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SHARP IAI/2 ESTIMATES FOR A CLASS
OF AVERAGING OPERATORS

by A. IOSEVICH and E. SAWYER^

1. INTRODUCTION

Let S be a smooth hypersurface in Rn. Let

(1) Tf(x)= [ f { x - y ) d a ( y ) ,
J s

where da is a smooth compactly supported measure on S. We consider the
problem of determining the optimal range of exponents (p, g), such that

(2) r/iLw ^ ̂  II/HLP(^) ./ ̂  (^n)-
It is known that if S has everywhere non-vanishing Gaussian curvature,

then (2) holds if and only if ( -, - ) 6 7n? where Tn is the triangle with
\P 9/

vertices (0,0), (1,1), and f—^——) (see [Lift], [Str] and [Sti]). If
\ yi 1 -*• yi T •I- y

the Gaussian curvature on S is allowed to vanish, sharp (L^.L9) bounds
are in general very difficult to obtain.

Let

F[A7]($)== [ e-ix•^(x^
Js

where da (x) is defined above. It is known that if \F [da] ($)| ^ C (1 + \^\)~p ,
p > 0, (which holds for some p > 0 if the Gaussian curvature vanishes of

(*) Research supported by NSERC grant OGP0005149.
Key words: Averaging operators - Hypersurfaces - Homogeneous functions.
Math. classification: 42.
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at most finite order), then ( 2) holds whenever

(3) 1 < P < 2 , ^,|(^),

and q = p7, the conjugate exponent (see [Litt] and [Str] ). However, if the
Gaussian curvature is allowed to vanish, this result is not sharp in the
sense that even with the optimal decay p for F [Ar], (3) does not cover the
full range of exponents (p, q) such that estimate (2) holds, even after we
interpolate with the trivial L1 —»• L1 and L°° —> L°° estimates.

The purpose of this paper is to determine the optimal range of
exponents (j), q) such that (2) holds in the case when S is a graph of a
homogeneous function <I> of degree m ^ 2. We begin with a lemma that
shows that we can never have ( -, - ) outside the trapezoid with vertices

\P ( ! )

^•(^•("T^-T'nT^T)'

and f l - — — — — — 1 - — — n — — ) .\ n + m — 1 n + m — 1 /

DEFINITION 1. — Denote by Q ( N y p ) the trapezoid with vertices

(0 '0) '(u)> ((^-I)^+I)'(^-I?(P+I)}'
. ( , _ P , _ Np \

and{i (AT- l ) (p+l ) ' 1 ( N - l ) ( p + l ) ) -

Thus Q (TV, p) is the intersection of the triangle TN and the half-plane lying
on and above the line - — - = ——-.

P q P + l
Note that N plays the role of the effective dimension, while p plays

the role of the decay of the Fourier transform of the surface carried measure
(which coincides with the p in the Lp condition on <I> below - see [loSa]).

LEMMA 2. — Suppose S is the graph of a homogeneous function of de-
gree m. IfT is defined as in (1) and (2) holds, then {-, -) € Q (n, ———).\p q} \ m )

Proof. — We first test T against / = \Bi where B is a small ball
of radius 6 > 0. Then T\a is at least c6'^'~l in absolute value on a set of
measure C6. Thus (2) yields

c^-1-^ llrxalL^ C\\XB\\L. = C^,
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I nfor 6 small, which implies that n— 1 + - ^ — .By duality we also obtainq p

n— 1 + — ^ — o r — ^ -. These two inequalities show that ( -, - ) must
P q q P \P q }

lie in the triangle Tn with vertices (0,0), (1,1) and ( ———, ——— ).\n+ 1 n+ \)

Next, a simple homogeneity argument shows that ( -, - ) must lie on
\P 9/

or below the line - — - = —————- Indeed, To = 2(-n~l^kr-kTkrk where
p q m-\-n —1

Tkf (x) = XB (2 '̂) f f {x1 - 2/, xn - <D (2/')) XB W) dy1

J^"-i

and Tkf(x^Xn) == / (2^2;', 2^^). Also T^f = Trkf for / supported in
_ B . Assuming (2) holds, we thus have
2i

UTo/IL, = 2("-l)fc ||T-fcTfcTfc/||^

^ ^fc[(n-l)+^(n-l+m)] \\TkTkf\\^ = 2fc[("-l)+^"-l+"l)] \\TTkf\\^

^ C^[(n-l)+^(n-l+m)} ||̂ y||̂  = ̂ fc[(n-l)+(^-p)(n-l+m)] ̂ ^^

Since IITO/HM > 0» we niust have (n — 1) + ( — — — ( ( n — 1 + m) ^ 0 as
\9 P/

required. Combining the facts that ( -, - ) lies inside the triangle Tn and
\P Q/

on or below the above line, we obtain that ( -, - ) must lie in the trapezoid
\P 9/

