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THE KOWALEVSKI’S TOP AND THE METHOD

OF SYZYGIES

by Franco MAGRI

1. The Kowalevski’s top.

In 1889 Sophie Kowalevski, following Euler and Lagrange, found a
third case of integrable top, and solved the corresponding equations of
motion by the method of separation of variables. From a mathematical
viewpoint the equations of the top define a Hamiltonian vector field on R6,
endowed with the degenerate Poisson brackets

{Li, Lj} =
k=3∑
k=1

εijkLk, {Li, yj} =
k=3∑
k=1

εijkyk, {yi, yj} = 0,

where the symbols (L1, L2, L3) denote the components of the angular
momentum of the top , and (y1, y2, y3) are the components of its weight.
These Poisson brackets have two Casimir’s functions

c1 = y2
1 + y2

2 + y2
3

c2 = L1y1 + L2y2 + L3y3,

and the top has two integrals of motion. They are the energy

h1 = 1/4L2
1 + 1/4L2

2 + 1/2L2
3 − y1

and the famous quartic integral

h2 = 1/8(L2
1 − L2

2 + 4y1)2 + 1/8(2L1L2 + 4y2)2

Keywords: Separation of variables.
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discovered by Kowalevski. By this property the top is an integrable system.
To solve her equations of motion, Kowalevski had the astonishing idea
of replacing the mechanical variables (L1, L2, L3, y1, y2, y3) by the four
integrals (h1, h2, c1, c2) and by the roots (λ1, λ2) of the second-order
polynomial

S(λ) = (x1 − x2)2(λ− 1/6h1)2 −R(x1, x2)(λ− 1/6h1)− 1/4R1(x1, x2),

where
2x1 = L1 + iL2

2x2 = L1 − iL2

and

R(x1, x2) = −x2
1x

2
2 + 2h1x1x2 + c2(x1 + x2) + c1 − 1/2h2

R1(x1, x2) = −2h1x
2
1x

2
2 − (c1 − 1/2h2)(x1 + x2)2 − 2c2(x1 + x2)x1x2

+ 2h1(c1 − 1/2h2)− c22.

By this change of variables she was able to write the equations of motion
in the Abel’s form

ds1√
P (s1)

+
ds2√
P (s2)

= 0

s1ds1√
P (s1)

+
s2ds2√
P (s2)

= dt

where P (s) is a fifth-order polynomial with distinct roots. This beautiful
result allowed her to explicitly solve the equations of motion by means of
hyperelliptic functions.

The discovery of the polynomial S(λ) has always been a vexata

quaestio. In her paper Kowalevski did not provide a convincing motivation
for her choice, but only the evidence, a posteriori, that it actually works.
Her choice therefore appears as the outcome of a magical intuition. The
purpose of the present paper is to derive the polynomial S(λ) directly from
the equations of motion by the method of syzygies. This method is a way
of implementing a new algorithm for the search of separation coordinates
in the case of polynomial equations. The aim of the study is to try to
identify the properties of the equations of motion which are responsible for
the existence of the separation coordinates.
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2. An algorithm for the search of separation coordinates.

Motivated by the example of Kowalevski, let us consider an integrable
Hamiltonian system which is defined by n independent and involutive
functions (h1, h2, . . . , hn) on a Poisson manifold M of dimension (2n + r),
which is endowed with a degenerate Poisson bracket possessing r Casimir’s
functions (c1, c2, . . . , cr). Let us call F the Lagrangian foliation defined by
both the Hamiltonians and the Casimir’s functions, and let us say that the
polynomial

S(λ) = λn − (s1λ
n−1 + . . . + sn),

with coefficients defined on M , is admissible for F if it verifies three
conditions. The first is that almost everywhere on M

(1) ds1 ∧ . . . ∧ dsn ∧ dh1 ∧ . . . ∧ dhn ∧ dc1 ∧ . . . ∧ dcr �= 0,

so that the coefficients of S(λ) may be used as local coordinates on the
leaves of F . The second is that almost everywhere on M

(2) discrλ S(λ) �= 0,

so that the roots of S(λ) may be used as local coordinates on F as well.
The third is that

(3) {si, sj} = 0,

so that the roots of S(λ) may be regarded as the first-half of a set of
canonical coordinates (λ1, . . . , λn, µ1, . . . µn, c1, . . . , cr) adapted to F . In
these coordinates the parametric equations of the leaves of F have the
form

µi =
∂W

∂λi
,

where W is a function of the roots, of the Casimir’s functions, and of a set
of parameters labelling the different leaves of F . If the function W has the
form

W (λ1, . . . , λn, c1, . . . , cr, e1, . . . , en) =
j=n∑
j=1

Wj(λj , c1, . . . , cr, e1, . . . , en),

the foliation F is said to be separable and S(λ) is called its separation

polynomial.

