## Annales de l'institut Fourier

## PaUl Jolissaint

# Central sequences in the factor associated with Thompson's group $F$ 

Annales de l'institut Fourier, tome 48, no 4 (1998), p. 1093-1106
[http://www.numdam.org/item?id=AIF_1998_48_4_1093_0](http://www.numdam.org/item?id=AIF_1998_48_4_1093_0)
© Annales de l'institut Fourier, 1998, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# CENTRAL SEQUENCES IN THE FACTOR ASSOCIATED WITH THOMPSON'S GROUP $F$ 

by Paul JOLISSAINT

## 1. Introduction.

The group $F$ is the following subgroup of the group of homeomorphisms of the interval $[0,1]$ : it is the set of piecewise linear homeomorphisms of $[0,1]$ that are differentiable except at finitely many dyadic rational numbers and such that on intervals of differentiability the derivatives are integral powers of 2 . It was discovered by R. Thompson in 1965 and rediscovered later by homotopy theorists. Its history is sketched in [6] where many results that we need here are proved. To begin with, it is known that $F$ admits the following presentation

$$
F=\left\langle x_{0}, x_{1}, \ldots \mid x_{i}^{-1} x_{n} x_{i}=x_{n+1} 0 \leq i<n\right\rangle .
$$

Since $x_{n}=x_{0}^{-(n-1)} x_{1} x_{0}^{n-1}$ for $n \geq 2, F$ is generated by $x_{0}$ and $x_{1}$, and in the geometric realization above, the corresponding homeomorphisms $x_{n}$ are defined by

$$
x_{n}(t)= \begin{cases}t & \text { if } 0 \leq t \leq 1-2^{-n} \\ \frac{t}{2}+\frac{1}{2}\left(1-2^{-n}\right) & \text { if } 1-2^{-n} \leq t \leq 1-2^{-n-1} \\ t-2^{-n-2} & \text { if } 1-2^{-n-1} \leq t \leq 1-2^{-n-2} \\ 2 t-1 & \text { if } 1-2^{-n-2} \leq t \leq 1\end{cases}
$$

Geoghegan discovered the interest in knowing whether or not F is amenable, and he conjectured in 1979 [11] that

[^0](1) $F$ does not contain a non-Abelian free subgroup;
(2) $F$ is not amenable.

The first conjecture was solved with an affirmative answer by Brin and Squier [5], but it is still unknown whether or not $F$ is amenable. However, we remarked in [12] that $F$ is inner amenable: this means that there exists an inner invariant mean on the algebra $l^{\infty}(F-\{e\})$, i.e. a mean $m$ which is invariant under the action

$$
(x \cdot f)(y)=f\left(x^{-1} y x\right)
$$

Indeed, if $\omega$ is a free ultrafilter on $\mathbb{N}$, then the linear functional $m$ on $l^{\infty}(F-\{e\})$ given by

$$
m(f)=\lim _{n \rightarrow \omega} \frac{1}{n} \sum_{k=n+1}^{2 n} f\left(x_{k}\right)
$$

is an invariant mean. (Simply use the relations: $x_{j}^{-1} x_{n} x_{j}=x_{n+1}$ for all $n \geq 1$ and $j=0$ and 1.)

Inner amenability was defined by E.G. Effros in [10] where he observed that if $G$ is an icc group (i.e. all non trivial conjugacy classes of $G$ are infinite) and if the factor $L(G)$ has property gamma of Murray and von Neumann (see below), then $G$ is inner amenable.

Here we prove that the factors associated with $F$ and with some of its subgroups have a stronger property: they are McDuff factors, which means that each such factor $M$ is isomorphic to its tensor product $M \otimes R$ with the hyperfinite type $\mathrm{II}_{1}$ factor $R$. It turns out that the latter property is equivalent to the existence of pairs of non commuting non trivial central sequences in $M$ (see [13]), hence the title of our article. This is a weak form of amenability because it follows from Corollary 7.2 of [8] that for every countable amenable icc group $G$, the associated factor $L(G)$ is isomorphic to $R$. Before stating our main results, let us present some definitions:

In [3], D. Bisch extended that property to pairs $1 \in N \subset M$, where $N$ is a type $\mathrm{II}_{1}$ subfactor of $M$; so let us say that the pair $N \subset M$ has the relative McDuff property if there exists an isomorphism $\Phi$ of $M$ onto $M \otimes R$ such that $\Phi(N)=N \otimes R$.

Now let $F^{\prime}$ denote the commutator subgroup of $F$; it is known that $F^{\prime}$ is a simple group and that it consists in all elements of $F$ that are trivial in neighbourhoods of 0 and 1 (notice that each element $x$ in $F$ fixes 0 and 1): see [6], Theorem 4.1. Let us also introduce the intermediate subgroup
$D$ consisting in all elements of $F$ which are trivial on a neighbourhood of 1:

$$
D=\{x \in F ; \exists \varepsilon>0 \text { such that } x(t)=t \forall t \in[1-\varepsilon ; 1]\}
$$

Then $F^{\prime}$ and $D$ are icc groups, so that the von Neumann algebras $L\left(F^{\prime}\right)$ and $L(D)$ are type $I_{1}$ factors. Notice that $F=D \rtimes_{\alpha} \mathbb{Z}$, where the action $\alpha$ is defined by: $\alpha^{n}(x)=x_{0}^{n} x x_{0}^{-n} \forall x \in F$. This will be used in the proof of:

THEOREM A. - The pairs of factors $L\left(F^{\prime}\right) \subset L(D)$ and $L(D) \subset$ $L(F)$ have the relative McDuff property.

