Annales de l'institut Fourier

Mitsuru Nakai

On Φ-bounded harmonic functions

Annales de l'institut Fourier, tome 16, n 1 (1966), p. 145-157

http://www.numdam.org/item?id=AIF_1966_16_1_145_0
© Annales de l'institut Fourier, 1966, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON Φ bOUNDED HARMONIC FUNCTIONS

by Mitsuru NAKAI

1. Throughout this paper, we denote by $\Phi(t)$ a non-negative realvalued function defined on the half real line $[0, \infty)=(t ; 0 \leqslant t<\infty)$. A harmonic function u on a Riemann surface \mathbf{R} is called Φ-bounded if the composite function $\Phi(|u|)$ admits a harmonic majorant on R, i. e. there exists a harmonic function h such that $\Phi(|u|) \leqslant h$ on R. We denote by

$$
H \Phi=H \Phi(\mathbf{R})
$$

the totality of Φ-bounded harmonic functions on a Riemann surface R and by O_{H} the class of all Riemann surfaces on which every Φ-bounded harmonic function reduces to a constant. In our study, the following two quantities will play an important role :

$$
\begin{aligned}
\bar{d}(\Phi) & =\lim \sup _{t \rightarrow \infty} \Phi(t) / t \\
\underline{d}(\Phi) & =\liminf _{t \rightarrow \infty} \Phi(t) / t
\end{aligned}
$$

The properties of $Н \Phi$-functions on Riemann surfaces and the class \mathbf{O}_{H} are first investigated by Parreau [3] for the special $\Phi(t)$ which is increasing and convex (${ }^{1}$). In the present paper we shall investigate the same problem for general $\Phi(t)$. Our conclusion is, roughly speaking, that Parreau's result about \mathbf{O}_{g} holds essentially for general $\Phi(t)$ and his result about properties of $H \Phi$-functions can be derived by assuming $\underline{d}(\Phi)>0$ instead of increasingness and convexity which is, in a sense, the weakest condition.
2. As for the class $\mathbf{O}_{\mathbf{H}}$, Parreau [3] showed that the class \mathbf{O}_{H} for
${ }^{(1)}$ For such a function, it is well-known that $\bar{d}(\Phi)=\underline{d}(\Phi)>0$.
increasing and convex $\Phi(t)$ coincides with O_{HP} or $\mathrm{O}_{\mathrm{HB}}\left({ }^{2}\right)$ according to $\bar{d}(\Phi)<\infty$ or $\bar{d}(\Phi)=\infty$, respectively. Now we ask what can be said about $\mathrm{O}_{\boldsymbol{H} \Phi}$ for general $\Phi(t)$. The answer is given by

Theorem 1. - If $\overline{\mathrm{d}}(\Phi)<\infty$ (resp. $\bar{d}(\Phi)=\infty)$, then $\mathbf{O}_{\mathbf{H}} \subset \mathrm{O}_{\mathrm{HP}}$ (resp. $\mathrm{O}_{\mathrm{H} \Phi} \supset \mathrm{O}_{\mathrm{HB}}$).

This was proved implicitly in our former paper [2] by using Wiener's compactification of Riemann surfaces. We shall again give an alternating elementary proof in § 1 . In this theorem, we cannot replace the inclusion relation by the equality in general. But the function $\Phi(t)$, by which the equality does not hold in the above theorem, is very singular and trivial one from the view point of $Н \Phi$-functions as the following shows :

Theorem 2. - (i) If $\Phi(t)$ is bounded on $[0, \infty)$, then O_{H} consists of all closed Riemann surfaces;
(ii) If $\Phi(t)$ is completely unbounded $\left({ }^{3}\right)$ on $[0, \infty)$, then O_{H} consists of all open Riemann surfaces;
(iii) If $\Phi(t)$ is not bounded and not completely unbounded, then $\mathrm{O}_{\mathrm{H}}=\mathrm{O}_{\mathrm{HP}}$ or O_{HB} according to $\bar{d}(\Phi)<\infty$ or $\bar{d}(\Phi)=\infty$, respectively.

This was proved in [2] and determines the class O_{H} completely for any possible $\Phi(t)$. This is easily proved by using Theorem 1 . We will do this also in § 1 .

Observing Theorem 2, we are tempted to conclude that $\mathrm{H} \Phi$-property is closely related to positiveness or boundedness properties except trivial Φ 's as in (i) or (ii). Next we consider this problem. To state the problem formally, let us recall three notions for harmonic functions : essentially positive, quasi-bounded and singular.
3. A harmonic function u on a Riemann surface R is called essentially positive if u can be represented as a difference of two HP-functions on R, or equivalently, if u admits a harmonic majorant on R. We denote the totality of essentially positive harmonic functions on R by

$$
H^{\prime}=H P^{\prime}(\mathbf{R})
$$

${ }^{(2)}$ As usual, HP (R) (resp. HB (R)) denotes the totality of non-negative (resp. bounded) harmonic functions on R. The meaning of O_{HP} and O_{HB} is similar to that of $\mathrm{O}_{\boldsymbol{н}}$.
${ }^{(3)}$ We say that $\Phi(t)$ is completely unbounded on $[0, \infty)$ if $\Phi(t)$ is not bounded at any neighbourhood of any point in $[0, \infty)$.