To find S(λ) we resort to an algorithm which is based on the idea
that the separation polynomial is always the characteristic polynomial of
a suitable matrix S. The selection of S proceeds in three stages. The only
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data which are used are the Poisson brackets and the Hamiltonian vector
fields Xhk associated with the functions hk. To simplify the notation , the
j-th row of the matrix S will be simply denoted by Sj .

Algorithm. — The first stage is to find a matrix S verifying the

linear equation

(4) Xhj (Sk)−Xhk(Sj) = 0.

Among the solutions of this equation , if any , one must then select those

verifying the quadratic equation

(5) Xhj ((S
2)k)−Xhk((S

2)j) = 0.

If also this second stage is passed, one finally computes the characteristic

polynomial of S and checks if it is admissible for the given foliation F . In

the affirmative case one is enabled to claim that the roots of

(6) S(λ) = det(λ− S)

are the separation coordinates of F .

The Algorithm is proved in a paper which will appear after this
one [2]. I apologize for the inconvenience, but I hope that the lack of a
proof should not undermine the purposes of the present paper, which are
simply to show the existence of an algorithm leading in a systematic way
to the result of Kowalevski. The algorithm may be used and its results
may be appreciated even if one has not seen the proof. In substitution,
I present the ideas which are behind the proof. The main idea is to use
recursion operators to characterize separable systems. By this name it is
conventionally meant a class of tensor fields of type (1, 1) on a manifold,
which are diagonalizable and have vanishing Nijenhuis torsion. Some minor
additional assumptions on the minimal polynomial of these operators are
also needed, but they are uninteresting in the present context. Suitably
combined with symplectic 2-forms, the recursion operators give rise to the
concept of ωN -manifold.

Definition 1. — A ωN -manifold is a symplectic manifold (M,ω)
endowed with a recursion operator N such that ω ◦N is a closed 2-form.

On a ωN -manifold each Hamiltonian vector field is the generator a
distribution Dh.

Definition 2. — The Levi Civita distribution of Xh is the minimal

invariant distribution containing Xh.

ANNALES DE L’INSTITUT FOURIER
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The distribution Dh allows to characterize the separable Hamiltonian
systems.

Proposition 1. — The separable systems are the generators of

the integrable Levi Civita distributions.

This result presents the theory of separable systems as the theory of a
special class of foliations. In this perspective the following problem becomes
important. Given a Lagrangian foliation F on a symplectic manifold (M,ω),
one is required to find a recursion operator N transforming M into a ωN -
manifold and leaving F invariant. If this operator exists, F is a Levi Civita
foliation. The mechanical implications of this problem are clear. Since
a Lagrangian foliation represents an integrable system, and since a Levi
Civita foliation represents a separable system, to transform a Lagrangian
foliation into a Levi Civita foliation is equivalent to discover that an
integrable system is separable. Hence, solving the inverse problem of the
theory of Levi Civita foliations one simultaneously solves the problem of
Kowalevski.

The role of the matrices S selected by the Algorithm is to parametrize
the solutions of the inverse problem. Each matrix S defines a tensor field
L on F according to

LXhj =
k=n∑
k=1

SjkXhk .

If S obeys the conditions of the Algorithm, the torsion of L vanishes, and
L can be prolonged into a recursion operator N on M , in such a way that
ω ◦N is a closed 2-form. The latter tensor field solves the inverse problem,
and the roots of its minimal polynomial provide the separation coordinates.
In this way the matrices selected by the Algorithm solve the Kowalevski’s
problem.

In the case of Kowalevski’s top n = r = 2, and therefore the matrix
S has four entries:

S =
(

f1 f2

f3 f4

)
.

They must verify a system of five partial differential equations. The first
four are:

{f3, h1} = {f1, h2}
{f4, h1} = {f2, h2}

{f1f3 + f3f4, h1} = {f1
2 + f2f3, h2}

{f2f3 + f4
2, h1} = {f1f2 + f2f4, h2}.

TOME 55 (2005), FASCICULE 6
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The fifth equation is
{p, q} = 0,

where
p = f1 + f4

q = f2f3 − f1f4

are the coefficients of the characteristic polynomial of S. The problem is to
construct a solution of these equations when the Poisson brackets and the
functions h1 and h2 are those associated with the Kowalevski’s top.

