MITSURU NAKAI On Φ-bounded harmonic functions

Annales de l'institut Fourier, tome 16, nº 1 (1966), p. 145-157 <http://www.numdam.org/item?id=AIF_1966__16_1_145_0>

© Annales de l'institut Fourier, 1966, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON Φ -BOUNDED HARMONIC FUNCTIONS

by MITSURU NAKAI

1. Throughout this paper, we denote by $\Phi(t)$ a non-negative realvalued function defined on the half real line $[0, \infty) = (t; 0 \le t < \infty)$. A harmonic function u on a Riemann surface R is called Φ -bounded if the composite function $\Phi(|u|)$ admits a harmonic majorant on R, i. e. there exists a harmonic function h such that $\Phi(|u|) \le h$ on R. We denote by

$$H\Phi = H\Phi(R)$$

the totality of Φ -bounded harmonic functions on a Riemann surface R and by $O_{H\Phi}$ the class of all Riemann surfaces on which every Φ -bounded harmonic function reduces to a constant. In our study, the following two quantities will play an important role :

$$\bar{d} (\Phi) = \limsup_{t \to \infty} \Phi(t)/t$$
$$\underline{d} (\Phi) = \liminf_{t \to \infty} \Phi(t)/t$$

The properties of H Φ -functions on Riemann surfaces and the class $O_{\pi\Phi}$ are first investigated by Parreau [3] for the special $\Phi(t)$ which is increasing and convex (¹). In the present paper we shall investigate the same problem for general $\Phi(t)$. Our conclusion is, roughly speaking, that Parreau's result about $O_{\pi\Phi}$ holds essentially for general $\Phi(t)$ and his result about properties of H Φ -functions can be derived by assuming $\underline{d}(\Phi) > 0$ instead of increasingness and convexity which is, in a sense, the weakest condition.

- 2. As for the class $O_{H\Phi}$, Parreau [3] showed that the class $O_{H\Phi}$ for
- (1) For such a function, it is well-known that $\overline{d}(\Phi) = \underline{d}(\Phi) > 0$.

M. NAKAI

increasing and convex $\Phi(t)$ coincides with $O_{\rm HP}$ or $O_{\rm HB}(^2)$ according to $\bar{d}(\Phi) < \infty$ or $\bar{d}(\Phi) = \infty$, respectively. Now we ask what can be said about $O_{\rm H\Phi}$ for general $\Phi(t)$. The answer is given by

THEOREM 1. — If $\overline{d}(\Phi) < \infty$ (resp. $\overline{d}(\Phi) = \infty$), then $O_{H\Phi} \subset O_{HP}$ (resp. $O_{H\Phi} \supset O_{HB}$).

This was proved implicitly in our former paper [2] by using Wiener's compactification of Riemann surfaces. We shall again give an alternating elementary proof in § 1. In this theorem, we cannot replace the inclusion relation by the equality in general. But the function $\Phi(t)$, by which the equality does not hold in the above theorem, is very singular and trivial one from the view point of H Φ -functions as the following shows :

THEOREM 2. — (i) If $\Phi(t)$ is bounded on $[0, \infty)$, then $O_{H\Phi}$ consists of all closed Riemann surfaces;

(ii) If Φ (t) is completely unbounded (³) on $[0, \infty)$, then $O_{H\Phi}$ consists of all open Riemann surfaces;

(iii) If $\Phi(t)$ is not bounded and not completely unbounded, then $O_{H\Phi} = O_{HP}$ or O_{HB} according to $\overline{d}(\Phi) < \infty$ or $\overline{d}(\Phi) = \infty$, respectively.

This was proved in [2] and determines the class $O_{H\bullet}$ completely for any possible $\Phi(t)$. This is easily proved by using Theorem 1. We will do this also in § 1.

Observing Theorem 2, we are tempted to conclude that H Φ -property is closely related to positiveness or boundedness properties except trivial Φ 's as in (i) or (ii). Next we consider this problem. To state the problem formally, let us recall three notions for harmonic functions : essentially positive, quasi-bounded and singular.

3. A harmonic function u on a Riemann surface R is called *essentially positive* if u can be represented as a difference of two HP-functions on R, or equivalently, if u admits a harmonic majorant on R. We denote the totality of essentially positive harmonic functions on R by

HP' = HP'(R).

(2) As usual, HP (R) (resp. HB (R)) denotes the totality of non-negative (resp. bounded) harmonic functions on R. The meaning of O_{HP} and O_{HB} is similar to that of $O_{H\Phi}$.

(3) We say that $\Phi(t)$ is completely unbounded on $[0, \infty)$ if $\Phi(t)$ is not bounded at any neighbourhood of any point in $[0, \infty)$.