Clearly $H P^{\prime}(\mathrm{R}) \supset \mathrm{HP}(\mathrm{R})$. For two functions u and v in $\mathrm{HP}^{\prime}(\mathrm{R})$, there always exists the least harmonic majorant (resp. the greatest harmonic minorant) of u and v, which we denote by $u \vee v$ (resp. $u \wedge v$). Then $H P^{\prime}(R)$ forms a vector lattice with lattice operations \vee and \wedge. For u in $\mathrm{HP}^{\prime}(\mathrm{R})$, we denote by $\mathrm{M} u$ the function $u \vee 0+(-u) \vee 0$, which is the least harmonic majorant of $|u|$. Next first for u in HP (R), we denote by $\mathrm{B} u$ the HP-function defined by $\sup (v(p) ; u \geqslant v \in \mathrm{HB}(\mathrm{R}))$ on R. Clearly B is order-preserving, linear and $B^{2}=B$ on HP (R) (see Ahlfors-Sario [1], p. 210). Next for u in $\mathrm{HP}^{\prime}(\mathrm{R})$, we put $\mathrm{B} u=\mathrm{B} u_{1}-\mathrm{B} u_{2}$, where $u=u_{1}-u_{2}$ and u_{1} and u_{2} are in HP (R). Here, by the linearity of B on HP (R), $\mathrm{B} u$ does not depend on the special decomposition of u into HP-functions. Again the operator B is order-preserving, linear and $B^{2}=B$ on $H P^{\prime}(R)$ and moreover B commutes with M, \vee, and \wedge. This is clear on HP (R) by definitions of B, \vee, \wedge and M. For the general case, we have only to show that $B(u \vee 0)=(B u) \vee 0$. Since

$$
\mathrm{B} u=\mathrm{B}(u \vee 0)-\mathrm{B}((-u) \vee 0)
$$

and

$$
\begin{aligned}
\mathrm{B}(u \vee 0) \wedge \mathrm{B}((-u) \vee 0) & =\mathrm{B}((u \vee 0) \wedge((-u) \vee 0)) \\
& =\mathrm{B} 0=0
\end{aligned}
$$

$\mathrm{B}(u \vee 0)$ is the positive part of the Jordan decomposition of $\mathrm{B} u$.
An HP'-function u is called quasi-bounded (resp. singular) if $\mathrm{B} u=u$ (resp. $\mathrm{B} u=0$). These notions were introduced by Parreau [3]. We denote the totality of quasi-bounded harmonic functions on R by

$$
\mathrm{HB}^{\prime}=\mathrm{HB}^{\prime}(\mathrm{R})
$$

Clearly $\mathrm{HB}^{\prime} \supset \mathrm{HB}$. Since B commutes with M, \vee and \wedge, we see that $\mathrm{B} u=u$ is equivalent to $\mathrm{BM} u=\mathrm{M} u$. Hence we can also define

$$
\mathrm{HB}^{\prime}(\mathrm{R})=\left(u \in \mathrm{HP}^{\prime}(\mathrm{R}) ; \mathrm{BM} u=\mathrm{M} u\right)
$$

4. Parreau [3] showed that, for increasing and convex function $\Phi(t), \mathrm{H} \Phi \subset \mathrm{HP}^{\prime}$ and if moreover $\bar{d}(\Phi)=\infty$, then $\mathrm{H} \Phi \subset \mathrm{HB}^{\prime}$. Our next problem is to investigate whether such relations hold or not for general $\Phi(t)$. The answer is negative in general : we shall single out in § 4 an increasing continuous unbounded function $\Phi(t)$ with $\bar{d}(\Phi)<\infty$ and $\underline{d}(\Phi)=0$ and an $H \Phi$-function in the open unit disc which is not an $\mathbf{H P}^{\prime}$-function there (Example 2). This shows the invalidity of $\mathbf{H} \Phi \subset \mathrm{HP}^{\prime}$
in general. Only for this aim, we may take bounded $\Phi(t)$. But we are interested in unbounded $\Phi(t)$. We shall also construct in § 3 an increasing continuous function $\Phi(t)$ with $\bar{d}(\Phi)=\infty$ and $\underline{d}(\Phi)=0$ and an $\mathrm{H} \Phi$ function in the open unit disc which is not an HP'-function there (Example 1). This shows the invalidity of the relation $H \Phi \subset \mathrm{HP}^{\prime}$ and so of the relation $\mathrm{H} \Phi \subset \mathrm{HB}^{\prime}$ even if $\bar{d}(\Phi)=\infty$.

Then there arises the question when can we conclude the relation $\mathrm{H} \Phi \subset \mathrm{HP}^{\prime}$ or HB^{\prime}. Both examples above show that unboundedness, not completely unboundedness, increasingness, continuity or all of them cannot give the condition. In both examples above, $\underline{d}(\Phi)=0$. This suggests us that the required condition may be $\underline{d}(\Phi)>0$. This is really the case. Firstly the answer for $\mathrm{H} \Phi \subset \mathrm{HP}^{\prime}$ is given completely by the following which includes Parreau's case :

Theorem 3. - In order that $\mathbf{H} \Phi(\mathrm{R}) \subset \mathrm{HP}^{\prime}(\mathrm{R})$ for any Riemann surface R , it is necessary and sufficient that $\underline{d}(\Phi)>0$ (no matter whether $\bar{d}(\Phi)$ is finite or infinite).

The proof of this will be given in § 5 . Similarly we ask about the condition which assures the relation $\mathrm{H} \Phi \subset \mathrm{HB}^{\prime}$. In this case, even in the Parreau's case, we must assume that $\bar{d}(\Phi)=\infty$ as the following simple example shows : $\Phi(t)=t, \mathrm{R}=(z ; 0<|z|<1)$ and $u(z)=-\log |z|$. The best possible general conclusion is as follows :

Theorem 4. - If $\bar{d}(\Phi)=\infty$, then $\mathbf{H} \Phi(\mathrm{R}) \cap \mathrm{HP}^{\prime}(\mathrm{R}) \subset \mathrm{HB}^{\prime}(\mathrm{R})$.
Here we cannot drop $H P^{\prime}(R)$ in the above relation as Example 1 shows. The above theorem will be proved in § 6 . Now assume that $\underline{d}(\Phi)>0$, then by Theorems 3 and $4, H \Phi(R) \subset H B^{\prime}(R)$. Conversely if $H \Phi(R) \subset H B^{\prime}(R)$ for any R, then $H \Phi(R) \subset H P^{\prime}(R)$ for any R and by Theorem 3, $\underline{d}(\Phi)>0$. Thus we get the following which includes Parreau's case :

Theorem 5. - Assume that $\underline{d}(\Phi)=\infty$. In order $\mathrm{H} \Phi(\mathrm{R}) \subset \mathrm{HB}^{\prime}(\mathrm{R})$ for any Riemann surface \mathbf{R}, it is necessary and sufficient that $\underline{d}(\Phi)>0$.