Notice that even if $F$ turned to be amenable, the above theorem is still of interest, because D. Bisch gave in [4] examples of pairs $N \subset M$ of hyperfinite $\mathrm{II}_{1}$ factors, with finite index, which do not have the relative McDuff property.

In [15], S. Popa and M. Takesaki proved that the unitary group $U(M)$ of a type $\mathrm{II}_{1} \mathrm{McDuff}$ factor $M$ is contractible with respect to the topology induced by the norm $\|\cdot\|_{2}$. Thus we obtain more precisely:

Theorem B. - Let $N \subset M$ be a pair which has the relative McDuff property. Then there exists a continuous map $\alpha:[0, \infty[\times U(M) \longrightarrow$ $U(M)$ with the following properties:
(1) $\alpha_{t}(U(N)) \subset U(N) \quad \forall t \geq 0$;
(2) $\alpha_{0}(u)=u$ and $\lim _{t \rightarrow \infty} \alpha_{t}(u)=1, \forall u \in U(M)$;
(3) each $\alpha_{t}$ is an injective endomorphism of $U(M)$;
(4) $\alpha_{s} \circ \alpha_{t}=\alpha_{s+t}, \forall s, t \geq 0$;
(5) $\left\|\alpha_{t}(u)-\alpha_{t}(v)\right\|_{2}=e^{-\frac{t}{2}}\|u-v\|_{2}, \forall t \geq 0, \forall u, v \in U(M)$.

Corollary C. - The unitary groups of the pairs of factors $L\left(F^{\prime}\right) \subset L(D)$ and $L(D) \subset L(F)$ have the contractibility properties of Theorem B.

Theorem B is a particular case of Theorem 1 of [15]: the latter states that if $M$ is a type $\mathrm{II}_{1}$ factor such that the tensor product $M \otimes B$ of $M$ with the type $\mathrm{I}_{\infty}$ factor $B$ admits a one parameter group $\left(\theta_{s}\right)_{s \in \mathbb{R}}$ scaling the trace of $M \otimes B$, i.e. $\operatorname{Tr} \circ \theta_{s}=e^{-s} \operatorname{Tr}$ for every $s \in \mathbb{R}$, then there exists a map $\alpha$ having properties (2)-(5) above. The proof uses the structure theorem for factors of type III and Connes-Takesaki duality theorem. However, if
$M$ is a McDuff factor, the one parameter group $\left(\theta_{s}\right)_{s \in \mathbb{R}}$ comes from a one parameter group $\left(\sigma_{s}\right)_{s \in \mathbb{R}}$ on the hyperfinite factor of type $\mathrm{II}_{\infty}$, and it seems interesting to give a proof in this special case avoiding type III factors techniques. In order to do that, we use the realization of the hyperfinite factor of type $\mathrm{II}_{\infty}$ as the crossed product $L^{\infty}\left(\mathbb{R}^{2}\right) \rtimes_{\alpha} S L(2, \mathbb{Z})$ given by P.-L. Aubert in [1]. This allows us to get an explicit description of the one parameter group $\left(\sigma_{s}\right)_{s \in \mathbb{R}}$.

Notations. - Let $M$ be a type $\mathrm{II}_{1}$ factor; we denote by tr its normal, normalized, faithful trace and by $\|a\|_{2}=\operatorname{tr}\left(a^{*} a\right)^{\frac{1}{2}}$ the associated Hilbertian norm. Let $\omega$ be a free ultrafilter on $\mathbb{N}$. Then

$$
I_{\omega}=\left\{\left(a_{n}\right)_{n \geq 1} \in l^{\infty}(\mathbb{N}, M) ; \lim _{n \rightarrow \omega}\left\|a_{n}\right\|_{2}=0\right\}
$$

is a closed two-sided ideal of the von Neumann algebra $l^{\infty}(\mathbb{N}, M)$ and the corresponding quotient algebra is denoted by $M^{\omega}$ (cf. [7], [8], [3], [13]). We will write $\left[\left(a_{n}\right)\right]=\left(a_{n}\right)+I_{\omega}$ for the equivalence class of $\left(a_{n}\right)$ in $M^{\omega}$, and we recall that $M$ embeds naturally into $M^{\omega}$, where the image of $a \in M$ is the class of the constant sequence $a_{n}=a, \forall n \geq 1$.

A sequence $\left(a_{n}\right) \in l^{\infty}(\mathbb{N}, M)$ is a central sequence if

$$
\lim _{n \rightarrow \infty}\left\|\left[a, a_{n}\right]\right\|_{2}=0
$$

for every $a \in M$, where $[a, b]=a b-b a$; two central sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are equivalent if

$$
\lim _{n \rightarrow \infty}\left\|a_{n}-b_{n}\right\|_{2}=0
$$

finally, a central sequence is trivial if it is equivalent to a scalar sequence, and a factor $M$ has property gamma if it admits a non trivial central sequence.