146

Clearly HP' (R) \supset HP (R). For two functions u and v in HP' (R), there always exists the least harmonic majorant (resp. the greatest harmonic minorant) of u and v, which we denote by $u \lor v$ (resp. $u \land v$). Then HP' (R) forms a vector lattice with lattice operations $\lor and \land$. For u in HP' (R), we denote by Mu the function $u \lor 0 + (-u) \lor 0$, which is the least harmonic majorant of |u|. Next first for u in HP (R), we denote by Bu the HP-function defined by $\sup (v (p); u \ge v \in HB (R))$ on R. Clearly B is order-preserving, linear and $B^2 = B$ on HP (R) (see Ahlfors-Sario [1], p. 210). Next for u in HP' (R), we put $Bu = Bu_1 - Bu_2$, where $u = u_1 - u_2$ and u_1 and u_2 are in HP (R). Here, by the linearity of B on HP (R), Bu does not depend on the special decomposition of uinto HP-functions. Again the operator B is order-preserving, linear and $B^2 = B$ on HP' (R) and moreover B commutes with M, \lor , and \land . This is clear on HP (R) by definitions of B, \lor , \land and M. For the general case, we have only to show that B ($u \lor 0$) = (Bu) $\lor 0$. Since

$$Bu = B (u \vee 0) - B ((-u) \vee 0)$$

and

$$B (u \lor 0) \land B ((-u) \lor 0) = B ((u \lor 0) \land ((-u) \lor 0))$$

= B0 = 0,

B $(u \lor 0)$ is the positive part of the Jordan decomposition of Bu.

An HP'-function u is called *quasi-bounded* (resp. *singular*) if Bu = u (resp. Bu = 0). These notions were introduced by Parreau [3]. We denote the totality of quasi-bounded harmonic functions on R by

$$HB' = HB'(R).$$

Clearly HB' \supset HB. Since B commutes with M, \lor and \land , we see that Bu = u is equivalent to BMu = Mu. Hence we can also define

$$HB'(R) = (u \in HP'(R); BMu = Mu).$$

4. Parreau [3] showed that, for increasing and convex function $\Phi(t)$, $H\Phi \subset HP'$ and if moreover $\overline{d}(\Phi) = \infty$, then $H\Phi \subset HB'$. Our next problem is to investigate whether such relations hold or not for general $\Phi(t)$. The answer is negative in general: we shall single out in § 4 an increasing continuous unbounded function $\Phi(t)$ with $\overline{d}(\Phi) < \infty$ and $\underline{d}(\Phi) = 0$ and an H Φ -function in the open unit disc which is not an HP'-function there (*Example 2*). This shows the invalidity of $H\Phi \subset HP'$

in general. Only for this aim, we may take bounded $\Phi(t)$. But we are interested in unbounded $\Phi(t)$. We shall also construct in § 3 an increasing continuous function $\Phi(t)$ with $\overline{d}(\Phi) = \infty$ and $\underline{d}(\Phi) = 0$ and an H Φ function in the open unit disc which is not an HP'-function there (*Example 1*). This shows the invalidity of the relation $H\Phi \subset HP'$ and so of the relation $H\Phi \subset HB'$ even if $\overline{d}(\Phi) = \infty$.

Then there arises the question when can we conclude the relation $H\Phi \subset HP'$ or HB'. Both examples above show that unboundedness, not completely unboundedness, increasingness, continuity or all of them cannot give the condition. In both examples above, $\underline{d}(\Phi) = 0$. This suggests us that the required condition may be $\underline{d}(\Phi) > 0$. This is really the case. Firstly the answer for $H\Phi \subset HP'$ is given completely by the following which includes Parreau's case :

THEOREM 3. — In order that $H\Phi(\mathbf{R}) \subset HP'(\mathbf{R})$ for any Riemann surface \mathbf{R} , it is necessary and sufficient that $\underline{d}(\Phi) > 0$ (no matter whether $\overline{d}(\Phi)$ is finite or infinite).

The proof of this will be given in § 5. Similarly we ask about the condition which assures the relation $H\Phi \subset HB'$. In this case, even in the Parreau's case, we must assume that $\overline{d}(\Phi) = \infty$ as the following simple example shows: $\Phi(t) = t$, $\mathbf{R} = (z; 0 < |z| < 1)$ and $u(z) = -\log |z|$. The best possible general conclusion is as follows:

THEOREM 4. — If $\tilde{d}(\Phi) = \infty$, then $H\Phi(R) \cap HP'(R) \subset HB'(R)$.

