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SCHWARZ-TYPE LEMMAS FOR SOLUTIONS OF

~-INEQUALITIES AND COMPLETE HYPERBOLICITY
OF ALMOST COMPLEX MANIFOLDS

by Sergey IVASHKOVICH and Jean-Pierre ROSAY (*)

0. Introduction.

In this paper an almost complex manifold (X, J) means a smooth
(C°° ) manifold X with an almost complex structure J of smoothness at least
C1. When more smoothness is required by our proofs, it will be specified
in each statement. Through any point in any tangent direction, there are
local J-complex discs in X (Theorem III in the pioneering paper [N-W], or
see Appendix 1). So, one can define the Kobayashi-Royden pseudo-norm

of tangent vectors and then the Kobayashi pseudo-distance ~j(’, -) on
(X, J), see § 1. If ~j(-, -) is a distance (separation property), the manifold
is said to be hyperbolic.

For a compact X is a distance iff X does not contain a J-complex
line, i.e., an image of a non-constant J-holomorphic map u : C - X (see
[K-O], [De-1]) - this is just a Brody reparametrization lemma. The proof
originally given by Brody does not use the integrability of the structure. If,
for example, X is a product of two Riemann surfaces (81, Ji ) and (,S’2 , J2 )
each of genus at least two then (X, J) is hyperbolic for any J close to
Ji (1) J2.

(*) Partly supported by NSF grant.
Keywords: Kobayashi-Royden pseudo-norm - Almost complex manifolds - Schwarz
lemmas - Complet hyperbolicity.
Math. classification: 32Q60 - 32C~65 - 32Q45.



2388

QUESTION 1. - Is (X, J) hyperbolic for any J tamed by a standard
symplectic form on X = ,S’1 x 52 ?

If equipped with structures tamed by
standard symplectic forms then such X always contains a J-complex line
(see [Gr] and [Ba]) and therefore is never hyperbolic.

0.1. Hyperbolic distance
to a strictly pseudoconvex hypersurface.

In addition to the example of compact complex manifolds without
complex lines there is the simple example of bounded domains in C’ that
are also hyperbolic. The Gromov-Schwarz lemma extends this remark to
relatively compact domains in symplectic manifolds with exact symplectic
forms (the almost complex structure should be tamed by this symplectic
form), see [K-O]. The main question that will be studied in this paper is: for
which domains D C (X, J) is the almost complex manifold (D, J) complete
hyperbolic (i.e. complete for the Kobayashi distance in D)?

First results were obtained in [D-I]. An important work was done
by Gaussier and Sukhov [G-S], who in particular were the first to prove
that in any dimension, points always have a basis of hyperbolic complete
neighborhoods, for almost complex structures that are smooth enough. See
more about their work in Remark 1 below.

Let us state the problem more precisely. Let D be a domain in an
almost complex manifold (X, J). We do not assume that D is relatively
compact nor that D is hyperbolic. A point p E aD is said to be at finite
distance from q E D if there is a sequence of points qj E D converging to p
and whose Kobayashi distances to q stay bounded. Distances here are taken
in Kobayashi pseudo-metric of (D, J). Otherwise we say that the distance
is infinite.

Our first result is the following one (the definition of strict pseudo-
convexity is recalled in 2.b):

THEOREM 1. - Let D be a domain in an almost complex manifold

(X, J), J of class C1. Let p E aD. If the boundary of D is strictly J-
pseudoconvex at p, the point p is at infinite Kobayashi distance from the

points in D.
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The Brody reparametrization lemma immediately gives the following:

COROLLARY 1. - Let D be a relatively compact strictly pseudocon-
vex domain of class C2 in an almost complex manifold (X, J) and assume
that J is of class C1. Then either (D, J) is complete hyperbolic or D con-
tains a J-complex line.

There is one important case where the absence of J-complex lines
in a strictly pseudoconvex D is completely obvious. This is the case when
D possesses a global defining strictly plurisubharmonic function i.e. there
exists a C2-function p in a neighborhood V of D such that JY) &#x3E; 0,
Y E TD B ~0~ and D = {.r E V : p(x)  01. Therefore we obtain

COROLLARY 2. - Let D and (X, J) be as in Corollary 1 and sup-
pose additionally that D possesses a global defining strictly plurisubhar-
monic function. Then (D, J) is complete hyperbolic.

Corollary 2 implies the existence of bases of complete hyperbolic
neighborhoods of any point on (X, J) provided J Eel. Indeed, the problem
is local and therefore we can suppose that X = and J(O) = Jst. Then
11.112 is strongly J-plurisubharmonic near 0. When the real dimension of X
is 4 the existence of a basis of hyperbolically complete neighborhoods was
proved in [D-1 .

It is worth to point out that strictly pseudoconvex domains in almost
complex manifolds are far different from those in complex ones, even if the
almost complex structure is tamed by some symplectic form. For example,
in [McD] a symplectic 4-manifold (X, c~) together with a relatively compact
smoothly bounded domain D C X is constructed such that 8D is of contact
type (and therefore is strictly pseudoconvex with respect to an appropriate
w-tamed J) but at the same time aD is disconnected. In fact it has two

connected components. It is not clear however, whether this D contains
J-complex lines or not.

It seems to be a proper place to mention a well known problem, which
is open even in ~2:

QUESTION 2. - Let D be a smooth pseudoconvex domain in an
almost complex manifold (X, J), e.g. D = f x : p(x)  Of for some (not
necessarily strictly) plurisubharmonic function p. Is D locally complete
hyperbolic?
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The reason why we mention this problem here is that by local

diffeomorphism D can be put into a nice form (say upper half-space) and
then one can try to improve and apply the methods of §§ 1,2 of this paper.

0.2. Distance to a J-complex hypersurface.

We have already mentioned compact complex manifolds and bounded
domains in symplectic manifolds with exact symplectic form. Another
example of hyperbolic manifold is the manifold X = Cp2 B where

11, ..., l5~ are J-complex lines in general position. The structure J should
be tamed by the Fubini-Studi form, see [Du].

Therefore we now turn our attention to the hyperbolic distance to
complex submanifolds. Let M be a closed submanifold of a domain D,
of real codimension 1 or 2 (the case of higher codimension is trivial, see
Remark at the end of § 5). For a point p E M, we wish to investigate
whether there exist points q E D B M at finite Kobayashi distance from p,
in D B M. For codimension 2 our result is the following one:

THEOREM 2. - Let D be a be a hyperbolic domain in an almost
complex manifold (X, J), J E C2. Let M be a closed submanifold of D of
real codimension 2 and of class C3.

(2.A) If M is a J-complex hypersurface, then for every p E M and
q E D B M the Kobayashi distance from q to p is infinite.

(2.B) Conversely, if p E M and if the tangent space to M at p is not J-
complex, then for any neighborhood DI of p in D, there exists p’ E Dl rl M
that is at finite distance from points in D B M.

It is shown in section § 5 that at least if J is of class c2,a, , instead
of merely C2, one can take p’ = p. This is an immediate consequence of
Theorem 3.

Theorems 1 and 2 imply the following

COROLLARY 3. - Let J be a C2 almost complex structure in the

neighborhood of the origin in Suppose that there exists a J-complex
C3 hypersurface M :3 0. Then there exists a fundamental system of

neighborhoods of the origin such that (Ui, J) and (Ui B M, J) are
complete hyperbolic in the sense of Kobayashi.
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In real dimension 4 this statement was proved in [D-I]. Let us explain
our interest for higher dimensions.

QUESTION 3. - Let C C CP~ be a J-complex curve (not smooth)
in general position of sufficiently high degree, J tamed by the Fubini-Studi
form. Is it true that (CP~ B C, J) is hyperbolic?

This question has likely a positive answer and therefore the following
problem arises in its turn:

QUESTION 4. - Let J be an almost complex structure in the

neighborhood of the origin in JR4 and C a J-complex curve (may be
singular) passing through zero. Prove that for a complete hyperbolic
neighborhood of zero V the open set (V B C, J) is also complete hyperbolic.

A proof could possibly go along the following lines. Let F(z, z) = 0
be the equation of C, z = (Zl, z2 ) . Consider in with coordinates Zl, z2 , w
the hypersurface M = ~w - F(z, z) = 0}. If one could extend J from JR4 to
R6 making M complex then our C will be an intersection of two smooth
complex hypersurfaces and we are done due to our Theorem 2.

Of course the existence of J-complex hypersurfaces is totally excep-
tional unless the real dimension of X is 4. However, Donaldson in [Do]
proved that every compact symplectic manifold admits symplectic hyper-
surfaces in homology classes of sufficiently high degree, therefore giving us
almost complex structures with complex hypersurfaces on such manifolds.

0.3. Distance to a Levi flat hypersurface.

The consideration of J-complex hypersurfaces comes naturally in the
discussion of real hypersurfaces.