Let now $G$ be an icc (countable) group; let $\lambda$ denote the left regular representation of $G$ on $l^{2}(G)$

$$
(\lambda(x) \xi)(y)=\xi\left(x^{-1} y\right)
$$

for all $x, y \in G$ and $\xi \in l^{2}(G)$. The bicommutant $\lambda(G)^{\prime \prime}$ in the algebra of all linear, bounded operators on $l^{2}(G)$ is then a type $\mathrm{II}_{1}$ factor denoted by $L(G)$, whose trace is

$$
\operatorname{tr}(a)=\left\langle a \delta_{e}, \delta_{e}\right\rangle
$$

where $\delta_{e}$ is the characteristic function of $\{e\}$. Recall finally that if $H$ is a subgroup of $G$, then $L(H)$ embeds into $L(G)$ in a natural way.

## 2. Relative McDuff property.

Let $M$ be a type $\mathrm{II}_{1}$ factor with separable predual and let $1 \in N$ be a subfactor of $M$. Theorem 3.1 of [3] states that the following properties are equivalent:
(1) there exists an isomorphism $\Phi$ of $M$ onto $M \otimes R$ such that $\Phi(N)=N \otimes R ;$
(2) the algebra $M^{\prime} \cap N^{\omega}$ is noncommutative;
(3) for all $a_{1}, \ldots, a_{n} \in M$, for every $\varepsilon>0$, there exist a type $I_{2}$ subfactor $B$ of $N$, with the same unit, and a system of matrix units $\left(e_{i j}\right)_{1 \leq i, j \leq 2}$ of $B$ such that $\left\|\left[a_{k}, e_{i j}\right]\right\|_{2}<\varepsilon$ for all $k=1, \ldots, n$ and all $i, j=1,2$.

We point out that in condition (2) above, $M^{\prime} \cap N^{\omega}$ is the subalgebra of all $\left[\left(a_{n}\right)_{n \geq 1}\right] \in M^{\omega}$ such that $a_{n} \in N \forall n$ and $\lim _{n \in \omega}\left\|\left[a_{n}, a\right]\right\|_{2}=0 \forall a \in M$. Let us say that the pair $N \subset M$ has the relative McDuff property if it satisfies these conditions. (See also [13].)

The aim of this section is to prove:
Theorem 2.1. - The subgroups $F^{\prime}$ and $D$ of $F$ are icc groups, and the pairs of $\mathrm{II}_{1}$ factors $L\left(F^{\prime}\right) \subset L(D)$ and $L(D) \subset L(F)$ have both the relative McDuff property.

We are going to prove Theorem 2.1 into two steps, according to its statement.

The next lemma is Lemma 4.2 of [6], and we restate it for the convenience of the reader:

Lemma 2.2. - If $0=a_{0}<a_{1}<\ldots<a_{n}=1$ and $0=b_{0}<b_{1}<$ $\ldots<b_{n}=1$ are partitions of $[0,1]$ consisting of dyadic rational numbers, then there exists $x \in F$ such that $x\left(a_{i}\right)=b_{i}$ for $i=0, \ldots, n$. Moreover, if $a_{i-1}=b_{i-1}$ and $a_{i}=b_{i}$ for some $1 \leq i \leq n$, then $x$ can be taken to be trivial on the interval $\left[a_{i-1}, a_{i}\right]$.

From this we deduce:
Lemma 2.3. - The subgroups $F^{\prime}$ and $D$ are icc groups and hence $L\left(F^{\prime}\right)$ and $L(D)$ are type $\mathrm{II}_{1}$ subfactors of $L(F)$.

Proof. - We give the proof for $F^{\prime}$. Let $x \in F^{\prime}, x \neq e$. There exist dyadic rational numbers $a, b, c, d \in] 0,1[$ such that
(1) $0<c<a, b<d<1$ and $a \neq b$;
(2) $x(a)=b$;
(3) $x(t)=t$ for every $t \in[0, c] \cup[d, 1]$.

Assume for instance that $b>a$, and let $N>1$ be an integer such that $b+2^{-N}<d$. Using Lemma 2.2, for every integer $n \geq N$, there exists $y_{n} \in F$ such that:
(4) $y_{n}(t)=t$ for every $t \in[0, c] \cup[d, 1]$;
(5) $y_{n}(a)=a$ and $y_{n}(b)=b+2^{-n}$.

Then in fact $y_{n}$ belongs to $F^{\prime}$, and if $n \neq m$ are integers larger than $N$ one has

$$
y_{n} x y_{n}^{-1}(a)=b+2^{-n} \neq b+2^{-m}=y_{m} x y_{m}^{-1}(a)
$$

This proves that the conjugacy class of $x$ in $F^{\prime}$ is infinite.
To prove the first half of Theorem 2.1, we need the following general result which is analoguous to Lemma 7 of [9]:

Proposition 2.4. - Let $G$ be a countable icc group and let $H$ be an icc subgroup of $G$ with the following property: for every finite subset $E$ of $G$, there exist elements $g$ and $h$ in $H-\{e\}$ such that
(1) $x g=g x$ and $x h=h x$ for every $x \in E$;
(2) $g h \neq h g$.

