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PALINDROMIC CONTINUED FRACTIONS

by Boris ADAMCZEWSKI & Yann BUGEAUD (*)

Abstract. — In the present work, we investigate real numbers whose sequence
of partial quotients enjoys some combinatorial properties involving the notion of
palindrome. We provide three new transendence criteria, that apply to a broad
class of continued fraction expansions, including expansions with unbounded partial
quotients. Their proofs heavily depend on the Schmidt Subspace Theorem.

Résumé. — Dans cet article, nous considérons des nombres réels dont la suite
des quotients partiels jouit de certaines propriétés de symétrie faisant intervenir
la notion de palindrome. Nous obtenons trois nouveaux critères de transcendance
s’appliquant à une grande classe de fractions continues, qu’elles soient à quotients
partiels bornés ou non. Les démonstrations de ces résultats reposent sur le théorème
du sous-espace de Schmidt.

1. Introduction

An old problem adressed by Khintchine [15] deals with the behaviour of
the continued fraction expansion of algebraic real numbers of degree at least
three. In particular, it is asked whether such numbers have or not arbitrar-
ily large partial quotients in their continued fraction expansion. Although
almost nothing has been proved yet in this direction, some more general
speculations are due to Lang [16], including the fact that algebraic numbers
of degree at least three should behave like most of the numbers with respect
to the Gauss–Khintchine–Kuzmin–Lévy laws. A preliminary step consists
in providing explicit examples of transcendental continued fractions. The
first result of this type is due to Liouville [17], who constructed real num-
bers whose sequence of partial quotients grows very fast, too fast for being
algebraic. Subsequently, various authors used deeper transcendence criteria

Keywords: Continued fractions, palindromes, transcendental numbers, Subspace
Theorem.
Math. classification: 11J81, 11J70, 68R15.
(*) Supported by the Austrian Science Fundation FWF, grant M822-N12.



1558 Boris ADAMCZEWSKI & Yann BUGEAUD

from Diophantine approximation to construct other classes of transcenden-
tal continued fractions. Of particular interest is the work of Maillet [18]
(see also Section 34 of Perron [19]), who was the first to give examples of
transcendental continued fractions with bounded partial quotients. Further
examples were provided by A. Baker [8, 9], Davison [11], Queffélec [20], Al-
louche et al. [7], Adamczewski and Bugeaud [3, 2], and Adamczewski et al.
[6], among others. A common feature of all these results is that they apply
to real numbers whose continued fraction expansion is ‘quasi-periodic’ in
the sense that it contains arbitrarily long blocks of partial quotients which
occur precociously at least twice.

Continued fractions beginning with arbitrarily large palindromes appear
in several recent papers [21, 22, 10, 12, 4]. Motivated by this and the
general problematic mentioned above, we ask whether precocious occur-
rences of some symmetric patterns in the continued fraction expansion of
an irrational real number do imply that the latter is either quadratic, or
transcendental. We obtain three new transendence criteria that apply to
a broad class of continued fraction expansions, including expansions with
unbounded partial quotients. These results provide the exact counterpart
of [3] (see also Theorem 3.1 from [6]), with periodic patterns being replaced
by symmetric ones. Like in [3], their proofs heavily depend on the Schmidt
Subspace Theorem [24]. As already mentioned, there is a long tradition in
using an excess of periodicity to prove the transcendence of some continued
fractions. This is indeed very natural: if the continued fraction expansion
of the real number ξ begins with, say, the periodic pattern ABBB (here,
A, B denote two finite blocks of partial quotients), then ξ is ‘very close’
to the quadratic irrational real number having the eventually periodic con-
tinued fraction expansion with preperiod A and period B. The fact that
occurrences of symmetric patterns can actually give rise to transcendence
statements is more surprising and completely new, though it is already un-
derlying in [22]. It essentially relies on an elementary identity for continued
fractions (see Lemma 4.3 in Section 4).

The present paper is organized as follows. Our transcendence criteria are
stated in Section 2 and proved in Sections 5 and 6. In Section 3, we provide
an application of one of the transcendence criteria to the explicit construc-
tion of transcendental numbers with sharp properties of approximation by
rational numbers. All the auxiliary statements are gathered in Section 4.

A previous version of this paper including an application of our results
to the transcendence of Maillet–Baker’s continued fractions is available on
the arXiv at:
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PALINDROMIC CONTINUED FRACTIONS 1559

http://arxiv.org/abs/math.NT/0512014.
This part is removed from the present version since the corresponding re-
sults were strongly improved in [2].