Now we turn to the case when M is a real hypersurface. Let us recall
construction of McDuff in more details. In her example X = T*Y - the total
space of the cotangent bundle of a Riemann surface Y of genus &#x3E; 2 equipped
with the standard symplectic form. The domain D in question is defined as
D = {j? : ti  p(x)  t2 ~ where p : T *Y B ~0~ - R is some smooth function
which is strictly pseudoconcave in D1 : :== {.r : tl  p(x)  to} and is strictly
pseudoconvex in for some ti  to  t2. And

ddj-p = 0 on rto , where Ft, = {~c : p(x) = = l, 2, 3. Therefore we
obtain a domain, say Dl with disconnected boundary rtl U rto such that
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one component is strictly pseudoconvex and another is Levi flat. Moreover,
this Dl doesn’t contain J-complex lines.

If M is Levi flat, i.e. foliated by J-complex hypersurfaces, then D B M
is locally hyperbolically complete as follows immediately from Theorem 2.
Therefore the only obstruction for Dl in the example above to be not
(complete) hyperbolic is the eventual presence of a (so called limiting) J-
complex line in rto .

Therefore the following question close to Question 1 seems to be of
an interest:

QUESTION 5. - Let r C T*Y be a S’-bundle over a Riemann
surface Y of genus &#x3E; 2. Suppose that r is Levi-flat for some w-tamed
J. Can such r contain a J-complex line?

Probably not and if so we would get an example of a complete
hyperbolic manifold with disconned boundary.

In the integrable case if the Kobayashi distance to a real hypersurface
M is infinite then M is forced to be Levi-flat. This statement is no longer
true in case of non integrable J. In § 6 we construct the following:

Example. - There exists a real analytic almost complex structure J
on JR6 such that M = R5 x {0} is not Levi flat but the Kobayashi pseudo-
distance relative to M, J) of any point in M to M is infinite.

Let a real hypersurface M c D be defined by p = 0 (as usual 0

on M). A tangent vector Y to M, at some point p, is said to be complex
tangent if J(p)Y is also tangent to M, at p. Recall that M is foliated by
J-complex hypersurfaces (i.e. M has a Levi foliation) if and only if for
every p e M and every Y and T, both complex tangent vectors to M at p,

= 0 (definitions will be recalled later).

THEOREM 3. - Let D be a domain in an almost complex manifold
(X, J). Assume that the closed real hypersurface M c D is of class C2, and
J is of class C3,a (for some 0  c~  1). If there exists a complex tangent
vector Y to M at a point p, such that JY) &#x3E; 0, then that point p
is at finite distance, in D B M from points in the region defined by p &#x3E; 0.

If JY)  0, simply replace p by -p.

Theorem 3 implies that if a relatively compact smoothly bounded
domain D in almost complex manifold is complete hyperbolic then D should
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be pseudoconvex (pseudoconvexity being defined by the Levi form).
For non integrable almost complex structures the condition

dd§p(Y, JY) = 0 for all complex tangent vectors Y does not imply the
(Frobenius) condition ddj-p(Y, T) = 0 for all complex tangent vectors Y, T.
It is illustrated by the above example. But there is a case when the above
conditions are equivalent. This is the case of dimension 4. We therefore

have the following

COROLLARY 4. - Let D be a Kobayashi hyperbolic with respect to
J domain in X. If X has dimension 4, if the hypersurface M c D is of
class C3 and J is of class c3,a, then the following are equivalent:

( 1 ) For every point p E M the Kobayashi distance, in D B M, from p
to any point in D B M is infinite.

(2) M is Levi flat.

The example in mentioned above has the interesting feature that,
although M = ]R5 x {0} is not Levi flat, through any point in any complex
tangential direction, there is a J-complex curve lying entirely in M. It
would be interesting to know this in general.

QUESTION 6. - Let M = {p = 0} be a real hypersurface in (X, J)
such that ddj-p(Y, JY) - 0 for all complex tangent vectors Y. Show that
for any p E M and any there exists a J-complex disc passing
through p, entirely lying in M and tangent to Y at p. Does this condition
imply complete hyperbolicity of the complement to M ?

Remarks. - 1. Corollary 2 was first proved by Gaussier and Sukhov

([G-S]) in dimension 4, for almost complex structures that are smooth
enough (with partial results for arbitrary dimensions). Although our path is
substantially different, their paper has been an inspiration. After our proof
of Corollary 1 was written (several months later), Gaussier and Sukhov
were able to improve their technique in order to get a proof of Corollary 2
for arbitrary dimension (still for structures that are smooth enough), along
the lines of their original attempt.

2. Our Theorem 3 is essentially given by Proposition 6 in the paper
[B-M], by Barraud and Mazzilli. But we did not see in [B-M] neither a
proof nor an adequate reference for the existence of J-holomorphic discs
with appropriate jets (it is the essential point, and a proof is needed even
it follows a path known since [N-W]).
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3. We give complete proofs including for some well known basic results
and the natural extensions of these results that we needed. We aimed for

proofs much simpler than the proofs usually given or sketched. We were
careful about the needed smoothness assumptions. So we hope that this
paper can also be used by non-specialists as an easy introduction to the
now basic theory of pseudo-holomorphic discs.

4. Even from the strict point of view of complex analysis, there is

an advantage in taking the point of view of almost complex manifolds.
This is clearly illustrated by the proof of the upper semi-continuity of
the Kobayashi- Royden pseudo-norm. This upper semi-continuity was first
proved by Royden [R]. The proof uses only standard tools such as: the
existence of Stein neighborhoods for embedded discs (now covered by Siu’s
Theorem), Grauert’s characterization of Stein manifolds in terms of strictly
plurtisubharmonic exhaustion functions, the embedding of Stein manifold
in C~, and elementary results on holomorphic vector bundles on the unit
disc. But it cannot be considered to be an elementary proof, unlike the proof
that one gives in the more general setting of almost complex manifolds (see
the Appendix): it is simply basic elliptic theory.

5. Since the beginning of the theory ([N-W]), one has considered non-
smooth almost complex structures. In real dimension 2, it has been im-

portant to prove that such structures are merely complex structures. (One
even considers bounded but non-continuous data, see [C-G] Chapter 1). In
real dimension 4, there has been a recent interesting example where non-
smooth almost complex structures arise. In [Du], J. Duval had to blow up
a point, say the origin. A preliminary work has to be done in order to make
the standard complex lines through the origin to be J-holomorphic. It leads
to a change of variables that is not smooth.

The structure of the paper is the following:

In § 1, we clarify some notations and recall basic facts from almost
complex geometry. It also contains some preliminaries, such as the existence
and basic properties of plurisubharmonic functions on almost complex
manifolds (including a quick proof of well known basic results that also
follow from standard elliptic theory).

In § 2, we prove Theorem 1. The proof uses localization with the
help of plurisubharmonic functions and then an appropriate Schwarz-type
Lemma 2.3.

In § 3 we give an estimate of a Calderon-Zygmund integral and prove
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another Schwarz-type Lemma 3.2. In § 4 Lemma 3.2 is applied, and we
prove Theorem 2.

Theorem 3 is proved in § 5.The example mentioned above is given in
~ 6. An appendix gathers some proofs and additional facts.

1. Some notations, definitions, and basic facts.

[McD-S] is a well known reference for almost complex manifolds. An
almost complex manifold (X, J) is a manifold X of even real dimension

2n, with at each point p an endomorphism J = J(p) of the tangent space
satisfying J2 = -1. In this section, and in the next one we shall assume
that J is of class C .

As usual Ck,, is used to denote spaces of maps whose derivatives of
order x k are Holder continuous of order a, 1~ E 1~, 0  a  1. 
regularity of J (i.e. of the map p ~ J(p)) is preserved by change of
variables.

l.a. J-holomorphic discs
and the Kobayashi-Royden pseudo-norm.

We shall study maps u from an open set of C (always equipped
with the standard complex structure - so we will avoid the more complete
notation into (X, J). We set

for any vector Y tangent to C (at a point where u is defined). The map
u E co n L1,2 is J-holomorphic if 9ju = 0 a.e. If J E Ck,a this implies that
u E 0. In particular C1-regularity of J implies C1,a-regularity
of u, for any (o,1 ) . We shall see later that more is true: u belongs then
to some sub-Lipschitzian class C1,ø with 0(r) - r In -1. It will enable us to
work under Cl-regularity of the structure.

DR will denote the disc of radius R in C centered at 0, and D =

Di will be the open unit disc. Under our regularity assumption on J

through each point p E X in every direction Y E TpX there exists a
J-complex curve, see § l.e. More precisely, there exists a J-holomorphic
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u : X (for some R &#x3E; 0) such that ~(0) = p and Y.

The Kobayashi-Royden pseudo-norm of the vector Y e TpX on the almost
complex manifold X is defined as ))Y]] K = X, J-
holomorphic, u(0) = = V}. Another way to say the same is

3~ ~ D ~ X, J-holomorphic, ~(0) = p, 

If TX is equipped with some norm

u : D - X, J- holomorphic, ~(0) = p and is parallel to YI.
The length L of a path -y : [0 , 1] --+ X is then defined by

L = dt, where the integral is understood as the upper integral,
i.e. the infimum of the integrals of the positive measurable majorants.