1. Proofs of Theorems 1 and 2.

1. Proof of Theorem 1. - I. The case $\bar{d}(\Phi)=\infty$: Assume that there exists a non-constant $H \Phi$-function u on R. By the definition of
Φ-boundedness, there exists an HP-function h such that $\Phi(|u|) \leqslant h$ on R . We have to show that $\mathrm{R} \notin \mathrm{O}_{\mathrm{HB}}$. Contrary to the assertion, assume that $R \in O_{\text {HB }}$. Since $\bar{d}(\Phi)=\infty$, we can find a strictly increasing sequence $\left(r_{n}\right)_{n=1}^{\infty}$ of positive numbers r_{n} such that $\lim _{n \rightarrow \infty} r_{n}=\infty$, $\Phi\left(r_{n}\right)>0, \mathrm{G}_{n}=\left(p \in \mathrm{R} ;|u(p)|<r_{n}\right) \neq \mathrm{O}$ and $\lim _{n \rightarrow \infty} \stackrel{n \rightarrow \infty}{a_{n}}=0$, where $a_{n}=r_{n} / \Phi\left(r_{n}\right)$. Then clearly

$$
\mathrm{G}_{1} \subset \mathrm{G}_{2} \subset \ldots \subset \mathrm{G}_{n} \subset \ldots, \mathbf{R}=\bigcup_{n=1}^{\infty} \mathbf{G}_{n}
$$

First we show that $\mathrm{G}_{n} \notin \mathrm{SO}_{\mathrm{HB}}$ for some n on (${ }^{4}$). If this is not the case, then $\mathrm{G}_{n} \in \mathrm{SO}_{\mathrm{HB}}$ for all n 's. Then since $a_{n} h-|\boldsymbol{u}|$ is superharmonic and bounded from below on G_{n} and

$$
a_{n} h-|u| \geqslant a_{n} \Phi(|u|)-|u|=a_{n} \Phi\left(r_{n}\right)-r_{n}=0
$$

on $\partial \mathrm{G}_{n}$, we can conclude that $a_{n} h-|u| \geqslant 0$ on G_{n}. Since $a_{n} \searrow 0$, we must have $u \equiv 0$ on R, which is clearly a contradiction. Hence we may assume that $\mathrm{G}_{n} \notin \mathrm{SO}_{\mathrm{HB}}(n=1,2,3, \ldots)$ by choosing a suitable subsequence of (r_{n}), if necessary.

Next we assert that $\mathrm{G}_{n}-\overline{\mathrm{G}}_{1} \in \mathrm{SO}_{\mathrm{HB}}(n=1,2,3, \ldots)$. For, if there exists a G_{n} with $\mathrm{G}_{n}-\overline{\mathrm{G}}_{1} \notin \mathrm{SO}_{\mathrm{HB}}$, then there would exist two disjoint non-empty open sets G_{1} and $\mathrm{G}_{n}-\overline{\mathrm{G}}_{1}$ not belonging to $\mathrm{SO}_{\mathrm{HB}}$. By the so called "two domains criterion", we must have that $R \notin \mathrm{O}_{\mathrm{HB}}$ (see Ahlfors-Sario [1], p. 213). But this contradicts our assumption $\mathrm{R} \in \mathrm{O}_{\text {нв. }}$.

Now consider the function $w_{n}=a_{n} h+r_{1}-|u|$ on G_{n}, which is superharmonic and bounded from below on G_{n} and so on $\mathrm{G}_{n}-\overline{\mathrm{G}}_{1}$. By the similar manner as before, we see that $w_{n} \geqslant a_{n} h-|u|=0$ on $\partial \mathrm{G}_{n}$. Clearly $w_{n} \geqslant r_{1}-|u|=0$ on $\partial \mathrm{G}_{1}$. Hence $w_{n} \geqslant 0$ on $\partial\left(\mathrm{G}_{n}-\overline{\mathrm{G}}_{1}\right)$. Since $\mathrm{G}_{n}-\overline{\mathrm{G}}_{1} \in \mathrm{SO}_{\mathrm{HB}}$, we can conclude that $w_{n} \geqslant 0$ on G_{n} or $|u| \leqslant a_{n} h+r_{1}$ on G_{n}. Hence by the fact that $a_{n} \searrow 0$, we get that $|u| \leqslant r_{1}$ on R. This contradicts our assumption that $R \in O_{H B}$. Thus we must have $\mathrm{R} \notin \mathrm{O}_{\mathrm{HB}}$.
II. The case $\bar{d}(\Phi) \leqslant \infty$: Assume that there exists a non-constant HP-function u on R. By $\bar{d}(\Phi)<\infty$, we can find a point s in $[0, \infty)$ such that there exists a finite positive constant C with $\Phi(t) \leqslant \mathrm{C} t(s \leqslant t<\infty)$. Let $v=s+u$. Clearly v is a non-constant HP-function on R with
(4) An open subset G of a Riemann surface R with smooth relative boundary ∂G is said to belong to $\mathrm{SO}_{\text {Hв }}$ if every HB-function on G with continuous boundary value zero at ∂G reduces to a constant zero.
$v \geqslant s$ on R. Hence $\Phi(|v|)=\Phi(v) \leqslant \mathrm{C} v$ on R. Thus v is a non-constant $H \Phi$-function on R and so $R \notin \mathrm{O}_{\mathrm{H}}$.
2. Proof of Theorem 2. - Ad (i) : If $\Phi(t)$ is bounded, then every non-constant harmonic function is an $\mathrm{H} \Phi$-function. Thus O_{H} consists of all Riemann surfaces carrying no non-constant harmonic function, which are closed Riemann surfaces.
$A d$ (ii) : For any non-constant harmonic function u on R , since u is open map of R into $[0, \infty)$ by the maximum principle, $\Phi(u \mid)$ is completely unbounded on R along with $\Phi(t)$ and so u is not $H \Phi$-function. Thus there exists no non-constant $\mathrm{H} \Phi$-function on any Riemann surface and $\mathrm{O}_{\mathrm{H} \phi}$ consists of all Riemann surfaces.