Here we cannot drop HP'(R) in the above relation as Example 1 shows. The above theorem will be proved in § 6. Now assume that $\underline{d}(\Phi) > 0$, then by Theorems 3 and 4, H $\Phi(R) \subset HB'(R)$. Conversely if H $\Phi(R) \subset HB'(R)$ for any R, then H $\Phi(R) \subset HP'(R)$ for any R and by Theorem 3, $\underline{d}(\Phi) > 0$. Thus we get the following which includes Parreau's case :

THEOREM 5. — Assume that $\underline{d}(\Phi) = \infty$. In order $H\Phi(R) \subset HB'(R)$ for any Riemann surface R, it is necessary and sufficient that $\underline{d}(\Phi) > 0$.

1. Proofs of Theorems 1 and 2.

1. Proof of Theorem 1. — I. The case $\overline{d}(\Phi) = \infty$: Assume that there exists a non-constant H Φ -function u on R. By the definition of

Φ-boundedness, there exists an HP-function *h* such that Φ(|u|) ≤ hon R. We have to show that $R \notin O_{HB}$. Contrary to the assertion, assume that $R ∈ O_{HB}$. Since $\bar{d}(Φ) = ∞$, we can find a strictly increasing sequence $(r_n)_{n=1}^{\infty}$ of positive numbers r_n such that $\lim_{n \to \infty} r_n = ∞$, $Φ(r_n) > 0$, $G_n = (p ∈ R; |u(p)| < r_n) ≠ O$ and $\lim_{n \to ∞} a_n = 0$, where $a_n = r_n/Φ(r_n)$. Then clearly

$$G_1 \subset G_2 \subset ... \subset G_n \subset ..., R = \bigcup_{n=1}^{\infty} G_n.$$

First we show that $G_n \notin SO_{HB}$ for some *n* on (4). If this is not the case, then $G_n \in SO_{HB}$ for all *n*'s. Then since $a_nh - |u|$ is superharmonic and bounded from below on G_n and

$$a_{n}h - |u| \geq a_{n} \Phi(|u|) - |u| = a_{n} \Phi(r_{n}) - r_{n} = 0$$

on ∂G_n , we can conclude that $a_n h - |u| \ge 0$ on G_n . Since $a_n \searrow 0$, we must have $u \equiv 0$ on R, which is clearly a contradiction. Hence we may assume that $G_n \notin SO_{HB}$ (n = 1, 2, 3, ...) by choosing a suitable subsequence of (r_n) , if necessary.

Next we assert that $G_n - \overline{G}_1 \in SO_{HB}$ (n = 1, 2, 3, ...). For, if there exists a G_n with $G_n - \overline{G}_1 \notin SO_{HB}$, then there would exist two disjoint non-empty open sets G_1 and $G_n - \overline{G}_1$ not belonging to SO_{HB} . By the so called "two domains criterion", we must have that $R \notin O_{HB}$ (see Ahlfors-Sario [1], p. 213). But this contradicts our assumption $R \in O_{HB}$.

Now consider the function $w_n = a_n h + r_1 - |u|$ on G_n , which is superharmonic and bounded from below on G_n and so on $G_n - \overline{G}_1$. By the similar manner as before, we see that $w_n \ge a_n h - |u| = 0$ on ∂G_n . Clearly $w_n \ge r_1 - |u| = 0$ on ∂G_1 . Hence $w_n \ge 0$ on $\partial (G_n - \overline{G}_1)$. Since $G_n - \overline{G}_1 \in SO_{HB}$, we can conclude that $w_n \ge 0$ on G_n or $|u| \le a_n h + r_1$ on G_n . Hence by the fact that $a_n \ge 0$, we get that $|u| \le r_1$ on R. This contradicts our assumption that $R \in O_{HB}$. Thus we must have $R \notin O_{HB}$.

II. The case $\overline{d}(\Phi) \leq \infty$: Assume that there exists a non-constant HP-function u on R. By $\overline{d}(\Phi) < \infty$, we can find a point s in $[0, \infty)$ such that there exists a finite positive constant C with $\Phi(t) \leq Ct$ ($s \leq t < \infty$). Let v = s + u. Clearly v is a non-constant HP-function on R with

⁽⁴⁾ An open subset G of a Riemann surface R with smooth relative boundary ∂G is said to belong to SO_{HB} if every HB-function on G with continuous boundary value zero at ∂G reduces to a constant zero.

 $v \ge s$ on R. Hence $\Phi(|v|) = \Phi(v) \le Cv$ on R. Thus v is a non-constant H Φ -function on R and so R $\notin O_{H\Phi}$.