In case the almost complex structure J is of class C 1 it is not clear

that the function t is integrable or even measurable. But, at
least if J is of class c1,a, the Kobayashi-Royden pseudo-norm is an upper
semi continuous function on TX (see Appendix 2 and [I-P-R]), and the
integral makes sense in the ordinary sense and is finite.

The pseudo-distance between two points is of course the infimum of
the lengths of the paths joining these two points. Abusively we may say
distance instead of pseudo-distance.

l.b. Complete hyperbolicity.

We now state an elementary Lemma that will be used to prove

completeness for the Kobayashi metric. It will be applied with 6(t) = Ct
or Ct log t near 0 (C is a constant). Think of X in the Lemma as a complex
coordinate function.

LEMMA 1.1. - Let D be a domain in an almost complex manifold

(X, J). Let p E &#x26;D. Let X be either:

(a) a C1 map from D with x(p) = 0 0 on D, or

(b) a C1 map from a neighborhood U of p into ]R2, such that X(p) = 0

Let 6 be a positive function defined on (0 ,  +(0) =

+oo. Assume that for every J-holomorphic map u from D into D, such that

u(o) is close to p
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Then, p is at infinite Kobayashi distance from the points in D.

Proof. We write first the proof for case (a). In the proof, the
Kobayashi pseudo-norms are denoted by ] . x, and I - denotes Euclidean
norm in R2 .

Let y be a C 1 path in D from a point qo (fixed) to a point pi (to be
thought of as close to p). So ~ : [0 , 1] --~ D, q(0) = qo, -y(1) - pi. The
Kobayashi length is L = dt. For t E [0 , 1], by definition of
the Kobayashi metric, there exists a J-holomorphic map ut : D - X with

7 (t), and

From this we get:

From (1.1) it follows that

Finally, we get

which is arbitrarily large if pi is close enough to p (so 0).
The proof of (b) follows from the above. Shrinking U if needed, we

can assume that X is defined on U n D and {p}. We
wish to estimate the length of a path from a point qo in D to a point pi
as in the proof of (a). If this path is entirely in U, the proof of (a) applies.
Otherwise, let to the largest element in [0, 1] such that (assuming
U open). Then simply apply the above estimates to the path from )’(to) to
PI obtained by restricting -y to [to, 1]. It is important to note that the non
vanishing of X on U n D B {p}, and not only on U n D, insures that there
exists E &#x3E; 0 such that E on the boundary of U (in D), and therefore
!x(7(~o))! ~ ~ (c not depending on q) . 0

Remark l. - The Lemma covers the case of maps X with values in

R, such that  0, and x(p) = 0.
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Remark 2. - In a hyperbolic manifold, complete hyperbolicity of a
domain is a purely local question. We have more:

An open subset Xo in an almost complex manifold (X, J) is called

locally complete hyperbolic if for every y E Xo there exists a neighborhood
Vy 3 y such that Yy n Xo is complete hyperbolic.

Recall that an open subset Xo of an almost complex manifold X is
called hyperbolically imbedded into X if for any two sequences 
in Xo converging to x E X and y E X, x =1= y, respectively, one has that
lim Yn) &#x3E; 0. Here denotes the Kobayashi pseudo-
distance on the manifold (Xo, J).

It is worth observing that if Xo is a relatively compact domain in
X, hyperbolically embedded into (X, J) and if Xo is locally complete
hyperbolic then (Xo, J) is complete hyperbolic, see [Ki].

The result is rather immediate (if ~c maps the unit disc into Xo,
restrict to a smaller disc and rescale), but it is very useful. It reduces

the problem of completeness to a purely local problem (in hyperbolic
manifolds). We will use it repeatedly without further explanations when
switching to local problems.

I.c. Plurisubharmonic functions.

If À is a function or vector valued map defined on (X, J), is the

1-form (vector valued) defined by

for every tangent vector Y. Notice that now the almost complex structure
is on the source space X. Then ddJ-À is defined by usual differentiation. As
usual, A will denote the Laplacian, The notation dc is

- .. - -

relative to the standard complex structure on C, so for a function h defined
on an open set of

The following formula (1.2), that one finds also in [De-2] and [Ha],
is an immediate consequence of the chain rule (with some care needed in
case of low regularity). The interesting case of smooth structures but rough
functions is studied by Nefton Pali ([P]).

LEMMA 1.2. - Let J be a C1 almost complex structure defined on
an open set Q c R 2, . be a C2 function defined on O. If u : (0, J)
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is a J-holomor p hic map, then:

Comments. - Since J is only of class C1, u need not be C2 (only
C1,/3 for all j3  1), so the left hand side in the equation above has to be
understood in the distributional sense. But the right hand side is different.
Since dd’ involves only one derivative of J, the right hand side makes sense
pointwise (as suggested by our insertion of z’s in the right hand side). The
statement says that A(A o u) is in fact (the distribution defined by) a
continuous function, although À o u need not be C2.

Although u is not C2, the Lemma should not be so surprising. Consider
the case of a genuine holomorphic change of variable 1/J, one has the formula

in which the second derivative of o plays no role.

Proof. Since we deal with low regularity, we start with the follow-
ing simple preliminary remark.

Let U be an open set in JRK and p be a C1 map from U into 
Let w be a C1 form of class C1 defined on an open set of R N containing

Note that and are well defined

(the case of Lipschitzian data would be more subtle!), and have continous
coefficients, but possibly not C1 coefficients and so d(V*w) may have to be
taken in the sense of currents. For smooth p and cv it is plainly chain rule,
and for cp and (j as above it follows by approximation.

Now, we prove the Lemma. We know that u is of class C1. By the very
definition of J-holomorphicity, du commutes with the action of the almost
complex structures, so

Indeed, for any tangent vector Y to the unit disc,

By the preliminary remark (chain rule) applied with cp - u and

Finally,
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the J-holomorphicity of u being again used for the last equality.
The Lemma is thus established.

COROLLARY 1.1. - Let J be a C1 almost complex structure defined
on an open set SZ C C~. Let A be a C2 real valued function defined on Q.
The following are equivalent:

(1) For every tangent vector Y to Q, JY) &#x3E; 0.

(2) For every J-holomorphic map u : ~D -~ 0, À o u is subharmonic.

Let us repeat that since involves only one derivative of J, 
makes clear sense. (1) ~ (2) is an immediate consequence of the Lemma.

(2) ~ (1) is also an immediate consequence, taking into account that for
every tangent vector Y, at a point q E Q, there exists a J-holomorphic map
u : ~ -~ S2 such that = q and a~ (o) = tY, for some t &#x3E; 0.

If the equivalent conditions of the Corollary are satisfied by a function
À, that function is said to be J-plurisubharmonic. Of course (2) makes
sense also for upper-semicontinuous À giving us the general notion of a
plurisubharmonic function. As usual, a function is said to be strictly J-
plurisubharmonic if locally any small C2 perturbation of that function is
still J-plurisubharmonic.

There are two important examples of plurisubharmonic functions:

LEMMA 1.3. - Let (X, J) be an almost complex manifold equipped
with an arbitrary smooth Riemannian metric with J of class C 1. Then for
any p E X, the function q ~ ( dist (q, p) ) 2 is strictly plurisubharmonic
near p.

Proof. If J is of class C1,a the J-holomorphic discs are and

the result is trivial. If J is only of class C1, it follows from (1.2) and from
the comments after Lemma 1.2.

The simple fact to be used is the following one: If p is a continuous
function defined near 0 in JR2 such that Ap (in the sense of distributions)
is a continuous function, and such that for some C &#x3E; 0 

~(0) + C(X2 + y2) (near 0), then &#x3E; 0.

The next example less trivial is due to Chirka (not published).

LEMMA 1.4. - Let J be an almost complex structure of class C1
in the neighborhood of the origin in en. Suppose that ~I (o) _ Jst.
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Then there exist a neighborhood V :3 0 and a constant A &#x3E; 0 such that

log Z ( -~ is J-plurisubharmonic in V.

Consequently, for any point p in a complex manifold (X, J), with
J of class C 1, there exists a plurisubharmonic function A defined near p,
continuous and finite except at p such Indeed we can take

local coordinates in which the almost complex structure coincides with the
standard one at p.

Proof. Using dilations the Lemma reduces to the following.

For set We consider a

continuously differentiable almost complex structure J defined on the unit
ball B in We wish to prove that there exists E &#x3E; 0 such that if

J(0) = Jst and I I J - E, then for Z E B, Z ~ 0, and every tangent
vector Y at Z:

As previously ddc will be used for An elementary computation
gives the following result:

for some positive A easy to determine. With complex notations: it is

equivalent to showing

Note that, using invariance under rotations, it is enough to check the
inequality at points Z of the type Z = (z, 0, ~ ~ ~ , 0) . The computations
simplify and one immediately gets a better non-isotropic estimate:

with’

Chirka’s Lemma follows from a simple perturbation argument in

which we shall use that the first order (resp. second order) derivative of
u at Z are of the order of magnitude of Iii (resp. £ ) . We have:

We now look at each of the terms on the right hand side. For the

last one we have the estimate (1.4). For the second one:
So, using the estimates on the derivatives of

u, if E is small enough: Iddcu
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We finally look at the first term. Using R 2, coordinates (t 1, ... , t2n )
for Z E B, write

Since J(0) - Jst = 0 E, for some universal constant K we

get a~;~ ~  KEIZI and KE. Using the estimates on the derivatives

ofu, we again get that if E is small enough 
Then one has: 

,

l.d. Regularity of J-complex discs.