Ad (iii) : Assume that $\bar{d}(\Phi)=\infty$ and that there exists a nonconstant HB-function u on R. As $\Phi(t)$ is not completely unbounded, so there exists an interval (a, b) in which $\Phi(t)<c=$ const. Let

$$
v=(a+b) / 2+((b-a) / 2)\left(\sup _{\mathrm{R}}|u|\right)^{-1} u
$$

Then v is a non-constant HB-function and $\Phi(|v|)=\Phi(v)<c$ on R. Thus $\mathbf{O}_{\text {н }} \subset \mathbf{O}_{\text {Hв }}$. This with Theorem 1 gives $\mathbf{O}_{\mathbf{H}}=\mathbf{O}_{\text {нв }}$.

Next assume that $\bar{d}(\Phi)<\infty$. By Theorem $1, \mathrm{O}_{\mathrm{HP}} \supset \mathrm{O}_{\mathrm{H} \Phi}$. Contrary to the assertion; assume that there exists an R in $\mathrm{O}_{\mathrm{HP}}-\mathrm{O}_{\mathrm{H} \phi}$. Let u be a non-constant $H \Phi$-function on R . Then $\Phi(|u|) \leqslant c=$ constant on R. Since $\Phi(t)$ is unbounded and $|u|(R)$ is connected in $[0, \infty)$ and contains $0, u$ must be bounded on R. Then $\sup _{\mathbf{R}}|u|+u$ is a non-constant HP-function on R, which contradicts the assumption that $R \in O_{H P}$. Hence $\mathrm{O}_{\mathrm{H} \phi}=\mathrm{O}_{\mathrm{HP}}$.

2. Preparations for Examples.

Let $\mathrm{U}=(z ;|z|<1)$ and A be an arc in $\partial \mathrm{U}=(z ;|z|=1)$. We denote by $w(z ; A)$ the harmonic measure of A calculated at z in U with respect to U . It is well known that

$$
\begin{equation*}
w(z ; \mathrm{A})=(2 \beta-\alpha) / 2 \pi \tag{1}
\end{equation*}
$$

where α is the length of A and β is the angle seeing the arc A from z.

We denote by $L_{\mathbf{A}}$ the line segment connecting both end points of A. Then from (1), we easily see that

$$
\begin{gather*}
w(0 ; \mathrm{A})=\alpha ; \tag{2}\\
w(z ; \mathrm{A})=1-\alpha / 2 \pi \quad \text { on } \quad \mathrm{L}_{\mathbf{A}} . \tag{3}
\end{gather*}
$$

Next let A_{j} be the arc in $\partial U=(z ;|z|=1)$ with end points 1 and $e^{i a_{j}}(j=1,2)$ such that $0<\alpha_{1}<\alpha_{2}, \alpha_{1}<\pi / 2, \alpha_{2}<\pi / 2$. We denote by $\widetilde{\mathrm{A}}_{j}$ (resp. A_{j}^{\prime}) the arc with end points 1 and $e^{-i \alpha_{j}}$ (resp. $\mathrm{A}_{j}^{\prime}=\mathrm{A}_{j} \cup \widetilde{\mathrm{~A}}_{j}$). For simplicity, we set $L_{2}=L_{\mathbf{A}_{2}}$, i.e. L_{2} is the line segment connecting two end points of \mathbf{A}_{2}^{\prime}. Then we get the following inequality which plays an important role in our forth-coming examples : there exists a universal constant $s_{0}\left(\leqslant 4^{-1} \pi^{4}\right)$ such that

$$
\begin{equation*}
\left|w\left(z ; \mathrm{A}_{1}\right)-w\left(z ; \tilde{\mathrm{A}}_{1}\right)\right| \leqslant s_{0} \alpha_{1}^{2} /\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)^{2} \quad \text { on } \quad \mathrm{L}_{2} . \tag{4}
\end{equation*}
$$

Proof. - We denote the points $e^{i a_{1}}, e^{-i a_{1}},\left(e^{i a_{1}}+e^{-i a_{1}}\right) / 2,1$, $\left(e^{i \alpha_{2}}+e^{-i \alpha_{2}}\right) / 2$ and z on L_{2} with $\operatorname{Im}(z) \geqslant 0$ by $\mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and P respectively. We set $\mathrm{DF}=\mathrm{FE}=d, \mathrm{FH}=k$, $\mathrm{DP}=a, \mathrm{PF}=b$ and $\mathrm{PE}=c$. By (1), $w\left(z ; \mathrm{A}_{1}\right)-w\left(z ; \widetilde{\mathrm{A}}_{1}\right)=(\angle \mathrm{DPG}-\angle \mathrm{GPE}) / \pi$. Let $\angle \mathrm{DPF}=\theta_{1}$ and $\angle \mathrm{FPE}=\theta_{2}$. Then clearly $<\mathrm{DPG} \leqslant \theta_{1}$ and $<\mathrm{GPE} \geqslant \theta_{2}$. Hence we have $0 \leqslant w\left(z ; \mathrm{A}_{1}\right)-w\left(z ; \tilde{\mathrm{A}}_{1}\right) \leqslant\left(\theta_{1}-\theta_{2}\right) / \pi$. Applying the cosine theorem to triangles $\triangle \mathrm{DPF}$ and $\triangle \mathrm{FPE}$ and then Pappos' identity to the triangle $\triangle \mathrm{DPE}$, we have $\sin 2^{-1}\left(\theta_{1}-\theta_{2}\right)=(c-a)\left(8 a b c \sin 2^{-1}\left(\theta_{1}+\theta_{2}\right)\right)^{-1}\left(4 d^{2}-(a-c)^{2}\right)$.