2. Main results

Throughout the present work, A denotes a given set, not necessarily
finite. We identify any sequence a = (a`)`>1 of elements from A with the
infinite word a1a2 . . . a` . . . Recall that a finite word a1a2 . . . an on A is
called a palindrome if aj = an+1−j for j = 1, . . . , n.

Our first transcendence criterion can be stated as follows.

Theorem 2.1. — Let a = (a`)`>1 be a sequence of positive integers.
If the word a begins in arbitrarily long palindromes, then the real number
α := [0; a1, a2, . . . , a`, . . .] is either quadratic irrational or transcendental.

We point out that there is no assumption on the growth of the sequence
(a`)`>1 in Theorem 2.1, unlike in Theorems 2.3 and 2.4 below. This speci-
ficity of Theorem 2.1 is used in Section 3 to construct transcendental con-
tinued fractions with a prescribed order of approximation by rational num-
bers.

Various examples of classical continued fractions turn out to satisfy the
assumption of Theorem 2.1. We display two of them. As shown in [1], if a

and b are two distinct positive integers, Theorem 2.1 provides a short proof
of the transcendence of the real number [a0; a1, a2, . . . ...], whose sequence
of partial quotients is the Thue–Morse sequence on the alphabet {a, b},
that is, with an = a (resp. an = b) if the sum of the binary digits of n

is odd (resp. even). This result is originally due to Queffélec [20]. Other
interesting examples of continued fractions beginning with arbitrarily large
palindromes are the standard Sturmian continued fractions. Given a real
number θ with 0 < θ < 1 and two distinct positive integers a and b, the
standard Sturmian continued fraction of slope θ on the alphabet {a, b} is
defined by ξθ := [0; a1, a2, . . .], where an = a if b(n + 1)θc − bnθc = 0 and
an = b if b(n+1)θc−bnθc = 1. Here, b·c denotes the integer part function.
The Fibonacci continued fraction ξ(

√
5−1)/2 occurs in the important work

of Roy [21, 22]. The reader is directed to [10, 13, 12] for a detailled study
of the standard Sturmian continued fractions, which were proved to be
transcendental in [7]. Theorem 2.1 provides an alternative and much shorter
proof of the latter result.

TOME 57 (2007), FASCICULE 5



1560 Boris ADAMCZEWSKI & Yann BUGEAUD

Furthermore, it is very easy to construct continued fractions that sat-
isfy the assumption of Theorem 2.1 and we present now a general and
elementary process to do this. Denote the mirror image of a finite word
W := a1 . . . an by W := an . . . a1. In particular, W is a palindrome if and
only if W = W . Given an arbitrary sequence u = (Un)n>0 of nonempty
finite words whose letters are positive integers, we define a sequence of
finite words (An)n>0 by setting A0 = U0 and An+1 = AnUn+1AnUn+1,
for n > 0. Thus, An+1 begins with An and the sequence of finite words
(An)n>0 converges to an infinite word a = a1a2 . . . a` . . . Actually, every
sequence beginning with arbitrarily large palindromes can be constructed
in this way. In particular, Theorem 2.1 can be reformulated as follows.

Corollary 2.2. — Keep the above notation. If (a`)`>1 is not eventu-
ally periodic, then the real number

[0; a1, a2, . . . , a`, . . .]

is transcendental.

Before stating our next theorems, we need to introduce some more nota-
tion. The length of a finite word W on the alphabet A, that is, the number
of letters composing W , is denoted by |W |. Recall that a palindrome is a
finite word invariant under mirror symmetry (i. e., W = W ). In order to re-
lax this property of symmetry, we introduce the notion of quasi-palindrome.
For two finite words U and V , the word UV U is called a quasi-palindrome of
order at most w, where w = |V |/|U |. Clearly, the larger w is, the weaker is
the property of symmetry. In our next transcendence criterion, we replace
the occurrences of aritrarily large palindromes by the ones of arbitrarily
large quasi-palindromes of bounded order. However, this weakening of our
assumption has a cost, namely, an extra assumption on the growth of the
partial quotients is then needed. Fortunately, the latter assumption is not
very restrictive. In particular, it is always satisfied by real numbers with
bounded partial quotients.

Let a = (a`)`>1 be a sequence of elements from A. We say that a satisfies
Condition (∗) if a is not eventually periodic and if there exist two sequences
of finite words (Un)n>1 and (Vn)n>1 such that:

(i) For any n > 1, the word UnVnUn is a prefix of the word a;
(ii) The sequence (|Vn|/|Un|)n>1 is bounded;
(iii) The sequence (|Un|)n>1 is increasing.