We want to make a few remarks about the regularity of J-holomorphic
discs since the proofs in the literature are not always pleasant. We shall
always assume u (as below) and J to be of class C1 at least, in which case
Formula (1.2) allows truly immediate proofs.

But it should be reminded that: First of all if ~I is merely continuous
then J-holomorphic maps u : D - X (a priori they are co n L1,2) are
in for any p and therefore in Ca for any 0  a  1 due to Sobolev

embedding, see [IS-2] Lemma 2.4.1. Then if J is of class Ca, u is of class
(Theorem III in [N-W] and [Si]).

Remark l. - The proof of Lemma 1.2 used only the following:

À is a G2 function,
(H) ~ the almost complex structure J is of class C 1,

u is a C1 J-holomorphic map.

It may be worth pointing out that (using the simplest possible results
on the regularity of the standard Laplacian A) the following is an immediate
consequence of the validity of formula (1.2) under the above hypotheses
(H) :
If an almost complex structure J on (some open set of) IR2n is of class

with I~ &#x3E; 1 and 0  cx  1, then any C1 J-holomorphic map
u : D - (1R2n, J) is Ck+1,o: regular. If J is only C1, u is of class C1+ø
for all {3  1. More is true (see Remark 3) and will be needed later.



2403

Here, we sketch the argument:

1) Assume that J is of class C1. Let À be any smooth function defined
on ~2n .

By (1.2), is a locally bounded function. It immediately follows
that À o u is of class for all 0  0  1. Taking À to be the coordinate
functions, one sees that u itself is of class 

2) Assume now that J is of class 1 , 0  a  1). By 1) we
already know that u is of class C1,a. Then, by repeating the argument, one
sees that if u is of class C’,’ with 1 ~ r  k, then u is of class Cr+1,a .

Indeed, if À is any smooth function on R~~ , (1.2) shows that A(À o u)
is of class Cr-l,a. So by regularity of the Laplacian À o u is 

Remark 2. - The other result of basic elliptic theory that is used
several times is that if on a bounded open set SZ in an almost complex
structure J is close enough (depending on B below, 0  /3  1) to Jst in C 1
norm (resp. close enough in norm, with k à 1), then the J-holomorphic
maps u from D into Q have uniform (resp. ck+1,a) bounds on smaller
discs. It is at the root of local hyperbolicity, see Lemma 1.5. We shall
restrict our discussion to almost complex structures which are at least of
class C 1 (see [Si], for lower regularity).

We wish to mention that formula (1.2) can also be used for proving the
above result. One first needs an initial regularity result giving LP bounds
for Vu, to be used with p &#x3E; 4. Then, proceeding as above, a first application
of (1.2) gives Lr bounds for Du with r = ~ &#x3E; 2, therefore Holder (1 - ~)
estimates for Vu, i.e. C1,1- r bounds for u. After that, (1.2) gives Ck+1,a
bounds if J is of class and if Ck,a bounds are already known for u.

It happens that LP bounds for Vu, for arbitrary 1  p  oo, are

extremely easy to get. Provided that E is small enough depending on p (for
p = 2, c  1), they follow from the simple differential inequality:

The argument is well known. Let X E Co 00», satisfying 0  X  1. We

with _

gives

the theory of singular integral
So, one has
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If E is chosen small enough so that ECp  1, we get:

Then,

Finally,

We will need the following that is easily obtained from Remark 2
above.

LEMMA 1.5. - Let Q be an open subset of J), J of class C1.
Let K be a compact subset of Q. There exists 6 &#x3E; 0, such that: for every
r E [0,1) there exists C &#x3E; 0 such that J-holomorphic disc
with u(D) c K, then

if and

Proof. Depending on u(O), one can make a linear change of
variables such that in the new coordinates J(~(0)) = Jst. One can choose
the linear maps for changing variables so that their norms and the norm of
their inverses are uniformly bounded for u(O) E K.

After such a change of variables, set M = Sup lu(z) - u(0) ) 1 (z E C,
Set Then um is a JM-holomorphic map from

D into the unit ball in R~~ , for the almost complex structure J M that is the
push-forward of J under the map Z ~ -§- (Z - u(0) ) . If M is small enough,
JM is close to Jst in the C 1 sense and Remark 2 applies. So, for r one

gets C for some absolute constant C, hence CM,
as desired.

Remark 3. - Let C’,O (see § 3 for an explication of the notation)
be the class of continuously differentiable functions or maps that locally
satisfy the following sub-Lipschitzian condition
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for some constant C. So, the gradients of functions in C1,ø are better than
Holder, but not quite Lipschitzian.

LEMMA 1.6. - Any J-holomorphic disc (that in our proof we
assume to be C1) is in the class if J is C1 .

Uniform bounds are obtained as in Remark 2. Lemma 1.6 follows

immediately from the observations in Remark 1 and from the elementary
Lemma:

LEMMA 1.7. - Let g be a function defined on some open set in
}R2 ~ C. IfAg (in the sense of distributions) is a bounded function, then
g E C1,ø.

Proof. Assume that g is defined near 0. Let X be a smooth cut
off function such that x - 1 near 0. We have gx = * 2~ log Izl. So,
near 0: 

~ _ ..... _

and

We concentrate on ~, the case of a being similar.
Write as the sum of a bounded function v with compact

support and of a distribution T with support away from 0. Then, T * z is
C°° near 0. So we only need to show an estimate of the type:

Checking that estimate is immediate. Write

Then, simply use the estimates:

and
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l.e. Jets of J-holomorphic discs.

The case of 1-jets (I~ = 1)is simply the case of discs with prescribed
tangent. In the proof of Theorem 3, we shall also need the case of 2-jets,
with dependence on parameters. But we state the general case of jets of
arbitrary order.

PROPOSITION 1.1. - 1, and 0  a  1. Let J be

a Ck-I,a almost complex structure defined near 0 in 1.~2n . For any p E 
close enough to 0, and every V = (v1, ... , v~ ) E (R2n) k small enough,
there exists a Ck,, J-holomorphic map up,v from D into such that

up,v(0) = p, and axl (0) = vi, for any 1 ~ l  k. If the structure J is of
class Ck,,, then up,v can be chosen with CI dependence (in on the

parameters (p, V) in &#x3E;C (R2n)k.

Here we will give the proof assuming Ck,a regularity of J. It is a

rather simple consequence of the implicit function theorem. The proof of
the existence of discs under regularity requires a trick found by [N-
W] for one-jets, and the Schauder fixed point Theorem. It is given in the
Appendix. We do not know whether continuous dependence on parameters
can then be achieved (there are possibly related examples indicating that
it is conceivable that it fails).

Before the proof of the Proposition, we start with some preliminaries.

l.e.l. Re-writing of J-holomorphicity.

On R~~ , we consider an almost complex structure J and the standard
almost complex structure Jst (corresponding to multiplication by i in the
identification of with en). By definition

With some abuse of notations notations on the left hand side and Cn

notations on the right hand side)

By multiplication on the left by J(u), (1.6) gives:
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We shall restrict our attention to almost complex structures J such that
at each Z E X, J(Z) is invertible, which happens in particular if
J(Z) - Jst has operator norm  1. Then, set:

The equation for J holomorphicity of u becomes

Indeed since 8Ju is simply the C - J anti-linear part of du, 0 if and

1.e.2. The Cauchy-Green operator TCG and the 

For a complex valued function g or a map g with values in a complex
vector space, continuous on D, and z E C with lzl  1, we set:

We shall need the classical properties of TCG (see Appendix 4):

Let k be an integer &#x3E; 1. Assume that J is a almost complex
structure defined on JR2n, such that J(z) + Jst is invertible for all z E R .
We define the operator 4$ j from Ck,a (D, JR2n) into itself by:

4$ j is a continuously differentiable map from into itself, whose
derivative at the point u E is the map:

where ,S is the operator defined by differentiation of u H Q j (u) (as a map
from Ck,a into TCG re-gaining one derivative), i.e. with obvious

notations:

It is for this differentiation that it is not enough that J be of class Ck-l,a. If
~ = Jst, 4$ j is the identity mapping. On any fixed ball in is a small

(non-linear) perturbation of the identity if J is close to Jst in topology.
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Finally note that equation (1.7) and (b) show that u is J-holomorphic if
and only is holomorphic in the ordinary sense.

1.e.3. Proof of Proposition 1.1, assuming Ck,a smoothness
of J.

