order $\lambda(0<\rho \leqslant \infty ; 0 \leqslant \lambda<\infty)$. Then

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log / \mu(\sigma)}{\sigma \lambda_{r(\sigma)}} \leqslant 1-\frac{\lambda}{\rho} .
$$

Proof. - We have

$$
\begin{aligned}
\log \mu(\sigma) & =\sum_{\chi_{n} \leqslant \sigma}\left(\lambda_{n}-\lambda_{n-1}\right)\left(\sigma-\chi_{n}\right) \\
& =\sigma \lambda_{v(\sigma)}-\sum_{\chi_{n} \leqslant \sigma}\left(\lambda_{n}-\lambda_{n-1}\right) \chi_{n} .
\end{aligned}
$$

But for all $n \geqslant n_{0}$ (from Th. B)

$$
\log \lambda_{n}<(p+\varepsilon) \gamma_{n} .
$$

So we find

$$
\sum_{\chi_{n} \leqslant \sigma}\left(\lambda_{n}-\lambda_{n-1}\right) \chi_{n}>\sum_{\chi_{n} \leqslant \sigma, n \geqslant n_{0}}\left(\lambda_{n}-\lambda_{n-1}\right) \frac{\log \lambda_{n}}{\rho+\varepsilon}
$$

Let N be the largest integer such that $\chi \leqslant \sigma$, then

$$
\begin{aligned}
\sum_{\chi_{n} \leqslant \sigma}\left(\lambda_{n}-\lambda_{n-1}\right) \chi_{n} & >\frac{1}{\rho+\varepsilon}\left\{\lambda_{\mathrm{v}} \log \lambda_{\mathrm{N}}+0\left(\lambda_{n}\right)\right\} \\
& =\frac{1}{\rho+\varepsilon}\left\{\lambda_{v(\sigma)} \log _{v(\sigma)}\right\}+0(v(\sigma)) .
\end{aligned}
$$

Si that for $\sigma \geqslant \sigma_{0}$

$$
\log \mu(\sigma)<\sigma \lambda_{r(\sigma)}\left\{1-\frac{\lambda-\varepsilon}{\rho+\varepsilon}+0(1)\right\}
$$

and the result follows.
3. Below I construct an example to exhibit that the result of Th. C is best possible in view of the fact that if $\lambda<\infty$, $\rho=\infty$, then

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{Y(\sigma)}}=1 \tag{3.1}
\end{equation*}
$$

Example 1. - Let

$$
f(s)=\sum_{n=\mathbb{N}}^{\infty}\left\{\frac{e^{s}}{\mathrm{I}\left(\lambda_{n}\right)}\right\}^{\lambda_{n}},
$$

where $\lambda_{n+1}=\lambda_{n} ; N$ is a positive integer, such that $I\left(\lambda_{\mathbf{N}}\right) \geqslant e$ and that

$$
\log \mathrm{I}(x)=\int_{x_{0}}^{x} \frac{d t}{t \theta(t) \log t} \rightarrow \infty
$$

as $x \rightarrow \infty$, where further.
(i) $\theta(x)$ is a positive, continuous and non-decreasing function for $x \geqslant x_{0}$ and $\rightarrow \infty$ with x, and has a derivative;
(ii) $\frac{x \theta^{\prime}(x)}{\theta(x)} \leqslant \frac{1}{\log x \log \log x \log \log \log x}, \quad x \geqslant x_{0}$.

Demonstration of the aim. - According to a result ([10], p. 217, eq. (94)) we see that the order ρ of $f(s)$ is

$$
\begin{aligned}
& =\varlimsup_{n \rightarrow \infty} \frac{\lambda_{n} \log \lambda_{n}}{\lambda_{n} \log \mathrm{I}\left(\lambda_{n}\right)} \\
& \geqslant \varlimsup_{n \rightarrow \infty} \frac{\log \lambda_{n}}{\mathrm{~A} \log \log \lambda_{n}},
\end{aligned}
$$

from (ii) and the integral representation of $\mathrm{I}(x)$, A being a finite number. Therefore the order p of $f(s)$ is infinite. Let