/ n-l\
Q(n^)•

We shall also apply our methods to the question of regularity of the
following initial value problem:

(4) i"^-^
[^,0)=/(:r),

where {x^t) G R71 x 7?-i-, and P(-D) is a differential operator with symbol
P(0. Kenig, Ponce, and Vega [KPV] showed that if P(D) is an elliptic
operator, i.e the principal homogeneous part does not vanish on the unit
sphere, and if the determinant of the Hessian matrix of P satisfies
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(5) \HP(^\^C\^n(m-2),
Ti

then, roughly speaking, the solution n(-, t) has -(m - 2) derivatives in L°°
if the initial data / is in L1.

However, the result in [KPV] does not apply, for example, to the
operator with symbol

^(0=^+$24-^

since the determinant of the Hessian matrix of this polynomial,

^P(0=-24(^+^-6^j),

vanishes along a line, and consequently the estimate (5) does not hold. In
this paper we shall drop the curvature assumption (5 ), and weaken the
ellipticity hypothesis on <I>, for homogeneous operators in dimension n = 2.
See Theorem 16 below.

2. MINIMAL CURVATURE ASSUMPTIONS
- THE LP CONDITION

Let

(6) Tf (x)= [ f (x1 - y\ xn - ̂  (2/')) ̂  Q/) A/,
^n-1

where -0 is a smooth cutoff function and ^ € C°° (I?71"1 \ {0}) is homo-
geneous of degree m ^ 2. In this section we obtain the optimal mapping
properties for T in the case when no additional curvature assumptions are
placed on the level set {$ = 1}. The mapping properties are then deter-
mined by the Lp condition introduced in [loSa], namely that

(7) ^r'eL^71-2).

The main result of this section is the following.

THEOREM 3. — Let T be defined as in (6) above. Suppose that

^(o;)"1 € ^(S'71-1) with 0 < p < min^97—1,1}. Then the norm
{ m 2 )

inequality (2) holds if (--,-) lies in the trapezoid Q(2,p). Conversely,
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for each p < n——, there is a <1> satisfying the above hypotheses such that
m

(2) fails for f -, - ) outside the trapezoid Q (2, p).
\P 9/

Remark 1. — The restriction p < mm { n——, - > is natural here.[ m 2 J

Indeed, p ^ - follows from the fact that we are only assuming curvature
2 n— 1

m one (the radial) direction, while p < ——— is implied by the finitenessv / m
of the integral

/ \^\~pdx=C f r-^r^dr.
J\x\^l Jo

Proof. — Similar ideas to those below appear in [Str] and [RiSt]. Let

(8) Taf(x)= [ f{xt-y\xn-^(yf))^(y/)\p{^a~l)^(y/)dy^
JR^-^

and note that T^ f (x) = Tf (x) . We begin by showing that

(9) T° : L°° (A71) —— L°° (A71), Re (a) = 0,
3 1

T^ : L2 (J?71) —^ L3 (fi71), Re (a) == „

with operator bounds depending only polynomially on Im(a). Now when
Re(a) = 0, then the power of |^(2/)| appearing in (8) has real part -p,
and so by the Lp condition (7), T0 is convolution with respect to a finite
measure. Thus T0 is bounded on L°° (^n) with norm independent oflm(a).

To obtain the second mapping property in (9), we must exploit
the two facts that (i) we have L2 boundedness for T^ composed with
fractional integration in the x ' directions and differentiation in the Xn
direction and (ii) we have a bounded kernel for T^ composed with fractional
differentiation in the x ' directions and integration in the Xn direction. More
precisely, let

(10) E/V (x) = f * K^-^ * 1^

= I I f { x ' -y^Xn-Un-^^1))

x |̂  (^(^-(*-^>]-1) ̂  Q/) ̂ ^dy'du^
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\+^-1

where K^ is the kernel of T", J^ = <$o (aQ (8) ̂  (a;n), and Iz (t) = -L—.

If Re (z) = 1, then the kernel of ' U Z is clearly bounded and so we have

(11) U^ : L1 (R71) -^ L00 (TT)

with norm independent of r. On the other hand, when z = —- 4- zr, we
Zi

compute that the power of |<I> (y')\ in (10) is

/ p + 1 f l (\ p \( 1 \] \ 1
'•(^ta-la-^A-^-jj-1)^-^'^

and thus that

(^i-O-^)^ (^) = j'e-<y'-^W) ̂ {y'^-^^^dy'.