Then the pair $L(H) \subset L(G)$ has the relative McDuff property.

Proof. - Let $\left(E_{n}\right)_{n \geq 1}$ be an increasing sequence of finite'subsets of $G$ such that $G=\bigcup_{n \geq 1} E_{n}$. For every $n \geq 1$, choose $g_{n}$ and $h_{n}$ in $H-\{e\}$ satisfying properties (1) and (2) with respect to $E_{n}$. Set $a=\left[\left(\lambda\left(g_{n}\right)\right)_{n \geq 1}\right]$ and $b=\left[\left(\lambda\left(h_{n}\right)\right)_{n \geq 1}\right]$, which are both elements of $L(H)^{\omega}$, for any ultrafilter $\omega$ on $\mathbb{N}$.

Then $a b \neq b a$ because $\left\|\lambda\left(g_{n} h_{n} g_{n}^{-1} h_{n}^{-1}\right)-1\right\|_{2}=\sqrt{2}$ for every $n \geq 1$. Moreover, if $c \in L(G)$ and if $\varepsilon>0$ are given, there exists $N \geq 1$ such that

$$
\sum_{x \notin E_{n}}|c(x)|^{2}<\frac{\varepsilon^{2}}{4}
$$

for every $n \geq N$. We get for these $n$ :

$$
\begin{aligned}
\left\|\left[a_{n}, c\right]\right\|_{2} & =\left\|\lambda\left(g_{n}\right) c \lambda\left(g_{n}^{-1}\right)-c\right\|_{2} \\
& =\left(\sum_{x \notin E_{n}}\left|c\left(g_{n}^{-1} x g_{n}\right)-c(x)\right|^{2}\right)^{\frac{1}{2}} \\
& =\left(\sum_{x \notin E_{n}, x \neq g_{n}^{-1} x g_{n}}\left|c\left(g_{n}^{-1} x g_{n}\right)-c(x)\right|^{2}\right)^{\frac{1}{2}} \\
& \leq\left(\sum_{g_{n}^{-1} x g_{n} \notin E_{n}}\left|c\left(g_{n}^{-1} x g_{n}\right)\right|^{2}\right)^{\frac{1}{2}}+\left(\sum_{x \notin E_{n}}|c(x)|^{2}\right)^{\frac{1}{2}} \\
& <\varepsilon
\end{aligned}
$$

since, if $x \notin E_{n}$ and if $g_{n}^{-1} x g_{n} \neq x$, then $g_{n}^{-1} x g_{n} \notin E_{n}$.
This proves that $\lim _{n \rightarrow \infty}\left\|\left[a_{n}, c\right]\right\|_{2}=0$, and similarly, $\lim _{n \rightarrow \infty}\left\|\left[b_{n}, c\right]\right\|_{2}=0$. This implies that $a$ and $b$ belong to $L(G)^{\prime} \cap L(H)^{\omega}$, which means that it is a noncommutative algebra.

The next corollary proves the first half of Theorem 2.1:
Corollary 2.5. - The pair $L\left(F^{\prime}\right) \subset L(D)$ has the relative McDuff property.

Proof. - Given a finite subset $E$ of $D$, there exists a positive integer $N$ such that $x(t)=t$ for $t \in\left[1-2^{-N}, 1\right]$. Let $\Gamma$ be the subgroup of all elements $g \in D$ such that $g(t)=t$ for $t \in\left[0,1-2^{-N}\right]$. Clearly, $\Gamma$ is contained in $F^{\prime}$ and in the centralizer of $E$. Moreover, $\Gamma$ is non abelian because it is actually isomorphic to $D$. This proves the existence of the required pair $g, h \in \Gamma$ to apply Proposition 2.4.

It is noticed in the introduction that $F$ is isomorphic to the semidirect product group $D \rtimes_{\alpha} \mathbb{Z}$; this implies that $L(F)$ is spatially isomorphic to the crossed product $L(D) \rtimes_{\alpha} \mathbb{Z}$, where $\alpha^{m}=\operatorname{Ad}\left(\lambda\left(x_{0}^{m}\right)\right), \forall m \in \mathbb{Z}$. This fact plays a crucial role in the proof of the second half of Theorem 2.1, for which we need to recall the following definitions: Let $M$ be a type $\mathrm{II}_{1}$ factor and let $\theta$ be an automorphism of $M$; then $\theta$ is centrally trivial if one has for every central sequence $\left(a_{n}\right)_{n \geq 1}$

$$
\lim _{n \rightarrow \infty}\left\|\theta\left(a_{n}\right)-a_{n}\right\|_{2}=0
$$

The group of centrally trivial automorphisms of $M$ is denoted by $C t(M)$.
If $G$ is a countable group and if $\alpha$ is an action of $G$ on $M$, then $\alpha$ is called centrally free if $\alpha_{g} \notin C t(M)$ for every $g \in G-\{e\}$.

