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HOLOMORPHIC MORSE INEQUALITIES

ON MANIFOLDS WITH BOUNDARY

by Robert BERMAN

1. Introduction.

Let X be a compact n-dimensional complex manifold with boundary.
Let ρ be a defining function of the boundary of X, i.e. ρ is defined in
a neighborhood of the boundary of X, vanishing on the boundary and
negative on X. We take a Hermitian metric ω on X such that dρ is of
unit-norm close to the boundary of X. The restriction of the two-form
i∂∂ρ to the maximal complex subbundle T 1,0(∂X) of the tangent bundle
of ∂X, is the Levi curvature form of the boundary ∂X. It will be denoted
by L. Furthermore, let L be a Hermitian holomorphic line bundle over
X with fiber metric φ, so that i∂∂φ is the curvature two-form of L. It
will be denoted by Θ. The line bundle L is assumed to be smooth up to
the boundary of X. Strictly speaking, φ is a collection of local functions.
Namely, let si be a local holomorphic trivializing section of L, then locally,
|si(z)|2 = e−φi(z). The notation ηp := ηp/p! will be used in the sequel, so
that the volume form on X may be written as ωn.

When X is a compact manifold without boundary Demailly’s (weak)
holomorphic Morse inequalities [9] give asymptotic bounds on the dimen-
sion of the Dolbeault cohomology groups associated to the k :th tensor
power of the line bundle L :

(1.1) dimCH0,q(X,Lk) � kn(−1)q
( 1

2π

)n ∫
X(q)

Θn + o(kn),

Keywords: Line bundles, cohomology, harmonic forms, holomorphic sections, Bergman
kernel.
Math. classification: 32A25, 32L10, 32L20.



1056 Robert BERMAN

where X(q) is the subset of X where the curvature-two form Θ has exactly q

negative eigenvalues, i.e. the set where index(Θ) = q. Demailly’s inspiration
came from Witten’s analytical proof of the classical Morse inequalities
for the Betti numbers of a real manifold [29], where the role of the fiber
metric φ is played by a Morse function. Subsequently, holomorphic Morse
inequalities on manifolds with boundary where studied. The cases of q-
convex and q-concave boundary were studied by Bouche [7], and Marinescu
[22], respectively, and they obtained the same curvature integral as in the
case when X has no boundary. However, it was assumed that, close to the
boundary, the curvature of the line bundle L is adapted to the curvature
of the boundary. For example, on a pseudoconcave manifold (i.e. the Levi
form is negative on the boundary) it is assumed that the curvature of L

is non-positive close to the boundary. This is related to the well-known
fact that in the global L2-estimates for the ∂-operator of Morrey-Kohn-
Hörmander-Kodaira there is a curvature term from the line bundle as well
from the boundary and, in general, it is difficult to control the sign of the
total curvature contribution. Morse inequalities over strictly pseudoconvex
CR manifolds have been obtained by Getzler [16], who also suggested that
one should try to prove similar formulas for the ∂-Neumann problem on a
complex manifold with boundary. This will be done in the present paper.

We will consider an arbitrary holomorphic line bundle L over a
complex manifold with boundary and extend Demailly’s inequalities to
this situation. We will write hq(Lk) for the dimension of H0,q(X,Lk),
the Dolbeault cohomology group of (0, q)-forms with values in Lk. The
cohomology groups are defined with respect to forms that are smooth up
to the boundary. Recall that X(q) is the subset of X where index(Θ) = q

and we let

T (q)ρ,x =
{
t > 0 : index(Θ + tL) = q along T 1,0(∂X)x

}
.

The main theorem we will prove is the following generalization of Demailly’s
weak holomorphic Morse inequalities.

Theorem 1.1. — Suppose that X is a compact complex manifold

with boundary, such that the Levi form is non-degenerate on the boundary.

Then, up to terms of order o(kn),

(1.2) hq(Lk) � kn(−1)q
( 1
2π

)n(∫
X(q)

Θn+
∫
∂X

∫
T (q)ρ,x

(Θ+tL)n−1∧∂ρ∧dt
)
,

The boundary integral above may also be expressed more directly in
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MORSE INEQUALITIES 1057

terms of symplectic geometry as

(1.3)
∫
X+(q)

(Θ + dα)n

where (X+, dα) is the symplectification of the contact manifold ∂X induced
by the complex structure of X (Section 7.1).

Examples will be presented that show that the leading constants in
the bounds of the theorem are sharp. We will also obtain the corresponding
generalization of the strong holomorphic Morse inequalities. The most
interesting case is when the manifold is a strongly pseudoconcave manifold
X of dimension n � 3 with a positive line bundle L. Then, if the curvature
forms of L and ∂X are conformally equivalent along the complex tangential
directions of ∂X, we will deduce that

(1.4) h0(Lk) = kn
(∫

X

Θn +
1
n

∫
∂X

(i∂∂ρ)n−1 ∧ i∂ρ
)

+ o(kn),

if the defining function ρ is chosen in an appropriate way. In particular,
such a line bundle L is big and (1.4) can be expressed as

Vol(L) = Vol(X) +
1
n

Vol(∂X)

in terms of the corresponding symplectic volume of X and contact volume
of ∂X. Examples are provided that show that Theorem 1.1 is sharp and
also compatible with “hole filling”.

The proof of Theorem 1.1 will follow from local estimates for the
corresponding Bergman function Bq,k

X where Bq,k
X is the Bergman function

of the space H0,q(X,Lk) of ∂-harmonic (0, q)-forms satisfying ∂-Neumann
boundary conditions (simply referred to as the harmonic forms in the
sequel). The point is that the integral of the Bergman function is the
dimension of H0,q(X,Lk). It is shown that, for large k, the Bergman
function (or more precisely the corresponding measure) is estimated by
the sum of two model Bergman functions, giving rise to the bulk and the
boundary integrals in Theorem 1.1. The model at a point x in the interior of
X is obtained by replacing the manifold X with flat Cn and the line bundle
L with the constant curvature line bundle over Cn obtained by freezing
the curvature of the line bundle at the point x. Similarly, the model at a
boundary point is obtained by replacing X with the unbounded domain
X0 in Cn, whose constant Levi curvature is obtained by freezing the Levi
curvature at the boundary point in X. The line bundle L is replaced by the
constant curvature line bundle over X0, obtained by freezing the curvature
along the complex tangential directions, while making it flat in the complex
normal direction.

TOME 55 (2005), FASCICULE 4



1058 Robert BERMAN

The method of proof is an elaboration of the, comparatively elemen-
tary, technique introduced in [4] to handle Demailly’s case of a manifold
without boundary.

Remark 1.2. — The boundary integral in (1.2) is finite precisely
when there is no point in the boundary where the Levi form i∂∂ρ has
exactly q negative eigenvalues. Indeed, any sufficiently large t will then be
in the complement of the set T (q)ρ,x. Since, we have assumed that the
Levi form i∂∂ρ is non-degenerate, this condition coincides with the so-
called condition Z(q) [15]. However, for an arbitrary Levi form the latter
condition is slightly more general: it holds if the Levi form has at least q+1
negative eigenvalues or at least n−q positive eigenvalues everywhere on ∂X.

In fact, the proof of Theorem 1.1 only uses that ∂X satisfies condition Z(q)
and is hence slightly more general than stated. Furthermore, a function ρ

is said to satisfy condition Z(q) at a point x if x is not a critical point of ρ
and if ∂∂ρ satisfies the curvature condition at x along the level surface of
ρ passing through x.

One final remark about the extension of the Morse inequalities to
open manifolds:

Remark 1.3. — The cohomology groups H0,∗(X,Lk) associated to
the manifold with boundary X occurring in the weak Morse inequalities,
Theorem 2.1, are defined with respect to forms that are smooth up to
the boundary. Removing the boundary from X we get an open manifold,
that we denote by Ẋ. By the Dolbeault theorem [17] the usual Dolbeault
cohomology groups H0,∗(Ẋ, Lk) of Ẋ are isomorphic to the cohomology
groups H∗(Ẋ,O(Lk)) of the sheaf O(Lk) of germs of holomorphic sections
on Ẋ with values in Lk. Moreover, if we assume that condition Z(q)
and Z(q + 1) hold then H0,q(X,Lk) and H0,q(Ẋ, Lk) are isomorphic [15].
Furthermore, consider a given open manifold Y with a smooth exhaustion
function ρ, i.e. a function such that the open sublevel sets of ρ are relatively
compact in Y for every real number c. Then, if for a fixed regular value
c0, the curvature conditions Z(q) and Z(q + 1) hold for ρ when ρ � c0,

the group H0,q(Y, Lk) is isomorphic to H0,q(Xc0 , L
k) [20], where Xc0 is

the corresponding closed sublevel set of ρ. In this way one gets Morse
inequalities on certain open manifolds Y.

Notation 1.4. — The notation ak ∼ (resp. �) bk will stand for
ak = (resp. �) Ckbk, where Ck tends to one when k tends to infinity.
The ∂-Laplacian [17] will be called just the Laplacian. It is the differential
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operator defined by ∆ := ∂∂
∗

+ ∂
∗
∂ (where ∂

∗
denotes the formal adjoint

of ∂) acting on smooth forms on X with values in Lk. Similarly, we will
call an element in the kernel of ∆ harmonic, instead of ∂-harmonic.

The paper is organized in two parts. In the first part we will state
and prove the weak holomorphic Morse inequalities. In the second part
the strong holomorphic Morse inequalities are obtained. Finally, the weak
Morse inequalities are shown to be sharp and the relation to hole filling
investigated.

Part I. THE WEAK MORSE INEQUALITIES.

2. Setup and a sketch of the proof.

In the first part we will show how to obtain weak holomorphic Morse
inequalities for (0, q)-forms, with values in a given line bundle L over a
manifold with boundary X. In other words we will estimate the dimension
of H0,q(X,Lk) in terms of the curvature of L and the Levi curvature of
the boundary of X. With notation as in the introduction of the article the
theorem we will prove is as follows.

Theorem 2.1. — Suppose that X is a compact complex manifold

with boundary, such that the Levi form is non-degenerate on the boundary.

Then, up to terms of order o(kn),

hq(Lk) � kn(−1)q
( 1

2π

)n(∫
X(q)

Θn +
∫
∂X

∫
T (q)ρ,x

(Θ + tL)n−1 ∧ ∂ρ ∧ dt
)
,

Note that the last integral is independent of the choice of defining
function. Indeed, if ρ′ = fρ is another defining function, where f is a
positive function, the change of variables s = ft shows that the integral
is unchanged. A more intrinsic formulation of the last integral will be
given in Section 7.1. Let us now fix the grade q. Since, the statement
of the theorem is vacuous if the Levi form i∂∂ρ has exactly q negative
eigenvalues somewhere on ∂X (compare Remark 1.2) we may assume that
this is not the case. Then it is well-known that the Dolbeault cohomology
group H0,q(X,E) is finite dimensional for any given vector bundle E over
X. The cohomology groups are defined using forms that are smooth up
to the boundary. Moreover, the Hodge theorem, in this context, says that
H0,q(X,E) is isomorphic to the space H0,q(X,E), consisting of harmonic

TOME 55 (2005), FASCICULE 4



1060 Robert BERMAN

(0, q)-forms, that are smooth up to the boundary, where they satisfy ∂-
Neumann boundary conditions [15]. The space H0,q(X,E) is defined with
respect to given metrics on X and E.

The starting point of the proof of Theorem 2.1 is the fact that the
dimension of the space H0,q(X,Lk) may be expressed as an integral over
X of the so-called Bergman function Bq,k

X defined as

Bq,k
X (x) =

∑
i

|Ψi(x)|2 ,

where {Ψi} is any orthonormal base for H0,q(X,Lk). Indeed, the integral
of each term in the sum is equal to one. Note that the Bergman function
Bq,k
X depends on the metric ω on X. It is convenient to use kω as metric

for a given k. The point is that the volume of X measured with respect
to kω is of the order kn. Hence, the dimension bound in Theorem 2.1 will
follow from a point-wise estimate of the corresponding Bergman function
Bq,k
X . Another reason why kω is a natural metric on X is that, since kφ is

the induced fiber metric on Lk, the norms of forms on X with values in
Lk become more symmetrical with respect to the base and fiber metrics.
In fact, we will have to let the metric ω itself depend on k (and on a large
parameter R) close to the boundary and we will estimate the Bergman
function of the spaceH0,q(X, kωk, L

k) in terms of model Bergman functions
and compute the model cases explicitly. The sequence of metrics ωk will be
of the following form. First split the manifold X in an inner region Xε, with
defining function ρ + ε and its complement, the boundary region, given a
small positive number ε. The level sets where ρ = −Rk−1 and ρ = −k−1/2

divide the boundary region into three regions. The one that is closest to
the boundary of X will be called the first region and so on. Next, define
ωT , the complex tangential part of ω close to the boundary by

ωT := ω − 2i∂ρ ∧ ∂ρ

(recall that we assumed that dρ is of unit-norm with respect to ω close to
the boundary of X). The metric ωk is of the form

(2.1) ωk = ωT + ak(ρ)−12i∂ρ ∧ ∂ρ,

where the sequence of smooth functions ak will be chosen so that, basically,
the distance to the boundary, when measured with respect to kωk, in the
three different regions is independent of k. The properties of ωk that we
will use in the two regions will be stated in the proofs below, while the
precise definition of ωk is deferred to Section 5.4.