Of course, we can assume that J(0) = Jst. After linear change of
variables (dilations), and cut off of J - Jst, we can assume that J is

defined on and as close as we wish to Jst in topology. For
define the map on D

by

Fix R &#x3E; 0 so that for any (q, W) in the ball B R of radius R in JR2n X (R 2.)k,
is in the unit ball of If J is close enough to is

defined as a map from the unit ball of into R2n). For
set

Since is holomorphic, Uq,w is J-holomorphic. Finally let J the map
that to (q, W ) E BR associates

If J = Jst, ~~ is the identity mapping. If J is close to Jst in Ck,, topology,
it is a small continuously differentiable perturbation of the identity, whose
image therefore contains a neighborhood of 0, with a C1 inverse. If (q, W) =
~-1 (p, V), then uP,v = Uq,w is the desired map. 0

Proposition 1.1 can be rephrased in terms of matching jets. In

Proposition 1.1’ we rephrase only the part of proposition 1.1 with Ck,a
smoothness assumption.

PROPOSITION 1.1’. - Let k ) 1 and 0  a  1. Let J be a

almost complex structure defined in a neighborhood of 0 in JR2n. If
p : D - (JR2n, J) is a smooth map such that then

there exists a J-holomorphic map u from a neighborhood of 0 in (C into
JR2n such that ( (u - ~0) (Z) = 0(1 Z I k).

If we have a family of maps pt : D - (JR2n, J) as above, with C1
dependence on t in some neighborhood of 0 in JRf, then there are J-

holomorphic maps ut defined for t near 0 on a same neighborhood of 0
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in (C and with C1 dependence on t, with
in t).

(uniformly

Proof. Proposition 1.1’ follows immediately from Proposition 1.1,
due to the following observation. Assume that u and v are C~ maps from
D into (Iae2n, J), where J is an almost complex structure of class If

for all

then and v have same at 0.

implies that

Similarly for v. Assume that for some  k, we have already shown that
at 0 all the derivatives of u and v of total order x k and order -- f in y
coincide (the case = 0 being given by the hypothesis). We have to show
that for derivatives of total order m + f + 1 # k and of order -f- 1 in y,
D = D = we have Du(O) = Dv(O).

Differentiation of (1.9) gives

and similarly for v. By the induction hypothesis, one gets

1.e.4. Families of discs.

Without looking for more generality, we state the next Proposition
just as we will need it for proving part 2B in Theorem 2.

PROPOSITION 1.2. - be an open set in R 2, - Cn - Let 6 &#x3E; 0

and p &#x3E; 1. Let Ot be a family of (Jst) holomorphic discs Ot : S2,
defined for 5, depending continuously on t. Let 77 &#x3E; 0. For any
almost complex structure on Q close enough to Jst in C1,a topology on f2,
there exists a family 1/Jt of holomorphic discs ~t : ~ --~ f2, continuous in t,
such that for any t E [-5 , 5] and any ( E D, l1/Jt(() - Ot(() I 1 n-
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Proof. The operators V j were introduced and discussed in the
two previous sections. is the identity mapping. Given any compact set
F in C1,0152(~), if J is close enough to Jst, can be defined on F and

is close to the identity. It maps Jst holomorphic discs to J holomorphic
discs. 0

2. Completeness of strictly pseuconvex domains.

2.a. Localization results.

As a preliminary, we shall start with a first localization (Lemma
2.1) that is not needed when dealing with local problems only, for which
Lemma 2.2 can be obtained directly. We shall use localization techniques
that are standard in complex manifolds. See in particular Proposition 2.1
in [Be], but we avoid any explicit use of the Sibony metric.

LEMMA 2.1. - Let D be a domain in an almost complex manifold

(X, J), J of class C1. Let p E aD. Assume that there exists a neighborhood
U of p in X and a continuous function p on U n D such that

p(p) = 0, 
p is plurisubharmonic on U n D.

Then for every r E ~0,1 ) and for every neighborhood V of p in X, there
exists a neighborhood W of p such that if u : D --+ D is a J-holomorphic
disc and u(O) E W, then u(z) E V for every z E C such that Izl  r.

Note that there is absolutely no global assumption made on D.

Proof. We first make the function p globally defined on D and
identical to -1 off a relatively compact subset of U by replacing p by
max(Kp, -1) for K &#x3E; 0 large enough.

According to Lemma 1.4, there exists a plurisubharmonic function A
defined near p, in X, such that A is finite and continuous except at p and

A(p) = 2013oo.

We then replace A by a plurisubharmonic function A* continuous on
D - {p}, bounded off any neighborhood of p, plurisubharmonic on D and
such that À# (q) -7 -oo as z -~ p.

Such a function A* is obtained as follows.
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If

If

If

If C is taken large enough (C &#x3E; 0), the above defines (on D) a global
plurisubharmonic function À# as desired.

Fix r E ~0,1 ) and the neighborhood U. Let uj : D - D be a sequence
of J-holomorphic discs and (~~) a sequence in C, with 1(j I  r. Assume

that - p. We have to show that - p.

Since - p, p o --~ 0. By the mean value property

For every N &#x3E; 0 there exists E &#x3E; 0 such that p o uj(z) &#x3E; -~ implies
À# o Uj  -N. Taking into account that ~# is bounded away from p it

follows from (2.1) that

From which it follows that À# o uj ((j ) - -oo and so uj ((j ) - p. D

This first localization is followed now by a more precise localization
that will use Lemma 2.1 as a first step.

DEFINITION. - We say that the boundary of D (as above) is strictly
J-pseudoconvex at p, if there exists a C2 strictly J-plurisubharmonic
function p defined near p in X such that B7 p i= 0 on (9D (near p), and
near p, D is defined by p  0.

We equip X with an arbitrary smooth Riemannian metric. We still
assume J to be of class C1.

LEMMA 2.2. - If the boundary of D is strictly J-pseudoconvex at

po, for any r E ~0,1) there exists 6 &#x3E; 0 and C &#x3E; 0 such that for every

J-holomorphic disc u : ~D ~ D with dist (u(O), po)  6 then

Proof. The proof is basically a repetition of the proof of Lemma
2.1 with the function À replaced below by the functions q ~ q - p12.



2412

Fix r  rl  1. Fix a neighborhood U of po on which D is defined by
a strictly plurisubharmonic function p, and diffeomorphic to an open set
in R~. On U we will also consider the Riemannian metric obtained by the
identification of Uo with this open set in R2n . The distance from p to q will
then be denoted somewhat abusively by p - q ( .

There is a neighborhood V C U of po, and 6 &#x3E; 0 (small enough)
such that for any p E Y, q ~ pp(q) = p(q) - Elq _ pl2 and the functions
q H ( q - p) 2 are J-plurisubharmonic on V. Also, for appropriate constants
A and B &#x3E; 0

By Lemma 2.1 (applied with ppo instead of p), if u : D - D be a
J-holomorphic map, and if is close enough to po, whenever

)z) x ri . Take p e 8D such that dist (u(0),8D) = dist (u (0), p) (so p E Y).
For r, by subharmonicity of lu(z) - pl2 there is a constant C such
that 

~

By the mean value property:

It gives

for some other constant C, as desired. D

2.b. A Schwarz-type Lemma-I and proof of Theorem 1.

Lemma 2.1 and 2.2 make possible to work locally if we are interested
in the distance of a point p of strict pseudoconvexity in the boundary of a
domain D, to points in D. Take a C2-chart in a neighborhood U of p such

that p = 0, U n D ) (0) C {Z = (zl, ..., zn) E en : (  1, Re zi  01.
Using dilations we can assume that U contains the closed unit ball in 
and that J is as close as desired to in C1- norm. For any J-disc u : D - D
with u(O) close to p, u(z) E U for Izl  2. So due to (1.5) and (2.2) we see
that
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We state the next Lemma so that, starting from above, it can be used

without (the obvious) rescaling (done in the proof).

LEMMA 2.3 (Schwarz-type Lemma-I). - Let J be of class C1 on the
closure of the unit ball in JR2n. Assume that there exists A &#x3E; 0 such that for

every J-holomorphic disc u : U- . ~ Z = (Zl, ..., zn ) E Cn : 
1, Re zl  01 such that u(0) is close enough to 0:

if 1/4. Then there exists C = C(A) &#x3E; 0 such that for every J-

holomorphic u : D U- with u(O) close enough to 0 one has

Proof. Of course, replacing the function u(z) by the function u(~~),
we can assume that u is instead defined on]}) and that (2.3) holds for ] z )  1.

Formula (1.2) applied to the coordinate function À = xl - Re z,
gives

Using the estimate (2.3) one gets

if  1, for a constant C1 depending only on J and A. The estimate (2.4)
follows from (2.6) and from the condition Re U1  0.

So, set f (z) = Re 

By Af - we denote the function equal to 0 f on D, and 0 elsewhere.
With C1 as above, set

From (2.6), we get So g  0 and 

The classical Schwarz Lemma for negative harmonic functions gives:
2~(0)~. Therefore (2.7) yields;
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The localization Lemma 2.1 and 2.2, and the above allow us to apply
Lemma 1.1 to the function X - Re zl in order to immediately get our
Theorem 1.

Note that there is still no global hypothesis on D. So D may very
well not be hyperbolic i.e. the Kobayashi-Royden ’distance’ may be only a
pseudo-distance in the interior. An easy example is obtained by the blow
up of a point. It has been pointed out at the end of l.c that in an almost
complex manifold, every point has a basis of hyperbolic neighborhoods.
Lemmas 1.3 and 1.5 show that the small balls (with respect to any given
Riemannian metric) are complete hyperbolic, and so are the intersections
of small balls with strictly pseudoconvex domains.