We complement Theorem 2.1 in the following way.

ANNALES DE L’INSTITUT FOURIER
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Theorem 2.3. — Let a = (a`)`>1 be a sequence of positive integers.
Let (p`/q`)`>1 denote the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q1/`
` )`>1 is bounded, which is in particular the

case when the sequence a is bounded. If a satisfies Condition (∗), then α

is transcendental.

In the statements of Theorems 2.1 and 2.3 the palindromes or the quasi-
palindromes must appear at the very beginning of the continued fraction
under consideration. Fortunately, the ideas used in their proofs allow us
to deal also with the more general situation where arbitrarily long quasi-
palindromes occur not too far from the beginning.

Let w be a real number. We say that a satisfies Condition (∗)w if a is
not eventually periodic and if there exist three sequences of finite words
(Un)n>1, (Vn)n>1 and (Wn)n>1 such that:

(i) For any n > 1, the word WnUnVnUn is a prefix of the word a;
(ii) The sequence (|Vn|/|Un|)n>1 is bounded;
(iii) The sequence (|Un|/|Wn|)n>1 is bounded from below by w;
(iv) The sequence (|Un|)n>1 is increasing.

We are now ready to complement Theorems 2.1 and 2.3 as follows.

Theorem 2.4. — Let a = (a`)`>1 be a sequence of positive integers.
Let (p`/q`)`>1 denote the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

Assume that the sequence (q1/`
` )`>1 is bounded and set

M = lim sup
`→+∞

q
1/`
` and m = lim inf

`→+∞
q
1/`
` .

Let w be a real number such that

(2.1) w > 2
log M

log m
− 1.

If a satisfies Condition (∗)w, then α is transcendental.

We display an immediate consequence of Theorem 2.4.

Corollary 2.5. — Let a = (a`)`>1 be a sequence of positive integers.
Let (p`/q`)`>1 denote the sequence of convergents to the real number

α := [0; a1, a2, . . . , a`, . . .].

TOME 57 (2007), FASCICULE 5



1562 Boris ADAMCZEWSKI & Yann BUGEAUD

Assume that the sequence (q1/`
` )`>1 converges. If a satisfies Condition (∗)w

for some w > 1, then α is transcendental.

Theorems 2.1 to 2.4 provide the exact counterparts of Theorems 1 and 2
from [3], with periodic patterns being replaced by symmetric ones. It would
be desirable to replace the assumption (2.1) by the weaker one w > 0. The
statements of Theorems 2.3 and 2.4 show that weakening the combinatorial
assumption of Theorem 2.1 needs further assumptions on the size of the
partial quotients.

Theorem 2.3 from [3] was slightly improved in [6], where the following
statement was established. Keep the above notation and say that a satisfies
Condition (∗∗)w if a is not eventually periodic and if there exist three
sequences of finite words (Un)n>1, (Vn)n>1 and (Wn)n>1 such that we have
(ii), (iii), (iv) above, together with

(i’) For any n > 1, the word WnUnVnUn is a prefix of the word a.

Precisely, Theorem 3.1 from [6] (which slightly improves upon theorem
2 from [3]) asserts that Theorem 2.4 still holds when a satisfies Condition
(∗∗)w. This shows that the results obtained when repeated patterns occur
are exactly of the same strength as those obtained when symmetric patters
occur.

3. Transcendental numbers with prescribed order of
approximation

In Satz 6 of [14], Jarník used the continued fraction theory to prove
the existence of real numbers with prescribed order of approximation by
rational numbers. Let ϕ : R>1 → R>0 be a positive function. We say that
a real number α is ‘approximable at order ϕ’ if there exist infinitely many
rational numbers p/q with q > 0 and |α− p/q| < ϕ(q). Jarník’s result can
then be stated as follows.

Theorem 3.1. — Let ϕ : R>1 → R>0 be a non-increasing function
such that ϕ(x) = o(x−2) as x tends to infinity. Then, there are real numbers
α which are approximable at order ϕ but which are not approximable at
any order c ϕ, with 0 < c < 1.

In his proof, Jarník constructed inductively the sequence of partial quo-
tients of α. Actually, he showed that there are uncountably many real
numbers α with the required property, thus, in particular, transcendental

ANNALES DE L’INSTITUT FOURIER
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numbers. However, his construction did not provide any explicit example
of such a transcendental α.

In the present Section, we apply our Theorem 2.1 to get, under an extra
assumption on the function ϕ, explicit examples of transcendental numbers
satisfying the conclusion of Theorem 3.1.