The following proposition makes precise Lemma 5 of [2], and it relies on the deep Theorem 8.5 of [14], where the hypotheses are the same as ours:

Proposition 2.6. - Let $N$ be a McDuff factor of type $\mathrm{II}_{1}$ with separable predual, let $G$ be an amenable countable group and let $\alpha$ be a centrally free action of $G$ on $N$. Then the pair $N \subset N \rtimes_{\alpha} G$ has the relative McDuff property.

Proof. - Set $M=N \rtimes_{\alpha} G$. Every element $a \in M$ is expressed as a series

$$
a=\sum_{g \in G} a(g) u(g)
$$

that converges in the following sense:

$$
\|a\|_{2}^{2}=\sum_{g \in G}\|a(g)\|_{2}^{2}
$$

where $a(g) \in N \forall g$, and $u: G \longrightarrow U(M)$ is a homomorphism that implements the action $\alpha$ :

$$
u(g) b u\left(g^{-1}\right)=\alpha_{g}(b) \quad \forall b \in N, \quad \forall g \in G
$$

Moreover, there is a unique normal, faithful conditional expectation $E_{N}$ from $M$ onto $N$ such that

$$
E_{N}\left(\sum_{g} a(g) u(g)\right)=a(e) \forall a \in M
$$

In particular, the trace $\operatorname{tr}$ on $M$ is $\operatorname{tr}_{N} \circ E_{N}$ and the coefficients $a(g)$ of $a$ are given by

$$
a(g)=E_{N}\left(a u\left(g^{-1}\right)\right)
$$

This implies that $\|a(g)\| \leq\|a\| \forall g \in G$.
Let us prove first that for every finite subset $E$ of $G$, for all $a_{1}, \ldots, a_{n} \in M$ such that $a_{l}(g)=0 \quad \forall l$ and $\forall g \notin E$, and for every $\varepsilon>0$, there exist a type $\mathrm{I}_{2}$ subfactor $B$ of $N$ and a system of matrix units $\left(e_{i j}\right)_{1 \leq i, j \leq 2}$ in $B$ satisfying

$$
\left\|\left[a_{l}, e_{i j}\right]\right\|_{2} \leq \varepsilon \quad \forall l, i, j
$$

We assume that $\left\|a_{l}\right\| \leq 1 \quad \forall l=1, \ldots, n$. By Theorem 8.5 of [14], there exist a unitary $\alpha$-cocycle $v: G \longrightarrow U(N)$ and a hyperfinite subfactor $R$ of $N$ such that
(1) $N=R \vee\left(R^{\prime} \cap N\right)$;
(2) $\operatorname{Ad} v_{g} \circ \alpha_{g} \mid R=\operatorname{id}_{R} \forall g \in G$;
(3) $\left\|v_{g}-1\right\|_{2} \leq \varepsilon / 5|E| \quad \forall g \in E$.

Using (1), for every $l=1, \ldots, n$ and every $g \in G$, there exists $b_{l}(g)$ in the *-algebra generated by $R$ and $R^{\prime} \cap N$, with $b_{l}(g)=0$ for $g \notin E$, such that

$$
\left\|b_{l}(g)\right\| \leq\left\|a_{l}(g)\right\| \leq 1
$$

and

$$
\left\|b_{l}(g)-a_{l}(g)\right\|_{2} \leq \frac{\varepsilon}{5|E|}
$$

Moreover, since $R$ is hyperfinite, there exist a type $I_{2}$ subfactor $B$ of $R$ and a system of matrix units $\left(e_{i j}\right)$ in $B$ such that

$$
\left\|\left[b_{l}(g), e_{i j}\right]\right\|_{2} \leq \frac{\varepsilon}{5|E|} \forall l, i, j, \text { and } g \in G
$$

Set $b_{l}=\sum_{g \in G} b_{l}(g) u(g)$.
Then fix $l \in\{1, \ldots, n\}$ and $1 \leq i, j \leq 2$; we have

$$
\begin{aligned}
\left\|\left[a_{l}, e_{i j}\right]\right\|_{2} & \leq 2 \sum_{g \in E}\left\|a_{l}(g)-b_{l}(g)\right\|_{2}+\left\|\left[b_{l}, e_{i j}\right]\right\|_{2} \\
& \leq \frac{2 \varepsilon}{5}+\left\|\left[b_{l}, e_{i j}\right]\right\|_{2}
\end{aligned}
$$

In order to estimate $\left\|\left[b_{l}, e_{i j}\right]\right\|_{2}$, observe that by (2) and (3) above, we have

$$
u(g) e_{i j} u\left(g^{-1}\right)=\alpha_{g}\left(e_{i j}\right)=v_{g}^{-1} e_{i j} v_{g}
$$

and

$$
\left\|v_{g}^{-1} e_{i j} v_{g}-e_{i j}\right\|_{2} \leq 2\left\|v_{g}-1\right\|_{2} \leq \frac{2 \varepsilon}{5|E|}
$$