In the case r = 0, we proved in Theorem 4(A) of [loSa] that
the latter integral decays like C\^\~2, and the same proof shows in
general that the integral decays like (7(1+|T|)|$|~2. For the sake of
completenesss we give the proof. Begin by letting a = . — p + zCpT,

fl. == J a; € S^2 : [<1> (a;) | > ,—. ^ and writing
I Isnl J

F^',^} = [ e1^'^^ ̂ W^dx

= I + f =F^-2\"+F».
7^6gn-2\n 7^en

Now if we take absolute values inside the first integral, we see immediately
that

^""^"(^n) -.C f ^(^-"d^
./{a-es"-2:!^)!^}

< c'i^r^|{^ e 5"-2: î r1 > i^i}|
^C7|^|~5,

since $(a;)~1 € wefflfc Z/^ (5'"-2).

To handle the second integral, let <p be supported in the annulus

^ = L € a"-1 : J ^ j.r| < 2 ; . = L € a"-1 : J ̂  j.r| < 2l
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so that

^^(2^)==!, M ^ l .
fc=0

Setting

^ (̂ n) = / e^'^^^ (2^) ̂ (x) ̂  (x)^ dx,
J^

we obtain

F" ($, A) = ̂  F," (^, $,) = f^ 2-fc(n-l)2-fcmQ^ (2-^', 2-^$,),?Sn
fc=0 fc=0i.._n L,_n

( y + V ) 2-fc(n-l)2-fcmQFfc"(2-^,2-fc7nA)
V^^l^n^^)! 2fcm<|$n^(^)|/V^^n^)! 2fcm<|$n^(^)|

=J+^,

where

r^ /O—fc^7 O—fcTM/-
^fc ^ S ̂  Sn
nO (o—k^ f)—km/' \
- k [2 S ̂  €n;

/* ^.2-fc^-2-fcm^^))^(^

J^

^(2-kx)\^(x)\adx

^ I | L^{r(2-fcu/^)-rm(2~fcm^<&^)}^(r)^(2-fcr)rmQ+7^-2dr
7n 1^

[^(a;)!5"^^

<C(l+|r|) />(l+2-fcm|^^(a;)|)~5|^(a;)^*-p^
^n

since the curve (r,^) is nondegenerate for r € ( ^ 2 ) and

l d {^(r)^-^)^0^-2} ^ C(l + |r|).
ar
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Thus we have

w ^ c / ( E
J" \2^|^

2-fc(n-l)2-fem(^) ) ̂ (a;)^-^
2^|^(o/)|

^ C t (|̂  (a;)!)-^-^) [^ (o;)!̂  ̂
^o

^i^r^)-^/ i$(a,)i-^^
7{o;€S"-2:|$(o,)|>^}

=C^|-(.-)-^/Ar^^-l
Jo m

\{^eSn-2•.t<\<S>(^\-l<\^\dt

< C'|^r(^)-^ />A ̂ ^-^(l +()-^( ̂  G|^|-* ,
Jo m

since $-l e weak LP (fi'""2). Also,

|7/| ^ (7(1 + |r|) / ^ 2-fc(n-i)2-fcm(3-p)
"2*'"<|^$(^,)|

(2-fcm|^$(a;)[)-4|$(^)|^-Pda;

^ C (1 + |r|) |^|-^ / [ ^ (2fcm)/'-Y ) ^ (^]-. ̂
" \2fc•"<|$„*(a>)| /

^^(i+H)|^ |~3 I^w^
Jsi

^C(l+\r\)\U~12,
n — 1

since p < ——— and <^-1 e LP (S^-2). Altogether this shows

j^-O-^i)^^,^) ^G(I+M)|$[-*

as required since if |^[ ^ C |̂ |, then integration by parts yields rapid decay
(see Proposition 4, p. 341 in [St2]).

Since

[(^J^n) = C[^r2 =C(^,

Plancherel's theorem together with (10) now shows that

(12) U-^" : L2 (A") -^ I2 (A")
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with norm at most (7(1 + |T|). By analytic interpolation, the maps (11)
and (12) yield

U^ : Lt (JT1) -^ L3 (R^

with norm at most C (1 + M)^. This completes the proof of (9).

Now by analytic interpolation of the maps in (9), we obtain that

T = T~p^1 maps L^ to L^~. Thus the mapping set (of points ( -, - )
\P <lj

such that (2) holds) contains the point ( —'-, ——— ), and by duality the

point ( 1 — —'— 1 — —— ). Using the obvious facts that T is bounded
\ p+1 P+ l /

on L1 and L°°, we see that the mapping set also contains the points (1,1)
and (0,0), and the first part of Theorem 3 now follows from interpolation.