Theorem 3.2. — Let ϕ : R>1 → R>0 be such that x 7→ x2 ϕ(x) is
non-increasing and tends to 0 as x tends to infinity. Then, we can construct
explicit examples of transcendental numbers α which are approximable at
order ϕ but which are not approximable at any order c ϕ, with 0 < c < 1.

Proof. — Throughout the proof, for any real number x, we denote by dxe
the smallest integer greater than or equal to x. We will construct induc-
tively the sequence (bn)n>1 of partial quotients of a suitable real number α.
Denoting by (pn/qn)n>0 the sequence of convergents to α, it follows from
the continued fraction theory that, for any n > 1, we have

(3.1)
1

q2
n−1(bn + 2)

<

∣∣∣∣α− pn−1

qn−1

∣∣∣∣ <
1

q2
n−1bn

.

Recall that qn > (3/2)n for any n > 5. For any x > 1, set Ψ(x) = x2 ϕ(x).
Let n1 > 6 be such that Ψ((3/2)n) 6 10−1 for any n > n1 − 1. Then, set
b1 = . . . = bn1−1 = 1 and bn1 = d1/Ψ(qn1−1)e. Observe that bn1 > 10.
Let n2 > n1 be such that Ψ((3/2)n) 6 (10bn1)

−1 for any n > n2 − 1.
Then, set bn1+1 = . . . = bn2−1 = 1 and bn2 = d1/Ψ(qn2−1)e. Observe that
bn2 > 10bn1 .

At this step, we have

α = [0; 1n1−1
, bn1 , 1

n2−n1−1
, bn2 , . . .],

where, as in the previous Section, we denote by 1m a sequence of m consec-
utive partial quotients equal to 1. Then, we complete by symmetry, in such
a way that the continued fraction expansion of α begins with a palindrome:

α = [0; 1n1−1
, bn1 , 1

n2−n1−1
, bn2 , 1

n2−n1−1
, bn1 , 1

n1−1
, . . .].

At this stage, we have constructed the first 2n2 − 1 partial quotients of α.
Let n3 > 2n2 be such that Ψ((3/2)n) 6 (10bn2)

−1 for any n > n3 − 1.
Then, set b2n2 = . . . = bn3−1 = 1 and bn3 = d1/Ψ(qn3−1)e. Observe that
bn3 > 10bn2 . Then, we again complete by symmetry, and we repeat our
process in order to define n4, bn4 , and so on.

Clearly, the real number constructed in this way begins with infinitely
many palindromes, thus it is either quadratic or transcendental by Theo-
rem 2.1. Moreover, the assumption on the function ϕ implies that α has

TOME 57 (2007), FASCICULE 5
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unbounded partial quotients. It thus follows that it is transcendental. It
remains for us to prove that it has the required property of approximation.

By (3.1), for any j > 1, we have

(3.2)
ϕ(qnj−1)

1 + 3 q2
nj−1 ϕ(qnj−1)

<

∣∣∣∣α− pnj−1

qnj−1

∣∣∣∣ < ϕ(qnj−1).

Let pn/qn with n > n2 be a convergent to α not in the subsequence
(pnj−1/qnj−1)j>1, and let k be the integer defined by nk−1 < n < nk+1−1.
Then, by combining (3.1) with bn+1 6 bnk−1 , we have

(3.3)

∣∣∣∣α− pn

qn

∣∣∣∣ >
1

q2
n(bn+1 + 2)

>
1

q2
n(bnk−1 + 2)

>
1

3q2
n bnk−1

>
ϕ(qn)

3q2
nk−1 ϕ(qnk−1) bnk−1

,

since x 7→ x2ϕ(x) is non-increasing. We then infer from (3.3) and

bnk−1 6
bnk

10
6

11
100

· 1
q2
nk−1 ϕ(qnk−1)

that

(3.4)
∣∣∣∣α− pn

qn

∣∣∣∣ > 3 ϕ(qn).

To conclude, we observe that it follows from (3.2) that α is approximable
at order ϕ, and from (3.2), (3.4) and the fact that ϕ is non-increasing that
α is not approximable at any order cϕ with 0 < c < 1. The proof of
Theorem 3.2 is complete. �

4. Auxiliary results

The proofs of Theorems 2.3 and 2.4 depend on a result from Diophantine
approximation, namely the powerful Schmidt Subspace Theorem, stated as
Theorem 4.2 below. However, we do not need the full force of this theorem
to prove our Theorem 2.1: the transcendence criterion given by Theorem 4.1
is sufficient for our purpose.