Then

$$
\begin{aligned}
\left\|\left[b_{l}, e_{i j}\right]\right\|_{2} & \leq \sum_{g \in E}\left\|b_{l}(g) u(g) e_{i j}-e_{i j} b_{l}(g) u(g)\right\|_{2} \\
& =\sum_{g \in E}\left\|b_{l}(g) u(g) e_{i j} u\left(g^{-1}\right)-e_{i j} b_{l}(g)\right\|_{2} \\
& \leq \sum_{g \in E}\left\{\left\|b_{l}(g)\left(v_{g}^{-1} e_{i j} v_{g}-e_{i j}\right)\right\|_{2}+\left\|\left[b_{l}(g), e_{i j}\right]\right\|_{2}\right\} \\
& \leq \sum_{g \in E}\left\{\left\|b_{l}(g)\right\|\left\|v_{g}^{-1} e_{i j} v_{g}-e_{i j}\right\|_{2}+\frac{\varepsilon}{5|E|}\right\} \\
& \leq \frac{3 \varepsilon}{5}
\end{aligned}
$$

This implies that $\left\|\left[a_{l}, e_{i j}\right]\right\|_{2} \leq \varepsilon \forall l=1, \ldots, n$ and $1 \leq i, j \leq 2$.
The ${ }^{*}$-subalgebra $M_{0}=\left\{\sum_{\text {finite }} a(g) u(g) ; a(g) \in N\right\}$ of $M$ is $\|\cdot\|_{2^{-}}$ dense, and using Kaplansky's density theorem, the same conclusion holds for all $a_{1}, \ldots, a_{n} \in M$.

The next corollary gives the second half of Theorem 2.1:
Corollary 2.7. - The pair $L(D) \subset L(F)$ has the relative McDuff property.

Proof. - We are going to use existence and uniqueness of a normal form for every non trivial element $x \in F$ (see [5], p.369): $x$ can be written in a unique way as

$$
x=x_{i_{1}} \ldots x_{i_{k}} x_{j_{m}}^{-1} \ldots x_{j_{1}}^{-1}
$$

where $0 \leq i_{1} \leq \ldots \leq i_{k}, 0 \leq j_{1} \leq \ldots \leq j_{m}, i_{k} \neq j_{m}$, and if $x_{i}$ and $x_{i}^{-1}$ appear in the decomposition of $x$, then so does $x_{i+1}$ or $x_{i+1}^{-1}$.

Since $L(D)$ is a McDuff factor, it suffices to check that the action $\alpha$ of $\mathbb{Z}$ on $L(D)$ given by

$$
\alpha(a)=\lambda\left(x_{0}\right) a \lambda\left(x_{0}^{-1}\right)
$$

is centrally free.
Fix a positive integer $m$; we have to exhibit a central sequence $\left(a_{n}\right)_{n \geq 1}$ in $L(D)$ such that

$$
\liminf _{n}\left\|\alpha^{m}\left(a_{n}\right)-a_{n}\right\|_{2}>0
$$

For $n \geq 1$, set $a_{n}=\lambda\left(x_{n+m} x_{n+m+1}^{-1}\right) \in L(D)$. Then

$$
\begin{aligned}
\alpha^{m}\left(a_{n}\right) & =\lambda\left(x_{0}^{m} x_{n+m} x_{n+m+1}^{-1} x_{0}^{-m}\right) \\
& =\lambda\left(x_{n} x_{n+1}^{-1}\right) \\
& \neq \lambda\left(x_{n+m} x_{n+m+1}^{-1}\right)
\end{aligned}
$$

by uniqueness of normal forms.
This implies that

$$
\left\|\alpha^{m}\left(a_{n}\right)-a_{n}\right\|_{2}=\sqrt{2} \forall n \geq 1
$$

Finally, $\left(a_{n}\right)_{n \geq 1}$ is a non trivial central sequence because for every finite subset $E$ of $D, x_{n} x_{n+1}^{-1}$ commutes with every $x \in E$ for $n$ large enough: see the proof of Proposition 2.4.

Remark. - We are indebted to the referee for the following observation: $F$ is a semidirect product of $F^{\prime}$ with $\mathbb{Z}^{2}$, therefore the pair $L\left(F^{\prime}\right) \subset L(F)$ has also the relative Mc Duff property, using again Proposition 2.6. However, one has to check that the action of $\mathbb{Z}^{2}$ on $L\left(F^{\prime}\right)$ is centrally free. Indeed, define $\varphi: F \longrightarrow \mathbb{Z}^{2}$ and $\sigma: \mathbb{Z}^{2} \longrightarrow F$ by $\varphi\left(x_{0}\right)=(1,0)$, $\varphi\left(x_{n}\right)=(0,1)$ for $n \geq 1$, and $\sigma((1,-1))=x_{0} x_{1}^{-1}, \sigma((0,1))=x_{2}$. Since $x_{0} x_{1}^{-1}$ commutes with $x_{k}$ for every $k \geq 2, \sigma$ is a homomorphism and a section for $\varphi$. The action $\alpha$ of $\mathbb{Z}^{2}$ on $L\left(F^{\prime}\right)$ is given by

$$
\alpha_{(m, n)}(\lambda(x))=\lambda\left(\left(x_{0} x_{1}^{-1}\right)^{m} x_{2}^{n} x x_{2}^{-n}\left(x_{0} x_{1}^{-1}\right)^{-m}\right)
$$