ANNALES DE L’INSTITUT FOURIER
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2.1. A sketch of the proof of the weak Morse inequalities.

To make the sketch of the proof cleaner, we will just show how to
estimate the extremal function

(2.2) Sq,k
X (x) = sup

αk

|αk(x)|2

closely related to Bq,k
X , where the supremum is taken over all normalized

elements of the space H0,q(X,ωk, L
k). When q = 0, i.e. the case of

holomorphic sections, it is a classical fact that they are actually equal and
the general relation is given in Section 3. Let us first see how to get the
following bound in the inner region Xε defined above:

(2.3) Sq,k
X (x) � Sq

Cn,x
(0),

where the right hand side is the extremal function for the model case defined
below. Moreover, the left hand side is uniformly bounded by a constant,
which is essential when integrating the estimate to get an estimate on the
dimension of H0,q(X, kωk, L

k). The proof of (2.3) proceeds exactly as in
the case when X is a compact manifold without boundary [4]. Let us recall
the argument, slightly reformulated. Fix a point x in Xε. We may take
local holomorphic coordinates centered at x and a local trivialization of L

such that

(2.4) φ(z) =
n∑
i=1

λiziz̄i + · · · , ω(z) =
i

2

n∑
i=1

dzi ∧ dzi + · · ·

where the dots indicate lower order terms and the leading terms are called
model metrics and denoted by φ0 and ω0, respectively. Hence, the model
situation is a line bundle of constant curvature on flat Cn. Note that the
unit ball at x with respect to the metric kωk corresponds approximately to
the coordinate ball at 0 of radius k−1/2. To make this more precise, define
a scaling map

Fk(z) = k−1/2z

and consider a sequence of expanding balls centered at 0 in Cn of radius
rk, slowly exhausting all of Cn. We will call F ∗k (kφ) and F ∗k (kω) the scaled
metrics on the expanding balls. The point is that they converge to the model
metrics φ0 and ω0. This follows immediately from the expressions (2.4) and
the fact that the model metrics are invariant when kF ∗k is applied. Next,
given a (0, q) form on X with values in Lk, we denote by α(k) the scaled form
defined by α(k) = F ∗kαk. Then, by the convergence of the scaled metrics,

(2.5) ‖αk‖2Fk(Brk ) ∼
∥∥α(k)

∥∥2

Brk
,

TOME 55 (2005), FASCICULE 4



1062 Robert BERMAN

using the norms induced by the model metrics in the right hand side
above. Now, if αk is a normalized sequence of extremals (i.e. realizing the
extremum in (2.2)) we have

Sq,k
X (x) =

∣∣α(k)(0)
∣∣2.

By (2.5), the norms of the scaled sequence α(k) are less than one, when
k tends to infinity. Moreover, α(k) is harmonic with respect to the scaled
metrics and since these converge to model metrics, inner elliptic estimates
for the Laplacian show that there is a subsequence of α(k) that converges
to a model harmonic form β in Cn. In fact, we may assume that the whole
sequence α(k) converges. Hence,

lim sup
k

∣∣α(k)(0)
∣∣2 = |β(0)|2

which in turn is bounded by the model extremal function SX0,x(0). More-
over, since Xε may be covered by coordinate balls of radius k−1/2, staying
inside of X for large k, one actually gets a uniform bound.

Let us now move on to the boundary region X−Xε that we split into
three regions as above. Fix a point σ in the boundary of X. We may take
local coordinates centered at σ and orthonormal at σ, so that

ρ(z, w) = v −
n−1∑
i=1

µi |zi|2 + · · ·

where v is the imaginary part of w [8]. The leading term of ρ will be
denoted by ρ0, and will be referred to as the defining function of the model

domain X0 in Cn. Observe that the model domain X0 is invariant under
the holomorphic anisotropic scaling map

Fk(z, w) = (z/k1/2, w/k).

Moreover, the scaled fiber metric on Lk now tends to the new model
fiber metric φ0(z, 0), since the terms in φ involving the coordinate w are
suppressed by the anisotropic scaling map Fk. Now, the bound (2.3) is
replaced by

(2.6) Sq,k
X (0, iv/k) � S(0, iv),

in terms of the new model case. To see this one replaces the balls of
decreasing radii used before with Fk(Dk) intersected with X, where Dk

is a sequence of slowly expanding polydiscs. Moreover, we have to let the
initial metric ω on X depend on k in the normal direction in order that
the scaled metric converge to a non-degenerate model metric. In the first
region we will essentially let

ωk = ωT + k2i∂ρ ∧ ∂ρ.

ANNALES DE L’INSTITUT FOURIER
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As a model metric in X0 we will essentially use

ω0 =
i

2
∂∂ |z|2 + 2i∂ρ0 ∧ ∂ρ0.

Then clearly

(2.7) F ∗k (kωk) = ω0

in the model case and it also holds asymptotically in k, in the general
case. Replacing the inner elliptic estimates used in the inner part Xε with
subelliptic estimates for the ∂-Laplacian close to the boundary one gets the
bound (2.6) more or less as before. Finally, using similar scaling arguments,
one shows that the contribution from the second and third region to the
total integral of Bq,k

X is negligible when k tends to infinity.

This gives the bound∫
X

Bq,k
X (kωk)n � kn

(∫
X

Bq
Cn,x

ωn +
∫
∂X

∫ 0

−∞
Bq
X0,σ

(iv)dvdσ
)

integrating over an infinite ray in the model region X0 in the second integral
(after letting R tend to infinity). Computing the model Bergman functions
explicitly then finishes the proof of the theorem.

3. Bergman kernel forms.

Let us now turn to the detailed proof of Theorem 2.1. First we
introduce Bergman kernel forms to relate the Bergman function Bq,k

X to
extremal functions taking account of the components of a form (see [5] for
proofs). Let (ψi) be an orthonormal base for a finite dimensional Hilbert
space H0,q of (0, q)-forms with values in L. Denote by π1 and π2 the
projections on the factors of X × X. The Bergman kernel form of the
Hilbert space H0,q is defined by

K
q(x, y) =

∑
i

ψ̄i(x) ∧ ψi(y).

Hence, Kq(x, y) is a form on X × X with values in the pulled back line
bundle π̄∗1(L) ⊗ π∗2(L). For a fixed point x we identify Kq

x(y) := Kq(x, y)
with a (0, q)-form with values in L ⊗ Λ0,q(X,L)x. The definition of Kq is
made so that Kq satisfies the following reproducing property:

(3.1) α(x) = cn,q

∫
X

α ∧Kq

x ∧ e−φωn−q,

TOME 55 (2005), FASCICULE 4



1064 Robert BERMAN

for any element α in H0,q, using a suggestive notation and where cn,q is a
complex number of unit norm that ensures that (3.1) may be interpreted
as a scalar product. Properly speaking, α(x) is equal to the push forward
π2∗(cn,qα∧Kq ∧ωn−qe−φ)(x). The restriction of Kq to the diagonal can be
identified with a (q, q)-form on X with values in L⊗L. The Bergman form

is defined as Kq(x, x)e−φ(x), i.e.

(3.2) B
q(x) =

∑
i

ψ̄i(x) ∧ ψi(x)e−φ(x)

and it is a globally well-defined (q, q)-form on X. The following notation will
turn out to be useful. For a given form α in Ω0,q(X,L) and a decomposable
form in Ω0,q(X)x of unit norm, let αθ(x) denote the element of Ω0,0(X,L)x
defined as

αθ(x) = 〈α, θ〉x
where the product takes values in Lx. We call αθ(x) the value of α at the

point x, in the direction θ. Similarly, let Bq
θ(x) denote the function obtained

by replacing (3.2) by the sum of the squared pointwise norms of ψi,θ(x).
Then Bq

θ(x) has the following useful extremal property:

(3.3) Bq
θ(x) = sup

α
|αθ(x)|2 ,

where the supremum is taken over all elements α in H0,q of unit norm.
The supremum will be denoted by Sq

θ (x) and an element α realizing the
supremum will be referred to as an extremal form for the space H0,q at

the point x, in the direction θ. The reproducing formula (3.1) may now be
written as

αθ(x) = (α,Kq
x,θ).

Finally, note that the Bergman function B is the trace of Bq, i.e.

Bqωn = cn,qB
q ∧ ωn−q.

Using the extremal characterization (3.3) we have the following useful
expression for B :

(3.4) B(x) =
∑
θ

Sθ(x),

where the sum is taken over any orthonormal base of direction forms θ in
Λ0,q(X)x.

ANNALES DE L’INSTITUT FOURIER
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4. The model boundary case.

In the sketch of the proof of the weak holomorphic Morse inequalities
(Section 2.1) it was explained how to bound the Bergman function on X

by model Bergman functions. In this section we will compute the Bergman
kernel explicitly in the model boundary case. Consider Cn with coordinates
(z, w), where z is in Cn−1 and w = u + iv. Let X0 be the domain with
defining function

ρ0(z, w) = v + ψ0(z) := v +
n−1∑
i=1

µi |zi|2 ,

and with the metric

ω0 =
i

2
∂∂ |z|2 + a(ρ)−12i∂ρ0 ∧ ∂ρ0.

Note that the corresponding volume element (ω0)n is given by a(ρ)−1

times the usual Euclidean volume element on Cn. We will take a(ρ0) to
be comparable to (1−ρ0)2 (compare Section 5.4) but we will only use that
the corresponding metric ω0 is “relatively complete” (compare Section 4.1).
We fix the q and assume that condition Z(q) holds on ∂X0, i.e. that at least
q + 1 of the eigenvalues µi are negative or that at least n − q of them are
positive.

Let H0,q(X0, φ0) be the space of all (0, q)- forms on X that have finite
L2-norm with respect to the norms defined by the metric ω0 and the weight
e−φ0(z), where φ0 is quadratic, and that are harmonic with respect to the
corresponding Laplacian. Moreover, we assume the the forms are smooth up
to the boundary of X0 where they satisfy ∂-Neumann boundary conditions
(in fact, the regularity properties are automatic, since we have assumed
that condition Z(q) holds [15]). The Bergman kernel form of the Hilbert
space H0,q(X0, φ0) will be denoted by Kq

X0
. We will show how to expand

K
q
X0

in terms of Bergman kernels on Cn−1, and then compute it explicitly.
Note that the metric ω0 is chosen so that the pullback of any form on
Cn−1 satisfies ∂-Neumann boundary conditions. Conversely, we will show
that any form in H0,q(X0, φ0) can be written as a superposition of such
pulled-back forms.

By the very definition of the metric ω0, the forms dzi and a−1/2∂ρ0

together define an orthogonal frame of (1, 0)-forms. Any (0, q)-form α on
X may now be uniquely decomposed in a tangential and a normal part:

α = αT + αN ,

TOME 55 (2005), FASCICULE 4
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where α = αT modulo the algebra generated by ∂ρ0. A form α without
normal part will be called tangential. The proof of the following proposition
is postponed till the end of the section.

Proposition 4.1. — Suppose that α is in H0,q(X0, φ0). Then α is

tangential, closed and coclosed (with respect to ∂).

By the previous proposition any form α in H0,q(X0, φ0) may be
written as

α(z, w) =
∑
I

fIdz̄I .

Moreover, since α is in L2(X0, φ0) and ∂- closed, the components fI are
in L2(X0, φ0) and holomorphic in the w-variable. We will have use for the
following basic lemma: (1)

Lemma 4.2. — Let m(v) be a positive function on [0,∞[ with

polynomial growth at infinity. If f(w) is a a holomorphic function in {v < c}
with finite L2-norm with respect to the measure m(v)dudv, then there

exists a function f̂(t) on ]0,∞[ such that

f(w) =
∫ ∞

0

f̂(t)e−
i
2wtdt.

Moreover,

(4.1)
∫
v<c

∫ ∞
u=−∞

|f(w)|2 m(v)dudv = 4π
∫
v<c

∫ ∞
t=0

∣∣f̂(t)
∣∣2evtm(v)dtdv.

We will call f̂(t) the Fourier transform of f(w). Now, fix z in Cn−1

and take c = −ψ0(z) and m(v) = a(ρ0)−1 = a(v + ψ0(z))−1. Then fI , as a
function of w, must satisfy the requirements in the lemma above for almost
all z. Fixing such a z we write f̂I,t(z) for the function of t obtained by
taking the Fourier transformation with respect to w. Hence, we can write

(4.2) α(z, w) =
∫ ∞

0

α̂t(z)e−
i
2wtdt

for almost all z, if we extend the Fourier transform and the integral to act
on forms coefficient wise. Note that the equality (4.2) holds in L2(X0, φ0).
The following proposition describes the space H0,q(X0, φ0) in terms of
the spaces H0,q(Cn−1, tψ0 + φ0), consisting of all harmonic (0, q)-forms
in L2(Cn−1, tψ0 + φ0) (with respect to the Euclidean metric in Cn). The
corresponding scalar products over Cn−1 are denoted by (·, ·)t.