$$
\chi_{n}=\log \left\{\left\{\mathrm{I}\left(\lambda_{n}\right)\right\}^{\lambda_{n}} /\left\{\mathrm{I}\left(\lambda_{n-1}\right)\right\}^{\lambda_{n-1}}\right\} /\left(\lambda_{n}-\lambda_{n-1}\right),
$$

then it is easily found that $\chi_{n+1}>\chi_{n}\left(n>n_{0}\right)$ and that $\chi_{n} \rightarrow \infty$, as $n \rightarrow \infty$. Hence for $\chi_{n} \leqslant \sigma<\chi_{n+1}$,

$$
\log \mu(\sigma)=\left\{\sigma-\log \mathrm{I}\left(\lambda_{n}\right)\right\} \lambda_{n}, \quad \lambda_{n}=\lambda_{v(\sigma)}
$$

Therefore

$$
\frac{\log \mu\left(\chi_{n+1}\right)}{\chi_{n+1}} \lambda_{v\left(\chi_{n+1}\right)}=1-\frac{(1+0(1)) \log \mathrm{I}\left(\lambda_{n}\right)}{\log \mathrm{I}\left(\lambda_{n+1}\right)+0\left(\log \mathrm{I}\left(\lambda_{n}\right)\right)}
$$

Further

$$
\log \mathrm{I}\left(\lambda_{n+1}\right)-\log \mathrm{I}\left(\lambda_{n}\right)>(1+0(1)) \frac{l_{2} \lambda_{n+1}}{l_{3} \lambda_{n+1}}
$$

and as $\log \mathrm{I}\left(\lambda_{n}\right)<\mathrm{A} l_{2} \lambda_{n}, \mathrm{~A}=a$ constant, we find that

$$
\frac{\log \mathrm{I}\left(\lambda_{n+1}\right)}{\log \mathrm{I}\left(\lambda_{n}\right)} \rightarrow \infty, \quad(n \rightarrow \infty)
$$

and so

$$
\frac{\log \mu\left(\chi_{n+1}\right)}{\chi_{n+1} \lambda_{v\left(\chi_{n+1}\right)}} \rightarrow 1, \quad(n \rightarrow \infty)
$$

and hence

$$
\varlimsup_{n \rightarrow \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{v(\sigma)}} \geqslant 1
$$

Further

$$
\begin{aligned}
\log \mu\left(\chi_{n+1}\right) & =\frac{\lambda_{n} \lambda_{n+1} \log \left\{\mathrm{I}\left(\lambda_{n+1}\right) / \mathrm{I}\left(\lambda_{n}\right)\right\}}{\lambda_{n+1}-\lambda_{n}} \\
& =(1+0(1)) \lambda_{n} \log \mathrm{I}\left(\lambda_{n+1}\right)
\end{aligned}
$$

and therefore

$$
\log \log \mu\left(\chi_{n+1}\right) \sim \log \log \mathrm{I}\left(\lambda_{n+1}\right)+\log \lambda_{n}
$$

and as $\chi_{n+1} \sim \log I\left(\lambda_{n+1}\right)$, it follows that

$$
\lambda=\lim _{\sigma \rightarrow \infty} \frac{\log \log \mu(\sigma)}{\sigma}=0
$$

Hence from Theorem C

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{\nu(\sigma)}} \leqslant 1 \tag{3.3}
\end{equation*}
$$

Inequalities (3.2) and (3.3) provide the demonstration of our aim.

Example 2. - Let us consider the function defined by (see Theorem 6 [3], p. 22 where I put $\beta=1$)

$$
f(s)=\sum_{n=1}^{\infty}\left(\frac{e^{s}}{\lambda_{n}}\right)^{\lambda_{n}}, \quad \lambda_{n+1}=\alpha^{\lambda_{n}} ; \quad \alpha \geqslant e ; \quad \lambda_{1}=\alpha
$$

The function $f(s)$ is certainly an entire function on account of (1.3)'. The order ρ of $f(s)$ is in this case

$$
=\varlimsup_{n \rightarrow \infty} \frac{\lambda_{n} \log \lambda_{n}}{\lambda_{n} \log \lambda_{n}}=1 .
$$

Also

$$
\mu(\sigma)=\left\{e^{\sigma} / \lambda_{n}\right\} \lambda_{n} ; \quad \lambda_{n}=\lambda_{v(\sigma)}
$$

for $\chi_{n} \leqslant \sigma<\chi_{n+1}$, where

$$
\chi_{n}=\frac{\lambda_{n} \log \lambda_{n}-\lambda_{n-1} \log \lambda_{n-1}}{\lambda_{n}-\lambda_{n-1}}
$$