Here we have

$$
\begin{aligned}
a c \sin 2^{-1}\left(\theta_{1}+\right. & \left.\theta_{2}\right) \geqslant a c \sin 2^{-1}\left(\theta_{1}+\theta_{2}\right) \cos 2^{-1}\left(\theta_{1}+\theta_{2}\right) \\
& =2^{-1} a c \sin \angle \mathrm{DPE}=\triangle \mathrm{DPE} \\
& =\Delta \mathrm{DHE}=d k
\end{aligned}
$$

By the triangle inequality applied for $\triangle \mathrm{DPE}, c-a \leqslant 2 d$. Thus by noti$\operatorname{cing} b \geqslant k$, we have $\sin 2^{-1}\left(\theta_{1}-\theta_{2}\right) \leqslant d^{2} k^{-2}$. As

$$
\sin \theta \geqslant(2 / \pi) \theta \quad\left(0 \leqslant \theta \leqslant 2^{-1} \pi\right)
$$

so $\theta_{1}-\theta_{2} \leqslant \pi d^{2} k^{-2}$. Now we have $d=\sin \alpha_{1} \leqslant \alpha_{1}$ and

$$
\begin{aligned}
k & =\cos \alpha_{1}-\cos \alpha_{2} \\
& =2 \sin ^{-1}\left(\alpha_{1}+\alpha_{2}\right) \sin 2^{-1}\left(\alpha_{2}-\alpha_{1}\right) \geqslant 2 \pi^{-2}\left(\alpha_{2}^{2}-\alpha_{1}^{2}\right)
\end{aligned}
$$

Hence

$$
0 \leqslant w\left(z ; \mathrm{A}_{1}\right)-w\left(z ; \tilde{\mathrm{A}}_{1}\right) \leqslant 4^{-1} \pi^{4} \alpha_{1}^{2} /\left(\alpha_{2}^{3}-\alpha_{1}^{2}\right)^{2} . \quad \text { Q.E.D. }
$$

We shall use (4) in the particular case where $0<\alpha_{1}<\alpha_{2} / \sqrt{2}$. In this case, by using universal constant $s\left(\leqslant \pi^{4}\right)$, we get

$$
\begin{equation*}
\left|w\left(z ; \mathrm{A}_{1}\right)-w\left(z ; \tilde{\mathrm{A}}_{1}\right)\right| \leqslant s\left(\alpha_{1}^{2} / \alpha_{2}^{4}\right) \quad \text { on } \quad \mathrm{L}_{2} . \tag{5}
\end{equation*}
$$

3. Example 1.

We are now able to construct an example of a function Φ which is continuous, increasing, $\bar{d}(\Phi)=\infty$ and $\underline{d}(\Phi)=0$; and an $\mathrm{H} \Phi$-function u in then open unit disc $\mathrm{U}=(z ;|z|<1)$ which is not an HP^{\prime}-function.

EXample 1. Let p be a constant such that $0<p<\min (1 / 4,1 / 4 s)$, where s is the constant in (5) in § 2, and $\left(p_{n}\right)_{n=1}^{\infty}$ be a sequence defined by $p_{n}=\left(p^{4 v}\right)^{2 v+\mu}$ for $n=2^{v}+\mu\left(\nu=0,1,2, \ldots ; \mu=1,2,3, \ldots, 2^{v}\right)$. Let A_{n} and $\widetilde{\mathrm{A}}_{n}$ be arcs on the unit circumference such that

$$
\mathbf{A}_{n}=\left(e^{i \theta} ; 0 \leqslant \theta \leqslant 2 p_{n} \pi / n\right)
$$

and

$$
\tilde{\mathrm{A}}_{n}=\left(e^{i \theta} ;-2 p_{n} \pi / n \leqslant \theta \leqslant 0\right)
$$

Let $\left(r_{\nu}\right)_{\nu=1}^{\infty}$ and $\left(b_{\nu}\right)_{\nu=1}^{\infty}$ be two sequences of positive numbers defined by $r_{\nu}=2 /\left(p^{4 \nu-1}\right)^{2 \nu}$ and $b_{\nu}=2^{\mathrm{v} / 2} \cdot r_{\nu}$. Define the function $\Phi(t)$ on $[0, \infty]$ by

$$
\Phi(t)= \begin{cases}0, & t \in\left[0, r_{1}\right] \\ b_{1}\left(t-r_{1}\right), & t \in\left[r_{1}, r_{1}+1\right] ; \\ b_{\nu}, & t \in\left[r_{\nu}+1, r_{\nu+1}\right](\nu=1,2, \ldots) ; \\ b_{\nu}+\left(b_{\nu+1}-b_{\nu}\right)\left(t-r_{\nu+1}\right), & t \in\left[r_{\nu+1}, r_{\nu+1}+1\right](\nu=1,2, \ldots)\end{cases}
$$

and the function $u(z)$ in U by

$$
u(z)=\sum_{n=1}^{\infty}\left(w\left(z ; \mathrm{A}_{n}\right)-w\left(z ; \tilde{\mathrm{A}}_{n}\right)\right) / p_{n} .
$$

Then the following hold:
(a) $\Phi(t)$ is continuous, increasing, $\bar{d}(\Phi)=\infty$ and $\underline{d}(\Phi)=0$;
(b) $u(z)$ is well defined in U and harmonic there;
(c) $u(z) \in H \Phi(U)$;
(d) $u(z) \notin \mathrm{HP}^{\prime}(\mathrm{U})$.

Proof of (a). - Is immediate by the definition of $\Phi(t)$.