Theorem 4.1 (W. M. Schmidt.). — Let α be a real number, which is
neither rational, nor quadratic. If there exist a real number w > 3/2 and
infinitely many triples of integers (p, q, r) with q > 0 such that

max
{∣∣∣∣α− p

q

∣∣∣∣, ∣∣∣∣α2 − r

q

∣∣∣∣} <
1
qw

,

then α is transcendental.
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Proof. — See [23]. �

Theorem 4.2 (W. M. Schmidt.). — Let m > 2 be an integer. Let
L1, . . . , Lm be linearly independent linear forms in x = (x1, . . . , xm) with
algebraic coefficients. Let ε be a positive real number. Then, the set of
solutions x = (x1, . . . , xm) in Zm to the inequality

|L1(x) . . . Lm(x)| 6 (max{|x1|, . . . , |xm|})−ε

lies in finitely many proper subspaces of Qm.

Proof. — See e.g. [24] or [25]. �

For the reader convenience, we further recall some well-known results
from the theory of continued fractions, whose proofs can be found e.g. in
the book of Perron [19]. The seemingly innocent Lemma 4.3 appears to be
crucial in the proofs of Theorems 2.3 to 3.2.

Lemma 4.3. — Let α = [0; a1, a2, . . .] be a real number with convergents
(p`/q`)`>1. Then, for any ` > 2, we have

q`−1

q`
= [0; a`, a`−1, . . . , a1].

Lemma 4.4. — Let α = [0; a1, a2, . . .] and β = [0; b1, b2, . . .] be real
numbers. Let n > 1 such that ai = bi for any i = 1, . . . , n. We then have
|α−β| 6 q−2

n , where qn denotes the denominator of the n-th convergent to
α.

Lemma 4.5. — Let n > 2 be an integer. For any positive integers
a1, . . . , an, the denominator of the rational number [0; a1, . . . , an] is at least
equal to (

√
2)n.

For positive integers a1, . . . , am, we denote by Km(a1, . . . , am) the de-
nominator of the rational number [0; a1, . . . , am]. It is commonly called a
continuant.

Lemma 4.6. — For any positive integers a1, . . . , am and any integer k

with 1 6 k 6 m− 1, we have

Km(a1, . . . , am) = Km(am, . . . , a1)

and

Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am) 6 Km(a1, . . . , am)

6 2 Kk(a1, . . . , ak) ·Km−k(ak+1, . . . , am).

TOME 57 (2007), FASCICULE 5
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5. Proof of Theorem 2.1

Let n be a positive integer. Denote by pn/qn the n-th convergent to α,
that is, pn/qn = [0; a1, a2, . . . , an]. By the theory of continued fraction, we
have

Mn :=
(

qn qn−1

pn pn−1

)
=

(
a1 1
1 0

) (
a2 1
1 0

)
. . .

(
an 1
1 0

)
.

Since such a decomposition is unique, the matrix Mn is symmetrical if and
only if the word a1a2 . . . an is a palindrome. Assume that this is case. Then,
we have pn = qn−1. Recalling that∣∣∣∣α− pn

qn

∣∣∣∣ <
1
q2
n

and
∣∣∣∣α− pn−1

qn−1

∣∣∣∣ <
1

q2
n−1

,

we infer from 0 < α < 1, a1 = an, |pnqn−1 − pn−1qn| = 1 and qn 6
(an + 1)qn−1 that∣∣∣∣α2 − pn−1

qn

∣∣∣∣ 6

∣∣∣∣α2 − pn−1

qn−1
· pn

qn

∣∣∣∣ 6

∣∣∣∣α +
pn−1

qn−1

∣∣∣∣ · ∣∣∣∣α− pn

qn

∣∣∣∣ +
1

qnqn−1

6 2
∣∣∣∣α− pn

qn

∣∣∣∣ +
1

qnqn−1
<

a1 + 3
q2
n

,

whence

(5.1) max
{∣∣∣∣α− pn

qn

∣∣∣∣, ∣∣∣∣α2 − pn−1

qn

∣∣∣∣} <
a1 + 3

q2
n

.

Consequently, if the sequence of the partial quotients of α begins in arbi-
trarily long palindromes, then (5.1) is satisfied for infinitely many integer
triples (pn, qn, pn−1). By Theorem 4.1, this shows that α is either quadratic
or transcendental.

6. Proofs of Theorems 2.3 and 2.4

Throughout the proofs of Theorems 2.3 and 2.4, for any finite word U =
u1 . . . un on Z>1, we denote by [0;U ] the rational number [0;u1, . . . , un].