2.c. Proof of Corollary 1.

To get Corollary 1, hyperbolicity of the domain, in case D does not
contain complex lines, is the only point left.

It follows from the Brody reparametrization lemma. If there is a

sequence of points pj E D and unit (with respect to some metric) vector
V3 C TpX such that tends to 0, then there is a sequence of J-

holomorphic DR, -~ D such that = vj and Rj 2013~ oo.
After reparametrization we get a sequence : : ~R~ -~ D, still J-

holomorphic and such that sup

A subsequence converges to a non-constant map from C into D, which due
to the strict pseudoconvexity of the boundary of D must be a map from C
into D.

Corollary 1 is proved.

3. Estimate of a Calderon-Zygmund Integral
and Schwarz-type Lemma II.

Fix the following function 0(r) = &#x3E; 0. We have already
introduced the class C1,ø. Let us introduce more generally sub-Lipschitzian
classes Ck,o which are the spaces of functions or maps f E C~ that locally
satisfy (for some positive C). We also define the
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Banach space C’~e (~) as the space of complex valued functions on D that
satisfy:

with the left hand side defining the 0. will be denoted

simply by C~ .

LEMMA 3.1. - There exists a constant C such that for all complex-
valued functions f E and g E C1,/J(JR2) such that:

and for all

one has

Proof. We can assume g(0) &#x3E; 0. Set 6 = g(0) and split

where clearly

since 6 = g (o)  2 . In order to estimate we shall useI , / g z
the following cancellations (with the first integral in the sense of principal
value) :

Write f (z) = f (o) ~- R1 (z), and g(z) =~(0)+~+B~+Q2~). Due to the
condition of the Lemma 1 we have (with appropriate
definitions of the norms)

For we have that with
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For dealing with 9 , we shall simply use that if
.q

with for some universal constant

C. We will apply it with and

So, we can write that

with Write (3.3) as

where ~ I

(1) From I and we get that

Using cancellation properties of the Calderon-Zygmund operator and
the claim we have proved one gets

Lemma 3.2 (in which we focus on the behavior near the puncture)
will be a generalization of the standard Schwarz Lemma which gives the
following estimate for a holomorphic map g from the unit disc into the
punctured unit disc:

LEMMA 3.2 (Schwarz-type Lemma-II). - For A and B &#x3E; 0 there

exists C &#x3E; 0 such that for every map g from the unit disc into the punctured
disc Di /2 - 101 satisfying
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for all z E D, one has

a9

Proof. Extend 9 to C (identified with R2 ), by setting it to be
equal to 0 outside the unit disc. Set

We have 2B, and on the unit disc,

So h = get is holomorphic. The holomorphic function h never vanishes,
and it takes values in the disc of radius So, the Schwarz Lemma for
holomorphic function gives us a bound:

for some constant Ci depending only on B. We have

Note that we have a bound for so h(O) and g(O) are comparable
(bounded ratios), and we can use the above estimate for B7h(O). All what
is left is to have a correct estimate of Vw(0) (by a multiple of log 

_ 
89

The z derivative of w is which has modulus ::( B. The needed

estimate of which is given by the integral (defined as a principal
value) :

is given by Lemma 3.1, applied to the function gl : z f--&#x3E; g( ~ z) instead of g,
with k  max (1, and f = for an appropriate constant c. 0

4. Distance to a complex hypersurface.

Proof of (2.A). - Due to hyperbolicity the question can be localized.
Therefore we will suppose that X is a neighborhood of 0 in JR.2n and that
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M == {Z = ( zl , ... , zn ) 0}, where zj = Xj + iyj are complex
coordinates in (Cn, unrelated to the almost complex structure J.
Since M is of class C3, in the new coordinates we can keep J of class C2.
Without loss of generality we can assume that J(O) = Jst, the standard
complex structure on We shall write Z = (ZI, - - -, zn) - (Z’; zn) with
Z’ - (zl , ... , Zn-1). Because zn = 0 is a J-complex hypersurface we already
have the almost complex structure J given along zn = 0 by

where a is a (2n - 2) x 2 matrix while /3 is a 2 x 2 matrix. After shrinking
the neighborhood of 0 if needed, consider the C2 change of variables given
by

(using obvious identification of Jae2n and TJae2n). In the new coordinate
system we will have

where ,

From now on we will work with coordinates in which (4.1) holds, with
J now of class C 1.

Let u : D - J) be a J-holomorphic map. Recall the condition
for J-holomorphicity in the form (1.7)

with where az and tz refer to the
standard complex structures on D and C’~, i.e. in 1R2n coordinates

Due to (4.1)

The Cauchy-Riemann equation (4.2) for J-holomorphic maps u : D -
(JR2n, J) gives for the component u,:
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with ~(~i,...,~-.i,0) = 0. For some constant C we therefore get an

inequality

On the right-hand side I 8;Zk I will be bounded by the C1,cp regularity of
J-holomorphic maps, the factor )un ) is the important feature.

Since the problem is purely local and since (after the changes of
variables), the almost complex structure J is of class C1, we can use
shrinking and rescaling in order to assume that (X, J) = (HyB J) with D-
the unit polydisc in equipped with an almost complex structure
J sufficiently close to the standard structure in C1 topology. Then, by
Remark 3 in l.d, J-holomorphic maps from D into J) have uniformly
bounded C 1 e norm on Di/2.

From some (other) constant C we therefore get:

and

Only now we are going to use the hypothesis that the map u should avoid
the hyperplane M = ~z~ - 01, i.e. 0. We apply Lemma 3.2 to the
restriction of 2 to DI/2 (i.e. to g(z) = 2un( 2 )), to get for some (other)
constant C: 

_

By Lemma 1.1, if p = (pl, ..., pn) E Jl))n and Pn =f 0, the Kobayashi distance
M) from p to M, relative to IDn B M and J is infinite.

This achieves the proof of (2.A).

Proof of (2.B). - Since M is not J complex at p and is of class C3,
we find a C3 change of coordinates so that: p = 0, J(O) = Jst, M coincides
with }R2 x CCn-2 on the ball of radius 6, and that this ball is included in

Dl. Note that J stays of class C2. Consider the following family of Jst
holomorphic discs defined 1, 1:

This family has the following properties.
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for some compact not intersecting M.

for

intersects M transversally for t  0.

Using dilations, replacing J(z) by J(EZ), we can assume that J
is as close as we need to Jst. Note that these dilations leave M =
}R2 x C,-2 invariant, but that we do not rescale the family (0t). Applying
Proposition 1.2 we then get a family of J holomorphic discs 1/Jt with the
following properties:

(a’ ) for some compact K not intersecting M.

(b’) n M = 0 for t &#x3E; 60, for some 60 close to 0.

Clearly any point p’ = ~~o (~o) E M is at finite distance from points
in the complement of M. Indeed, for t &#x3E; 60 the distance from to

1/Jt in D B M stays bounded as t - 60, but 1/Jt ( 4 ) tends to a point in the
complement of M. 0

5. Hyperbolic distance to a real hypersurface.

5.a Construction of the family of discs.

From Proposition l.l’ we will deduce:

PROPOSITION 5.1. - Let J be a almost complex structure
defined near 0 in Let M be a C2 hypersurface in (IR2n, J) defined by
p = 0, 0 E M, 0. If there is a complex tangent vector Y e TM(O)
such that &#x3E; 0 then there is a family of J-holomorphic
embedded discs ut : z --~ E R2n (z E D) that depend continuously on
t E ~0,1~ such that

Proof. - Let 0 : DR - ((C2n, J) be some J- holomorphic disk with
Then 0 E C3,a and after a C3,a change of
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coordinates we can assume that o : z ~ (Re z, Im z, 0,..., 0) ((z, 0,..., 0),
when using complex coordinates) is a J-holomorphic disc, Y = (1, 0, ... , 0),
J(O)Y = (o, l, 0, ... , 0) and J = Jst along R 2 x ~0~. Moreover we can choose
coordinates so that the vector (o, 0,1, 0, ... , 0) ( E 1R 2n) is a normal vector
to M at 0 with Vp (0) ~(o, 0, l, 0, ... , 0) ] = 1. In the new coordinates J is

still of class 

Since 0 is a J-holomorphic disc 0,,d’p. By differentiation
ddc (p o 0) - Therefore the Taylor expansion of p 0 ’Ø at 0 is

with b &#x3E; 0. Using complex Cn coordinates in the right-hand side, consider
(z, -az2, 0, ... , 0) . It need not be a J-holomorphic map. But since

J = Jst along C x ~0~ and since p is holomorphic for the standard structure,
we have O(lzI2). By Proposition 1. l’ there exists a germ of J-

holomorphic disc uo such that, still using complex coordinates,

It is immediate to check that

Then one has just to restrict uo to a small disc to be identified with D. We
then have = 0 but p o uo (z) &#x3E; 0 

The construction of the discs ut is exactly similar replacing M = ( p =
01 by positive level sets of p. 0

5.b. Proof of Theorem 3.