2. Proof of Theorem 2. — Ad (i) : If $\Phi(t)$ is bounded, then every non-constant harmonic function is an H Φ -function. Thus $O_{H\Phi}$ consists of all Riemann surfaces carrying no non-constant harmonic function, which are closed Riemann surfaces.

Ad (ii): For any non-constant harmonic function u on R, since u is open map of R into $[0, \infty)$ by the maximum principle, $\Phi(|u|)$ is completely unbounded on R along with $\Phi(t)$ and so u is not H Φ -function. Thus there exists no non-constant H Φ -function on any Riemann surface and $O_{\text{H}\Phi}$ consists of all Riemann surfaces.

Ad (iii): Assume that $\overline{d}(\Phi) = \infty$ and that there exists a nonconstant HB-function u on R. As $\Phi(t)$ is not completely unbounded, so there exists an interval (a, b) in which $\Phi(t) < c = \text{const.}$ Let

$$v = (a + b)/2 + ((b - a)/2) (\sup_{\mathbf{R}} |u|)^{-1} u.$$

Then v is a non-constant HB-function and $\Phi(|v|) = \Phi(v) < c$ on R. Thus $O_{H\Phi} \subset O_{HB}$. This with Theorem 1 gives $O_{H\Phi} = O_{HB}$.

Next assume that $\overline{d}(\Phi) < \infty$. By Theorem 1, $O_{HP} \supset O_{H\Phi}$. Contrary to the assertion; assume that there exists an R in $O_{HP} - O_{H\Phi}$. Let u be a non-constant H Φ -function on R. Then $\Phi(|u|) \leq c = \text{constant}$ on R. Since $\Phi(t)$ is unbounded and |u|(R) is connected in $[0, \infty)$ and contains 0, u must be bounded on R. Then $\sup_{R} |u| + u$ is a non-constant HP-function on R, which contradicts the assumption that $R \in O_{HP}$. Hence $O_{H\Phi} = O_{HP}$.

2. Preparations for Examples.

Let U = (z; |z| < 1) and A be an arc in $\partial U = (z; |z| = 1)$. We denote by w(z; A) the harmonic measure of A calculated at z in U with respect to U. It is well known that

(1)
$$w(z; A) = (2\beta - \alpha)/2\pi,$$

where α is the length of A and β is the angle seeing the arc A from z.

150

We denote by L_A the line segment connecting both end points of A. Then from (1), we easily see that

- (2) $w(0; A) = \alpha;$
- (3) $w(z; \mathbf{A}) = 1 \alpha/2\pi$ on $\mathbf{L}_{\mathbf{A}}$.

Next let A_j be the arc in $\partial U = (z; |z| = 1)$ with end points 1 and $e^{ia_j}(j = 1, 2)$ such that $0 < \alpha_1 < \alpha_2, \alpha_1 < \pi/2, \alpha_2 < \pi/2$. We denote by \widetilde{A}_j (resp. A'_j) the arc with end points 1 and $e^{-i\alpha_j}$ (resp. $A'_j = A_j \cup \widetilde{A}_j$). For simplicity, we set $L_2 = L_{A_2}$, i.e. L_2 is the line segment connecting two end points of A'_2 . Then we get the following inequality which plays an important role in our forth-coming examples : there exists a universal constant $s_0 (\leq 4^{-1} \pi^4)$ such that

(4)
$$|w(z; A_1) - w(z; \widetilde{A}_1)| \leq s_0 \alpha_1^2 / (\alpha_2^2 - \alpha_1^2)^2$$
 on L_2

Proof. — We denote the points $e^{i\alpha_1}$, $e^{-i\alpha_1}$, $(e^{i\alpha_1} + e^{-i\alpha_1})/2$, 1, $(e^{i\alpha_2} + e^{-i\alpha_2})/2$ and z on L₂ with $\text{Im}(z) \ge 0$ by D, E, F, G, H and P respectively. We set DF = FE = d, FH = k, DP = a, PF = b and PE = c. By (1), $w(z; A_1) - w(z; \tilde{A}_1) = (\angle \text{DPG} - \angle \text{GPE})/\pi$. Let $\angle \text{DPF} = \theta_1$ and $\angle \text{FPE} = \theta_2$. Then clearly $\angle \text{DPG} \le \theta_1$ and $\angle \text{GPE} \ge \theta_2$. Hence we have $0 \le w(z; A_1) - w(z; \tilde{A}_1) \le (\theta_1 - \theta_2)/\pi$. Applying the cosine theorem to triangles $\triangle \text{DPF}$ and $\triangle \text{FPE}$ and then Pappos' identity to the triangle $\triangle \text{DPE}$, we have

$$\sin 2^{-1}(\theta_1 - \theta_2) = (c - a) \ (8 \ abc \ \sin 2^{-1}(\theta_1 + \theta_2))^{-1}(4 \ d^2 - (a - c)^2).$$