for $(m, n) \in \mathbb{Z}^{2}$ and $x \in F^{\prime}$. Fix $(m, n) \neq(0,0)$. If $n \neq 0$, set $a_{k}=\lambda\left(y_{k}\right)$, for $k \geq 1$, where $y_{k}=\left[x_{k}, x_{k+1}\right]:=x_{k} x_{k+1} x_{k}^{-1} x_{k+1}^{-1}=x_{k} x_{k+1} x_{k+2}^{-1} x_{k}^{-1}$ in normal form. Since $y_{k}(t)=t$ for $t \leq 1-2^{-k}$ (as a function on $[0,1]$ ), $\left(a_{k}\right)_{k \geq 1}$ is a central sequence in $L\left(F^{\prime}\right)$. Moreover, $\alpha_{(m, n)}\left(a_{k}\right)=a_{k-n}$ for every $k \geq|m|+|n|+3$. Finally, if $n=0$, set $z_{k}=x_{0}^{k+1} x_{2}^{2} x_{3}^{-1} x_{1}^{-1} x_{0}^{-k-1}$ and $b_{k}=\lambda\left(z_{k}\right)$ for $k \geq 1$. In the geometrical realization of $F, z_{k}=\theta\left(y_{k}\right)$, where $\theta$ is the automorphism of $F$ given by $\theta(x)(t)=1-x(1-t)$. Then it can be proved that $z_{k} \in F^{\prime}$, that $z_{k}(t)=t$ for $t \geq 2^{-k}$ and that $\alpha_{(m, 0)}\left(b_{k}\right)=b_{k+m}$ for large $k$. Using the same arguments as in the proof of Corollary 2.7, this shows that $\alpha$ is centrally free.

## 3. Contractibility of unitary groups.

In the introduction, we noticed that the following result follows from Theorem 1 of [15], but we think it interesting to give a proof avoiding type

III factors techniques, and based on a clever realization of the hyperfinite factor of type $\mathrm{II}_{\infty}$ due to P.-L. Aubert [1].

Theorem 3.1. - Let $M$ be a type $\mathrm{II}_{1}$ factor with separable predual and let $N$ be a subfactor of $M$ such that the pair $N \subset M$ has the relative McDuff property. Then there exists a continuous map $\alpha$ : $[0, \infty[\times U(M) \longrightarrow U(M)$ with the following properties:
(1) $\alpha_{t}(U(N)) \subset U(N) \quad \forall t \geq 0$;
(2) $\alpha_{0}(u)=u$ and $\lim _{t \rightarrow \infty} \alpha_{t}(u)=1, \forall u \in U(M)$;
(3) each $\alpha_{t}$ is an injective endomorphism of $U(M)$;
(4) $\alpha_{s} \circ \alpha_{t}=\alpha_{s+t}, \forall s, t \geq 0$;
(5) $\left\|\alpha_{t}(u)-\alpha_{t}(v)\right\|_{2}=e^{-\frac{t}{2}}\|u-v\|_{2}, \forall t \geq 0, \forall u, v \in U(M)$.

Corollary 3.2. - The unitary groups of the pairs of factors $L\left(F^{\prime}\right) \subset L(D)$ and $L(D) \subset L(F)$ have contractibility properties of Theorem 3.2. In particular, they are contractible.

Proof. - Let $A$ denote the Abelian von Neumann algebra $L^{\infty}\left(\mathbb{R}^{2}\right)$ relative to the Lebesgue measure $\mu$ on $\mathbb{R}^{2}$. The group $\Gamma=S L_{2}(\mathbb{Z})$ acts canonically on $\mathbb{R}^{2}$ and preserves $\mu$.

We denote by $\alpha$ the associated action of $\Gamma$ on $A$ :

$$
\alpha_{\gamma}(a)=a \circ \gamma^{-1} \forall a \in A, \gamma \in \Gamma .
$$

Then set $R_{\infty}=A \rtimes_{\alpha} \Gamma$; it is proved in [1] that $R_{\infty}$ is the hyperfinite factor of type $\mathrm{II}_{\infty}$ with separable predual. Denote by $E_{A}$ the natural conditional expectation from $R_{\infty}$ onto $A$. Then the semifinite trace $\operatorname{Tr}$ on $\left(R_{\infty}\right)_{+}$is

$$
\operatorname{Tr}(x)=\int_{\mathbb{R}^{2}} E_{A}(x) d \mu \forall x \in R_{\infty}
$$

Set $e_{0}=\chi_{I \times I}$, where $I=[0,1] ; e_{0}$ is a projection belonging to $A$, and the reduced factor $e_{0} R_{\infty} e_{0}$ is the hyperfinite $\mathrm{II}_{1}$-factor $R$ because $\operatorname{Tr}\left(e_{0}\right)=1$, and the normalized trace on $R$ is thus $\operatorname{tr}(x)=\operatorname{Tr}\left(e_{0} x e_{0}\right)$.