Proof of Theorem 2.3. Keep the notation and the hypothesis of this theo-
rem. Let (Un)n>1 and (Vn)n>1 be the sequences occurring in the definition
of Condition (∗). Set rn = |Un| and sn = |UnVnUn|, for any n > 1. We
want to prove that the real number

α := [0; a1, a2, . . .]

ANNALES DE L’INSTITUT FOURIER
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is transcendental. By assumption, we already know that α is irrational and
not quadratic. Therefore, we assume that α is algebraic of degree at least
three and we aim at deriving a contradiction.

Let (p`/q`)`>1 denote the sequence of convergents to α. The key fact for
the proof of Theorem 2.3 is the equality

q`−1

q`
= [0; a`, a`−1, . . . , a1],

given by Lemma 4.3. In other words, if W` denotes the prefix of length `

of the sequence a, then q`−1/q` = [0; W`]. Since, by assumption, we have
psn

qsn

= [0; UnVnUn],

we get that
qsn−1

qsn

= [0; UnVn Un],

and it follows from Lemma 4.4 that

(6.1) |qsn
α− qsn−1| < qsn

q−2
rn

.

This shows in particular that

(6.2) lim
n→+∞

qsn−1

qsn

= α.

Furthermore, we clearly have

(6.3) |qsnα− psn | < q−1
sn

and |qsn−1α− psn−1| < q−1
sn

.

Consider now the four linearly independent linear forms with algebraic
coefficients:

L1(X1, X2, X3, X4) =αX1 −X3,

L2(X1, X2, X3, X4) =αX2 −X4,

L3(X1, X2, X3, X4) =αX1 −X2,

L4(X1, X2, X3, X4) =X2.

Evaluating them on the quadruple (qsn
, qsn−1, psn

, psn−1), it follows from
(6.1) and (6.3) that

(6.4)
∏

16j64

|Lj(qsn , qsn−1, psn , psn−1)| < q−2
rn

.

Our assumption and Lemma 4.5 imply that there exists a real number M

such that √
2 6 q

1/`
` 6 M

for any integer ` > 3. Thus, for any integer n > 3, we have

qrn
>
√

2
rn = (Msn)(rn log

√
2)/(sn log M) > q(rn log

√
2)/(sn log M)

sn
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and we infer from (6.4) and from (ii) of Condition (∗) that∏
16j64

|Lj(qsn
, qsn−1, psn

, psn−1)| < q−ε
sn

holds with
ε = (2 log M)−1 · (2 + lim sup

n→+∞
|Vn|/|Un|)−1

for every sufficiently large n.
It then follows from Theorem 4.2 that the points (qsn , qsn−1, psn , psn−1)

lie in a finite number of proper subspaces of Q4. Thus, there exist a non-
zero integer quadruple (x1, x2, x3, x4) and an infinite set of distinct positive
integers N1 such that

(6.5) x1qsn
+ x2qsn−1 + x3psn

+ x4psn−1 = 0,

for any n in N1. Dividing (6.5) by qsn
, we obtain

(6.6) x1 + x2
qsn−1

qsn

+ x3
psn

qsn

+ x4
psn−1

qsn−1
· qsn−1

qsn

= 0.

By letting n tend to infinity along N1 in (6.6), it follows from (6.2) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since, by assumption, α is not a quadratic number, we have x1 = x4 = 0
and x2 = −x3. Then, (6.5) implies that

(6.7) qsn−1 = psn .

Consider now the three linearly independent linear forms with algebraic
coefficients:

L′1(Y1, Y2, Y3) = αY1−Y2, L′2(Y1, Y2, Y3) = αY2−Y3, L′3(Y1, Y2, Y3) = Y1.

Evaluating them on the triple (qsn
, psn

, psn−1), we infer from (6.3) and
(6.7) that ∏

16j63

|L′j(qsn , psn , psn−1)| < q−1
sn

.

It then follows from Theorem 4.2 that the points (qsn
, psn

, psn−1) with
n in N1 lie in a finite number of proper subspaces of Q3. Thus, there exist
a non-zero integer triple (y1, y2, y3) and an infinite set of distinct positive
integers N2 such that

(6.8) y1qsn + y2psn + y3psn−1 = 0,

for any n in N2. Dividing (6.8) by qsn , we get

(6.9) y1 + y2
psn

qsn

+ y3
psn−1

qsn−1
· qsn−1

qsn

= 0.
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By letting n tend to infinity along N2, it thus follows from (6.7) and (6.9)
that

y1 + y2α + y3α
2 = 0.