(1) This lemma can be reduced to the Payley-Wiener Theorem 19.2 in [25].
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Proposition 4.3. — Suppose that α is a tangential (0, q)-form

on X0 with coefficients holomorphic with respect to w. Then α̂t is in

L2(Cn−1, tψ0 + φ0) for almost all t and

(4.3) (α, α)X0 = 4π
∫

(α̂t, α̂t)tb(t)dt,

where b(t) =
∫
s<0

esta(ρ0)−1ds. Moreover, if α is in H0,q(X0, φ0), then α̂t

is in H0,q(Cn−1, tψ0 + φ0) for almost all t.

Proof. — It is clearly enough to prove (4.3) for the components fI of
α, i.e. for a function f in X0 that is holomorphic with respect to w. When
evaluating the norm (f, f)X0 over X0 we may first perform the integration
over u, using (4.1), giving

(f, f)X0 = 4π
∫
ρ0<0

∣∣∣f̂t(z)∣∣∣2 evte−φ(z)a(ρ0)−1dzdtdv,

where dz stands for the Euclidean volume form
(
i
2∂∂ |z|

2)
n−1

on Cn−1. If
we now fix z and make the change of variables s := v+ψ0(z) and integrate
with respect to s we get

4π
∫ ∣∣∣f̂t(z)∣∣∣2 b(t)e−(tψ(z)+φ(z))dtdz = 4π

∫
(f̂t, f̂t)tb(t)dt.

Since this integral is finite, it follows that (f̂t, f̂t) is finite for almost all t.

Next, assume that α is in H0,q(X0, φ0). By Proposition 4.1 α is ∂-
closed, so that (4.2) gives that α̂t is ∂-closed for almost all t. Let us now
show that α̂t is ∂-coclosed with respect to L2(Cn−1, tψ0 + φ0) for almost
all t. Fix an interval I in the positive half-line and let β be a form in X0

that can be written as

β(z, w) =
∫
t ∈I

ηt(z)e−
i
2wtdt

where ηt is a smooth (0, q−1)-form with compact support on Cn−1 for a
fixed t (and measurable with respect to t for z fixed). In particular β is a
smooth form in L2(X0, φ0) that is tangential and holomorphic with respect
to w. According to (4.2) β̂t is equal to ηt for t ∈ I and vanishes otherwise.
By Proposition 4.1 α is ∂-coclosed (with respect to L2(X0, φ0)). Using (4.3)
we get that

0 = (∂
∗
α, β) = (α, ∂β) = 4π

∫
t∈I

(α̂t, ∂ηt)tb(t)dt,

where we have used Lemma 4.6 proved in the next section to get the second
equality. Since this holds for any choice of form β and interval I as above we
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conclude that ∂
∗
α̂t = 0 for almost all t. Hence α̂t is in H0,q(Cn−1, tΨ0+φ0)

for almost all t. ��

Denote by Kq
t the Bergman kernel of the Hilbert space H0,q(Cn−1,

tΨ0 + φ0).

Lemma 4.4. — The Bergman kernel Kq
X0

may be expressed as

K
q
X0

(z, w, z′, w′) =
1
4π

∫ ∞
0

K
q
t (z, z

′)e
i
2 (w̄−w′)tb(t)−1dt

In particular, the Bergman form B
q
X0

is given by

B
q
X0

(z, w) =
1
4π

∫ ∞
0

B
q
t (z, z)e

ρ0tb(t)−1dt.

Proof. — Take a form α is in H0,q(X0, φ0) and expand it in terms of
its Fourier transform as in (4.2). According to the previous lemma α̂t is in
H0,q(Cn−1, tΨ0 + φ0) for almost all t. Hence, we can express it in terms of
the corresponding Bergman kernel Kq

t , giving

fI(z, w) =
∫

f̂I,t(z)e−
i
2wtdt =

∫
(α̂t(z),K

q
t,z,I)e

i
2wtdt,

where Kq
t,z,I denotes the Bergman kernel form K

q
t at the point z in the

direction dz̄I (see Section 3) and where have used the reproducing property
(3.1) of the Bergman kernel. Now, using the relation between the different
scalar products in the previous lemma we get

fI(z, w) =
1
4π

(
α(z′, w′),

∫
t

K
q
t,z,I(z

′)e
i
2 w̄te−

i
2w
′tb(t)−1dt

)
X0

where (z′, w′) are the integration variables in the scalar product. But
this means exactly that Kq

X0
as defined in the statement of the lemma

is the Bergman kernel form of the space H0,q(X0, φ0) since α was chosen
arbitrarily. Finally, by definition we have that

B
q
X0

(z, w) = Kq
X0

(z, w, z, w)e−φ0(z), Bqt (z, z) = Kq
t (z, z

′)e−(tΨ0+φ0)(z).

Hence, the expression for BqX0
is obtained. ��

Now we can give an explicit expression for the Bergman kernel form
and the Bergman function. In the formulation of the following theorem we
consider X0 as a fiber bundle of infinity rays ]−∞, 0] over (or rather under)
the boundary ∂X0. Then we can consider the fiber integral over 0, i.e. the
push forward at 0, of forms on X0. Moreover, given a real-valued function
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η on Cn−1 such that i
2∂∂η has exactly q negative eigenvalues, we define an

associated (q, q)- form χq,q by

χq,q := (i/2)qe1 ∧ · · · ∧ eq ∧ ē1 ∧ · · · ∧ ēq

where ei is a orthonormal (1, 0)-frame that is dual to a base ei of the
direct sum of eigen spaces corresponding to negative eigenvalues of i∂∂η

(compare [5]). The (q, q)-form associated to i
2∂∂φ0 + t i2∂∂ρ0 is denoted by

χq,q
t in the statement of the following theorem.

Theorem 4.5. — The Bergman form B
q
X0

can be written as an

integral over a parameter t :

B
q
X0

(0, u + iv) =
1
4π

1
πn−1

∫
T (q)

χq,q
t det(

i

2
∂∂φ0 + t

i

2
∂∂ρ0)evtb(t)−1dt,

where b(t) =
∫
ρ<0

eρta(ρ)−1dρ. In particular, the fiber integral over 0 of

the Bergman function BX0 times the volume form is given by

(4.4)
∫ 0

v=−∞
Bq
X0

(0, iv)(ω0)n =
( i

2π

)n
(−1)q

∫
T (q)

(∂∂φ0 + t∂∂ρ0)n−1∧∂ρ∧dt.

Proof. — Let us first show how to get the expression for BqX0
. Using

the previous proposition we just have to observe that in Cm, with η a
quadratic weight function, the Bergman form is given by

(4.5) B
q
η =

1
πm

1X(q)χ
q,q det

( i

2
∂∂η

)
,

where the constant function 1X(q) is equal to one if i
2∂∂η has precisely

q negative eigenvalues and is zero otherwise (see [4], [5], [6]). Next, from
Section 3 we have that Bq

X0
(ω0)n is given by BqX0

(ω0)n−q. Note that

χq,q ∧ (ω0)n−q =
( i

2
∂∂ |z|2

)
n−1
∧ a(ρ0)−1(2i)∂ρ0 ∧ dρ0,

Thus, the fiber integral of Bq
X0

(ω0)n over 0 reduces to (4.4) since the factor
b(t) is cancelled by the integral of evta(v)−1. ��

Let us finally prove Proposition 4.1.

4.1. The proof of Proposition 4.1: all harmonic forms are
tangential, closed and coclosed.

We may write

ω0 =
i

2
∂∂ |z|2 + 2i∂ρ′ ∧ ∂ρ′
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for a certain function ρ′ of ρ0. The forms 2−1/2dzi and 21/2∂ρ′ together
define a orthonormal frame of (1, 0)-forms. However, we will use the
orthogonal frame consisting of all dzi and ∂ρ′ in order not to clutter the
formulas. A dual frame of (1, 0)-vector fields is obtained as

(4.6) Zi :=
∂

∂zi
− 2iµiz̄i

∂

∂w
, i = 1, 2, . . . , n, N := ia1/2 ∂

∂w
,

where Zi is tangential to the level surfaces of ρ, while N is a complex
normal vector field. We decompose any form α as

α = αT + αN =
∑

fIdz̄I + ∂ρ′ ∧ g0,q−1

Similarly, we decompose the ∂-operator acting on the algebra of forms
Ω0,∗(X0) as

(4.7) ∂ = ∂T + ∂N =
n−1∑
i=1

Zidz̄i ∧+N∂ρ′∧,

where the vector fields Zi etc. act on forms over X0 by acting on the
coefficients where dz̄i∧ etc denotes the operator acting on forms on X,

obtained by wedging with dz̄i. The adjoint operator will be denoted by
dz̄∗i . Note that the expression for ∂ is independent of the ordering of the
operators, since the elements in the corresponding frame of (0, 1)-forms are
∂-closed. We denote by ∆T and ∆N the corresponding Laplace operators,
i.e.

∆T = ∂T∂
∗
T + ∂

∗
T∂T , ∆N = ∂N∂

∗
N + ∂

∗
N ∂̄N ,

Recall that α is said to satisfy ∂-Neumann boundary conditions if ∂ρ′∗

applied to α and ∂α vanishes on the boundary of X0, or equivalently if αN

and (∂α)N vanishes there.

Lemma 4.6. — Denote by Z
∗
i and N

∗
the formal adjoint operators

of the operators Ziand N acting on Ω0,∗(X0). Then

Z
∗
i = −eφ0Zie

−φ0(4.8)

N
∗

= −a1/2Na−1/2

Moreover, if the form α has relatively compact support in X0 then for

any form smooth form β in X0 we have that (∂
∗
Tα, β) = (α, ∂Tβ) and if

furthermore α satisfies ∂-Neumann boundary conditions, then (∂
∗
Nα, β) =

(α, ∂Nβ) (in terms of the formal adjoint operators).

Proof. — It is clearly enough to prove (4.8) for the action of the
operators on smooth functions with compact support (i.e. we write α = f
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and β = g, where f and g are smooth functions with compact support). To
prove the first statement in (4.8) it is, using Leibniz rule, enough to show
that ∫

X

Zi(fḡe−φ0)(ω0)n = 0.

But this follows from Stokes theorem since the integrand can be written as
a constant times the form

d
(
fḡe−φ0a−1

(∧
j �=i

dzj ∧ dz̄j

)
∧ dzi ∧ dw ∧ dw̄

)
,

using that Zi(a−1) = 0, since Zi is tangential. Similarly, to prove the second
statement in (4.8) it is, using Stokes theorem, enough to observe that∫

X

d(fḡe−φ0a−1/2(∂∂ |z|2)n−1 ∧ dw) = 0.

Indeed, we have that N := −ia1/2 ∂
∂w̄ , so the statement now follows from

Leibniz’ rule. Finally, the last two statements follow from the arguments
above, since the boundary integrals obtained from Stokes theorem vanish. ��

Lemma 4.7. — The ∂-Laplacian ∆ acting on Ω0,∗(X0) decomposes as

∆ = ∆T + ∆N .

Proof. — Expanding with respect to the decomposition (4.7) we just
have to show that the sum of the mixed terms(

∂N∂
∗
T + ∂

∗
T∂N

)
+

(
∂
∗
N∂T + ∂T∂

∗
N

)
vanishes. Let us first show that the first term vanishes. Observe that the
following anti-commutation relations hold:

dz̄i ∧ ∂ρ′∗ + ∂ρ′∗dz̄i∧ = 0.

Indeed, this is equivalent to the corresponding forms being orthogonal.
Using this and the expansion (4.7) we get that(

∂N∂
∗
T + ∂

∗
T∂N

)
=

∑
i

[N,Z
∗
i ]∂ρ

′∗dz̄i ∧ .

But this equals zero since the commutators [N,Z
∗
i ] vanish, using the

expressions in Lemma 4.6. To see that the second terms vanishes one can
go through the same argument again, now using that the commutators
[N
∗
, Zi] vanish. ��
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We will call a sequence χi of non-negative functions on X0 a relative

exhaustion sequence if there is sequence of balls BRi centered at the origin
and exhausting Cn, such that χi is identically equal to 1 on BRi/2 and
with support in BRi . Moreover, if the metric ω is such that the sequence
χi can be chosen to make |dχi| uniformly bounded then (X0, ω) is called
relatively complete. The point is that when (X0, ω) is relatively complete,
one can integrate partially without getting boundary terms “at infinity”.
For a complete manifold this was shown in [18] and the extension to the
relative case is straightforward.

Lemma 4.8. — Suppose that (X0, ω) is relatively complete. Then

there is a relative exhaustion sequence χi of X0 such that, if α is a smooth

form in L2(X0), then

lim
i

(χi∆Tα, α) = (∂
∗
Tα, ∂

∗
Tα) + (∂Tα, ∂Tα).

Moreover, if α satisfies ∂-Neumann boundary conditions on ∂X0, then

(4.9) lim
i

(χi∆Nα, α) = (∂
∗
Nα, ∂

∗
Nα) + (∂Nα, ∂Nα).