Now, for $t \in \mathbb{R}$, let $\sigma_{t} \in \operatorname{Aut}(A)$ be defined by

$$
\sigma_{t}(a)(x, y)=a\left(e^{\frac{t}{2}} x, e^{\frac{t}{2}} y\right) \forall(x, y) \in \mathbb{R}^{2}, \forall a \in A
$$

Then $\left(\sigma_{t}\right)_{t \in \mathrm{R}}$ is a one parameter group of automorphisms of $A$ and

$$
\sigma_{t} \circ \alpha_{\gamma}=\alpha_{\gamma} \circ \sigma_{t} \quad \forall t \in \mathbb{R}, \quad \forall \gamma \in \Gamma .
$$

Hence $\sigma_{t}$ extends to an automorphism of $R_{\infty}$, still denoted by $\sigma_{t}$, such that

$$
\sigma_{t}(x)=\sum_{\gamma \in \Gamma} \sigma_{t}(x(\gamma)) u(\gamma) \quad \forall x \in R_{\infty}
$$

Now let $e_{t}=\sigma_{t}\left(e_{0}\right)$, which is the projection of $A$ corresponding to the characteristic function of $\left[0, e^{-\frac{t}{2}}\right] \times\left[0, e^{-\frac{t}{2}}\right]$, so that $e_{t} \leq e_{0} \quad \forall t \geq 0$. Moreover, if $a \in\left(R_{\infty}\right)_{+}$, we have

$$
\begin{aligned}
\operatorname{Tr} \circ \sigma_{t}(a) & =\int E_{A}\left(\sigma_{t}(a)\right)(x, y) d \mu(x, y) \\
& =\int E_{A}(a)\left(e^{\frac{t}{2}} x, e^{\frac{t}{2}} y\right) d \mu(x, y) \\
& =e^{-t} \operatorname{Tr}(a) \forall t \in \mathbb{R}
\end{aligned}
$$

Finally, let $\Phi$ be an isomorphism from $M$ onto $M \otimes e_{0} R_{\infty} e_{0}$ such that $\Phi(N)=N \otimes e_{0} R_{\infty} e_{0}$; set $\theta_{t}=i d_{M} \otimes \sigma_{t}, \quad p_{0}=1 \otimes e_{0} \in M \otimes e_{0} R_{\infty} e_{0}$ and $p_{t}=\theta_{t}\left(p_{0}\right)=1 \otimes e_{t} \leq p_{0}$ for $t \geq 0$.

Following [15], define $\alpha_{t}: U(M) \longrightarrow U(M)$ by

$$
\alpha_{t}(u)=\Phi^{-1}\left(p_{0}-p_{t}+\theta_{t}(\Phi(u))\right)
$$

One checks easily that $\alpha$ has the required properties (1)-(5).

## BIBLIOGRAPHY

[1] P.-L. Aubert, Deux actions de $S L(2, \mathbb{Z})$, In Théorie ergodique, Monographie de l'E.N.S. Math., 1981.
[2] E. BÉdOs, On actions of amenable groups on $I I_{1}$-factors, J. Funct. Anal., 91 (1990), 404-414.
[3] D. Bisch, On the existence of central sequences in subfactors, Trans. Amer. Math. Soc., 321 (1990), 117-128.
[4] D. Bisch, Central sequences in subfactors II, Proc. Amer. Math. Soc., 121 (1994), 725-731.
[5] M.G. Brin, and C.C. SQUIER, Groups of piecewise linear homeomorphisms of the real line, Invent. Math., 79 (1985), 485-498.
[6] J.W. Cannon, and W.J. Floyd, and W.R. Parry, Introductory notes on Richard Thompson's groups, E.N.S. Math., 42 (1996), 215-256.
[7] A. Connes, Outer conjugacy classes of automorphisms of factors, Ann. Scient. Ec. Norm. Sup., 8 (1975), 383-420.
[8] A. Connes, Classification of injective factors, Ann. of Math., 104 (1976), 73-115.
[9] J. DiXmier, and E.C. Lance, Deux nouveaux facteurs de type $I I_{1}$, Invent. Math., 7 (1969), 226-234.
[10] E.G. Effros, Property $\Gamma$ and inner amenability, Proc. Amer. Math. Soc., 47 (1975), 483-486.
[11] S.M. Gersten, and J.R. Stallings (eds), Combinatorial Group Theory and Topology, in Annals of Math. Studies 111, Princeton University Press, 1987.
[12] P. Jolissaint, Moyennabilité intérieure du groupe $F$ de Thompson, C.R. Acad. Sci. Paris, Série I, 325 (1997), 61-64.
[13] D. Mcduff, Central sequences and the hyperfinite factor, Proc. London Math. Soc., 21 (1970), 443-461.
[14] A. Ocneanu, Actions of discrete amenable groups on von Neumann algebras, Lect. Notes in Math. 1138, Springer Verlag, 1985.
[15] S. Popa and M. Takesaki, The topological structure of the unitary and automorphism groups of a factor, Comm. Math. Phys., 155 (1993), 93-101.

Manuscrit reçu le 15 octobre 1997, accepté le 9 février 1998.

Paul JOLISSAINT,
Université de Neuchâtel
Institut de Mathématiques
Émile-Argand 11
CH-2000 Neuchâtel.
paul.jolissaint@maths.unine.ch


[^0]:    Key words: Type $\mathrm{II}_{1}$ factors - Central sequences - Crossed products - Centrally free actions.
    Math. classification: 46L10 - 46L55 - 20D25.