Here we have

$$ac \sin 2^{-1} (\theta_1 + \theta_2) \ge ac \sin 2^{-1} (\theta_1 + \theta_2) \cos 2^{-1} (\theta_1 + \theta_2)$$
$$= 2^{-1} ac \sin \angle DPE = \Delta DPE$$
$$= \Delta DHE = dk.$$

By the triangle inequality applied for ΔDPE , $c - a \leq 2d$. Thus by noticing $b \geq k$, we have $\sin 2^{-1} (\theta_1 - \theta_2) \leq d^2 k^{-2}$. As

$$\sin\theta \geqslant (2/\pi) \ \theta \qquad (0 \leqslant \theta \leqslant 2^{-1} \ \pi),$$

so $\theta_1 - \theta_2 \leqslant \pi d^2 k^{-2}$. Now we have $d = \sin \alpha_1 \leqslant \alpha_1$ and

$$k = \cos \alpha_1 - \cos \alpha_2$$

= 2 sin⁻¹ (\alpha_1 + \alpha_2) sin 2⁻¹ (\alpha_2 - \alpha_1) \ge 2 \pi^{-2} (\alpha_2^2 - \alpha_1^2).

Hence

$$0 \leq w(z; A_1) - w(z; \tilde{A}_1) \leq 4^{-1} \pi^4 \alpha_1^2 / (\alpha_2^2 - \alpha_1^2)^2. \quad Q.E.D.$$

M. NAKAI

We shall use (4) in the particular case where $0 < \alpha_1 < \alpha_2/\sqrt{2}$. In this case, by using universal constant $s (\leq \pi^4)$, we get

(5)
$$|w(z;A_1)-w(z;\tilde{A}_1)| \leq s(\alpha_1^2/\alpha_2^4)$$
 on L_2 .

3. Example 1.

We are now able to construct an example of a function Φ which is continuous, increasing, $\bar{d}(\Phi) = \infty$ and $\underline{d}(\Phi) = 0$; and an H Φ -function u in then open unit disc U = (z; |z| < 1) which is not an HP'-function.

EXAMPLE 1. Let p be a constant such that 0 , $where s is the constant in (5) in § 2, and <math>(p_n)_{n=1}^{\infty}$ be a sequence defined by $p_n = (p^{4\nu})^{2\nu+\mu}$ for $n = 2^{\nu} + \mu$ ($\nu = 0, 1, 2, ...; \mu = 1, 2, 3, ..., 2^{\nu}$). Let A_n and \widetilde{A}_n be arcs on the unit circumference such that

$$\mathbf{A}_n = (e^{i\theta}; 0 \leqslant \theta \leqslant 2 \ p_n \ \pi/n)$$

and

$$\widetilde{\mathbf{A}}_n = (e^{i\theta}; -2 p_n \pi/n \leq \theta \leq 0)$$

Let $(r_{\nu})_{\nu=1}^{\infty}$ and $(b_{\nu})_{\nu=1}^{\infty}$ be two sequences of positive numbers defined by $r_{\nu} = 2/(p^{4\nu-1})^{2\nu}$ and $b_{\nu} = 2^{\nu/2} \cdot r_{\nu}$. Define the function $\Phi(t)$ on $[0, \infty]$ by

$$\Phi(t) = \begin{cases} 0, & t \in [0, r_1]; \\ b_1(t - r_1), & t \in [r_1, r_1 + 1]; \\ b_{\nu}, & t \in [r_{\nu} + 1, r_{\nu+1}] \ (\nu = 1, 2, ...); \\ b_{\nu} + (b_{\nu+1} - b_{\nu}) \ (t - r_{\nu+1}), & t \in [r_{\nu+1}, r_{\nu+1} + 1] \ (\nu = 1, 2, ...); \end{cases}$$

and the function u(z) in U by

$$u(z) = \sum_{n=1}^{\infty} (w(z; \mathbf{A}_n) - w(z; \widetilde{\mathbf{A}}_n))/p_n.$$

Then the following hold :

- (a) $\Phi(t)$ is continuous, increasing, $\overline{d}(\Phi) = \infty$ and $\underline{d}(\Phi) = 0$;
- (b) u(z) is well defined in U and harmonic there;
- (c) $u(z) \in H \Phi(U);$
- (d) $u(z) \notin HP'(U)$.

Proof of (a). — Is immediate by the definition of $\Phi(t)$.