Then

$$
\begin{align*}
\log \mu\left(\chi_{n}\right) & =\lambda_{n}\left(\lambda_{n}-\log \lambda_{n}\right) \\
& =\frac{\lambda_{n} \lambda_{n-1}}{\lambda_{n}-\lambda_{n-1}} \log \left(\lambda_{n} / \lambda_{n-1}\right) \\
& =(1+0(1)) \lambda_{n-1} \log \lambda_{n} \tag{3.4}\\
\log \log \mu\left(\chi_{n}\right) & =(1+0(1))+\log \lambda_{n-1}+\log \log \lambda_{n} .
\end{align*}
$$

Also $\chi_{n} \rightarrow \infty$ as $n \rightarrow \infty$, we see that

$$
\begin{equation*}
\frac{\log \log \mu\left(\chi_{n}\right)}{\gamma_{n}}=0(1)+\frac{1}{\chi_{n}}\left(\log \lambda_{n-1}+\log \log \lambda_{n}\right) . \tag{3.5}
\end{equation*}
$$

Now

$$
\begin{align*}
\frac{\log \lambda_{n-1}}{\chi_{n}} & =\frac{\log \lambda_{n-1}\left(\lambda_{n}-\lambda_{n-1}\right)}{\lambda_{n} \log \lambda_{n}-\lambda_{n-1} \log \lambda_{n-1}} \\
& =\frac{\lambda_{n} \log \lambda_{n-1}+0\left(\lambda_{n}\right)}{\lambda_{n} \lambda_{n-1} \log \alpha+0\left(\lambda_{n}\right)} \\
& =(1+0(1)) \frac{\log \lambda_{n-1}}{\lambda_{n-1} \log \alpha} \rightarrow 0 \quad(n \rightarrow \infty) . \tag{3.6}
\end{align*}
$$

Also $\log \log \lambda_{n}=\left(1+0(1) \log \lambda_{n-1}\right.$ and so the right-hand term in (3.5) $\rightarrow 0$ as $n \rightarrow \infty$ in view of (3.6). Therefore the lower order λ of $f(s)$ is zero on account of (3.5). Hence from Theorem C

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{v(\sigma)}} \leqslant 1 \tag{3.7}
\end{equation*}
$$

Also

$$
\begin{aligned}
\frac{\log \mu\left(\chi_{n+1}\right)}{\chi_{n+1} \lambda_{v\left(\chi_{n+1}\right)}} & =1-\frac{\log \lambda_{n}}{\chi_{n+1}} \\
& =1-\frac{\left(\lambda_{n+1}-\lambda_{n}\right) \log \lambda_{n}}{\lambda_{n+1} \log \lambda_{n+1}-\lambda_{n} \log \lambda_{n}} \rightarrow 1 \quad(n \rightarrow \infty)
\end{aligned}
$$

for the above solution see the technique used in getting (3.6). Hence

$$
\begin{equation*}
\varlimsup_{\sigma \geqslant \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{\psi(\sigma)}} \geqslant 1 . \tag{3.8}
\end{equation*}
$$

Therefore from (3.7) and (3.8) one gets

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \mu(\sigma)}{\sigma \lambda_{v(\sigma)}}=1,
$$

giving thereby again a best possible nature of Theorem C in case $\lambda=0$ and $\rho<\infty$.
4. Results involving derivatives of $f(s)$:

I have already spoken in the article 1 about $\mu_{(m)}(\sigma)$ and $\lambda_{y^{(m)}(\sigma)}$. I first prove:

Theorem D. - For all $\sigma \geqslant \sigma_{0}$ (σ_{0} is a fixed large number) one should have:

$$
\mu_{(m)}(\sigma)>\mu(\sigma)\left[\frac{\log \mu(\sigma)}{\sigma}\right]^{m}
$$

m is an integer $\geqslant 0$. This result I stated in a presious paper ([6], p. 235) without proof.