Proof of (b). - For each $n=1,2, \ldots$, set

$$
v_{n}(z)=w\left(z ; \mathrm{A}_{n}\right)-w\left(z ; \tilde{\mathrm{A}}_{n}\right), \quad u_{n}(z)=\sum_{k=1}^{n} v_{k}(z) / p_{k}
$$

Then v_{n} and u_{n} are harmonic in U, positive in the upper half of U and $v_{n}(-z)=-v_{n}(z)$ and $u_{n}(-z)=-u_{n}(z)$ in U. Hence to show that the series defining $u(z)$ is convergent in U and defines a harmonic function there, we have only to prove that $\left(u_{n}(i / 2)\right)_{n=1}^{\infty}$ is convergent. By (5) in § 2, we have that

$$
0<v_{n}(i / 2) \leqslant s\left(2 p_{n} \pi / n\right)^{2} /(\pi / 2)^{4} \leqslant s^{\prime} \mathrm{p}_{n}^{2}
$$

where s is a constant independent of $n \geqslant 1$. Thus
$0<u_{n+m}(i / 2)-u_{n}(i / 2) \stackrel{n+m}{\sum_{k=n+1}} v_{k}(i / 2) / p_{k} \leqslant s^{\prime} \sum_{k=n+1}^{n+m} p_{k}<s^{\prime} p^{n} /(1-p)$.
This shows that $\left(u_{n}(i / 2)\right)_{n=1}^{\infty}$ is convergent.

Proof of (c). - For each $\nu=1,2, \ldots$, we denote by L_{ν} the line segment $\mathrm{L}_{\mathrm{A}_{2}}$, i.e. the line segment connecting two end points of $\mathrm{A}_{2^{\nu}}^{\prime}=$ $\mathrm{A}_{2^{\nu}} \cup \tilde{\mathrm{A}}_{2^{v}}$. Since $\left|v_{k}(z)\right|<1$ in U, we have

$$
\left|v_{k}(z) / p_{k}\right| \leqslant 1 / p_{k} \leqslant 1 /\left(p^{4^{\nu-1}}\right)^{k} \quad\left(1 \leqslant k \leqslant 2^{v}\right)
$$

on U and so on L_{ν}. Next for $k=2^{v}+\mu(\mu=1,2, \ldots)$ and $z \in \mathrm{~L}_{\nu}$, by (5) in § 2, we have that

$$
\begin{aligned}
v_{k}(z) / p_{k} & \leqslant s\left(2 p_{k} \pi / k\right)^{2} /\left(2 p_{2 \nu} \pi / 2^{\nu}\right)^{4} p_{k} \\
& =s\left(2^{\left.4^{\nu} / 4 \pi^{2} k^{2}\right)\left[p_{k} / p_{2}^{4}\right]}\right. \\
& \leqslant s\left(2^{\left.4^{\nu} / 4 \pi^{2} k^{2}\right)\left[\left(p^{4 \nu}\right)^{k} /\left(\left(p^{4^{\nu-1}}\right)^{2 \nu}\right)^{4}\right]}\right. \\
& =s\left(2^{\left.4^{\nu} / 4 \pi^{2} k^{2}\right) p^{4 \nu} \leqslant p^{4 \nu(\mu-1)} .}\right.
\end{aligned}
$$

Hence for z in L_{ν}, we get that

$$
\begin{aligned}
|u(z)| & \leqslant \sum_{k=1}^{2^{\nu}}\left|v_{k}(z) / p_{k}\right|+\sum_{k=2^{\nu}+1}^{\infty}\left|v_{k}(z) / p_{k}\right| \\
& \leqslant \sum_{k=1}^{2^{\nu}} 1 /\left(p^{4^{\nu-1}}\right)^{k}+\sum_{\mu=1}^{\infty} p^{4 \nu(\mu-1)} \\
& \leqslant 2 /\left(p^{4-1}\right)^{2 \nu}=r_{\nu} .
\end{aligned}
$$

Since $u(z)$ is quasi-bounded in the upper half of U and in the lower half of U respectively, we have, for $e^{i \theta}$ in $\mathrm{U}-\mathrm{A}_{2^{\nu}}^{\prime}$, that

$$
\left|u\left(e^{i \theta}\right)\right|=\sum_{k=1}^{2 \nu}\left|v_{n}\left(e^{i \theta}\right)\right| \leqslant \sum_{k=1}^{2 \nu} 1 / p_{k}
$$

$$
=\sum_{k=1}^{2^{\nu}} 1 /\left(p^{4^{\nu-1}}\right)^{k} \leqslant r_{\nu}
$$

Hence by the maximum principle, $0 \leqslant u(z) \leqslant r_{\nu}$ in the intersection of the upper half of U and the left side of L_{ν} in U. Hence $|u(z)| \leqslant r_{\nu}$ in the left side of L_{ν} in U. By (3) in § 2, we see that $w\left(z ; \mathrm{A}_{2}^{\prime}{ }^{\nu}\right) \geqslant 1-p_{2^{\nu}} / 2^{v}$ on L_{ν} and so on the right side of L_{ν} in U. Hence if z lies between L_{ν} and $\mathrm{L}_{\nu+1}$ in $\mathrm{U}, \quad b_{\nu} w\left(z ; \mathrm{A}_{2}^{\prime}\right) \geqslant b_{\nu}-2^{-v / 2+2} \geqslant \Phi(|u(z)|)-2^{-v / 2+2}$, or $\Phi(|u(z)|) \leqslant b_{\nu} w\left(z ; \mathrm{A}_{2}^{\prime}\right)+2^{-v / 2+2}$, since $\Phi(t) \leqslant b_{\nu}$ if $t \leqslant r_{\nu+1}$. On the other hand,

$$
2 \pi b_{\nu} w\left(0 ; \mathrm{A}_{2^{\nu}}^{\prime}\right)=b_{\nu}\left(4 p_{2^{\nu}} \pi / 2^{v}\right)=8 \pi 2^{-v / 2}
$$

Hence if we set $w(z)=\sum_{v=1}^{\infty}\left(b_{v} w\left(z ; \mathrm{A}_{2^{v}}\right)+2^{-v / 2+2}\right)$, then $w(0)=$ 8. $\sum_{v=1}^{\infty} 2^{-v / 2}<\infty$ and so $w(z) \in$ HP (U). Thus

$$
\Phi(|u(z)|) \leqslant b_{\nu} w\left(z ; \mathrm{A}_{2^{\nu}}^{\prime}\right)+2^{-v / 2+2} \leqslant w(z)
$$

between L_{ν} and L_{v+1} in U. As v is arbitrary, so $\Phi(|u(z)|) \leqslant w(z)$ in $U\left({ }^{5}\right)$. This shows that $u \in H \Phi(U)$.