Proof of (b). — For each
$$n = 1, 2, ...,$$
 set
 $v_n(z) = w(z; A_n) - w(z; \tilde{A}_n), \qquad u_n(z) = \sum_{k=1}^n v_k(z)/p_k.$

Then v_n and u_n are harmonic in U, positive in the upper half of U and $v_n(-z) = -v_n(z)$ and $u_n(-z) = -u_n(z)$ in U. Hence to show that the series defining u(z) is convergent in U and defines a harmonic function there, we have only to prove that $(u_n(i/2))_{n=1}^{\infty}$ is convergent. By (5) in § 2, we have that

$$0 < v_n (i/2) \leq s (2 p_n \pi/n)^2/(\pi/2)^4 \leq s' p_n^2$$

where s' is a constant independent of $n \ge 1$. Thus

$$0 < u_{n+m}(i/2) - u_n(i/2) = \sum_{k=n+1}^{n+m} v_k(i/2) / p_k \leq s' \sum_{k=n+1}^{n+m} p_k < s' p^n / (1-p).$$

This shows that $(u_n(i/2))_{n=1}^{\infty}$ is convergent.

Proof of (c). — For each $\nu = 1, 2, ...,$ we denote by L_{ν} the line segment $L_{A_{2^{\nu}}}$, i.e. the line segment connecting two end points of $A'_{2^{\nu}} = A_{2^{\nu}} \cup \tilde{A}_{2^{\nu}}$. Since $|\nu_k(z)| < 1$ in U, we have

$$\left|\nu_{k}(z)/p_{k}\right| \leqslant 1/p_{k} \leqslant 1/(p^{4^{\nu-1}})^{k} \quad (1 \leqslant k \leqslant 2^{\nu})$$

on U and so on L_{ν} . Next for $k = 2^{\nu} + \mu$ ($\mu = 1, 2, ...$) and $z \in L_{\nu}$, by (5) in § 2, we have that

$$v_{k}(z)/p_{k} \leqslant s(2 p_{k} \pi/k)^{2}/(2 p_{2^{\nu}} \pi/2^{\nu})^{4} p_{k}$$

= $s(2^{4^{\nu}}/4 \pi^{2} k^{2}) [p_{k}/p_{2}^{4}]$
 $\leqslant s(2^{4^{\nu}}/4 \pi^{2} k^{2}) [(p^{4^{\nu}})^{k}/((p^{4^{\nu-1}})^{2^{\nu}})^{4}]$
= $s(2^{4^{\nu}}/4 \pi^{2} k^{2}) p^{4^{\nu\mu}} \leqslant p^{4^{\nu}(\mu-1)}.$

Hence for z in L_{ν} , we get that

$$| u(z) | \leq \sum_{k=1}^{2^{\nu}} |v_k(z)/p_k| + \sum_{k=2^{\nu}+1}^{\infty} |v_k(z)/p_k|$$

$$\leq \sum_{k=1}^{2^{\nu}} \frac{1}{(p^{4^{\nu-1}})^k} + \sum_{\mu=1}^{\infty} p^{4^{\nu}(\mu-1)}$$

$$\leq \frac{2}{(p^{4^{\nu-1}})^{2^{\nu}}} = r_{\nu}.$$

Since u(z) is quasi-bounded in the upper half of U and in the lower half of U respectively, we have, for $e^{i\theta}$ in U — A'_{2^{\nu}}, that

$$|u(e^{i\theta})| = \sum_{k=1}^{2^{\nu}} |v_n(e^{i\theta})| \leqslant \sum_{k=1}^{2^{\nu}} 1/p_k$$

$$=\sum_{k=1}^{2^{\nu}} 1/(p^{4^{\nu-1}})^k \leqslant r_{\nu}.$$

Hence by the maximum principle, $0 \leq u(z) \leq r_{\nu}$ in the intersection of the upper half of U and the left side of L_{ν} in U. Hence $|u(z)| \leq r_{\nu}$ in the left side of L_{ν} in U. By (3) in § 2, we see that $w(z; A'_{2\nu}) \geq 1 - p_{2\nu}/2^{\nu}$ on L_{ν} and so on the right side of L_{ν} in U. Hence if z lies between L_{ν} and $L_{\nu+1}$ in U, $b_{\nu} w(z; A'_{2\nu}) \geq b_{\nu} - 2^{-\nu/2+2} \geq \Phi(|u(z)|) - 2^{-\nu/2+2}$, or $\Phi(|u(z)|) \leq b_{\nu} w(z; A'_{2\nu}) + 2^{-\nu/2+2}$, since $\Phi(t) \leq b_{\nu}$ if $t \leq r_{\nu+1}$. On the other hand,

$$2\pi b_{\nu} w(0; \mathbf{A}'_{2^{\nu}}) = b_{\nu}(4p_{2^{\nu}}\pi/2^{\nu}) = 8\pi 2^{-\nu/2}.$$