Proof. — Since (X0, ω) is relatively complete, following Section 1.1 B
in [18] it is enough to prove the statements for a form α with relatively com-
pact support, with χi identically equal to 1 (this is called the Gaffney cutoff
trick in [18]). Assuming this, the first statement then follows immediately
from Lemma 4.6. To prove the second statement we assume that α satisfies
∂-Neumann boundary conditions, i.e. αN = (∂α)N = 0 on ∂X0. According
to Lemma 4.6 the first term in the right hand side of (4.9) may be writ-
ten as (∂N∂

∗
Nα, α), since αN = 0 on ∂X0 by assumption. To show that

the second term may be written as (∂
∗
N∂Nα, α) we just have to show that

(∂Nα)N = 0 on ∂X0. To this end, first observe that ∂Nα = ∂NαT and
(∂α)N = ∂TαN + ∂NαT . Now, by assumption (∂α)N = 0 on ∂X0. Comb-
ing this with the previous two identities we deduce that ∂Nα = −∂TαN

on ∂X0. But αN = 0 on ∂X0 and ∂T is a tangential operator, so it follows
that ∂TαN = 0 on ∂X0. This proves that (∂Nα)N = 0 on ∂X0. ��

Finally, to finish the proof of Proposition 4.1, first observe that the
model metric ω0 corresponding to a(ρ0) = (1− ρ0)2 is relatively complete.
Now take an arbitrary form α in H0,q(X0, φ0). Then (χi∆α, α) = 0 for
each i. Hence, using Lemma 4.7 together with Lemma 4.8 we deduce, after
letting i tend to infinity, that

(4.10) 0 =
∥∥∂Tα∥∥2 +

∥∥∂∗Tα∥∥ +
∥∥∂Nα

∥∥2 +
∥∥∂∗Nα

∥∥2
.
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In particular, ∂
∗
Nα vanishes in X0. If we write αN = ∂ρ′ ∧

∑
I gIdz̄I this

means that
N
∗
gI = 0

in X0 for all I. Moreover, since α satisfies ∂-Neumann boundary conditions,
each function gI vanishes on the boundary of X0. It follows that gI = 0
in all of X0. Indeed, let g′I := a(ρ)−1/2ḡI and consider the restriction of
g′I to the half planes in C obtained by freezing the zi-variables. Then g′I is
holomorphic in the half plane, vanishing on the boundary. It is a classical
fact that g′I then actually vanishes identically. Moreover, (4.10) also gives
that α is ∂-closed and coclosed. This finishes the proof of Proposition 4.1.

5. Contributions from the three boundary regions.

In this section we will estimate the integral of the Bergman function
over the three different boundary regions. The contribution from the inner
part of X was essentially computed in [4].

5.1. The first region.

Recall that the first region is the set where ρ � −R/k). Fix a point
σ in ∂X and take local holomorphic coordinates (z, w), where z is in Cn−1

and w = u + iv. By an appropriate choice [8], we may assume that the
coordinates are orthonormal at 0 and that

(5.1) ρ(z, w) =
n−1∑
i=1

v + µi |zi|2 + O(|(z, w)|3) =: ρ0(z, w) + O(|(z, w)|3).

In a suitable local holomorphic trivialization of L close to the boundary
point σ, the fiber metric may be written as

φ(z) =
n−1∑
i,j=1

λijziz̄j + O(|w|)O(|z|) + O(|w|2) + O(|(z, w)|3).

Denote by Fk the holomorphic scaling map

Fk(z, w) = (z/k1/2, w/k),

so that
Xk = Fk(Dln k)

⋂
X
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is a sequence of decreasing neighborhoods of the boundary point σ, where
Dln k denotes the polydisc of radius ln k in Cn. Note that

F−1
k (Xk)→ X0,

in a certain sense, where X0 is the model domain with defining function
ρ0. On F−1

k (Xk) we have the scaled metrics F ∗k kωk and F ∗k kφ that tend to
the model metrics ω0 and φ0 on X0, when k tends to infinity, where

(5.2) ω0 =
i

2
∂∂ |z|2 + a(ρ0)−12i∂ρ0 ∧ ∂ρ0 and φ0(z) =

n−1∑
i,j=1

λijziz̄j ,

for a smooth function a(ρ0) that is positive on ]−∞, 0]. The factor a(ρ0),
and hence the model metric ω0, really depends on the number R (used in the
definition of the boundary regions). However, the dependence on R will play
no role in the proofs, since R will be fixed when k tends to infinity. Recall
that the space of model harmonic (0, q)-forms in L2(X0, ω0, φ0) satisfying
∂-Neumann boundary conditions is denoted by H0,q(X0, φ0).

Lemma 5.1. — For the component-wise uniform norms on F−1
k (Xk)

we have that
‖F ∗k kρ− ρ0‖∞ → 0

‖F ∗k kωk − ω0‖∞ → 0

‖F ∗k kφ− φ0‖∞ → 0

and similarly for all derivatives.

Proof. — The convergence for ρ and φ is straightforward (com-
pare [4]) and the convergence for ωk will be showed in Section 5.4 once
ωk has been constructed. ��

The Laplacian on F−1
k (X) taken with respect to the scaled metrics

will be denoted by ∆(k) and the corresponding formal adjoint of ∂ will be
denoted by ∂

∗(k)
. The Laplacian on X0 taken with respect to the model

metrics will be denoted by ∆0. Because of the convergence property of the
metrics above it is not hard to check that

(5.3) ∆(k) = ∆0 + εkDk,

where Dk is a second order partial differential operator with bounded
variable coefficients on F−1

k (Xk) and εk is a sequence tending to zero with
k. Next, given a (0, q)-form αk on Xk with values in Lk, define the scaled

form α(k) on F−1
k (Xk) by

α(k) := F ∗kαk.
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Then

(5.4) F ∗k |αk|2 =
∣∣α(k)

∣∣2,
where the norm of αk is the one induced by the metrics kωk and kφ and
the norm of the scaled form α(k) is taken with respect to the scaled metrics
F ∗k kωk and F ∗k kφ. This is a direct consequence of the definitions. Moreover,
the next lemma gives the transformation of the Laplacian.

Lemma 5.2. — The following relation between the Laplacians

holds:

(5.5) ∆(k)α(k) = (∆kαk)(k).

Proof. — Since the Laplacian is naturally defined with respect to
any given metric it is invariant under pull-back, proving the lemma. ��

In the following, all norms over F−1
k (Xk) will be taken with respect

to the model metrics ω0 and φ0. The point is that these norms anyway
coincide, asymptotically in k, with the norms defined with respect to the
scaled metrics used above, by the following lemma.

Lemma 5.3. — We have that uniformly on F−1
k (Xk)

F ∗k
∣∣αk

∣∣ ∼ ∣∣α(k)
∣∣∥∥αk

∥∥
Xk
∼

∥∥α(k)
∥∥
F−1
k

(Xk)
.

Moreover, for any sequence θIk of ωk-orthonormal bases of direction forms

in Λ0,q(X)x at Fk(x), there is a bases of ω0-orthonormal direction forms

at x, such that the following asymptotic equality holds, when k tends to

infinity:

F ∗k
∣∣αk,θI

k

∣∣ ∼ ∣∣α(k)

θI

∣∣
for each index I.

Proof. — The lemma follows immediately from (5.4) and the con-
vergence of the metrics in the previous lemma. ��

Now we can prove the following lemma that makes precise the
statement that, in the large k limit, harmonic forms αk are harmonic with
respect to the model metrics and the model domain on a small scale close
to the boundary of X.
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Lemma 5.4. — Suppose that the boundary of X satisfies condition

Z(q) (see Remark 1.2). For each k, suppose that α(k) is a ∂-closed smooth

(0, q)-form on F−1
k (Xk) such that ∂

∗(k)
α(k) = 0 and that α(k) satisfies ∂-

Neumann boundary conditions on F−1
k (∂X). Identify α(k) with a form in

L2(Cn) by extending with zero. Then there is a constant CR independent

of k such that

sup
DR∩F−1

k
(Xk).

∣∣α(k)
∣∣2 � CR

∥∥α(k)
∥∥2

D2R∩F−1
k

(Xk)
.

Moreover, if the sequence of norms
∥∥α(k)

∥∥2

F−1
k

(Xk)
is bounded, then there

is a subsequence of
{
α(k)

}
which converges uniformly with all derivatives

on any compactly included set in X0 to a smooth form β, where β is in

H0,q(X0). The convergence is uniform on DR ∩ F−1
k (Xk).

Proof. — Fix a k and consider the intersection of the polydisc DR

of radius R with F−1
k (Xk). It is well-known that the Laplace operator ∆(k)

acting on (0, q)-forms is sub-elliptic close to a point x in the boundary
satisfying the condition Z(q) (see [15]). In particular, sub-elliptic estimates
give for any smooth form β(k) satisfying ∂-Neumann boundary conditions
on F−1

k (∂X) that

(5.6)
∥∥β(k)

∥∥2

DR,m−1
� Ck,R(

∥∥β(k)
∥∥2

D2R
+

∥∥∆(k)β(k)
∥∥2

D2R,m
),

where the subscript m indicates a Sobolev norm with m derivatives in
L2 and where the norms are taken over F−1

k (X) with respect to the scaled
metrics. The k-dependence of the constants Ck,R comes from the boundary
F−1
k (∂X) and the scaled metrics F ∗k kωk and F ∗k kφ. However, thanks to the

convergence of the metrics in Lemma 5.1 one can check that the dependence
is uniform in k. Hence, applying the subelliptic estimates (5.6) to α(k) we
get

(5.7)
∥∥α(k)

∥∥2

DR∩F−1
k

(X),m
� CR

∥∥α(k)
∥∥2

D2R∩F−1
k

(X)

and the continuous injection L2,l ↪→ C0, l > n, provided by the Sobolev
embedding theorem, proves the first statement in the lemma. To prove the
second statement assume that

∥∥α(k)
∥∥2

F−1
k

(X)
is uniformly bounded in k.

Take a sequence of sets Kn, compactly included in X0, exhausting X0

when n tends to infinity. Then the estimate (5.6) (applied to polydiscs of
increasing radii) shows that

(5.8)
∥∥α(k)

∥∥2

Kn,m
� C ′n.
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Since this holds for any m � 1, Rellich’s compactness theorem yields, for
each n, a subsequence of {α(k)}, which converges in all Sobolev spaces
L2,l(Kn) for l � 0 for a fixed n. The compact embedding L2,l ↪→ Cp, k >

n + 1
2p, shows that the sequence converges in all Cp(Kn). Choosing a

diagonal sequence with respect to k and n, yields convergence on any
compactly included set K. Finally, we will prove that the limit form β

is in H(X0). First observe that by weak compactness we may assume
that the sequence 1X0α

(k) tends to β weakly in L2(Cn), where 1X0 is the
characteristic function of X0 and β is extended by zero to all of Cn. In
particular, the form β is weakly ∂-closed in X0. To prove that β is in
H(X0) it will now be enough to show that

(5.9) (β, ∂η)X0 = 0

for any form η in X0 that is smooth up to the boundary and with a relatively
compact support in X0. Indeed, it is well-known that β then is in the kernel
of the Hilbert adjoint of the densely defined operator ∂. Moreover, the
regularity theory then shows that β is smooth up to the boundary, where
it satisfies ∂-Neumann boundary conditions (actually this is shown using
sub-elliptic estimates as in (5.6)) [20], [15]. To see that (5.9) holds, we write
the left hand side, using the weak convergence of 1X0α

(k), as

(5.10) lim
k

(α(k), ∂η)X0 = lim
k

(α(k), ∂η)X0∩F−1
k

(X).

Extending η to a smooth form on some neighborhood of X0 in Cn we may
now write this as a scalar product, with respect to the scaled metrics, over
F−1
k (X), thanks to the convergence in Lemma 5.1 of the scaled metrics and

the scaled defining function. Since, α(k) is assumed to satisfy ∂-Neumann-
boundary conditions on F−1

k (∂X) and be in the kernel of the formal adjoint
of ∂, taken with respect to the scaled metrics, this means that the right
hand side of (5.10) vanishes. This proves (5.9) and finishes the proof of the
lemma. ��

The following proposition will give the boundary contribution to the
holomorphic Morse inequalities in Theorem 2.1.

Proposition 5.5. — Let

IR := lim sup
k

∫
−ρ<Rk−1

Bq,k
X ωn.

Then

lim sup
R

IR � (−1)q
( 1

2π

)n ∫
∂X

∫
T (q)ρ,x

(Θ + tL)n−1 ∧ ∂ρ ∧ dt
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where T (q)ρ,x =
{
t > 0 : index(Θ + tL) = q along T 1,0(∂X)x

}
.

Proof. — We may assume that the boundary of X satisfies condition
Z(q) (compare Remark 1.2). Using the expression (2.1) for the metric ωk,

the volume form (ωk)n may be written as ak(ρ)−1(ωT )n−1 ∧ 2i∂ρ ∧ dρ.

Hence, IR can be expressed as

lim sup
k

∫
∂X

(ωT )n−1 ∧ 2i∂ρ
∫ 0

−R/k
ak(ρ)−1Bk

Xdρ.

Now, fix a point in the boundary of X and take local coordinates as in
the beginning of the section. To make the argument cleaner we will first
assume that the restriction of ρ to the ray close to the boundary where z

and the real part of w vanish, coincides with v. Then, after a change of
variables, the inner integral along the ray in the first region becomes

(5.11) 1/k
∫ R

0

ak(v/k)−1Bq,k
X (v/k)dv.

Moreover, by the scaling properties of the metrics kωk in Lemma 5.1we
have the uniform convergence

kak(v/k)→ a(v).

on the segment [0, R] (see also Section 5.4). Thus,

IR = lim sup
k

∫
∂X

(ωT )n−1 ∧ 2i∂ρ
∫ R

0

a(v)−1Bq,k
X (v/k)dv.