We now turn to the converse assertion in Theorem 3. The following
example shows that in general we cannot do better than the trapezoid

Q ( 2, n—— \ without additional curvature on the level set {<!> = 1}.
Y m )

Example 4. — Let <I> be homogeneous of degree m such that the level
set {<!> = 1} contains a copy of the cube J""2. Set fs = XB^xi^-2 where
the two cubes J""2 are parallel and B^ (6) is a disk of radius 6 > 0. With
T as in (6), we note that \\fs\\p = c6^ and \\Tfs\\q ^ c6 • 6^ since Tfg is at
least c8 on a set of measure c6. We thus obtain from (2) that

C^^IIT^II^CII/.II^CC^

1 2
for 6 small, and so 1 + - ^ -. This is precisely the estimate obtained in

q P
Lemma 2 in the case n = 2, and if we now use duality and argue as we

did there, we obtain that f -, - ) must lie in the triangle with vertices
\P 9/

(0,0), (1,1) and ( -, - ). Since ( -, - ) must also lie on or below the line
\3 3/ \p qj

_ _ _ = —n——— (see Lemma 2 again), we see that ( -, - ) lies in the
p q m + n - 1 \P q )

trapezoid Q { 2, ——— ).
\ ^ /

The next example shows that in Theorem 3, we cannot do better than
Q (n, p) without improving the Lp condition.
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Example 5. — Let ^ (x) = x^ x ... x^ where 01 ^ 02 ^ ... On-i.
Then $-1 e L^T (571-2), so p = —. If we apply the scaling argument of
Lemma 2 with n = 2 and m = 03. to the variable :TI in <I>, we obtain the

restriction , " ^ ———^ = ——— Since we always have ( 1 , v} e 7n,

we see that T is not bounded for ( -, - ) outside the trapezoid Q (n, p).

Finally, by combining the above two examples, we can construct a
$ satisfying the hypotheses of Theorem 3 such that T is not bounded for

( ' ~ ) outside the trapezoid Q (2, p). Indeed, choose <I> to be homogeneous

of degree m = 01 +02+...+0n-i where - = 01 ^ 02 ^ ... 0^-1 such that ^
looks like the function in Example 5 for x near the coordinate planes, and
such that the level set {<!> = 1} contains a copy of the cube J^"2 away from

the coordinate planes as in Example 4. Then just as in Example 5, f ~ - )
1 1 vp q )

must lie on or below the line - - - = —p and just as in Example 4,
p q p+1

[ » ~ j ^ ̂  Thus T is not bounded for ( -, - ) outside the trapezoid
Q (2, p), and this completes the proof of Theorem 3.

3. ADDITIONAL CURVATURE ON THE LEVEL SET

Our first result shows what type of mapping property can be obtained
from a given decay on the Fourier transform of a surface carried measure
weighted by powers of |$|, and the proof is a generalization of that of
Theorem 3. More precisely, we consider

(13) F^ (0 = / e^-^^) |<D [x^ ^ (x ' ) dx'
JRrt-l

where ^eC^^71-1).

THEOREM 6. — Let T be defined as in (6) above. Suppose that

<W1 € ^(571-1) with 0 < p < mhJ71—1,1}. In addition, we
t m 2 )

assume that there is 0 ^ rj ^ n—— such that
Zi

(i4) \n (oi < ̂ ,) (i + |$D-^
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when Re (z) + p = ^ + rf, and that Cjrn(z) grows at most exponentially in

Im ( z ) . Then the norm inequality (2) holds if ( -, - ) € Q (2 (r] -+- 1), p).
\P 9/

Proof. — Let
(15)

/* /(JV-l)(p+l) ,\

T0/^ / f^x'-y^Xn-^^WW^ ^ "-^Q/W,
J^^-i

where N = 2 (77 4-1) ^ n is the effective dimension, and note that
T^-^p+^f^x) = r/ (re). We begin by showing that

(16) T01: L00 (fi71) —^ L00 (I?71), Re (a) = 0,

r0 : L^ (fi71) -^ LN+1 (A71), Re (a) = ̂ p

with operator bounds depending only polynomially on Im(o;). The first
estimate follows as in (9). To obtain the second mapping property, let

(17) U'f (x) = f * ̂ ^-(^-T-^-^p+i))^ * 1^

= t t f^-y'^-un-^^y'))

x [^(^^-^^[^-(^i-^N-1)