After change of variables p = 0, we are in the situation of Proposi-
tion 5.1. Then, the sequence of points tends to 0, their respective
Kobayashi distance to ul~~ (1/2) in the complement of M stay bounded,
but the points ul~n ( 1/2) stay in a compact subset of the complement of
M. This establishes Theorem 3.

Proof of a stronger version of (2.B). - We now assume that J is of
class C2,, , and we wish to show that in (2.B) one can take p = p’. Let M be
a real codimension 2 submanifold of class C2 in (IR2n, J), 0 E M. Assume
that Y E TM(O) but J(0)Y g Consider a hypersurface M defined
by p = 0 containing M such that J(O)Y is tangent to M at 0. It is an easy
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exercise to show that by adding a quadratic term to p if needed (therefore
not changing the tangent space) but keeping p = 0 on M we can get

Observe that if g and h are functions defined near 0, with h(() = 0(1(12)
and ~I (o) _ then + h) (0) = dd Jg(o) -f- So it is enough to
take h = 0 on M but ddch(Y, 0, (dc - 

This being done, 0 is at finite distance from points in the complement
of M, for the Kobayashi distance relative to the complement of M, and
thus a fortiori for the Kobayashi distance relative to the complement of M.

Remark. - Any C2 submanifold M of codimension &#x3E; 2 is a sub-

manifold of a submanifold of codimension 2, whose tangent space (at any
chosen point of M) is not J-complex. So, as above, points of M are at
finite distance from points in the complement of M. But a more direct
argument can be given, simply based on the fact that, by simple count of
dimensions, J-holomorphic discs generically miss M, and C2 regularity of
M is not needed.

6. An example.

6.a. d J and Levi foliation.

If M is a real hypersurface defined by p = 0, with 0, a tangent
vector Y to X at a point p E M is a complex tangent vector to M if and
only if dp(Y) = 0.

The question of foliation of M by J-complex hypersurfaces is much
the same as in the complex setting. The question is to know whether when
Y and T are complex tangential vector fields to M, the Lie bracket [Y, T]
is also complex tangential i.e. if 0. By the definition of d,

Thus the

Frobenius condition = 0 is equivalent to = 0.

Remark. - It is well known that for complex manifolds, if a hyper-
surface is not Levi flat, its complement is never complete hyperbolic.

There is a very simple and fundamental difference between the

complex case and the almost complex case. Consider the two conditions
on a hypersurface
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(1) For every complex tangent vector field Y, [Y, JY] is complex tangent
(i.e. ddc p(Y, JY) = 0).

(2) For every complex tangent vector fields Y and T, [Y, T] is complex
tangent.

For almost complex manifolds of real dimension &#x3E; 4, (1) does not
imply (2) (example below). But for complex manifolds it does. The easiest
way to see it is by considering the Levi form as a hermitian form on the
complex tangent space, or (just a different writing) by using ddc = 
Here we sketch a direct argument in terms of the Lie brackets. If (1) holds
[Y + JT, JY - T] is complex tangent. But [Y + JT, JY - T] = [Y, JY] +

modulo a

complex tangent vector field, as follows from the vanishing of the Nijenhuis
tensor (for complex manifolds) : I
Hence [Y, T] is complex tangent.

For almost complex manifolds of real dimension 4, (1) and (2) are
obviously equivalent since if Y :~ 0, Y and JY generate the complex tangent
space.

6.b.

In an almost complex manifold of real dimension 4, the complement
of a hypersurface is (locally) complete hyperbolic if and only if that

hypersurface is foliated by J-complex curves. We now present the following
example on II~6, (in which it is to be noticed that we do not need to restrict
to bounded regions). We use coordinates (xl , yl , x2, y2, ~3~3)’ On we

define the vector fields

and we define the almost complex structure J by setting:

Note that the functions zl = xi + iyl and z2 = X2 + iy2 are J-holomorphic
but that z3 = X3 + iy3 is not. Finally we simply consider the hypersurface
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M f Y3 - 01. At each point the tangent space to M is generated by aa 1 &#x3E;
’o Li, L2 and aa3 . The complex tangent space (T M n JT M) is therefore
spanned by a , a , L1, L2. Since a , L1] ] = a is not a complex tangentXl YI Xl ax3

vector, M is not foliated by J-complex hypersurfaces. However:

PROPOSITION 6.1. - For any point p E R 6B M the Kobayashi
pseudo-distance from p to M is infinite.

It therefore follows from Theorem 2 that for any complex tangential
vector field Y on M, [Y, JY] E TMnJTM. It can easily be checked directly,
but we won’t need it.

Proof. We will need

We now write in detail the condition in order that a map u : D - (~6, J)
be J-holomorphic. In D we use coordinate z = x + iy, and we write

The condition for J-holomorphicity is

(6.1) and (6.2) merely say that Zl = Xl + iY, and Z2 = X2 + iY2 are
holomorphic functions of z = x + iy.
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We now compute 

The conclusion of this computation is that is an antiholomorphic
function of z. Hence Z3 can be written as the sum of two functions

Z3 = h1 + h2 with hl and h2 both holomorphic.

Consequently if u is a J-holomorphic map from D into (JR6, J), Y3
is a harmonic function of (x, y). If h is a positive harmonic function on D
then we have 2h(0). By applying it to Y3, or -Y3, we see that
if u : ~D -~ is a J-holomorphic map IV’Y3(0)I ~ 2IY3(0)1 (remember
M fY3 Ol)- Since Jo1 4f- = +oo, Proposition 6.1 follows.

Appendices.

Al. Proof of Proposition 1.1
under the assumption of regularity of J.

Here we simply indicate how to adapt the proof given in section I.e,
by using the trick already used in [N-W]. We had to solve the equation

0. Let B be the closed unit ball in 

In order to avoid any differentiation of J in the first step, we start by
fixing a function cp E B. and we solve instead for u the linear equation:

with prescribed x-derivatives up to order at 0. It therefore leads to

introducing, in replacement of lll j the operator I&#x3E; 1 :

which is simply a linear operator. If J is close enough to Jest in 

topology (independently on one can invert this operator. In order to
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follow the proof of section I.e we need to be more precise, we should fix
R &#x3E; 0 such that for any (q, W) in the closed ball BR of radius R in
R2n x is in the open unit ball of R2n) . As in section 1.e,

Then, exactly as in the proof in section I.e, to each (p,V) in a

neighborhood of 0, independent of p e B, we associate (q, W ) e BR such
that = has the appropriate k-jet at 0. Since the function

an ordinary holomorphic function, the function u = 
satisfies (a.l). Set If we had p = then equation (a.1)
would give so u:,v would be J-holomorphic
and would solve the problem. So we simply need to prove that X has a fixed
point in B, provided that (p, V) is close enough to 0.

Note that if J = J, QJ = 0, is the identity, (p, V) = (q, W) and
x(cp) = u’V = hp,v (of course independent of cp).

Since TCG gains one derivative we have the following. First, if ~J is

close enough to Jst in topology, and (p, V) is close enough to 0,
c B. Second, X has a strong continuity property: it maps continuously

B equipped with the Ck-l,a topology into B equipped with the 
topology. At any rate, X defines a continuous map from ,~i equipped with
the into itself. Since ,l3 is a convex compact set in 
The Schauder Fixed Point Theorem implies that X has a fixed point, as
desired.

A2. Deformation of (big) J-holomorphic discs.

The following Theorem shows the upper semi-continuity of the

Kobayashi Royden pseudo-norm for structures of class C1,a (a &#x3E; 0). In
[I-P-R] a simple example is given to show that this upper semi-continuity
fails to be true for structures of class Theorem Al was proved by Krug-
likov [K] at least for structures that are smooth enough. Our proof clarifies
the smoothness assumption and unlike [K] it does not require a careful and
difficult reading of [N-W].

THEOREM A 1. - Let (X, J) be an almost complex manifold with
J of Holder class &#x3E; 0). Let u be a J-holomorphic map from a
neighborhood into X. There exists a neighborhood V of (u(o), !2-u (0))
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in the tangent bundle T X such that for every (q, Z) E V, there exists a
J-holomorphic map v : ~D -~ X ulith v (0) = q and ~2v- (0) = Z.

Proof. Let r &#x3E; 1 be such that u is defined on Dr. The map u is
C2’a . We can assume that u is an imbedding. Otherwise we add dimensions.
We consider the map z - (z, u(z)) from Dr into Jae2 x X, equipped
with the product almost complex structure J,2t x J. After getting a map v
from DR into R 2 x X, one simply takes the projection on the X factor.

By simple topological arguments, a neighborhood of u(Dr) can be
identified with an open set in C’, and one can find (n - 1) smooth
vector fields Yi , ... , Yn-i defined on a neighborhood of such that

for every z E Dr the vectors 2--(z),Yl(z),..., are J(u (z)) -linearly
independent.