Let us now show that

(i) Bq,k
X (0, iv/k) � Bq

X0
(0, iv)(5.12)

(ii) Bq,k
X (0, iv/k) � CR.

We first prove (i). According to the extremal property (3.4) it is enough to
show that

(5.13) Sq,k
X,θk

(0, iv/k) � Sq
X0,θ

(0, iv)

for any sequence of direction forms θk at (0, iv/k) as in Lemma 5.3. Given
this, the bound (5.12) is obtained after summing over the base elements
θk. To prove (5.13) we have to estimate∣∣αk,θk(0, iv/k

∣∣2,
where αk is a normalized harmonic form with values in Lk that is extremal
at (0, iv/k) in the direction θk. Moreover, it is clearly enough to estimate
some subsequence of αk. By Lemma 5.3 it is equivalent to estimate∣∣α(k)

θ (0, iv)
∣∣2,
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where the scaled form α(k) is defined on F−1
k (Xk) and extended by zero to

all of X0. Note that, according to Lemma 5.3 the norms of the sequence of
scaled forms α(k) are asymptotically less than one:

(5.14)
∥∥α(k)

∥∥2

F−1
k

(X)
∼

∥∥αk

∥∥2

Xk
� 1,

since the global norm of αk is equal to one. Hence, by Lemma 5.4 there is
a subsequence α(kj) that converges uniformly to β with all derivatives on
the segment 0 � v � R in X0 and where the limit form β is in H0,q(X0, φ0)
and its norm is less than one (by (5.14)). This means that∣∣αk,θ(0, iv/k)

∣∣2 ∼ ∣∣α(kj)
θ (0, iv)

∣∣2 ∼ ∣∣βθ(0, iv)∣∣2.
Since the limit form β is a contender for the model extremal function
Sq
X0,θ

(0), this proves (5.13), and hence we obtain (i). To show (ii), just
observe that Lemma 5.4 says that there is a constant CR such that there
is a uniform estimate ∣∣α(k)(0, iv)

∣∣2 � CR.

By the extremal characterization (3.4) of Bq,k
X this proves (ii). Now using

(5.21) and Fatou’s lemma to interchange the limits, IR may be estimated
by

(5.15)
∫
∂X

∫ ∞
0

Bq
X0

(0, iv)(ω0)n,

in terms of the model metric ω0 on X0. By Theorem 4.5 this equals

(
i

2π
)n(−1)q

∫
∂X

∫
T (q)

(∂∂φ0 + t∂∂ρ0)n−1 ∧ ∂ρ ∧ dt.

This finishes the proof of the proposition under the simplifying assumption
that the restriction of ρ to the ray introduced above, coincides with the
restriction of v. In general this is only true up to terms of order O |(z, w)|3 ,

given the expression (5.1). To handle the general case one writes the integral
(5.11) as

(5.16) 1/k
∫
Ik

akB
q,k
X dv,

where Ik is the inverse image under Fk of the ray. Clearly, Ik tends to the
segment [0, R] in X0 obtained by keeping all variables except v equal to
zero. Moreover, since the sequence α(kj) above converges uniformly with
all derivatives on DR ∩ F−1

k (Xk) it forms an equicontinuous family, so the
same argument as above gives that (5.16) may be estimated by (5.15). This
finishes the proof of the proposition. ��
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5.2. The second and third region.

Let us first consider the second region, i.e. where −1/k1/2 � ρ �
−R/k. Given a k, consider a fixed point (0, iv) = (0, ik−s), where 1/2 � s <

1. Any point in the second region may be written in this way. Let (z′, w′)
be coordinates on the unit polydisc D. Define the following holomorphic
map from the unit polydisc D to a neighborhood of the fixed point:

Fk,s(z′, w′) =
(
k−1/2z′, k−s +

1
2
k−sw′

)
so that

Xk,s := Fk,s(D),

is a neighborhood of the fixed point, staying away from the boundary of X.
On D we will use the scaled metrics F ∗k,skωk and kF ∗k,skφ that have bounded
derivatives and are comparable to flat metrics in the following sense:

(5.17)
C−1ωE � F ∗k,skωk � CωE∣∣∣F ∗k,skφ∣∣∣ � C

where ωE is the Euclidean metric. Note that the scaling property of ωk is
equivalent to

(5.18) C−1kρ2 � ak(ρ) � Ckρ2.

These properties will be verified in Section 5.4 once ωk is defined. The
Laplacian on D taken with respect to the scaled metrics will be denoted by
∆(k,s) and the Laplacian on X0 taken with respect to the model metrics
will be denoted by ∆0. Next, given a (0, q)-form αk on Xk with values in
Lk, define the scaled form α(k) on D by

α(k,s) := F ∗k,sαk.

Using (5.17) one can see that the following equivalence of norms holds:

(5.19)
C−1

∣∣α(k,s)
∣∣2 � F ∗k,s |αk|2 � C

∣∣α(k,s)
∣∣2

C−1
∥∥α(k,s)

∥∥2

D
� ‖αk‖2Xk � C

∥∥α(k,s)
∥∥2

D
.

In the following, all norms over F−1
k,s (Xk,s) will be taken with respect to

the Euclidean metric ωE and the trivial fiber metric.

Proposition 5.6. — Let

IIR := lim sup
k

∫
Rk−1<−ρ<k−1/2

Bq,k
X (ωk)n.

Then

lim
R

IIR = 0.
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Proof. — Fix a k and a point (0, iv) = (0, ik−s), where s is in [1/2, 1[.
From the scaling properties (5.18) of ωk it follows that at the point (0, ik−s)

ωn
k � Ck(2s−1)ωn.

Next, observe that

(5.20) Bq,k
X (0, ik−s) � C.

Accepting this for the moment, it follows that

Bq,k(0, iv)ωn
k � Ck−1v−2ωn,

since we have assumed that v = k−s. Hence, the integral in IIR may be
estimated by∫

∂X

Ck−1

∫ −Rk−1

−k−1/2
v−2dv = Ck−1(R−1k − k1/2)

which tends to CR−1 when k tends to infinity. This proves that IIR tends
to zero when R tends to infinity, which proves the proposition, given (5.20).

Finally, let us prove the claim (5.20). For a given k consider the point
(0, ik−s) as above. As in the proof of the previous proposition we have to
prove the estimate

(5.21)
∣∣αk(0, ik−s)

∣∣2 � C,

where αk is a normalized harmonic section with values in Lk that is
extremal at (0, ik−s). By the equivalence of norms (5.19), it is equivalent
to prove ∣∣∣α(k,s)(0)

∣∣∣2 � C,

where the scaled form α(k,s) is defined on D. Note that, according to (5.19)

(5.22)
∥∥α(k,s)

∥∥2

D
∼

∥∥αk

∥∥2

Xk
� C,

since the global norm of αk is equal to 1. Moreover, a simple modification
of Lemma 5.2 gives

∆(k,s)α(k,s) = 0

on D. Since ∆(k,s) is an elliptic operator on the polydisc D, inner elliptic
estimates (i.e. Gøarding’s inequality) and the Sobolev embedding theorem
can be used as in [4] to get∣∣α(k,s)(0)

∣∣2 � C
∥∥α(k,s)

∥∥2

D
,

where the constant C is independent of k and s thanks to the equivalence
(5.17) of the metrics. Using (5.22), we obtain the claim (5.21). ��
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Let us now consider the third region where −ε < ρ < −k−1/2.

Proposition 5.7. — Let

IIIε :=
∫
k−1/2<−ρ<ε

Bq,k
X (ωk)n.

Then

IIIε = O(ε).

Proof. — We just have to observe that

(5.23) k−nBq,k
X � C,

when ρ < −k−1/2. This follows from inner elliptic estimates as in the proof
of the previous proposition, now using s = 1/2 (compare [4]). ��

5.3. End of the proof of Theorem 2.1
(the weak Morse inequalities).

First observe that

(5.24)
∫

0<−ρ<ε

Bq,k
X (ωk)n � (−1)q

( 1
2π

)n
·
∫
∂X

∫
T (q)

dt(∂∂φ + t∂∂ρ)n−1 ∧ ∂ρ + o(ε).

Indeed, for a fixed R we may write the limit of integrals above as the sum
IR + IIR + IIIε. Letting R tend to infinity and using the previous three
propositions we get the estimate above. Moreover, we have that

(5.25)
∫
Xε

Bq,k
X �

∫
Xε

(∂∂φ)n,

where Xε denotes the set where −ρ is larger than ε. This follows from the
estimates

Bq,k
X ωn �

( i

2π

)n
(−1)q1X(q)(∂∂φ)n and Bq,k

X � C in Xε,

proved in [4] (compare (5.23) for the uniform estimate). Finally, writing
dimCH0,q(X,Lk) as the sum of the integrals in (5.24) and (5.25) and letting
ε tend to zero, yields the dimension bound in Theorem 2.1 for the space of
harmonic forms. By the Hodge theorem we are then done.
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5.4. The sequence of metrics ωk.

In this section the metrics ωk will be defined and their scaling
properties, that were used above, will be verified. Recall that we have to
define a sequence of smooth functions ak such that the metrics

ωk = ωT + ak(ρ)−12i∂ρ ∧ ∂ρ,

have the scaling properties of Lemma 5.1 in the first region and satisfy
(5.17) in the second region. First observe that the tangential part ωT clearly
scales the right way, i.e. that F ∗k kωT tends to i

2∂∂ |z|
2
. Indeed, since the

coordinates (z, w) are orthonormal at 0 the forms ωT and i
2∂∂ |z|

2 coincide
at 0. Since i

2∂∂ |z|
2 is invariant under F ∗k k the convergence then follows

immediately. We now consider the normal part of ωk and show how to
define the functions ak. Consider first the piecewise smooth functions ãk
where ãk is defined as R2/k in the first region, as kρ2, in the second region
and as 1 in the third region and on the rest of X. Then it is not hard to
check that ãk satisfies our demands, except at the two middle boundaries
between the three regions. We will now construct ak as a regularization of
ãk. To this end we write ãk = kb̃k

2
, where b̃k is defined by


Rk−1, −ρ � Rk−1

−ρ, Rk−1 � −ρ � k−1/2

k−1/2, −ρ � k−1/2

in the three regions. It will be enough to regularize the sequence of contin-
uous piecewise linear functions b̃k. Decompose b̃k as a sum of continuous
piecewise linear functions

b̃k(−ρ) =
R

k
b̃1,k

(
− k

R
ρ
)

+
1

k1/2
b̃2,k(−k1/2ρ),

where b̃1,k is determined by linearly interpolating between

b̃1,k(0) = 1, b̃1,k(1) = 1, b̃1,k(k1/2/R) = 0, b̃1,k(∞) = 0

and b̃2,k is determined by

b̃2,k(0) = 0 b̃2,k(Rk−1/2) = 0 b̃2,k(1) = 1 b̃2,k(∞) = 1.

Now consider the function bk obtained by replacing b̃1,k and b̃2,k with the
continuous piecewise linear functions b1 and b2, where b1 is determined by

b1(0) = 1, b1(1/2) = 1, b1(1) = 0, b1(∞) = 0,

and b2 is determined by

b2(0) = 0, b2(1) = 1, b(∞) = 1.
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Finally, we smooth the corners of the two functions b1 and b2. Let us now
show that the sequence of regularized functions bk scales in the right way.
In the first region we have to prove that Lemma 5.1 is valid, which is
equivalent to showing that there is a function b0 such that

(5.26) kbk(t/k)→ b0

with all derivatives, for t such that 0 � t � Rlnk. From the definition we
have that

(5.27) kbk(t/k) = Rb1(t/R) + t,

which is even independent of k, so (5.26) is trivial then. Next, consider
the second region. To show that (5.17) holds we have to show that,
for parameters s such that 1/2 � s < 1, the t-dependent functions
ksbk(1/ks + t/2ks) (where |t| � 1) are uniformly bounded from above and
below by positive constants and have uniformly bounded derivatives. First
observe that in the second region the sequence of functions may be written
as

ks−1/2b2(1/k1/2−s + t/2k1/2−s),

and it is not hard to see that it is bounded from above and below by positive
constants, independently of s and k. Moreover, differentiating with respect
to t shows that all derivatives are bounded, independently of s and k. All in
all this means that we have constructed a sequence of metrics ωk with the
right scaling properties. In particular, (5.27) shows that the factor a−1(ρ0)
in the model metric ω0 (5.2) satisfies

C−1
R (1− ρ0)−2 � a−1(ρ0) � CR(1− ρ0)−2

for some constant CR depending on R.
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Part II. THE STRONG MORSE INEQUALITIES
AND SHARP EXAMPLES.

6. The strong Morse inequalities.

We will assume that the boundary of X satisfies condition Z(q)
(compare Remark 1.2) and use the same notation as in Section 1. Let
µk be a sequence tending to zero. Denote by H0,q

�µk(X) the space spanned
by the (0, q)-eigen forms of the Laplacian ∆, with eigenvalues bounded by
µk. The forms are assumed to satisfy ∂-Neumann boundary conditions and
they will be called low energy forms. Since we have assumed that condition
Z(q) holds, this space is finite dimensional for each k [15]. Recall that the
Laplacian is defined with respect to the metric kωk, so that the eigenvalues
corresponding to µk are multiplied with k if the metric ωk is used instead.