^(2//)h^^/^,

\^\z-l

where K^ is the kernel of T", J^ = ^o (^') ̂  ̂  (^n), and J^ (t) = ——r.1 (z)
If Re (z) = 1, then the kernel of U3^ is clearly bounded and so we have

(18) U^ : L1 (fi71) -^ L°° (fi71)

N - 1
with norm independent of r. On the other hand, when z = ——^— + ZT,
we compute that the power of |<1> (i/)] in (17) is

^-^[^-(^-ra^)^-)]-1)
1V-1

= ——^—— - P + tCp,NT
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and thus that

^WTI-(T7Tr-^-i^+l))^ (^^)

= fe-<"'-^W) \<S>(y')\!^-p+ict'r^(y')dyf.

N-l

By assumption this integral is bounded by Cr (1 + |$|) 2 . Since
(J^) ($71) = cl^r2 = c|$n| 2 , PlancherePs theorem together with

(17) shows that

(19) U-^^ : L2 (fl71) -. £2 (A71).

By analytic interpolation of the maps (18) and (19), we obtain that

U^ : L^ (R71) -^ L^1 (A71),

and this completes the proof of (16).

Now by analytic interpolation again, we obtain that T = T^-1)^-1)
(2e+l)(p+l) (2e+l)(p+l)

maps L ^^P to L P . The conclusions of the theorem now follow
from duality and a further interpolation using the obvious facts that T is
bounded on L1 and L°°.

Remark 2. — For a homogeneous polynomial of degree m, Theorem
6 does not yield the sharp 1^ — Lq mapping properties. Indeed, the weight
[^[z is effective in improving the gain from the radial direction up to .
but the problem is that the gain from the tangential direction, which could
be as little as —, is not improved at all. This problem is overcome in threem
dimensions in the next section by introducing an appropriate tangential
weight that allows us to gain up to - in the tangential direction also.

Zi

This yields a total gain of —.— = 1 which produces the sharp mapping
properties when n = 3.

3.1. An application.

We will use a refinement of Theorem 6 in proving our sharp 3-
dimensional results in the next section, but first we give an application to
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a special class of surfaces in any dimension. We start by giving conditions
under which estimate (14) holds.

THEOREM 7. — Let <I> be homogeneous of degree m with level set
E == {<!> = 1} containing a copy ofS^ = Sk x r1-2-^ and such that the
Gaussian curvature ofS is non-zero outside this copy ofSfe. Then with
F|; ($)as in (13), we have

|^(OI^Ci^)(l+|$|)-4-1

forRe^+^^l+t.

In light of Theorem 6, we now have the following corollary.

COROLLARY 8. — Let S be the graph of $ where <I> is as in Theorem

7 above. IfT is as in (6), then the norm inequality ( 2) holds for ( -5 - )

in the trapezoid Q ( k + 2, ——— ).
\ ^ /

Proof (of Theorem 7). — We compute

^ (0 = / ^(^+<^%) |̂  (^)l^ ̂  (^) dx'

--I'L^^r'"'^
where da is surface measure, upon using polar coordinates, makinguj
the change of variables sending a; € -S^ to ———j-, observing that

(^(d;)7"

<|> ( ———^ 1 = I? ̂ d computing the corresponding Jacobian (see [loSa]).
V^(^/

Note that since <1> is elliptic, Euler homogeneity relations imply that |V<I>|

is bounded from below. Thus a ' 1 = d? {'n) is a smooth measure on
|V^)|

Sfc. We first integrate in the angular variables using stationary phase to
see that

/.y^r6'"0 '̂-
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where q ($) w v^+...4-^ and 6 is a symbol of order -k in the variables
$i,...,$fc, i.e.

^...^(ol^^o+^or^1'1.
It remains to consider the radial integral :

(20) F e^^^+Arm)rn-2rm^ (rQ ̂  (r) dr
^0

/ /»A~ m .̂00 \

(21) = / + f } = I + I I .
^JO J A - m /

Note that
/ i \ n—l+Re-2;

| / |<C(A-^J , fwRez^l-n.

For I I we change variables r —> r\~~k to get

II = X———— f^ e^^r-^ (rX-^) ̂  (rX-.) dr.