Proof. - We have :
(4.1) $\quad \lambda_{y^{(m)}(\sigma)} \leqslant \frac{\mu_{(m+1)}(\sigma)}{\mu_{(m)}(\sigma)} \leqslant \lambda_{y^{(m+1)(\sigma)}}, \quad m=0,1, \ldots$

When $m=0$ in (4.1), it reduces to a result which I have proved in ([3], p., Theorem 2) as follows

$$
\begin{aligned}
\mu_{(1)}(\sigma) & =\left|a_{v^{(1)}(\sigma)}\right| \lambda_{v^{(1)}(\sigma)} \exp \left(\sigma \lambda_{v^{(1)}(\sigma)}\right) \leqslant \lambda_{v^{(1)}(\sigma)} \mu(\sigma) ; \\
\mu_{(1)}(\sigma) & =\left|a_{v^{(1)}(\sigma)}\right| \lambda_{v^{(1)}(\sigma)} \exp \left(\sigma \lambda_{v^{(1)}(\sigma)}\right) \geqslant\left|a_{v(\sigma)}\right| \lambda_{v(\sigma)} \exp \left(\sigma \lambda_{v(\sigma)}\right) \\
& =\lambda_{v(\sigma)} \mu(\sigma) .
\end{aligned}
$$

The case $m \geqslant 1$ can aslo be treated by simple definitions, for let

$$
f^{(m)}(\mathrm{S})=\Sigma \mathrm{A}_{n} e^{s \lambda_{n}}, \quad \lambda_{y^{(m)}(\sigma)}=\lambda_{\mathrm{N}} ; \quad \lambda_{v^{(m+1)}(\sigma)}=\lambda_{\mathbf{v}_{\mathbf{t}}}
$$

then

$$
\mu_{(m+1)}(\sigma)=\lambda_{\mathbf{N}_{1}}\left|\mathrm{~A}_{\mathbf{N}_{1}}\right| \exp \left(\sigma \lambda_{\mathbf{N}_{1}}\right) \leqslant \lambda_{\mathbf{N}_{1}} \mu_{(m)}(\sigma)
$$

and

$$
\mu_{(m)}(\sigma)=\frac{1}{\lambda_{\mathbf{N}}}\left(\lambda_{\mathbf{N}}\left|\mathrm{A}_{N}\right| \exp \left(\sigma \lambda_{N}\right)\right) \leqslant \frac{\mu_{(m+1)}(\sigma)}{\lambda_{\nu^{(m)}(\sigma)}}
$$

and so these two inequalities complete (4.1) and from which we have:

$$
\begin{aligned}
\lambda_{v(\sigma)} \leqslant \frac{\mu_{(1)}(\sigma)}{\mu_{(\sigma)}} \leqslant \lambda_{v(1)}(\sigma) \leqslant \frac{\mu_{(2)}(\sigma)}{\mu_{(1)}(\sigma)} \leqslant \cdots & \leqslant \lambda_{v(m-1)(\sigma)} \\
& \leqslant \frac{\mu_{(m)}(\sigma)}{\mu_{(m-1)}(\sigma)} \leqslant \lambda_{v(m)(\sigma) .}
\end{aligned}
$$

Multiplying the ratios involving these $\mu^{\prime} s$ one finds that

$$
\begin{align*}
\frac{\mu_{(m)}(\sigma)}{\mu_{(\sigma)}} & \geqslant \lambda_{\gamma(m-1)(\sigma)} \ldots \lambda_{v(\sigma)} \\
& \geqslant\left(\lambda_{\gamma(\sigma))^{m}} .\right. \tag{4.2}
\end{align*}
$$

Now from (1.3)' we get, for K to be sufficiently large,

$$
\begin{gather*}
\log \left|a_{V(\sigma)}\right|<-K \lambda_{Y(\sigma)} ; \quad \sigma \geqslant \sigma_{0} \\
\left|a_{Y(\sigma)}\right|<\exp \left(-k \lambda_{Y(\sigma)}\right)<1, \quad \sigma \geqslant \sigma_{0} . \tag{4.3}
\end{gather*}
$$

Again

$$
\begin{align*}
\log \mu(\sigma) & =\log \left|a_{y(\sigma)}\right|+\sigma \lambda_{y(\sigma)} \\
& <\sigma \lambda_{y(\sigma)} \quad \sigma \geqslant \sigma_{0} \tag{4.4}
\end{align*}
$$

from (4.3). The inequalities (4.2) and (4.4) result in for $\sigma \geqslant \sigma_{0}$

$$
\frac{\mu_{(m)}(\sigma)}{\mu(\sigma)}>\left(\frac{\log \mu(\sigma)}{\sigma}\right)^{m} .
$$

The above theorem is useful in deducing the following interesting.