We will first show that the weak holomorphic Morse inequalities are
equalities for the space H0,q

�µk(X) of low energy forms. When X has no
boundary this yields strong Morse inequalities for the truncated Euler
characteristics of the Dolbeault complex with values in Lk. However,
when X has a boundary one has to assume that the boundary of X has
either concave or convexity properties to ensure that the corresponding
cohomology groups are finite dimensional, in order to obtain strong Morse
inequalities.

The Bergman form for the space H0,q
�µk(X) defined as in Section 3

will be denoted by Bq�µk . By L2
m(X) we will denote the Sobolev space with

m derivatives in L2(X) and a subscript m on a norm will indicate the
corresponding Sobolev norm. The essential part in proving that we now
get equality in the weak Morse inequalities is to show that the estimate
on the Bergman form (5.12) in the proof of Proposition 5.5 becomes an
asymptotic equality, when considering low energy forms. The rest of the
argument is more or less as before.

Let us first prove the upper bound, i.e. that the low energy Bergman
form B

q
�µk is asymptotically bounded by the model harmonic Bergman

form.

Proposition 6.1. — We have that

Bq
�µk,θk(0, iv/k) � BX0,θ(0, v)
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and the sequence Bq
�µk(0, iv/k) is uniformly bounded in the first region.

Proof. — Let αk be a sequence of normalized forms, such that αk

is an extremal for the Hilbert space H0,q
�µk(X) at the point (0, iv/k) in the

direction θk. In the following all norms will be taken over F−1
k (X). Observe

that by the invariance property in Lemma 5.2 of the Laplacian, the scaled
form α(k) satisfies

(6.1)
∥∥(∆(k))pα(k)

∥∥2 � µ2p
k → 0

for all positive integers p. Let us now show that

(6.2)
∥∥∆(k)α(k)

∥∥2

m
→ 0

for all non-negative integers m. First observe that (∆(k))pα(k) satisfies ∂-
Neumann boundary conditions for all p. Indeed, by definition all forms in
the space H�µk(X0) satisfy ∂-Neumann boundary conditions and since ∆
preserves this space, the forms (∆)pαk also satisfy ∂-Neumann boundary
conditions for all p. By the scaling of the Laplacian this means that the
forms (∆(k))pα(k) satisfy ∂-Neumann boundary conditions with respect to
the scaled metrics. Now applying the subelliptic estimates (5.6) to forms
of the type (∆(k))pα(k) one gets , using induction, that

∥∥∆(k)α(k)
∥∥2

m
� C

m+1∑
j=1

∥∥(∆(k))jα(k)
∥∥2

.

Combining this with (6.1) proves (6.2). Now the rest of the argument
proceeds almost word for word as in the proof of the claim (5.12) in the
proof of Proposition 5.5. The point is that the limit form β will still be in
H(X0), thanks to (6.1). ��

Let us now show how to get the corresponding reverse bound for Bq,k�µk .
We will have use for the following lemma.

Lemma 6.2. — Suppose that β is a normalized extremal form for

H0,q(X0, φ0) at the point (0, iv0) in the direction θ. Then

(6.3)
∣∣βθ(0, iv0)

∣∣2 =
1
4π

∫
T (q)

Bt,θ(z, z)ev0tb(t)−1dt

with notation as in Lemma 4.4. Moreover, β is in L2
m(X0) for all m.

Proof. — Let x0 be the point (0, iv0) in X0. Since β is extremal we
have, according to Section 3, that

∣∣βθ(0, iv0)
∣∣2 = BX0,θ(0, iv0), which in
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turn gives (6.3) according to Lemma 4.4. To prove that β is in L2
m(X0) for

all m, we write β as

β(z, w) =
∫
T (q)

β̂t(z)e
i
2wtdt,

in terms of its Fourier transform as in Section 4. Recall that we have
assumed that condition Z(q) holds on the boundary of X, so that T (q)
is finite. Using Proposition 4.3 we can write∥∥∥ ∂l

∂lw
∂IJ̄β

∥∥∥2

X0

= 4π
∫
T (q)

∥∥∂IJ̄ β̂t(z)∥∥2

t
t2lb(t)dt,

where ∂IJ̄ denotes the complex partial derivatives taken with respect to
ziand z̄j for i and j in the multi index set I and J, respectively. Since, by
assumption, β is in L2(X0) the integral converges for l = 0 with I and J

empty. Now it is enough to show that β̂t is in L2
m(Cn, tψ + φ) for all t and

positive integers m. To this end we will use the following generalization
of (3.3):

(6.4) |Kx,θ(y)|2 = |β(y)|2 Bθ(x)

if β is an extremal form at the point x, in the direction θ (compare [5]). By
Lemma 4.4 the Fourier transform of Kx,θ evaluated at t is proportional to
Kz,θ,t whereKz,θ,t is the Bergman kernel form for the spaceH0,q(Cn−1, tψ+
φ) at the point z (and x = (z, w)) in the direction θ. In [4] it was essentially
shown that Kz,θ,t is in L2

m(Cn, tψ + φ) (more precisely: the property was
shown to hold for the corresponding extremal form). Hence, the same thing
holds for β̂t, according to (6.4), which finishes the proof of the lemma. ��

Now we can construct a sequence αk of approximate extremals for
the space H�µkk(X) of low energy forms.

Lemma 6.3. — For any point x0,k = (0, iv0/k) and direction form

θ in the first region there is a sequence {αk} and direction forms θksuch

that αk is in Ω0,q(X,Lk) and

(i) |αk,θk(0, iv0/k)|2 ∼ BX0,θ(0, iv0)

(ii) ‖αk‖2X ∼ 1

(iii) ‖(∂ + ∂
∗(k)

)α(k)‖2m ∼ 0

(iv) (∆αk, αk)X � δk‖αk‖2

where δk is a sequence, independent of x0,k, tending to zero, when k

tends to infinity. Moreover, αk satisfies ∂-Neumann boundary conditions

on ∂X ∩ F−1
k (D), where D is a polydisc in Cncentered at 0.
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Proof. — Consider a sequence of points x0,k that can be written as
(0, iv0/k) in local coordinates as in Section 5.1. Let us first construct a
form αk with the properties (i) to (iv). It is defined by

αk := (F−1
k )∗(χkβ)

where χk(z, w) = χ(z/ ln k,w/ ln k) for χ a smooth function in Cn that
is equal to one on the polydisc D of radius one centered at 0, vanishing
outside the polydisc of radius two and where β is the extremal form at the
point (0, v0) in the direction θ from the previous lemma. The definition of
αk is made so that

α(k) = χkβ.

We have used the fact that the form β extends naturally as a smooth form
to the domain Xδ with defining function ρ0 − δ, to make sure that αk is
defined on all of X. The extension is obtained by writing β in terms of its
Fourier transform with respect to t as in the proof of the previous lemma:

β(z, w) =
∫
T (q)

β̂t(z)e−
i
2wtdt.

In fact, the right hand side is defined for all w since we have assumed that
condition Z(q) holds on the boundary so that T (q) is finite. Note that the
L2
m-norm of β over Xδ tends to the L2

m-norm of β over X0 when δ tends to
zero, as can be seen from the analog of Proposition 4.3 on the domain Xδ.

Indeed, the dependence on δ only appears in the definition of b(t), where
the upper integration limit is shifted to δ. Now the statements (i) and (ii)
follow from the corresponding statements in the previous lemma. To see
that (iii) holds, first observe that

∂
∗(k)

= ∂
∗0

+ εkD,

where D is a first order differential operator with bounded coefficients
on the ball Blnk(0) and εk is a sequence tending to zero. Indeed, this
is a simple modification of the statement (5.3). Moreover, by construction
(∂ + ∂

∗0
)β = 0. Hence, Leibniz rule gives∥∥(∂ + ∂

∗(k)
)α(k)

∥∥ � δk ‖β‖1 + ‖|dχk|β‖ .

The first term tends to zero since β is in L2
1(X0) and the second terms tends

to zero, since it can be dominated by the “tail” of a convergent integral.
The estimates for m � 1 are proved in a similar way (compare [4]). Finally,
to prove (iv) observe that by the scaling property (5.5) for the Laplacian

(∆αk, αk)X =
∥∥(∂ + ∂

∗
)αk

∥∥2

X
=

∥∥(∂ + ∂
∗(k)

)α(k)
∥∥.
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By (ii), the norm of ‖αk‖2X tends to one and the norm in the right hand
side above can be estimated as above. To see that δk can be taken to be
independent of the point x0,k in the first region, one just observes that the
constants in the estimates depend continuously on the eigenvalues of the
curvature forms (compare [4]). Finally, consider a polydisc D in Cn with
small radius. We will perturb αk slightly so that it satisfies ∂-Neumann
boundary conditions on ∂X ∩ F−1

k (D) while preserving the properties (i)
to (iv). Recall that a form ∂-closed form ηk satisfies ∂-Neumann boundary
conditions on ∂X if

(6.5) ∂ρ∗ηk = 0,

where ∂ρ
∗

is the fiber-wise adjoint of the operator obtained by wedging with
the form ∂ρ, and where the adjoint is taken with respect to the metric ωk
on X. Equivalently,

∂kρ(k)∗η(k) = 0,

where the adjoint is taken with respect to the scaled metrics. By construc-
tion we have that α(k) is ∂-closed on F−1

k (D) and

(6.6) ∂ρ∗00 α(k) = 0,

where now the adjoint is taken with respect to the model metrics. Let

u(k) := −∂(kρ(k)∂kρ(k)∗α(k))

and let α̃(k) := α(k) + χu(k), where χ is the cut-off function defined above.
Then, using that ρ vanishes on ∂X, we get that the ∂-closed form α̃(k)

satisfies the scaled ∂-Neumann boundary conditions, i.e. the relation (6.5)
on ∂X. Moreover, using that kρ(k) converges to ρ with all derivatives on a
fixed polydisc centered at 0 (Lemma 5.1) and (6.6) one can check that u(k)

tends to zero with all derivatives in Xδ. Finally, since χu(k) is supported
on a bounded set in Xδ and converges to zero with all derivatives it is
not hard to see that α̃k also satisfies the properties (i) to (iv), where
α̃k := F−1

k
∗(α̃(k)). ��

By projecting the sequence αk of approximate extremals, from the
previous lemma, on the space of low energy forms we will now obtain the
following lower bound on Bq�µk .

Proposition 6.4. —There is a sequence µk tending to zero such that

lim inf
k

Bq
�µk,θk(0, iv/k) � BX0(0, v)θ.
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Proof. — The proof is a simple modification of the proof of Proposi-
tion 5.3 in [4]. Let {αk} be the sequence that the previous lemma pro-
vides and decompose it with respect to the orthogonal decomposition
Ω0,q(X,Lk) = Hq

�µk(X,Lk) ⊕ Hq
>µk(X,Lk), induced by the spectral de-

composition of the subelliptic operator ∆ [15]:

αk = α1,k + α2,k.

First, we prove that

(6.7) lim
k

∣∣α(k)
2 (0, iv)

∣∣2 = 0.

Since α
(k)
2 = α(k) − α

(k)
1 the form α

(k)
2 satisfies ∂-Neumann boundary

conditions on the intersection of the polydisc D with F−1
k (∂X), using

Lemma 6.3. Subelliptic estimates as in the proof of Lemma 6.1 then show
that

(6.8)
∣∣α(k)

2 (0)
∣∣2 � C

(∥∥α(k)
2

∥∥2

D∩F−1
k

(X)
+

∥∥(∆(k))α(k)
2

∥∥2

D∩F−1
k

(∂X),m

)
for some large integer m. To see that the first term in the right hand

side tends to zero, we first estimate
∥∥∥α(k)

2

∥∥∥2

D∩F−1
k

(X)
with ‖αk,2‖2X using

the norm localization in Lemma 5.3. Next, by the spectral decomposition
of ∆k:

‖α2,k‖2X � 1
µk
〈∆kα2,k, α2,k〉X � 1

µk
〈∆kαk, αk〉X � δk

µk
‖αk‖2X ,

using property (iv) in the previous lemma in the last step. By property (ii)
in the same lemma ‖αk‖2X is asymptotically 1, which shows that the first
term in (6.8) tends to zero if the sequence µk is chosen as δ

1/2
k , for example.

To see that the second term tends to zero as well, we estimate∥∥(∆(k))α(k)
2

∥∥
m

�
∥∥(∆(k))α(k)

∥∥
m

+
∥∥(∆(k))α(k)

1

∥∥
m
.

The first term in the right hand side tends to zero by (iii) in the previous
lemma and so does the second term, using (6.2) (that holds for any
scaled sequence of forms in Hq

�µk(X,Lk)). This finishes the proof of the
claim (6.7). Finally,

lim inf
k

Bq
�µk(0, iv/k)θk � |α1,k(0)|2θk

and
lim inf

k
|αk,1,θk(0)|2 � BX0,θ(0, v) + 0,

when k tends to infinity, using (6.7) and (i) in the previous lemma. ��
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Now we can prove that the Morse inequalities are essentially equalities
for the space H0,q

�µk(X,Lk) of low-energy forms. But first recall that
H0,q

�µk(X,Lk) depend on a large parameter R, since the metrics ωk depend
on R.