Since (y1, y2, y3) is a non-zero triple of integers, we have reached a contra-
diction. Consequently, the real number α is transcendental. This completes
the proof of the theorem. �

Proof of Theorem 2.4. Keep the notation and the hypothesis of this
theorem. Assume that the parameter w is fixed, as well as the sequences
(Un)n>1, (Vn)n>1 and (Wn)n>1. Set also rn = |Wn|, sn = |WnUn| and
tn = |WnUnVnUn|, for any n > 1. We want to prove that the real number

α := [0; a1, a2, . . .]

is transcendental. By assumption, we already know that α is irrational and
not quadratic. Therefore, we assume that α is algebraic of degree at least
three and we aim at deriving a contradiction. Throughout this Section, the
constants implied by � depend only on α. In view of Theorem 2.3, we may
assume that rn > 1 for any n.

The key idea for our proof is to consider, for any positive integer n, the
rational Pn/Qn defined by

Pn

Qn
:= [0; WnUnVnUn Wn]

and to use the fact that the word WnUnVnUn Wn is a quasi-palindrome.
Let P ′n/Q′n denote the last convergent to Pn/Qn and different from Pn/Qn.
By assumption we have

ptn

qtn

= [0; WnUnVnUn]

and it thus follows from Lemma 4.4 that

(6.10) |Qnα− Pn| < Qnq−2
tn

and

(6.11) |Q′nα− P ′n| < Q′nq−2
tn

,

since Wn has at least one letter. Furthermore, Lemma 4.3 implies that

Q′n
Qn

= [0; WnUnVn Un Wn],

and we get from Lemma 4.4 that

(6.12) |Qnα−Q′n| < Qnq−2
sn

.
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This shows in particular that

(6.13) lim
n→+∞

Q′n
Qn

= α.

Consider now the following four linearly independent linear forms with
algebraic coefficients:

L1(X1, X2, X3, X4) =αX1 −X3,

L2(X1, X2, X3, X4) =αX2 −X4,

L3(X1, X2, X3, X4) =αX1 −X2,

L4(X1, X2, X3, X4) =X2.

Evaluating them on the quadruple (Qn, Q′n, Pn, P ′n), it follows from (6.10),
(6.11) and (6.12) that

(6.14)
∏

16j64

|Lj(Qn, Q′n, Pn, P ′n)| < Q4
nq−4

tn
q−2
sn

.

We infer from Lemma 4.6 that

(6.15) qtnqrn 6 Qn 6 2qtnqrn and q2
sn

6 Qn 6 q2
tn

,

and thus (6.14) gives

(6.16)
∏

16j64

|Lj(Qn, Q′n, Pn, P ′n)| � q4
rn

q−2
sn

.

Moreover, by our assumption (2.1), there exists η > 0 such that, for any n

large enough, we have

|Un| >
(

2
log M

log m
· 1 + η

1− η
− 1

)
|Wn|,

thus

sn >
2(1 + η)(log M)
(1− η)(log m)

rn.

Consequently, assuming that n is sufficiently large, we get

m(1−η)sn > M2(1+η)rn

and
qsn > q2+η′

rn
,

for some positive real number η′. It then follows from (6.16) that

(6.17)
∏

16j64

|Lj(Qn, Q′n, Pn, P ′n)| � q−2η′/(2+η′)
sn

.

Our assumption and Lemma 4.5 imply that we have
√

2 6 q
1/`
` 6 2M,
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for any ` large enough. Thus, for any integer n large enough, we have

qsn >
√

2
sn = ((2M)tn)(sn log

√
2)/(tn log 2M) > q

(sn log
√

2)/(tn log 2M)
tn

> Q(sn log
√

2)/(2tn log 2M)
n ,

by (6.15). We then infer from (6.17) and from (ii) of Condition (∗)w that

(6.18)
∏

16j64

|Lj(Qn, Q′n, Pn, P ′n)| � Q−ε
n

holds for some positive ε.
It then follows from Theorem 4.2 that the points (Qn, Q′n, Pn, P ′n) lie in

a finite number of proper subspaces of Q4. Thus, there exist a non-zero
integer quadruple (x1, x2, x3, x4) and an infinite set of distinct positive
integers N3 such that

(6.19) x1Qn + x2Q
′
n + x3Pn + x4P

′
n = 0,

for any n in N3. Dividing by Qn, we obtain

x1 + x2
Q′n
Qn

+ x3
Pn

Qn
+ x4

P ′n
Q′n

· Q′n
Qn

= 0.

By letting n tend to infinity along N3, we infer from (6.13) that

x1 + (x2 + x3)α + x4α
2 = 0.