The phase function 0(r) = rq{^)\-^ + r171 has the critical point ro =
/ q (^) \ ^^ 1
( —X J • we first consider the case ro > 2, set A = —o ($) A-^ and\m\m / m
decompose the integral into three pieces as follows:

. ,-^1-J ^A7?rrT /l2A^ />w \
^A^AT p2A~^

JJ=A"^-| / + / +
'1 ^^A^-T J2A^-T

= A ^ ^ / + / 4 - /
\7l J^A-^ J^A-r^ j

= x-^-2 (in + iv + Y).
Terms JJJ and V are easily handled by integrations by part. We

illustrate with term V. We have

v = £^ ([̂ r ew) r"-2rm26 (^-^) ̂  (rX-.) ,r

where |^(r)| > cr7"-1 and 6(rA-^^)| < (7 (l+^-^9(0)"^ s£

C (1 + rA)~5. Integrating by parts N times, we thus get
(22)

v = £^eiw [^]N (rn-2^ ̂  ̂  (^--)) ̂
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plus N boundary terms of which the largest is the first:

y.n-2y.m^ (r\-^^\ ̂  (r\-^\ I7"
.̂ (r) ________V . s/ r \ /

<^(r)
r=2Am-l

<c
. n—2+mRez( , \ n—z-^-mtwz

A^r) (A^r)
TO-l

(A^)-

-S
<c

provided n — 2 + mRe (2;) — m- — (m — 1) ^ 0, i.e.

(23)
_ , . fc , n — 1
Re(^)<^4-l--^- .

The integral in (22) is dominated by

N

f\ ̂ (r) [^^1 (r^r-h (rX-^fi) ̂  (rX-^)) drJ2A^-r \_dr(f) '{r)\ \ \ 7 \ / /

^ / , -̂̂ ^ (rA)"1 r-^dr ^ CN
JaA7^-1'

for JV large enough since

Kl^f^-*^ ^Gr-S^A-^
LdrJ \ /

\ d ] ^(r\~^} ^C(\~^Y3 ^Cr~3 onsupp^|_drJ \ / \ /

[dr\ ^(r)
^ Cr-^1-3

for j ^ 1. Altogether this shows that term V is bounded provided (23)
holds.

The main contribution comes from term IV. Recall the critical point
_j_of the phase function (j> (r) = rq (^) A m 4- 7^ is ro

= f^iy
\77T,A^ /

A'^~1. On the support of integration, (j)" (r) » A^^^^ and so by the van der



1^4 A. IOSEVICH, E. SAWYER

Corput lemma, we have

p2A~^=^

1^1 = /^ e^r^r-b (rA-^) ̂  (r\-^) dr

^C^ir^rr^^^A)-^

^ CA-^+^+2^-2(Ay.

This latter expression is bounded provided

k+1 n-1Re (z) ^
2 m

Combined with (23), this shows that \II\ is dominated by A-^-^) for
, . fe+ 1 n- 1Ke W ^ —^— - —^- as required in the case ro > 2. If ro < 2, we estimate

I I directly by integration by parts just as in our estimate for term V. This
completes the proof of Theorem 7.

4. THREE DIMENSIONS

In this final section, we obtain sharp weighted decay estimates for
surface earned measures that will enable us to obtain almost the full
decay of —y- = 1 with appropriate radial and tangential weights (see
Theorem 11 below). This then allows us to give sharp LP - V estimates
for our averaging operators with nondegenerate ^ in n = 3 dimensions (see
Theorem 12 below).

DEFINITION 9. — ^ is said to be nondegenerate if V^ (x) ^ 0 for
x ^ O .

An important part of our argument is the following geometric obser-
vation.

LEMMA 10. — Let ZQ = {(x^x^) : ^(x^x^) = 0}. Let Zi =
{(^1,^2) : V^i,^2) = (0,0)}. Let Z2 = {(x^X2) : H^x^x^) = 0},
where H^{x^x^) denotes the determinant of the Hessian matrix of $

N,

Then for each j = 0,1,2, Z, = {(0,0)} |j |j L^ where each L{ is a line

through the origin, and Nj < oo. Moreover, Zi = ZQ [\Z^.
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Proof. — Let <I>j denote the partial derivative of <I> with respect to Xj.
Since <I> is homogeneous of degree m, <I>j is homogeneous of degree m - 1,
and ^(3:1,^2) is homogeneous of degree 2(m - 2). By homogeneity, if
Zj contains a point (^1,^2), it also contains a line through the origin
containing that point. Since ^ is a polynomial, there can be at most a
finite number of such lines. This proves the first assertion of the lemma.

By the Euler homogeneity relations,

77^(^1,3:2) ==a;i^i(^i,^2)+ ^2^2(^1,^2),
(m- 1)^1(^1,^2) = ^1^11(^1,^2) + ^2^12(^1,^2),
(m- 1)^2(^1,^2) =^i^2i (^1,^2) +^2^22(^1,^2),

where {^jfc} denotes the second partial derivatives. Hence, ZQ D Zi.
If we write the equations for <I>i and ^2 in matrix form we see that
(^ _ l)V^(a;i,a;2) is obtained by applying the Hessian matrix of <I> to
the vector (x^x^). Hence, Z^~^ Z\. Putting these observations together
we see that ZQ H Z^ D Zi.