3. The Kowalevski’s endomorphism.

In view of solving the previous equations, it is suitable to make a
change of variables partially decoupling the separability conditions. The
transformation is suggested by geometric considerations. Let us consider
on F a second endomorphism K : TF → TF which has the property of
mapping Xh1 into Xh2 . Its defining equations are

KXh1 = Xh2

KXh2 = −sXh1 + rXh2 .

Let us furthermore relate K to L by demanding that K has the same
eigenvectors of L. This requirement entails the existence of a pair of
functions (l,m) such that

L = lK + m.

One may use this equation to define a transformation between (r, s, l,m)
and (f1, f2, f3, f4). Since

LXh1 = f1Xh1 + f2Xh2

LXh2 = f3Xh1 + f4Xh2 ,

the transformation is
f1 = m

f2 = l

f3 = −ls
f4 = m + lr.

Let us choose (r, s, f2, f4) as principal unknowns ( under the assumption
that f2 �= 0 ) , and let us write anew the separability conditions on these

ANNALES DE L’INSTITUT FOURIER
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functions. The first four separability conditions become
{s, h1} = {r, h2}(7)

{s, h2} = r{r, h2} − s{r, h1}(8)

{f4, h1} = {f2, h2}(9)

{f4, h2} = r{f2, h2} − s{f2, h1}.(10)
The first two equations have an interesting geometrical interpretation. They
mean that K : TF → TF obeys the condition
(11) Ktd(trK) = d(detK).
This condition is the long shadow , on K , of the vanishing of the torsion ofL.
Let us call endomorphisms of Kowalevski the linear operators which map
Xh1 into Xh2 and verify the previous relation . The point of the discussion
is thus captured by the following claim.

Proposition 2. — Any integrable system with two degrees of

freedom which is also separable has a Kowalevski’s endomorphism.

The search of separation coordinates must accordingly start from the
search of this endomorphism.

4. The method of syzygies.

The problem to be discussed in this section is to understand what
property of the equations of motion of the Kowalevski’s top

L̇1 = +1/2L2L3

L̇2 = −1/2L1L3 − y3

L̇3 = +y2

ẏ1 = +L3y2 − 1/2L2y3

ẏ2 = +1/2L1y3 − L3y1

ẏ3 = +1/2L2y1 − 1/2L1y2,

and of the equations of motion associated with the quadratic integral
L′1 = k1(1/2L2L3)− k2(1/2L1L3 + y3)

L′2 = k1(1/2L1L3 + y3) + k2((1/2L2L3)

L′3 = −k1L1L2 + 1/2k2(L2
1 − L2

2) + (k2y1 − k1y2)

y′1 = 1/2(k1L2 − k2L1)y3

y′2 = 1/2(k1L1 + k2L2)y3

y′3 = −1/2k1(L1y2 + L2y1) + 1/2k2(L1y1 − L2y2),

TOME 55 (2005), FASCICULE 6
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where the quantities k1 and k2 are defined by

k1 = L2
1 − L2

2 + 4y1

k2 = 2L1L2 + 4y2,

is responsible for the existence of the separation coordinates. The complex
mechanisn relating the equations of motion to the separation coordinates
may be broken in four units. Each unit describes an elementary process.
The processes are:

• The equations produce the syzygies

• The syzygies define the Kowalevski’s endomorphism

• The endomorphism K generates the endomorphism L

• The endomorphim L defines the separation coordinates.

They are presently investigated separately.

2.1. The analysis of nonlinearities.

As a first step in the analysis of the equations, let us choose coor-
dinates adapted to the integrals of motion, so to reduce the number of
equations from twelve to four. Following Kowalevski, let us replace the
dynamical coordinates (L1, L2, L3, y1, y2, y3) by the adapted coordinates
(x1, x2, h1, h2, c1, c2). If one tries to explicitly write the reduced equations

ẋ1 = Z1(x1, x2, h1, h2, c1, c2)

ẋ2 = Z2(x1, x2, h1, h2, c1, c2)

x′1 = Z3(x1, x2, h1, h2, c1, c2)

x′2 = Z4(x1, x2, h1, h2, c1, c2),

one immediately realizes the loss of the polynomial form of the equations.
The nonlinearity of the integrals of motion forces the equations to become
irrational. This unpleasant occurrence may be used as the key for the
search of separation coordinates of the Kowalevski’s top. The reason is
connected to a peculiar balance of the irrational expressions appearing
into the different reduced equations, allowing to get rid of them simply
by forming linear combinations of the equations of motion with rational

coefficients. In other terms, the irrationality of the equations does not forbid
the existence of syzygies with rational coefficients. The existence of these
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syzygies reflects a deep property of the structure of the equations, and the
aim of this section is to convince the reader that the separation coordinates
follow from this property.