Hence if we set $w(z) = \sum_{\nu=1}^{\infty} (b_{\nu} w(z; A_{2^{\nu}}) + 2^{-\nu/2+2})$, then $w(0) = 8 \cdot \sum_{\nu=1}^{\infty} 2^{-\nu/2} < \infty$ and so $w(z) \in HP(U)$. Thus $\Phi(|u(z)|) \leq b_{\nu} w(z; A'_{2^{\nu}}) + 2^{-\nu/2+2} \leq w(z)$

between L_{ν} and $L_{\nu+1}$ in U. As ν is arbitrary, so $\Phi(|u(z)|) \leq w(z)$ in U (⁵). This shows that $u \in H \Phi(U)$.

Proof of (d). — Contrary to the assertion, assume that $u \in HP'(U)$. Then |u(z)| has a harmonic majorant h(z) on U. As u(z), $u_n(z)$ and $v_n(z)$ are positive in the upper half of U and antisymmetric with respect to the real line (i.e. u(z) = -u(-z) etc.), so $h(z) \ge |u(z)| \ge |u_n(z)|$ in U. Clearly $|u_n(z)| = \sum_{k=1}^n |w(z; A_k) - w(z; \widetilde{A}_k)|/p_k$ and the least harmonic majorant of the subharmonic function $|u_n(z)|$ is $\sum_{k=1}^n w(z; A_k)/p_k$, where $A'_k = A_k \cup \widetilde{A}_k$ as before. Hence

$$\sum_{k=1}^{n} w(z; \mathbf{A}'_{k})/p_{k} \leq h(z)$$

on U for any n = 1, 2, Thus in particular, $\sum_{k=1}^{\infty} w(0; A'_k)/p_k \leq h(0)$, which gives the following contradiction:

$$\infty = 2 \sum_{k=1}^{\infty} \frac{1}{k} = \frac{1}{2\pi} \sum_{k=1}^{\infty} \frac{(4p_k \pi/k)}{p_k} \leq h(0).$$

(5) Notice that if z lies in the left of L_1 in U, then $|u(z)| \leq r_1$ and so $0 = \Phi(|u(z)|) \leq w(z)$ there.

4. Example 2.

Consider functions

$$\begin{cases} \Phi(t) = \log^+ t = \max(\log t, 0) & \text{on } [0, \infty); \\ u(z) = r^{-1} \cos \theta (z = r e^{i\theta}) & \text{on } U_0 = (z; 0 < |z| < 1). \end{cases}$$

Then $\Phi(t)$ is unbounded, increasing, continuous and $\overline{d}(\Phi) = \underline{d}(\Phi) = 0$. We can also easily see that u(z) is an H Φ -function in U₀ but not an HP'function in U₀. But this example deeply depends on the weakness of the special boundary point 0 of U₀. However, without using such a special boundary property, we can construct such an example in the open unit disc U = (z; |z| < 1) by the aid of Example 1.

EXAMPLE 2. Let $\Phi(t)$ and u(z) be as in Example 1. Let

 $\Phi_a(t) = \min (\Phi(t), at) \quad (0 < a < \infty).$

Then the followings hold :

- (a) $\Phi_a(t)$ is increasing, continuous, $\overline{d}(\Phi_a) = a$ and $\underline{d}(\Phi_a) = 0$;
- (b) $u(z) \in H\Phi_{a}(U);$
- (c) $u(z) \notin HP'(U)$.

5. Proof of Theorem 3.

First we prove that $H\Phi(R) \subset HP'(R)$ for any R if $\underline{d}(\Phi) > 0$. Let $u \in H\Phi(R)$ and $\underline{d}(\Phi) = 2 c > 0$. Then there exists a point t_0 in $[0, \infty)$ such that $\Phi(t) > ct$ $(t \ge t_0)$. Then for any t in $[0, \infty)$, $\Phi(t) + ct_0 \ge ct$. As $\Phi(|u|)$ possesses a harmonic majorant h on R, so

$$h + ct_0 \ge \Phi(|u|) + ct_0 > c |u|$$

on R. Thus u possesses a harmonic majorant $(h + ct_0)/c$, i.e. $u \in HP'(R)$.

Conversely, if $H\Phi(R) \subset HP'(R)$ for any R, then Examples 1 and 2 show that $\underline{d}(\Phi) > 0$ no matter whether $\overline{d}(\Phi)$ is finite or infinite.