Theorem E. - One has (with the terms inoolved in to be known):

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \left(\mu_{(m)}(\sigma) / \mu(\sigma)\right)^{1 / m}}{\sigma}={\underset{\lambda}{P} ; ~}_{\text {; }}
$$

Proof. - We have:

$$
\begin{aligned}
\frac{\mu_{(m)}(\sigma)}{\mu(\sigma)} & \leqslant \lambda_{\gamma^{1}(\gamma)(\sigma)} \ldots \lambda_{\gamma^{(m)}(\sigma)} \\
& \leqslant\left(\lambda_{\left.\gamma^{(m)}(\sigma)\right)^{m}} .\right.
\end{aligned}
$$

Now $f^{(m)}(s)$ also posses the same order p and lower order λ as $f(s)$ has, and so (cf. Theorem B)

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \lambda_{v^{m}(\sigma)}}{\sigma}=\frac{P}{\lambda} ;
$$

consequently

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log (\mu(m)(\sigma) / \mu(\sigma))^{1 / m}}{\sigma} \leqslant{ }_{\lambda}^{\rho} ; \tag{4.5}
\end{equation*}
$$

But Theorem D provides us the inequality (to be deduced with the help of Theorem B and (1.4) (1)

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \left(\mu_{(m)}(\sigma) / \mu(\sigma)\right)^{1 / m}}{\sigma} \geqslant{ }_{\lambda}^{\rho} ; \tag{4.6}
\end{equation*}
$$

The inequalities (4.5) and (4.6) yield the desired result.
Remark. - Theorem D has been stated without any proof by Srivastav ([11], p. 89 (i)) and that too under the restrictive condition that $\lambda>0$. The proof of Theorem D removes this superflous restriction which Srivastav asserts. Secondly, Srivastav claims to prove Theorem E but to the best my surprise there is no clue available to its proof in his paper wherever he mentions it. I whish to add that I have stated Theorem D without proof in a recent paper of mine ([6], Theorem 1).
5. Towards the end of this paper, I would like to add a new result on the mean values of entire Dirichlet functions. To the best of my knowledge I introduced these means and discovered their properties relating to the order and lower order of $f(\mathrm{~S})$ in a recent paper [9]. I do here a little more. I define

$$
\mathrm{A}_{k}(\sigma)=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{2 \mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}}|f(\mathrm{~S})|^{k} d t,
$$

where the sequence $\left\{\lambda_{n}\right\}$ satisfies (1.1)-(1.3); $0<k<\infty$.
Theorem F . - If $f(\mathrm{~S})$ satisfies the conditions stated in §5, then we have:

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log \mathrm{A}_{k}(\sigma)}{\sigma}=\underset{\lambda}{\rho} ;
$$

(${ }^{1}$) From (1.4), (i)

$$
\log \mu(\sigma) \leqslant(1+0(1)) \sigma \lambda_{1 /(\sigma)} \quad \text { and so } \quad \log \log \mu(\sigma) / \sigma \leqslant 0(1)+\log \lambda_{\lambda_{r}(\sigma) / \sigma ;}
$$

and (ii) for $k>0, \log \mu(\sigma+k) \geqslant k \lambda_{1 /(\sigma)}$ and so

$$
\log \log \mu(\sigma+k) /(1+0(1))(\sigma+k) \geqslant 0(1)+\log \lambda_{Y(\sigma)} / \sigma .
$$

From (i) et (ii) one deduces that

$$
\varlimsup_{\sigma \rightarrow \infty} \log \log \mu(\sigma) / \sigma=\varlimsup_{\sigma>\infty} \log \lambda_{r(\sigma)} / \sigma .
$$

Remark. - If $k=2$, I have got the above result in a recent paper ([9], Theorem 1) where I supposed further that χ_{n} was non-decreasing. Here we need not, as one will soon find, make this supposition.