The analysis of the irrational expressions ensuing from the change
of variables has been performed by Kowalevski. She wrote the integrals of
motion in the form

c1 = 1/16(k1 + L2
2 − L1

2)2 + 1/16(k2 − 2L1L2)2 + y3
2

c2 = 1/4(k1 + L2
2 − L1

2)L1 + 1/4(k2 − 2L1L2)L2 + y3L3

h1 = 1/4(L1
2 + L2

2) + 1/2L3
2 − 1/4(k1 + L2

2 − L1
2)

h2 = 1/8(k1
2 + k2

2),
by replacing the coordinates y1 and y2 by the basic quantities k1 and k2,
and she noticed that the quantities y3

2, y3L3, and L3
2 depend linearly on

k1 and k2, on account of the fourth equation. The equations

y3
2 =

1
8

(
(L1

2 − L2
2)k1 + 2L1L2k2

)
− 1

16
(L1

2 + L2
2)2 + c1 −

1
2
h2

y3L3 = −1
4
(L1k1 + L2k2) +

1
4
(L1

2 + L2
2)L1 + c2

L3
2 =

1
2
k1 − L2

1 + 2h1

serve to compute the second constraint on k1 and k2. Pursuing the
computation of the identity L3

2y3
2−(L3y3)2 = 0, she discovered the second

unexpected property that this constraint is again linear in k1 and k2. So, k1

and k2 are the roots of a second-order equation. For these roots she found
the representation:

ξ1 = −R1(x1, x2) + 1/2h2(x1 − x2)2 −W

2R(x2, x2)

ξ2 = −R1(x1, x2) + 1/2h2(x1 − x2)2 + W

2R(x1, x1)
using the complex coordinates

ξ1 = 1/4(k1 + ik2)

ξ2 = 1/4(k1 − ik2),
and the function W defined by the equation

W 2 = (R1(x1, x2) + 1/2h2(x1 − x2)2)2 − 2h2R(x1, x1)R(x2, x2).
In the language of field extension , the result of Kowalevski may be stated
by saying that y3

2, y3L3, L3
2, k1, k2, ξ1, and ξ2 belong to the extension F

of field E of rational functions in (x1, x2, h1, h2, c1, c2), whose elements are
first-order polynomials in W with coefficients in E.

TOME 55 (2005), FASCICULE 6
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2.2. The syzygies.

The above property has important consequences on the form of the
reduced equations. These equations do not belong either to E or to F, but
the following property is true.

Lemma 1. — The product ZaZb of any pair of reduced equations

is in F.

This Lemma was partially known to Kowalevski , who actually
computed the three products

−4ẋ1ẋ1 = R(x1, x1) + (x1 − x2)
2
ξ1(12)

4ẋ1ẋ2 = R(x1, x2)(13)

−4ẋ2ẋ2 = R(x2, x2) + (x1 − x2)
2
ξ2.(14)

Unfortunately she missed the other two

ẋ1x
′
1 = R(x1, x2)ξ1(15)

ẋ2x
′
2 = R(x1, x2)ξ2(16)

which are needed to form the syzygies . These syzygies arise as compatibility

conditions of the following two linear systems. Consider the equations
 ẋ1ẋ1

ẋ1ẋ2

ẋ1x
′
1


 =


−1/4R(x1, x1) −1/4(x1 − x2)2 0

1/4R(x1, x2) 0 0
0 R(x1, x2) 0





 1

ξ1
ξ2


 ,

and also the equations
 ẋ2ẋ1

ẋ2ẋ2

ẋ2x
′
2


 =


 1/4R(x1, x1) 0 0
−1/4R(x2, x2) 0 −1/4(x1 − x2)2

0 0 R(x1, x2)





 1

ξ1
ξ2


 .

The matrices of the coefficients are singular and therefore have a kernel.
Let us call (U, V,−1) and (W,Z,−1) two normalized row vectors spanning
the left kernel of the first and of the second matrix respectively. For the
existence of the solution it is then required that

ẋ1ẋ1U + ẋ1ẋ2V − ẋ1x
′
1 = 0(17)

ẋ2ẋ1W + ẋ2ẋ2Z − ẋ2x
′
2 = 0.(18)

These equations are the syzygies among the equations previously referred
to. They exist since the nonlinearities of the equations of motion are
sufficiently mild to entail the validity of the Lemma. The point is now
to exploit these syzygies to find the separation coordinates.
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2.3. The endomorphism K.