Theorem 6.5. — Suppose that X is a compact complex manifold

with boundary satisfying condition Z(q). Then there is a sequence µk
tending to zero such that the limit of k−n dimH0,q

�µk(X,Lk) when k tends

to infinity is equal to

(−1)q
( 1

2π

)n(∫
X(q)

Θn +
∫
∂X

∫
T (q)ρ,x

(Θ + tL)n−1 ∧ ∂ρ ∧ dt
)

+ εR

where the sequence εR tends to zero when R tends to infinity.

Proof. — The proof is completely analogous to the proof of Theorem
6.5. In the first region one just replaces the claim (5.12) in the proof of
Proposition 5.5 by the asymptotic equality for Bq

�µk(0, iv/k)θk obtained by
combing the Propositions 6.1 and 6.4. Moreover, a simple modification of
the proof of Proposition 6.1 shows that there is no contribution from the
integrals over the second and third region, when R tends to infinity, as
before. Finally, the convergence on the inner part of X was shown in [4].��

Recall that the Dolbeault cohomology group H0,q(X,Lk) is isomor-
phic to the space of harmonic forms, which is a subspace of H0,q

�µk(X,Lk).
Hence, the previous theorem is stronger than the weak Morse inequalities
for the dimensions hq(Lk) of H0,q(X,Lk) (Theorem 2.1). When X has no
boundary Demailly showed that, by combining a version of Theorem 6.5
with some homological algebra, one gets strong Morse inequalities for the
Dolbeault cohomology groups. These are inequalities for an alternating sum
of all hi(Lk) when the degree i varies between 0 and a fixed degree q [9].
In fact, a variation of the homological algebra argument yields inequalities
for alternating sums when the degree i varies between a fixed degree q and
the complex dimension n of X (the two versions are related by Serre dual-
ity). However, when X has a boundary one has to impose certain curvature
conditions on ∂X to obtain strong Morse inequalities from Theorem 6.5.
Indeed, to apply the theorem one has to assume that ∂X satisfies condition
Z(i) for all degrees i in the corresponding range. In particular the corre-
sponding dimensions will then be finite dimensional so that the alternating
sum makes sense. Now, to state the strong holomorphic Morse inequalities
for a manifold with boundary, recall that the boundary of a compact com-
plex manifold is called q-convex if the Levi form L has at least n−q positive
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eigenvalues along T 1,0(∂X) and it is called q-concave if the Levi form has
at least n − q negative eigenvalues along T 1,0(∂X) (i.e. ∂X is q-convex
“from the inside” precisely when it is q-concave “from the outside”). We
will denote by X(� q) the union of all sets X(i) with i � q and T (� q)ρ,x
is defined similarly. The sets X(� q) and T (� q)ρ,x are defined by putting
i � q in the previous definitions. Finally, we set

I�q :=
( 1

2π

)n(∫
X(�q)

Θn +
∫
∂X

∫
T (�q)ρ,x

(Θ + tL)n−1 ∧ ∂ρ ∧ dt
)

and define I�n−1−q similarly.

Theorem 6.6. — Suppose that X is an n-dimensional compact

manifold with boundary. If the boundary is strongly q-convex, then

k−n
n∑
i=q

(−1)q−jhj(Lk) � I�qk
n + o(kn).

If X has strongly q-concave boundary, then

n−1−q∑
i=0

(−1)q−jhj(Lk) � I�n−1−qk
n + o(kn).

Proof. — First note that if ∂X is q-convex, then ∂X satisfies condi-
tion Z(i) for i such that n− q � i � n. Similarly, if ∂X is q-concave, then
∂X satisfies condition Z(i) for i such that 0 � i � n − q − 1. The proof
then follows from Theorem 6.5 and the homological algebra argument in
[9], [10]. See also [7] and [22]. ��

6.1. Strong Morse inequalities on open manifolds.

One can also define q-convexity and q-concavity on open manifolds
following Andreotti and Grauert [2]. First, one says that a function ρ is
q-convex if i∂∂ρ has at least n− q + 1 positive eigenvalues. Next, an open
manifold Y is said to be q-convex if it has an exhaustion function ρ that is
q-convex outside some compact subset K of Y. The point is that the regular
sublevel sets of ρ are then q-convex considered as compact manifolds with
boundary. The extra positive eigenvalue occurring in the definition of q-
convexity for an open manifold is needed to make sure that i∂∂ρ still has
at least n−q positive eigenvalues along a regular level surface of ρ. Finally,
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an open manifold Y is said to be q-concave if it has an exhaustion function
ρ such that −ρ is q-convex outside some compact subset K of Y.

Now, by Remark 1.3, Theorem 6.6 extends to any q-convex open
manifold Y with a line bundle L if one uses the usual Dolbeault cohomology
H0,∗(Y, Lk) (or equivalently the sheaf cohomology H∗(Y,O(Lk)) and the
curvature integrals are taken over a regular level surface of ρ in the
complement of the compact set K. However, for a q-concave open manifold
Y one only gets the corresponding result if n − q − 1 is replaced with
n − q − 2. Indeed, by Remark 1.3 one has to make sure that condition
Z(i+ 1) holds for the highest degree i occurring in the alternating sum. In
this form the q-convex case and q-concave case was obtained by Bouche [7]
and Marinescu [22], respectively, under the assumption that the curvature
of the line bundle L is adapted to the curvature of the boundary of X

in a certain way. Comparing with Theorem 6.6 their assumptions imply
that the boundary integral vanishes. There is also a very recent preprint
[23] of Marinescu where strong Morse inequalities on a q-concave manifold
with an arbitrary line bundle L are obtained. However, the corresponding
boundary term is not as precise as the one in Theorem 6.6 and in Section 7
we will show that Theorem 6.6 is sharp.

Note that since the curvature integrals are taken over any regular
level surface of ρ in Y one expects that I(� q) and I(� n − 1 − q) are
independent of the level surface. This is indeed the case (see Remark 7.4).

6.2. Application to the volume of semi-positive line bundles.

Now assume that X is a strongly pseudoconcave manifold X with a
semi-positive line bundle L (i.e. the Levi form L is negative along T 1,0(∂X)
and the curvature form of L is semi-positive in X). The case of pseudocon-
cave surfaces has been recently studied in [18, 13], by different methods.
When the dimension of X is at least three, the strong Morse inequalities
give a lower bound on the dimension of the space of holomorphic sections
with values in Lk. Namely, h0(Lk) is asymptotically bounded from below
by

(6.9)
( 1

2π

)n(∫
X(0)

Θn+
∫
∂X

∫
T (�1)

(Θ+tL)n−1∧∂ρ∧dt
)
kn+h1(Lk)+o(kn).

In particular, if the curvatures are such that the coefficient in front of kn is
positive, then the dimension of H0(X,Lk) grows as kn. In other words, the
line bundle L is big then. For example, this happens when the curvature
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forms are conformally equivalent along the complex tangential directions,
i.e. if there is a function f on ∂X such that

(6.10) L = −fΘ

when restricted to T 1,0(∂X) ⊗ T 0,1(∂X). In fact, by multiplying the
original ρ by f−1 we may and will assume that f = 1. The lower bound
(6.9) combined with the upper bound from the weak Morse inequalities
(Theorem 2.1) then gives the following corollary.

Corollary 6.7. — Suppose that X is a strongly pseudoconcave

manifold X of dimension n � 3 with a semi-positive line bundle L. Then

if the curvature forms are conformally equivalent at the boundary

h0(Lk) = kn
( 1

2π

)n(∫
X

Θn +
1
n

∫
∂X

(i∂∂ρ)n−1 ∧ i∂ρ
)

+ o(kn).

When L is positive, the conformal equivalence in the previous corol-
lary says that the symplectic structure on X determined by L is compatible
with the contact structure of ∂X determined by the complex structure, in
a strong sense (compare [13]) and the conclusion of the corollary may be
expressed by the formula

(6.11) Vol(L) = Vol(X) +
1
n

Vol(∂X)

in terms of the symplectic and contact volume of X and ∂X, respec-
tively (where the volume of a line bundle L is defined as the lim sup of
(2π)nk−nh0(Lk) [21]). The factor 1

n in the formula is related to the fact
that if (X+, dα) is a 2n-dimensional real symplectic manifold with bound-
ary, such that α is a contact form for ∂X+, then, by Stokes theorem, the
contact volume of ∂X+ divided by n is equal to the symplectic volume of
X+. In fact, this is how we will show that (6.11) is compatible with hole
filling in Section 7.1.

7. Sharp examples and hole filling.

In this section we will show that the leading constant in the Morse
inequalities 6.5 is sharp. When X is a compact manifold without boundary,
this is well-known. Indeed, let X be the n-dimensional flat complex torus
Cn/Zn + iZn and consider the Hermitian holomorphic line bundle Lλ over
Tn determined by the constant curvature form

Θ =
n∑
i=1

i

2
λidzi ∧ dzi,
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where λi are given non-zero integers [17]. Then one can show (see the
remark at the end of the section) that

(7.1) Bq(x) ≡ 1
πn

1X(q) |detω Θ| ,

where 1X(q) is identically equal to one if exactly q of the eigenvalues λi are
negative and equal to zero otherwise. This shows that the leading constant
in the Morse inequalities on a compact manifold is sharp.

Let us now return to the case of a manifold with boundary. We let
X be the manifold obtained as the total space of the unit disc bundle in
the dual of the line bundle Lµ (where Lµ is defined as above) over the
torus Tn−1, where µi are n − 1 given non-zero integers. Next, we define
a Hermitian holomorphic line bundle over X. Denote by π the natural
projection from X onto the torus Tn−1. Then the pulled back line bundle
π∗Lλ is a line bundle over X. The construction is summarized by the
following commuting diagram

π∗Lλ Lλ

↓ ↓
X ↪→ L∗µ → Tn−1.

Let h be the positive real-valued function on X, defined as the restriction
to X of the squared fiber norm on L∗µ. Then ρ := lnh is a defining function
for X close to the boundary and we define a Hermitian metric ω on X by

ω =
i

2
∂∂ |z|2 +

i

2
h−1∂h ∧ ∂h

extended smoothly to the base Tn−1 of X. The following local description
of the situation is useful. The part of X that lies over a fundamental domain
of Tn−1 can be represented in local holomorphic coordinates (z, w), where
w is the fiber coordinate, as the set of all (z, w) such that

h(z, w) = |w|2 exp
(
+

n−1∑
i=1

µi |zi|2
)

� 1

and the fiber metric φ for the line bundle π∗Lλ over X may be written as

φ(z, w) =
n−1∑
i=1

λi |zi|2 .

The proof of the following proposition is very similar to the proof of
Theorem 4.5, but instead of Fourier transforms we will use Fourier series,
since the R-symmetry is replaced by an S1-symmetry (the model domain
X0 in Section 4 is the universal cover of X defined above).
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Theorem 7.1. — Let J(q) be the set of all integers j such that the

form ∂∂φ + j∂∂ρ has exactly q negative eigenvalues. Then

(7.2) Bq
X =

( 1
2π

)n ∑
j∈J(q)

detω
(
i(∂∂φ + j∂∂ρ)

)1
2
(j + 1)hj .

In particular, the dimension of H0,q(X,π∗Lλ) is given by

(7.3)
( i

2π

)n ∫
∂X

∑
j∈J(q)

(∂∂φ + j∂∂ρ)n−1 ∧ ∂ρ

and the limit of the dimensions of H0,q(X, (π∗Lλ)k) divided by kn is

(7.4)
( i

2π

)n ∫
∂X

∫
Tx,ρ(q)

(∂∂φ + t∂∂ρ)n−1 ∧ ∂ρ ∧ dt.

Proof. — First note that if αj is a form on Tn−1 with values in
Lj
µ ⊗ Lλ, then

α(z, w) :=
∑
j�0

αj(z)wj

defines a global form on X with values in π∗Lλ. The proof of Proposition 4.1
can be adapted to the present situation to show that any form α in
H0,q(X,φ) is of this form with αj in H0,q(Tn−1, Lj

µ ⊗ Lλ). Actually, since
X is a fiber bundle over Tn−1 with compact fibers one can also give a
somewhat simpler proof. For example, to show that α is tangential one
solves the ∂- equation along the fibers of closed discs in order to replace
the normal part αN with an exact form. Then using the assumption the
α is coclosed one shows that the exact form must vanish. The details are
omitted. We now have the following analog of Proposition 4.3 for any α in
H0,q(X,φ)

(7.5) (α, α) = 2π
∑
j

(αj , αj)bj , bj =
∫ 1

0

(r2)jrdr = 1/2(j + 1)−1

in terms of the induced norms. To see this, one proceed as in the proof
of Proposition 4.3, now using the Taylor expansion of α. Writing ψ(z) =∑n−1

i=1 µi |zi|2 and restricting z to the fundamental region of Tn−1 we get
that (α, α) is given by∫

|w|2<e−ψ(z)

∣∣∣∑
j

αj(z)wj
∣∣∣2e−φ(z)

( i

2
∂∂ |z|2

)
n−1

eψ(z)rdrdθ.