Proof of Theorem F. - One does have

$$
\mathrm{A}_{k}(\sigma) \leqslant\left\{\mathrm{M}_{s}(\sigma)\right\}^{k},
$$

where

$$
\mathrm{M}_{s}(\sigma)=\max _{|t| \leqslant \mathrm{T}}|f(\sigma+i t)| .
$$

But (see for references [9] and also [10])

$$
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log M_{s}(\sigma)}{\sigma}={\underset{\lambda}{\rho} ; ~}_{\rho} ;
$$

So we find that

$$
\begin{equation*}
\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log A_{k}(\sigma)}{\sigma} \leqslant{ }_{\lambda}^{\rho} ; \tag{5.1}
\end{equation*}
$$

To get the other part, it is sufficient to consider $f(\mathrm{~S})$ in the representation given by:

$$
f(S)=\sum_{n=0}^{\infty} a_{n} e^{s \lambda_{n}}
$$

Then, if $\mathrm{S}^{\prime}=\Delta+i x ; a_{n}=\alpha_{n}+i \beta_{n}$, we have

$$
\begin{aligned}
& f(\Delta+i x) \\
& =\sum_{n=0}^{\infty}\left[\left(\alpha_{n} \cos \lambda_{n} x-\beta_{n} \sin \lambda_{n} x\right)+i\left(\alpha_{n} \sin \lambda_{n} x+\beta_{n} \cos \lambda_{n} x\right)\right] e^{\Delta \lambda_{n}} ; \\
& \quad \operatorname{R} l\{f(\Delta+i x)\}=\sum_{n=0}^{\infty}\left(\alpha_{n} \cos \lambda_{n} x-\beta_{n} \sin \lambda_{n} x\right) e^{\Delta \lambda_{n}} .
\end{aligned}
$$

Therefore
(*)

$$
\begin{aligned}
\alpha_{m} e^{\Delta \lambda_{m}} & =\lim _{\mathbf{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{R} l\{f(\Delta+i x)\} \cos \lambda_{m} x d x, \quad m>0 . \\
{\left({ }_{* *}\right)}^{-\beta_{m} e^{\Delta \lambda_{m}}} & =\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{R} l\{f(\Delta+i x)\} \sin \lambda_{m} x d x, \quad m>0 . \\
\alpha_{0} & =\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{Rl}\{f(\Delta+i x)\} d x .
\end{aligned}
$$

Therefore from $\left({ }_{*}\right)$ and $\left({ }_{* *}\right)$
$=\lim _{\mathrm{T} \rightarrow \infty} \frac{1}{\mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}} \mathrm{R} l\{f(\Delta+i x)\}\left\{1+\sum_{n=1}^{\infty} \cos \left\{(x-t) \lambda_{n}\right\} e^{(\sigma-\Delta) \lambda_{n}}\right\} d x$.
We can treat (5.2) as an analogue to Poisson's formula in power series. Therefore, if we start our series for $f(s)$ from $n=1$ to ∞, then

$$
|f(s)| \leqslant \lim _{\mathrm{T} \rightarrow \infty} \frac{1}{2 \mathrm{~T}} \int_{-\mathrm{T}}^{\mathrm{T}}|f(\Delta+i x)| 2 \sum_{n=1}^{\infty} \exp \left\{(\sigma-\Delta) \lambda_{n}\right\} d x
$$

and since the right-hand side is independent of t, one finds that

$$
\begin{aligned}
& \text { (5.3) } \mathrm{M}(\sigma) \leqslant 2 \mathrm{~A}(\Delta)\left(\sum_{n=1}^{n_{0}-1}+\sum_{n=n_{0}}^{\infty}\right) \exp \left\{(\sigma-\Delta) \lambda_{n}\right\} \\
& <2 \mathrm{~A}(\Delta)\left[\left(n_{0}-1\right) \exp \left\{(\sigma-\Delta) \lambda_{1}\right\}+\sum_{n=n_{0}}^{\infty} \exp \left\{(\sigma-\Delta) \lambda_{n}\right\}\right] .
\end{aligned}
$$

But

$$
\begin{equation*}
\mathrm{R} l\{f(\sigma+i t)\}=\sum_{n=0}^{\infty}\left(\alpha_{n} \cos \lambda_{n} t-\beta_{n} \sin \lambda_{n} t\right) e^{\sigma \lambda_{n}} \tag{5.2}
\end{equation*}
$$