The link is provided by the concept of Kowalevski’s endomorphism.
Simplifying the first syzygy by ẋ1, and the second by ẋ2, one easily
transforms the syzygies into a system of two linear equations

x′1 = Uẋ1 + V ẋ2(19)

x′2 = Wẋ1 + Zẋ2,(20)
which may be read as a recursion relation between the reduced equations.
The coefficients U,V,W,Z are given by

U = −4
R(x1, x2)
(x1 − x2)2

(21)

V = −4
R(x1, x1)
(x1 − x2)2

(22)

W = −4
R(x2, x2)
(x1 − x2)2

(23)

Z = −4
R(x1, x2)
(x1 − x2)2

.(24)

These coefficients are used to define the linear endomorphism K according
to

K
∂

∂x1
= U

∂

∂x1
+ W

∂

∂x2
(25)

K
∂

∂x2
= V

∂

∂x1
+ Z

∂

∂x2
.(26)

By construction it automatically verifies the recursion relation KXh1 =
Xh2 . Furthermore its trace and determinant are given by

r = −8
R(x1, x2)
(x1 − x2)2

(27)

s = −16
R1(x1, x2)
(x1 − x2)2

.(28)

So it easy to check if it has the property of Kowalevski. The answer is
affirmative, and the conclusion is that K is the Kowalevski’s endomorphism
of the Kowalevski’s top. The remarkable fact is that this endomorphim has
been provided by the equations of motion themselves, through the analysis
of their nonlinearities. This result is encouraging and means that we are
on the good track . Nevertheless one has still to find the functions f2 and
f4, which allows to deform K into the endomorphism L which has the
properties required by the Algorithm. The solution of this problem is made
easy by the property of homogeneity exhibited by the equations.

TOME 55 (2005), FASCICULE 6
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2.4. The endomorphism L.

Among the solutions of the pair of conditions

{f4, h1} = {f2, h2}
{f4, h2} = r{f2, h2} − s{f2, h1}.

one must find two functions f2 and f4 such that the related functions

p = −f2r + 2f4(29)

q = −f2
2s + f2f4r − f4

2(30)

obey the last separability condition

(31) {p, q} = 0.

The form of the conditions on f2 and f4 suggests to take f2 constant, and
f4 function of the integrals of motion. To fix the latter function, let us
notice that the integrals of motion , the Casimir’s functions, the equations
of motion, and the functions r and s are all homogeneous functions of the
mechanical coordinates (L1, L2, L3, y1, y2, y3), of different degrees if one
gives degree 1 to the components of the angular momentum and degree 2
to the components of the weight. It is then natural to seek for a function f4

homogeneous. Since f2 is of order zero, f4 must be homogeneous of degree
2. Notice that h1 is of degree 2, c2 is of degree 3, and h2 and c1 are of
degree 4. Thus the number of ways of building a function of the integrals
of motion and of the Casimir’s functions which is of degree 2 is limited.
The simplest choice is to consider a constant multiple of the energy. These
considerations suggest to set

f2 = a, a ∈ R(32)

f4 = bh1, b ∈ R.(33)

The fifth and last condition splits then into a system of 43 algebraic
equations for the indeterminate coefficients a and b, admitting the solutions
(a = 0, b ∈ R) and (a ∈ R, b = 4a). The first solution must be rejected since
f2 cannot vanish. Therefore, one is left with the one parameter family of
matrices

L = f2K + (f4 − f2r)

which are all admissible. One is thus allowed to claim that the roots of the
characteristic polynomial

det(ν − L) = (ν − f4)2 + f2r(ν − f4) + f2
2 s
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are separation coordinates of the Kowalevski’s top. Inserting the values of
(f2, f4, r, s) and setting ν = cσ leads to the equation

(34) (x1 − x2)2
(
σ − 4a

c
h1

)2

− 8a
c
R(x1, x2)

(
σ − 4a

c
h1

)

−
(

4a
c

)2

R1(x1, x2) = 0.

The choice c = 8a reduces this equation to the final form

(35) (x1 − x2)2
(
σ − h1

2

)2

−R(x1, x2)
(
σ − h1

2

)
− 1

4
R1(x1, x2) = 0,

which coincides with that of Kowalevski up to the shift σ = λ + 1
3h1 of

the independent variable. This means that the Kowalevski’s coordinates
(λ1, λ2) are related to the separation coordinates (σ1, σ2) by the formulas

σ1 = λ1 + 1/3h1(36)

σ2 = λ2 + 1/3h2.(37)

This remark ends our discussion. It simply remains to notice that the
method of syzygies is not the unique method allowing to solve the
Kowalevski’s problem (see [2]), but it has a particular charm. It seems
to bring forth the separation coordinates from the depth of the equations
of motion.
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