Now using Parceval’s formula for Fourier series in the integration over θ

this can be written as

2π
∑
j

∫
z

|α̂j(z)|2 e−φ(z)
( i

2
∂∂ |z|2

)
n−1

eψ(z)

∫ e−ψ(z)/2

0

(r2)jrdr.
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Finally, the change of variables r′ = eψ(z)/2r in the integral over r gives a
factor e−jψ(z) and the upper integration limit becomes 1. This proves (7.5).

As in the proof of Theorem 4.5 we infer that BX may be expanded as

BX(z, w) =
1
2π

∑
j

Bj(z)hjb−1
j ,

where Bj is the Bergman function of the space H0,q(Tn−1, Lj
µ ⊗ Lλ).

According to (7.1), we have that

Bj(z) ≡
( 1

2π

)n−1

δj,J(q)

∣∣detω(i(∂∂φ + j∂∂ρ))
∣∣ ,

where J(q) = {j : index(∂∂φ + j∂∂ρ) = q}and where the sequence δj,J(q)

is equal to 1 if j ∈ J(q) and zero otherwise. Thus, (7.2) is obtained.
Integrating (7.2) over X gives∫

X

BXωn =
1
2π

∫
Tn−1

∑
j

Bj

( i

2
∂∂ |z|2

)
n−1

∫ 2π

0

dθ

∫ 1

0

(r2)jrdrb−1
j .

The integral over the radial coordinate r is cancelled by b−1
j and we may

write the resulting integral as
1
2π

∫
∂X

∑
j

Bjωn−1 ∧ i∂ρ =
( i

2π

)n ∫
∂X

∑
j∈J(q)

(∂∂φ + j∂∂ρ)n−1 ∧ ∂ρ.

Hence, (7.3) is obtained. Finally, applying the formula (7.3) to the line
bundle (π∗Lλ)k = π∗(Lk

λ) shows, since the curvature form of π∗(Lk
λ) is

equal to k∂∂φ, that

k−n
∫
X

Bq,k
X ωn =

( i

2π

)n ∫
∂X

∑
j

(∂∂φ +
j

k
∂∂ρ)n−1 1

k
∧ ∂ρ,

where the sum is over all integers j such that ∂∂φ + j
k∂∂ρ has exactly q

negative eigenvalues. Observe that the sum is a Riemann sum and when k

tends to infinity we obtain (7.4). ��

Note that since the line bundle π∗Lλ over X is flat in the fiber direc-
tion the integral over X in (1.2) vanishes. Hence, the theorem above shows
that the holomorphic Morse inequalities are sharp. The most interesting
case covered by the theorem above is when the line bundle π∗Lλ (simply
denoted by L) over X is semi-positive, and positive along the tangential
directions, and X is strongly pseudoconcave. This happens precisely when
all λi are positive and all µi are negative. Then, for n � 3, the theorem
above shows that the dimension of H0,1(X,Lk) grows as kn unless the cur-
vature of L is a multiple of the Levi curvature of the boundary, i.e. unless
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λ and µ are parallel as vectors. This is in contrast to the case of a manifold
without boundary, where the corresponding growth is of the order o(kn) for
a semi-positive line bundle. Note that the bundle L above always admits a
metric of positive curvature. Indeed, the fiber metric φ + εh on L can be
seen to have positive curvature, if the positive number ε is taken sufficiently
small. However, if λ and µ are not parallel as vectors, there is no metric of
positive curvature which is conformally equivalent to the Levi curvature at
the boundary. This follows from the weak holomorphic Morse inequalities,
Theorem 2.1, since the growth of the dimensions of H0,1(X,Lk) would be
of the order o(kn) then.

Remark 7.2. — To get examples of open manifold Y as described
in Remark 1.3 one may take the total space of the line bundle L∗µ over
Tn−1, as defined in the beginning of the section. Then ρ is an exhaustion
function, exhausting L∗µ by disc bundles. Furthermore, to get examples of
manifolds with boundary X where the index of the Levi curvature form
is non-constant one may take X to be an annulus bundle in L∗µ. Such a
manifold is neither q-convex or q-concave for any q. Theorem 7.1 extends
to such manifolds X if one uses Laurent expansions of sections instead of
Taylor expansions. A concrete example is given by the hyper plane bundle
O(1) over Pn−1. Then the corresponding annulus bundle is biholomorphic
to a spherical shell in Cn, i.e. all z in Cn such that r � |z| � r′ for some
given numbers r and r′. It has one pseudoconvex and one pseudoconcave
boundary component.

Finally, a remark about the proof of formula (7.1).

Remark 7.3. — To prove formula (7.1) one can for example reduce
the problem to holomorphic sections, i.e. when q = 0 (compare [4]).
One could also use symmetry to first show that the Bergman kernel is
constant and then compute the dimension of Hq(Tn, Lλ) by standard
methods. To compute the dimension one writes the line bundle Lλ as
Lλ = π∗1L

λ1 ⊗π∗2L
λ2 ⊗ · · ·⊗π∗nL

λn , using projections on the factors of Tn,

where L is the classical line bundle over the elliptic curve T 1 = C/Z+ iZ,
such that H0(C/Z+iZ, L) is generated by the Riemann theta function [17].
Now, using Kunneth’s theorem one gets that Hq(Tn, Lλ) is isomorphic to
the direct sum of all tensor products of the form

H1(T 1, Lλi1 )⊗ · · · ⊗H1(T 1, Lλiq )⊗H0(T 1, Lλiq+1 )⊗ · · · ⊗H0(T 1, Lλin ).

Observe that this product vanishes unless the index I = (i1, . . . , in) is
such that the first q indices are negative while the others are positive.
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Indeed, first observe that if m is a positive integer, the dimension of
H0(T 1, L−m) vanishes, since L−m is a negative line bundle. Next, by Serre
duality H1(T 1, Lm) � H0(T 1, L−m), since the canonical line bundle on T 1

is trivial. So the dimension of H1(T 1, Lm) vanishes as well. In particular,
the dimension of Hq(Tn, Lλ) vanishes unless exactly q of the numbers λi are
negative, i.e. unless the index of the curvature of Lλ is equal to q. Finally,
if the index is equal to q, then, using that H0(T 1, L) is one-dimensional,
combined with Serre duality and Kunneth’s formula again, one gets that
the dimension of H0(T 1, L−1) is equal to the absolute value of the product
of all eigenvalues λi. This proves (7.1).

7.1. Relation to hole filling and contact geometry.

Consider a compact strongly pseudoconcave manifold X with a semi-
positive line bundle L. We will say that the pair (X,L) may be filled if there
is a compact complex manifold X̃, without boundary, with a semi-positive
line bundle L̃ such that there is a holomorphic line bundle injection of L into
L̃. (2) The simplest situation is as follows. Start with a compact complex
manifold X̃ with a positive line bundle L̃ (by the Kodaira embedding
theorem X̃ is then automatically a projective variety [17]). We then obtain
a pseudoconcave manifold X by making a small hole in X̃ in the following
way. Consider a small neighborhood of a fixed point x in X̃, holomorphically
equivalent to a ball in Cn, where L̃ is holomorphically trivial and let φ be
the local fiber metric. We may assume that φ(x) = 0 and that φ is non-
negative close to x. Then for a sufficiently small ε the set where φ is strictly
less than ε is a strongly pseudoconvex domain of X̃ and its complement is
then a strongly pseudoconcave manifold that we take to be our manifold X.

We let L be the restriction of L̃ to X. A defining function of the boundary
of X can be obtained as ρ = −φ. Now, since L̃ is a positive line bundle it
is well-known that

lim
k

k−n dimCH0(X̃, L̃k) =
( i

2π

)n 1
n!

∫
X̃

(∂∂φ̃)n.

In fact, this holds for any semi-positive line bundle, as can be seen
by combining Demailly’s holomorphic Morse inequalities 1.1 with the
Riemann-Roch theorem (this was first proved by different methods in [27]).

On the other hand we have by Harthog’s phenomena (assuming that
n � 2), that H0(X̃, L̃k) is isomorphic to H0(X,Lk). So decomposing the

(2) By a theorem of Rossi [24], the pair (X,L) may always be filled if L is trivial close
to the boundary and the dimension of X is at least 3.
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integral above with respect to

(7.6) X̃ = X
⊔

Xc

and using Stokes theorem gives that

(7.7) lim
k

k−n dimCH0(X,Lk) =
( i

2π

)n( 1
n!

∫
X

(∂∂φ)n

− 1
n!

∫
∂X

(∂∂φ)n−1 ∧ ∂φ
)
.

Let us now compare the boundary integral above with the curvature
integral in the holomorphic Morse inequalities (1.2). Since ρ = −φ this
integral equals

− 1
(n− 1)!

∫
∂X×[0,1]

((1− t)∂∂φ)n−1 ∧ ∂φ ∧ dt,

which coincides with the boundary integral in (7.7) since
∫ 1

o
(1− t)n−1dt =

1/n. This shows that the holomorphic Morse inequalities, Theorem 6.5 are
sharp for the line bundle L over X. To show that the Morse inequalities
are sharp as soon as a pair (X,L) may be filled by a Stein manifold it is
useful to reformulate the boundary term in (1.2) in terms of the contact
geometry of the boundary ∂X.

Let us first recall some basic notions of contact geometry [3]. The
distribution T 1,0(∂X) can be obtained as ker(−i∂ρ) and since, by assump-
tion, the restriction of d(−i∂ρ) is non-degenerate it defines a so-called
contact distribution and ∂X is hence called a contact manifold. By du-
ality T 1,0(∂X) determines a real line bundle in the real cotangent bundle
T ∗(∂X) that can be globally trivialized by the form −i∂ρ. Denote by X+

the associated fiber bundle over ∂X of “positive” rays and denote by α the
tautological one form on T ∗(∂X), so that dα is the standard symplectic
form on T ∗(∂X). The pair (X+, dα) is called the symplectification of the
contact manifold ∂X in the literature [3]. More concretely,

X+ =
{
t(−i∂ρx) : x ∈ ∂X, t � 0

}
,

i.e. X+ is isomorphic to ∂X × [0,∞[ and α = −it∂ρ so that dα =
i(t∂∂ρ + ∂ρ ∧ dt). The boundary integral in (1.2) may now be compactly
written as ∫

X+(q)

(Θ + dα)n,

where X+(q) denotes the part of X+ where the pushdown of dα to ∂X has
exactly q negative eigenvalues along the contact distribution T 1,0(∂X).
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Let us now assume that X is strongly pseudoconcave and that (X,L)
is filled by (X̃, L) (abusing notation slightly). We will also assume that
the strongly pseudoconvex manifold Y, in X̃, obtained as the closure of
the complement of X in X̃, has a defining function that we write as −ρ
which is plurisubharmonic on Y. We may assume that the set of critical
points of −ρ on Y is finite and to simplify the notation in the argument
we assume that there is exactly one critical point x0 in Y and we assume
that ρ(x0) = 1 (the general argument is the same). For a regular value c

of ρ we let X+(0)c be the subset of the symplectification of ρ−1(c) defined
as above, thinking of ρ−1(c) as a strictly pseudoconcave boundary. Now
consider the following manifold with boundary:

Xε(0) =
⋃

c∈[0,1−ε]
X+(0)c.

More concretely, Xε(0) can be identified with a subset of the positive closed
cone in T ∗(Y,C) determined by ∂ρ :{

t(−i∂ρx) : x ∈ Y, t � 0
}
.

Hence, Xε(0) is a fiber bundle over a subset of Y and when ε tends to
zero, the base of Xε(0) tends to Y. Note that the fibers of Xε(0) are a finite
number of intervals and the induced function t on Xε is uniformly bounded
with respect to ε (i.e. the “height” of the fiber is uniformly bounded).
Indeed, we have assumed that i∂∂ρ is strictly negative. This forces Θ+ti∂∂ρ

to be negative on all of Y for all t larger then some fixed number t0. In
particular such a t is not in Tx(0) for any x in Y, i.e. not in any fiber of
Xε(0). Now observe that the form Θ+dα on X+(0) extends to a closed form
in Xε(0) and the restriction of the form to Y coincides with Θ. Let us now
integrate the form (Θ + dα)n over the boundary of Xε(0). The boundary
can be written as

∂(Xε(0)) = X+(0) ∪
( ⋃
c∈]0,1−ε[

∂(X+(0)c)
)
∪X+(0)ε.

Since the form is closed, the integral over ∂(Xε(0)) vanishes according to
Stokes theorem, giving

0 =
∫
X+(0)

(Θ + dα)n −
∫
Y

Θn + 0 + O(ε)

where the zero contribution comes from the fact that the form (Θ + dα)n
vanishes along

(⋃
c∈]0,1−ε[ ∂(X+(0)c)

)
− Y. The term O(ε) comes from the

integral (of a uniformly bounded function) over the “cylinder” X+(0)ε
around the point x0. Finally, by letting ε tend to zero we see that the
Morse inequalities for L over X are sharp in this situation as well.
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Remark 7.4. — The preceding argument also shows that if ρ is a
function on an open manifold Y with regular values c and c′ (where c is
less than c′), then∫

X+(i)c

(Θ + dα)n =
∫
ρ−1]c,c′]

Θn +
∫
X+(i)c′

(Θ + dα)n

for all i such that i � q, if ρ is q-convex on ρ−1]c, c′]. In other words, the
right hand sides in the weak Morse inequalities for ρ−1(� c) and ρ−1(� c′)
coincide. The analogous statement also holds in the q-concave case.
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