$\sum_{n=n_{0}}^{\infty} \exp \left\{(\sigma-\Delta) \lambda_{n}\right\}<\exp \left\{(\sigma-\Delta) \lambda_{1}\right\}$

$$
\{1+\exp (\sigma-\Delta) L+\exp (\sigma-\Delta) 2 L+\cdots\}
$$

Therefore
$\mathrm{M}(\sigma)<2 \mathrm{~A}(\Delta)$

$$
\left[\left(n_{0}-1\right) \exp (\sigma-\Delta) \lambda_{1}+\frac{\exp \left\{(\sigma-\Delta) \lambda_{1}\right\} \exp (\Delta \mathrm{L})}{\exp (\Delta \mathrm{L})-\exp (\sigma \mathrm{L})}\right]
$$

Let $\Delta=\sigma+\eta, \eta>0$. Then on simplifications, one gets

$$
\begin{equation*}
\mathrm{M}(\sigma)<0(1) \mathrm{A}(\sigma+\eta) . \tag{5.4}
\end{equation*}
$$

Similarly taking $\{f(s)\}^{k}$ instead of $f(s)$, one can prove that

$$
\begin{equation*}
(\mathrm{M}(\sigma))^{k}<0(1) \mathrm{A}_{k}(\sigma+\eta) \tag{5.5}
\end{equation*}
$$

where the constants $0(1)$ in (5.4) and (5.5) might not be the same, and so
(5.6) $\varlimsup_{\sigma \rightarrow \infty} \frac{\log \log \mathrm{A}_{k}(\sigma)}{\sigma} \geqslant \varlimsup_{\sigma \rightarrow \infty} \frac{\log \log \mathrm{M}(\sigma)}{\sigma}=\frac{\rho}{\lambda}$;

The inequalities (5.1) and (5.6) yield the required result. I might like to discuss further results on the means defined by $\mathrm{A}_{k}(\sigma)$ in a next sequel of my work.

Before I close up the discussion, I would like to express my warm thanks to the University Grants Commission, India about its partial support for the project undertaken by me.

BIBLIOGRAPHY

[1] A. G. Azpeitia, On the maximum modulus and the maximum term of an entire Dirichlet series; Proc. Amer. Math. Soc., 12, (1962), 717-721.
[2] G. Doetsch, Uber die obere Grenze des Absoluten Betrages einer analytischen Funktion auf Geraden; Math. Zeit., 8, (1920), 237-240.
[3] P. K. Kamthan, A note on the maximum term and the rank of an entire function represented by Dirichlet series; Math. Student, 31, No 1-2, (1962), 17-33.
[4] P. K. Kamthan, On the maximum term and its rank of an entire function represented by Dirichlet series (II), Raj. Uni, Studies Jour., Phy. Sec. (1962), 1-14.
[5] P. K. Kamthan, A theorem on step function; J. Gakugei, Tokushima Uni., 13, (1962), 43-47.
[6] P. K. Kamthan, On entire functions represented by Dirichlet series, Monat. für. Math., 68, (1964), 235-239.
[7] P. K. Kamthan, On entire functions represented by Dirichlet series (II); Monat. für. Math., 69, (1965), 146-150.
[8] P. K. Kamthan, On entire functions represented by Dirichlet series (III); Monat. für. Math., 69, (1965), 225-229.
[9] P. K. Kamthan, On the mean values of an entire function represented by Dirichlet series, Acta Math. Aca., Sci. Hung., 15, Fasc. 1-2, (1964), 133-136.
[10] S. Mandelbrojt, Dirichlet Series, Rice Instt. Paph., Vol. 31, No 4, (1944).
[11] R. P. Srivastav, On entire functions and their derivatives represented by Dirichlet series; Ganita (Lucknows), 9, (1958), 83-93.
[12] G. Valiron, Integral Functions, Chel. Pub., Nesp York, (1949).
[13] Y. C. Yung, Sur les droites de Borel de certaines fonctions entières; Ann. Ecole Normale, 68, (1951), 65-104.

Manuscrit reçu le 19 octobre 1965.

> Pawan Kumar Kamtran, Post-Graduate Studies (E), Delhi University, Delhi-7 (India).