Proof of (d). - Contrary to the assertion, assume that $u \in \mathrm{HP}^{\prime}(\mathrm{U})$. Then $|u(z)|$ has a harmonic majorant $h(z)$ on U. As $u(z), u_{n}(z)$ and $v_{n}(z)$ are positive in the upper half of U and antisymmetric with respect to the real line (i.e. $u(z)=-u(-z)$ etc.), so $h(z) \geqslant|u(z)| \geqslant\left|u_{n}(z)\right|$ in U. Clearly $\left|u_{n}(z)\right|=\sum_{k=1}^{n}\left|w\left(z ; \mathrm{A}_{k}\right)-w\left(z ; \tilde{\mathrm{A}}_{k}\right)\right| / p_{k}$ and the least harmonic majorant of the subharmonic function $\left|u_{n}(z)\right|$ is $\sum_{k=1}^{n} w\left(z ; A_{k}^{\prime}\right) / p_{k}$, where $\mathbf{A}_{k}^{\prime}=\mathbf{A}_{k} \cup \widetilde{\mathbf{A}_{k}}$ as before. Hence

$$
\sum_{k=1}^{n} w\left(z ; \mathrm{A}_{k}^{\prime}\right) / p_{k} \leqslant h(z)
$$

on U for any $n=1,2, \ldots$. Thus in particular, $\sum_{k=1}^{\infty} w\left(0 ; \mathrm{A}_{k}^{\prime}\right) / p_{k} \leqslant h(0)$, which gives the following contradiction :

$$
\infty=2 \sum_{k=1}^{\infty} 1 / k=\frac{1}{2 \pi} \sum_{k=1}^{\infty}\left(4 p_{k} \pi / k\right) / p_{k} \leqslant h(0)
$$

${ }^{(5)}$ Notice that if z lies in the left of L_{1} in U, then $|u(z)| \leqslant r_{1}$ and so $0=\Phi(|u(z)|) \leqslant w(z)$ there.

4. Example 2.

Consider functions

$$
\begin{cases}\Phi(t)=\log ^{+} t=\max (\log t, 0) & \text { on } \quad[0, \infty) \\ u(z)=r^{-1} \cos \theta\left(z=r e^{i \theta}\right) & \text { on } \quad \mathrm{U}_{0}=(z ; 0<|z|<1)\end{cases}
$$

Then $\Phi(t)$ is unbounded, increasing, continuous and $\bar{d}(\Phi)=\underline{d}(\Phi)=0$. We can also easily see that $u(z)$ is an $H \Phi$-function in U_{0} but not an HP'function in U_{0}. But this example deeply depends on the weakness of the special boundary point 0 of U_{0}. However, without using such a special boundary property, we can construct such an example in the open unit disc $U=(z ;|z|<1)$ by the aid of Example 1.

Example 2. Let $\Phi(t)$ and $u(z)$ be as in Example 1. Let

$$
\Phi_{a}(t)=\min (\Phi(t), a t) \quad(0<a<\infty) .
$$

Then the followings hold:
(a) $\Phi_{a}(t)$ is increasing, continuous, $\bar{d}\left(\Phi_{a}\right)=a$ and $\underline{d}\left(\Phi_{a}\right)=0$;
(b) $u(z) \in H \Phi_{a}(\mathrm{U})$;
(c) $u(z) \notin \mathrm{HP}^{\prime}(\mathrm{U})$.

5. Proof of Theorem 3.

First we prove that $H \Phi(R) \subset H P^{\prime}(R)$ for any R if $\underline{d}(\Phi)>0$. Let $u \in H \Phi(\mathrm{R})$ and $\underline{d}(\Phi)=2 c>0$. Then there exists a point t_{0} in $[0, \infty)$ such that $\Phi(t)>c t\left(t \geqslant t_{0}\right)$. Then for any t in $[0, \infty), \Phi(t)+c t_{0} \geqslant c t$. As $\Phi(|u|)$ possesses a harmonic majorant h on R , so

$$
h+c t_{0} \geqslant \Phi(|u|)+c t_{0}>c|u|
$$

on R. Thus u possesses a harmonic majorant $\left(h+c t_{0}\right) / c$, i.e. $u \in \operatorname{HP}^{\prime}(\mathrm{R})$.
Conversely, if $H \Phi(R) \subset H^{\prime}(R)$ for any R, then Examples 1 and 2 show that $\underline{d}(\Phi)>0$ no matter whether $\bar{d}(\Phi)$ is finite or infinite.

6. Proof of Theorem 4.

Let $u \in H \Phi(R) \cap H P^{\prime}(R)$. We have to show that $u \in H B^{\prime}(R)$. As $u \in H \Phi(R)$, so there exists an HP-function h such that $\Phi(|u|) \leqslant h$ on R. Since $u \in \mathrm{HP}^{\prime}(\mathrm{R})$, we can consider $\mathrm{M} u=u \vee 0+(-u) \wedge 0 \geqslant|u|$ and $\mathrm{B} u$. To show that $u \in \mathrm{HB}^{\prime}(\mathrm{R})$, we have to prove that $\mathrm{B} u=u$ or equivalently, $\mathrm{BM} u=\mathrm{M} u$ (see 3 in the introductory part of this paper).