M. NAKAI

6. Proof of Theorem 4.

Let $u \in H\Phi(\mathbb{R}) \cap HP'(\mathbb{R})$. We have to show that $u \in HB'(\mathbb{R})$. As $u \in H\Phi(\mathbb{R})$, so there exists an HP-function h such that $\Phi(|u|) \leq h$ on \mathbb{R} . Since $u \in HP'(\mathbb{R})$, we can consider $Mu = u \lor 0 + (-u) \land 0 \geq |u|$ and Bu. To show that $u \in HB'(\mathbb{R})$, we have to prove that Bu = u or equivalently, BMu = Mu (see 3 in the introductory part of this paper).

By the assumption that $\overline{d}(\Phi) = \infty$, we can find an increasing sequence $(r_n)_{n=1}^{\infty}$ of positive numbers converging to ∞ such that $\Phi(r_n) > 0$ and $\lim_{n \to \infty} a_n = 0$, $a_n = r_n/\Phi(r_n)$. Let $G_n = (p \in \mathbb{R}; |u(p)| < r_n)$ (n = 1, 2, ...). Clearly

$$G_1 \subset G_2 \subset ... \subset G_n \subset ..., \quad \mathbf{R} = \bigcup_{n=1}^{\infty} G_n.$$

Let $(\mathbf{R}_m)_{m=1}^{\infty}$ be an exhaustion of **R** and w_m be a harmonic function on $\mathbf{R}_m \cap \mathbf{G}_n$ with the boundary value

$$w_m = \begin{cases} \min(Mu - BMu, r_n) & \text{on } (\partial R_m) \cap G_n; \\ 0 & \text{on } \partial G_n. \end{cases}$$

Since min $(Mu - BMu, r_n)$ is superharmonic on R, w_m is subharmonic on R_m if we define $w_m = 0$ in $R_m - G_n$, and $w_m \ge w_{m+1}$ on R_m . Let w'_m be harmonic in R_m with the boundary value

$$w'_{m} = \begin{cases} \min(Mu - BMu, r_{n}) & \text{on } (\partial R_{m}) \cap G_{n}; \\ 0 & \text{on } \partial R_{m} - G_{n}. \end{cases}$$

Then clearly $(w'_m)_{m=1}^{\infty}$ is a bounded sequence and $0 \le w'_m \le Mu - BMu$, n = 1, 2, ... If w' is any limiting harmonic function of a convergent subsequence of $(w'_m)_{m=1}^{\infty}$, then $0 \le w' \le Mu - BMu$. By applying the operator B, we get

 $0 \leq Bw' \leq B (Mu - BMu) = BMu - B^2Mu = BMu - BMu = 0.$ Since w' is bounded and positive, Bw' = w'. Hence $w' \equiv 0$ on R. Thus $\lim_{m \to \infty} w'_m = 0$ on R. As we have $w'_m \geq w_m \geq 0$ on R_m , so we conclude that $\lim_{m \to \infty} w_m = 0$ on R.

On $(\partial R_m) \cap G_n$, $|u| \leq r_n$ and $|u| \leq Mu = BMu + (Mu - BMu)$ or $|u| - BMu \leq Mu - BMu$. Hence on $(\partial R_m) \cap G_n$, $|u| - BMu \leq \min(Mu - BMu, r_n)$ or $|u| \leq BMu + w_m$. On ∂G_n , we have $|u| = r_n = a_n \Phi(|u|) \leq a_n h$. Thus we conclude that $|u| \leq a_n h + b_n$ + BM $u + w_m$ on ∂ ($\mathbb{R}_m \cap \mathbb{G}_n$). Since |u| is subharmonic and $a_nh + BMu + w_m$ is harmonic on $\mathbb{R}_m \cap \mathbb{G}_n$, we can conclude that

 $|u| \leq a_n h + BMu + w_m$ on $R_m \cap G_n$.

By letting $m \nearrow \infty$ and then $n \nearrow \infty$, we conclude that $|u| \le BMu$ on R. By the definition of Mu, we must have $Mu \le BMu$ and hence BMu = Mu.

BIBLIOGRAPHY

- [1] L. V. AHLFORS and L. SARIO, Riemann Surfaces, Princeton (1960).
- [2] M. NAKAI, Φ-bounded harmonic functions and classification of Riemann surfaces, Pacific J. Math., 15 (1965), 1329-1335.
- [3] M. PARREAU, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3, (1952), 103-197.

Manuscrit reçu le 8 juin 1965.

Mitsuru Nakai, Mathematical Institute, Nagoya University, Nagoya (Japan).