Conversely, suppose that both <I> and Jf<l> vanish along a line through
the origin, which without loss of generality we take to be the x\ -axis.
Then since m^(a;i,0) = a;i<l>i(a;i,0), we conclude that ^i(a;i,0) = 0. Also,
(m- l)^i(rci,0) = a;i^n(a;i,0), and this then implies that ^n(a;i,0) = 0.
By assumption,

H<S>{x^O) = ̂ 11(^1,0)^22(^1,0) - ̂ 2^i»°) = °-

Since ^11(^1,0) = 0, we conclude that ^12(^1,0) = 0, which implies
that ^2(^1,0) = 0 since ^2(^1,0) = a^2i(^i,0). This proves that
V^(rri, 0) = (0,0) and hence that Zi D Zo D ̂ 2. This completes the proof
of the lemma.

Since we are assuming that <I> is nondegenerate, i.e. V^(a;i,a;2) = 0
iff (a;i,a;2) = (0,0), Lemma 3 implies that Zoft^ = (0,0). By Lemma

N
3, ^2 = U ̂  where N < oo and each Z^ is a straight line through

j=i
the origin. Let Sj be a sector which contains Lj. More precisely, let
Lj = {(r cos Oj,r sm0 j) : r > 0} and let

Sj = {(rcos(?,rsin<9) : r > 0,^ - e ^ 0 ^ 0j + e},

where e is chosen to be small enough so that Sj Q S^ = {(0,0)} if j ̂  j ' ,
and5,n^o={(0,0)}.
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In order to obtain a sharp version of Theorem 6, we will need decay
estimates for the Fourier transform of surface carried measures weighted
not only by |$ {x')^ , but also by what is essentially an appropriate local
power of \H^ {x')\. Let

N

A(x)= ^[[(O-Ok), /ora;=(rcos0,rsin0).
fc=i

Then we have

THEOREM 11. — Suppose that ^> is a nondegenerate homogeneous
polynomial of degree m, and let

Fa ($, A) = / e^1^2^^1'3^ ($ On, x^T |A (x)^ ^ (x^X2) dx^.

Then

^(^^(l+IAI+l^l)-*-0,
2

when 0 < a < 1 — —.m
Note that for nondegenerate homogeneous $, the zeroes of $ \sn-l

are of first order since 0 = m$ (x) = x • V^> (x) implies that V^ (x) ̂  0 is
tangent to i?71-1. Consequently, ^-1 € Z^ (S71-1) for all 0 ^ p < 1. Thus
the next result can be viewed as extending the conclusion of Theorem 3

/ 2\ / 2 \from Q ( 2, — ) to S | 3, — ) in dimension n = 3 for such $.Y m/ Y m/

THEOREM 12. — Suppose that $ is a nondegenerate homogeneous
polynomial of degree m, and let Tf(x) be defined as in (6) with n = 3. Then

estimate (2) holds if ( -, ~ ) is contained in the interior of the trapezoid
\P Q/

Q [3 , — }. The vertices ( ——. ——- ) and (m—. m—-} (and the
\ ' m ) V?n+2'm+2/ \ m + 2 m + 2 / v

segment connecting them) are not included.

The scaling argument in the introduction shows that this last result
is sharp. The result itself follows from the decay estimate in Theorem 11
in the same way that Corollary 8 follows from Theorem 7 above. More
precisely, we need the analogue of Theorem 6 with the weight A (x) thrown
in. This in turn requires only two superficial changes. First, the L°° bound

^
m

in (16) follows from the integrability of |̂  {x)^ A (a;)^ for Re(z) >
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Second, the number N in the second estimate in (16) should be set to 3.
The proof then proceeds as before but using Theorem 11 in the appropriate
place.

Proof (of Theorem 11). — Our plan is as follows. Outside the sectors
Sj, the Gaussian curvature vanishes only at the origin. In that region we
shall obtain the desired result by using a scaling argument which relies
on a dyadic decomposition away from the origin. Inside each Sj we shall
separate variables in polar coordinates, taking advantage of the fact that
^\s- does not vanish except at the origin.