By the assumption that $\bar{d}(\Phi)=\infty$, we can find an increasing sequence $\left(r_{n}\right)_{n=1}^{\infty}$ of positive numbers converging to ∞ such that $\Phi\left(r_{n}\right)>0$ and $\lim a_{n}=0, a_{n}=r_{n} / \Phi\left(r_{n}\right)$. Let $\mathrm{G}_{n}=\left(p \in \mathrm{R} ;|u(p)|<r_{n}\right)(n=1$, $n \rightarrow \infty$ $2, \ldots$.. Clearly

$$
\mathrm{G}_{1} \subset \mathrm{G}_{2} \subset \ldots \subset \mathrm{G}_{n} \subset \ldots, \quad \mathrm{R}=\bigcup_{n=1}^{\infty} \mathrm{G}_{n}
$$

Let $\left(\mathbf{R}_{m}\right)_{m=1}^{\infty}$ be an exhaustion of \mathbf{R} and w_{m} be a harmonic function on $\mathrm{R}_{m} \cap \mathrm{G}_{n}$ with the boundary value

$$
w_{m}= \begin{cases}\min \left(\mathrm{M} u-\mathrm{BM} u, r_{n}\right) & \text { on }\left(\partial \mathrm{R}_{m}\right) \cap \mathrm{G}_{n} \\ 0 & \text { on } \partial \mathrm{G}_{n}\end{cases}
$$

Since $\min \left(\mathrm{M} u-\mathrm{BM} u, r_{n}\right)$ is superharmonic on R, w_{m} is subharmonic on \mathbf{R}_{m} if we define $w_{m}=0$ in $\mathbf{R}_{m}-\mathbf{G}_{n}$, and $w_{m} \geqslant w_{m+1}$ on \mathbf{R}_{m}. Let $\boldsymbol{w}_{m}^{\prime}$ be harmonic in R_{m} with the boundary value

$$
w_{m}^{\prime}= \begin{cases}\min \left(\mathrm{M} u-\mathrm{BM} u, r_{n}\right) & \text { on }\left(\partial \mathrm{R}_{m}\right) \cap \mathrm{G}_{n} \\ 0 & \text { on } \partial \mathrm{R}_{m}-\mathrm{G}_{n}\end{cases}
$$

Then clearly $\left(w_{m}^{\prime}\right)_{m=1}^{\infty}$ is a bounded sequence and $0 \leqslant w_{m}^{\prime} \leqslant \mathrm{M} u-\mathrm{BM} u$, $n=1,2, \ldots$. If w^{\prime} is any limiting harmonic function of a convergent subsequence of $\left(w_{m}^{\prime}\right)_{m=1}^{\infty}$, then $0 \leqslant w^{\prime} \leqslant \mathrm{M} u-\mathrm{BM} u$. By applying the operator B , we get

$$
0 \leqslant \mathrm{~B} w^{\prime} \leqslant \mathrm{B}(\mathrm{M} u-\mathrm{BM} u)=\mathrm{BM} u-\mathrm{B}^{2} \mathrm{M} u=\mathrm{BM} u-\mathrm{BM} u=0
$$

Since w^{\prime} is bounded and positive, $\mathrm{B} w^{\prime}=w^{\prime}$. Hence $w^{\prime} \equiv 0$ on R . Thus $\lim _{m \rightarrow \infty} w_{m}^{\prime}=0$ on R. As we have $w_{m}^{\prime} \geqslant w_{m} \geqslant 0$ on R_{m}, so we conclude that $\lim _{m \rightarrow \infty} w_{m}=0$ on R .

On $\left(\partial \mathrm{R}_{m}\right) \cap \mathrm{G}_{n},|u| \leqslant r_{n}$ and $|u| \leqslant \mathrm{M} u=\mathrm{BM} u+(\mathrm{M} u-\mathrm{BM} u)$ or $|u|-\mathrm{BM} u \leqslant \mathrm{M} u-\mathrm{BM} u$. Hence on $\left(\partial \mathrm{R}_{m}\right) \cap \mathrm{G}_{n},|u|-\mathrm{BM} u$ $\leqslant \min \left(\mathrm{M} u-\mathrm{BM} u, r_{n}\right)$ or $|u| \leqslant \mathrm{BM} u+w_{m}$. On $\partial \mathrm{G}_{n}$, we have $|\boldsymbol{u}|=r_{n}=a_{n} \Phi(|u|) \leqslant a_{n} h$. Thus we conclude that $|u| \leqslant a_{n} h+$
$+\mathrm{BM} u+w_{m}$ on $\partial\left(\mathrm{R}_{m} \cap \mathrm{G}_{n}\right)$. Since $|u|$ is subharmonic and $a_{n} h+\mathrm{BM} u$ $+w_{m}$ is harmonic on $\mathrm{R}_{m} \cap \mathrm{G}_{n}$, we can conclude that

$$
|u| \leqslant a_{n} h+\mathrm{BM} u+\mathrm{w}_{m} \quad \text { on } \mathrm{R}_{m} \cap \mathrm{G}_{n}
$$

By letting $m \nearrow \infty$ and then $n \nearrow \infty$, we conclude that $|u| \leqslant \mathrm{BM} u$ on R . By the definition of $\mathrm{M} u$, we must have $\mathrm{M} u \leqslant \mathrm{BM} u$ and hence $\mathrm{BM} u=\mathrm{M} u$.

BIBLIOGRAPHY

[1] L. V. Ahlfors and L. Sario, Riemann Surfaces, Princeton (1960).
[2] M. Nakal, Φ-bounded harmonic functions and classification of Riemann surfaces, Pacific J. Math., 15 (1965), 1329-1335.
[3] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier, 3, (1952), 103-197.

Manuscrit reçu le 8 juin 1965.
Mitsuru Nakai, Mathematical Institute, Nagoya University, Nagoya (Japan).