It allows to define the C2,a change of variables

defined for  r and )zj ) small if j &#x3E; 2.
In that change of variables the structure J is transformed into another

almost complex structure still of class C1,a, that coincides with the standard
one along C x {0} C C’, The map u is replaced by the map z ~ (z, 0,..., 0).
So Theorem Al reduces to the following Lemma:

LEMMA A 1. - Let J be an almost complex structure on R 2n (cn,
of Hblder class C’,’, that coincides with the standard complex structure
on C x {0}. Let U be a neighborhood of 9 x f 01. For any (q, t) E Cn x CCn
close enough to (o, 0), there exists a J-holomorphic map v : D - U such
that v(O) = q and 1 (o) _ (l, 0, ... , 0) + t.

Proof of Lemma Al. - We will work in a neighborhood of D x f 01,
on which J ~ Jst and therefore on which as previously the condition for
J-holomorphicity can be written:

and we have Q j(z, 0,...,0) = 0.

Assume J of class C1,a. Set



2428

Define the 

Since F is J-holomorphic, ~(o) = 0. We want to show that the derivative
of the map D at f = 0 is onto. Taking into account that az - 0 and that
Qj(F) = 0, one gets:

where is a (2n x 2n) matrix with entry that are Ca in z and R-linear
in f.

Denote the derivative at 0 by Dlfo. With complex instead of real
notations, we can write:

where now B1 and B2 are (n x n) matrices with complex coefficients of
class Co.

The surjectivity of DWO follows therefore from the following theorem:

THEOREM A2. - If B1 and B2 are (n x n) complex matrices with
coefficients in C’ (5), for every g E there exists f E So such that

We postpone the proof of Theorem A2, and we now finish the proof
of Lemma Al.

We shall apply the following elementary result on maps from a Banach
space E to a Banach space F. Let r be a C1 map from BE (p, R), the ball
of radius R in E with center at a point p, into F. Assume that for some
C &#x3E; 0, for all q E BE (p, R) the equation D]Fq (X) = y can be solved for all
~ E F (By the open mapping theorem, the existence
of such a constant C &#x3E; 0, for R small enough, is guaranteed as soon as
Dro is surjective). Assume moreover that for all q and q’ E BE (p, R),

2C . Then for every y E F, r(P)11 (  ~,
there exists x E BE (p, R) such that r(x) - y. The proof is standard, by
successive approximations.

For (q, t) in C’ x C’, close to (0, 0), as in the statement of the Lemma,
and T = ( 1, 0, ~ ~ ~ , 0 ) -I- t, set
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Then, F# close to F in C1,a topology with = 0. Define

Since = 0, maps Eo into It is a small C’ perturba-
tion of Q and hence there exists f (close to 0) such that Q# ( f ) - 0.

Define v(z) = F#(z) + f (z), v has the same first jet at 0 as F#. So

v (0), 2-- (0)) (q; ( 1 , ... , 0) + t) as desired, and 4D (f = 0 means that v
is J-holomorphic. To complete the proof of Theorem Al, it only remains
to prove Theorem A2.

Before starting the proof of Theorem A2, we need 2 Lemmas.

LEMMA A2. - Let Al and A2 be continuous matrices with complex
coefficients defined on D - 101 and bounded (no continuity assumed at 0).
For every continuous map g : D - C’ there exists a continuous map
f : D - C’ such that (in the sense of distribution)

(From the proof: We can add f(0) = 0).
All computations are to be thought in On most lines however

we keep complex (C~) notations that allow a simpler writing of 8 and of
its solution by mean of the Cauchy Kernel.

Proof of Lemma A2. - Define the operator P:

on C(D) consider the operator:

C(D) into itself. Q = K a compact operator. Hence the set C(D)
such that g = P(f) for some f is a closed subspace (R subspace not C
subspace) - of finite codimension.

We need to show that it is dense.

Let p be a JR2n-valued measure on D such that for for any cp E

C’ (R2 , such that w(0) = 0 (the condition p(0) = 0 to make sure
that Pcp is continuous at 0) :
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We want to prove that p = 0.

By integration by 0 gives P*p = 0 on R2 - {0}
where P* is an operator of the type:

The computation is elementary but needs to be done by separating real

(JRn valued) and imaginary parts of p.
Since p has compact support we first show that P*~c = 0 on JR2 B fol

implies p = 0 on JR2 B 101. Note that  P* p = 0 on R2 - fol immediately
shows that p E Lpc for any p  2 since p = z * (-cl + C2 + v),
with v a distribution carried by {0}. And using the same formulas on sees
that p is a given by a continuous function. Then = 0 gives a simple
pointwise inequality in R2 - fol

By well know uniqueness results it follows that p = 0 on Jae2 B ~0~ .
Consequently, if p annihilates the continuous functions which can be

written as P(f) for f E Ca, p must be a 2n-tuple of point masses at 0.
Take f = za, a E C’, one sees that necessarily IL = 0. 0

From now on, the notations are the notations in the statement of

Theorem A2 (for B1, B2 and equation (*)).

LEMMA A3. - For every Ca map g : D 2013~ C- with g(O) = 0, there
exists a C1,o: map fo defined near 0 in C such that fo(0) = 0, V fo(0) = 0
and solving (*) near 0.

For r small enough, let Dr be the disc of radius r. Let 17o (r) be the
space of Ca maps g from D into C’, with g(O) = 0. To any g E 
associate a Ca extension ~ with compact support in D2r given by a linear
operator and such that

Now, define P by

Consider the R-linear map 0 from Fo (r) into itself defined by:
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with: a and b E Cn are determined by the condition:

Due to the choice of b, 0 indeed maps Fo (r) into itself. It is again a compact
perturbation of the identity. But 6 is clearly one to one if r is small enough.
Indeed, for r small enough, one has

Therefore 0 is onto and so one can take * z - (za + b). On Dr fo
solves (*), and fo is of class Cl,0152. We have fo = 0 and due to the choice of
a, B1 fo(O) = 0, as desired.

Proof of Theorem A2. - Extend fo obtained in Lemma A3 , and find
f by setting f = fo + fl. We need to solve Q9 + Bl (z) + (z) =
gl (z) with gl _ 0 near 0. It is better to do it on a neighborhood oaf D
after extending the data to a neighborhood of D. Applying Lemma A2 to
a larger disc, take z2h(z), with h obtained by solving

Then f = fo + fi solves (*) and satisfies

Since f solves (*), f is of class C1,a, by elementary regularity of 8. D

A3. Other definition of the Kobayashi distance.

The usual definition of Kobayashi for the Kobayashi distance can also
be given based on the following lemma due to Debalme [De-1]

PROPOSITION Al. - Let J be an almost complex structure of class
C1,a in the neighborhood of the origin in Then for any pair p, q of

points sufficiently close to the origin there exists a J-holomorphic disc

passing through both of them.

Proof. - We use again the notations of the proof of Proposition 1.1.
But we replace the functions hp,v in the proof of Proposition 1.1 by the
functions hp,q defined as follows.
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Consider the mapping from A to 

where and denote We remark that

. hp,q being holomorphic, is J-holomorphic.

. uo,p,q = hp,q . So it verifies uo,p,q 0) = p and 2Gp~p~q ~ 2 ~ = q.
Consider the mapping from

~ is C1 and from our last remark W(0, ., .) = So by the implicit
function theorem, if 6 is sufficiently small , there exists U and U’ neighbor-
hoods of zero in U --~ U’ is a diffeomorphism.
Let po and qo two points sufficiently near of zero (i.e. (PéO , q~ ) e ~7 ). There
exists (p, q) such that po and Eu,,p,q 2 = qo . We have thus
made a J-holomorphic curve which is going through po and qo. 0

Both definitions of the Kobayashi distance are equivalent, but we
worked only with the first one and therefore we will not discuss this matter
any further.

A4. Classical Properties of the Cauchy-Green Operator.

For a complex valued function g or a map g with values in a complex
vector space, continuous on D, and z E C, we set:

We have used the following classical properties of TCG :

PROPOSITION A2. - For g as above:

(a) is the distribution defined by the function equal to g
on D, and to 0 on the complement of D;

(b) Ck,- (N), ~CN,0~1, then the restriction of TCG9
to 5 belongs to 

Proof. - (a) does not need discussion. (b) follows from (a). The
regularity of TCG (g) off the unit circle results from very basic
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properties of singular integrals (known as Schauder estimates). See e.g. [M]
Chapter II, Theorem 1.6 . The regularity up to the boundary in each of the
regions Ilzl  1 } 1 } is an instance of the so-called transmission
property in the theory of partial differential equations (Definition 18.2.13
in [H,5]). Since it may be harder to find a satisfactory reference for Ck+1,a
regularity, we provide a justification.

Extend g to a function gi E ([St] Chapter VI). Set h =
gl * = gl , and h E 

Write h (e’o) - + h- (e’o), where h+ is holomorphic on
 1 ~, and Ck+1,a 1 ~; and h- is holomorphic on Ilzl &#x3E; 1 ~, and

Ck+1,a Simply take h+ and h- to be the Cauchy transform
of the function eie H h(eiB). (Plemelj’s formula, and again Schauder’s
estimates for singular integrals.)

Consider the function h defined by:

Then h satisfies

on R . There is no jump term on the unit circle. So h - 
Since h is by construction Ck+l,, smooth on D, so is TCG9- 0
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