Since (x1, x2, x3, x4) 6= (0, 0, 0, 0) and since α is irrational and not qua-
dratic, we have x1 = x4 = 0 and x2 = −x3. Then, (6.19) implies that

(6.20) Q′n = Pn.

Consider now the following three linearly independent linear forms with
algebraic coefficients:

L′1(Y1, Y2, Y3) = αY1 − Y2, L′2(Y1, Y2, Y3) = αY2 − Y3, L′3(Y1, Y2, Y3) = Y1.

Evaluating them on the quadruple (Qn, Pn, P ′n), it follows from (6.10),
(6.11), (6.15) and (6.20) that∏

16j63

|Lj(Qn, Pn, P ′n)| � Q3
nq−4

tn
� q4

rn
Q−1

n � q4
rn

q−2
sn

� Q−ε
n ,

with the same ε as in (6.18). It then follows from Theorem 4.2 that the
points (Qn, Pn, P ′n) lie in a finite number of proper subspaces of Q3. Thus,
there exist a non-zero integer triple (y1, y2, y3) and an infinite set of distinct
positive integers N4 such that

y1Qn + y2Pn + y3P
′
n = 0,
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for any n in N4. We then proceed exactly as at the end of the proof of
Theorem 2.3 to reach a contradiction. This finishes the proof of our theo-
rem. �

7. Conclusion

As already mentioned in Section 2, the transcendence criteria obtained
in the present paper by making use of symmetric patterns in continued
fractions are analogous to those derived thanks to repetitive patterns in
[3, 6]. Moreover, all these results rely on a common tool: the Subspace
Theorem. This naturally leads us to ask whether it would be possible to
derive some results of the present paper from [3, 6] or vice-versa; or more
generally whether there is a strong link between occurrences of repetitive
patterns and those of symmetric ones in continued fractions. We shall now
show that, in general, such a link fails.

Let us consider the free monoid generated by the alphabet {1, 2, 3} and
the morphism σ mapping 1 on 123, 2 on 123 and 3 on 1. Iterating this
morphism from the letter 1 gives rise to an infinite sequence and then to
the following continued fraction

[0; 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, ...].

This continued fraction contains a lot of large repetitive patterns. In par-
ticular, it begins with arbitrarily long squares (blocks of the form AA), so
that it is transcendental by virtue of Theorem 1 of [3]. On the other hand,
it contains no large symmetric pattern since the pattern 3, 2 does not occur
at all. Hence, there is no reason that occurrences of repetitive patterns do
imply those of symmetric ones.

Now, let us have a look on the converse situation which is more delicate.
For every positive integers n < m, let us denote by X[n,m] the pattern
n, n + 1, n + 2, . . . ,m. We then define the continued fraction

ξ := [0, X[1,2], X[1,2], X[3,8], X[3,8], X[9,64], X[9,64], . . . ,

X[8n+1,8n+1], X[8n+1,8n+1], . . .].

The transcendence of ξ follows from the proof of our Theorem 2.4 thanks
to the precocious occurrences of large palindromes, namely X[8n+1,8n+1],

X[8n+1,8n+1]. To see this, for any integer n > 2, set

Wn = X[1,2]X[1,2], X[3,8]X[3,8]X[9,64]X[9,64], . . . , X[8n−1+1,8n], X[8n−1+1,8n],

Un = X[8n+1,8n+1], let Vn be the empty word,
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and define sn, Qn as in the proof of Theorem 2.4. We infer from Lemma 4.6
that qsn

� Q
1/2
n , thus (6.18) holds for some positive ε. Continuing exactly

as in the proof of Theorem 2.4, we get that ξ is transcendental. We point out
that the continued fraction expansion of ξ has no large repetitive pattern,
so that occurrences of symmetric patterns do not imply in general those of
repetitive ones.

Despite of the previous example, there is an important case where “sym-
metry implies periodicity”. In more concrete terms, the following statement
holds. Let us assume that a is a bounded sequence of positive integers be-
ginning with arbitrarily large palindromes Wn. If we add the condition that
a has a positive palindrome density, that is, if

lim sup
n→+∞

|Wn+1|
|Wn|

< +∞,

then the sequence a contains arbitrarily large initial repetitions, in the
sense that it satisfies the condition (∗)w of Theorem 1 of [3] for some real
number w > 1. Such a relation is for instance used in the proof of Theorem
4 of [5].

Acknowledgements: We are very grateful to the referee for his careful
reading and for several remarks that helped us to improve the presentation
of the paper.
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