Let p be a smooth cutoff function supported in the intersection of
M^USj and the annulus {(^1,^2) : 1 ^ V^ + x^ < 4} such that

( XY. p(2kx^,2kX2) =- 1. Let ^ denote the characteristic function of ( |j Sj \ .
V /

Then F^, A) = Fi,a($, A) + F^, A), where in local coordinates

Fi,a ($,A) = />e^l^l+^2+<&(a;l'a;2)A)^(a;l,^2)^(^l^2)x(^l^2)^l^2.

Let

pk (C \\ ̂  [ p^i^i+^2^2+^(a;i,a;2)A)

p(2kx-i, 2kX2)^oi(x^, x^{x^x'2)dx^dx2.

Note that since each S. is invariant under isotropic dilations and -0 is radial,/ V
'0(^1,^2) xp(2kxz,2kX2) is supported in the intersection of ( \JSj ) and

V /
the annulus

{(^^2):2-2^^+^^2-2( fc- l)}.

Also.E^L^)-^^)'
k

A change of variables and homogeneity show that

F^ (^A) = 2-2k{2-mkaF^{<2-k^2-k^2-rnkX).

Since F^ ($, A) is defined over a smooth piece of the hypersurface where the
Gaussian curvature does not vanish, it is known that \F^^ (^, A) | ̂  C'IAI"
(See e.g. [St2], p. 348). We shall also use the fact that \F^ ($, A) | ̂  C. We
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must estimate ^2~2k2-mkaF^(2~k^,2~k^^~mk>)' Splitting up the
k

sum, we get

^ 2-2^2-^° p^ (2-^1,2-^2,2~mkX)
fc

^ X ^ o—2A;9—7nfca/'\ _i \ ^ fy—'ikc\—'m.kcx.f\

IAI^Z^ IAI^^

To estimate the first term we use the fact that \F^ ($, A) | ^ (7[A|~1,
whereas to control the second term we just use the fact that F^(^) is
bounded. We then see that the absolute values of the first and the second

2 2
terms are both bounded by C\\\~~m~a^ provided that a < 1 — —. This
completes the argument if [A| ^ C{\^\ + \^\)' However, if |A| ^ (7([$i +^1)
for a large enough constant (7, the gradient of the phase function of F\^ ($)
never vanishes, and so an integration by parts argument shows that the
integral has rapid decay in ($i,$2) (see e.g [St2], p. 341).

Remark 3. — Note that if there were no cutoff function ^, we would
be forced to sum over negative k ' s also. However, these are easily handled as
follows. Ignoring the weights l^l" [Al'2"", which play no role in estimating
F\ a anyway, we have

|̂ ,a (^A)| = 22^ |Fi°, (2^,2mfcA)| ^ C (2-(m-2)fcA)-l,

which sums up over negative k ' s to A~1. We make no assertion regarding
decay in ^ in this case.

Hence, \F^a ($,A) | ̂  C(l 4- l^l)"^"0, if a < 1 - -2-. Note that if
l i b

ff$ only vanishes at the origin, F\^a ($?^) = Fa ($?^) ^d thG argument
above finishes the proof of the theorem. In the general case however, we
must estimate -F2,a ($5 ^)-

Let F^ ̂  ($, A) denote the localization of ^2,0 to the sector 5';. In local
polar coordinates,

/T^j+e
^a (^ A) = // e^(^lco^+^2s%n0+Arm^(t<;))rrma^a(a;)/0(r)A(ra;)^Qd(9dr

' JJffj-e
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f r0^6 -z(r^i ^ +7^2 s]ne +^7^)) / y. \
= e ^rn(^) ^m(o,) rrrnct'^b{—,——I

7 4-e 'W(o;)7

( \ £^a

^-^(o;)A ^ ) d0drv / ^(uj)j

= 1 1 e-^^l^l+rc^2+Arm)rrmQ^(r|^|)dc^A(^)madr,
J J^j I V^l/^l

where uj = (cos 0, sin 0), £^- = {p, € 5j : ̂ (/^) = 1}, and da(p) denotes the
Lebesgue measure on Sj.

In the second line above we made a change of variables sending
r —> r^~~m((jj). In the third line we made a change of variables p, =

——j^———, observed that by homogeneity ^(fji) = 1, and then computed
^~m((jj)

the corresponding Jacobian. We also used the fact that A(r/x) = A(^).

Note that since inside Sj, <I> does not vanish except at the origin, Ej is
a compact smooth curve in the plane. The smoothness follows from the fact
the the restriction of the gradient does not vanish, and from the implicit
function theorem. Also note that our assumption that the gradient of <I>

does not vanish away from the origin guarantees that da'^i) = — i s
a smooth measure on Ej. Since each 5j contains only one line where H^>
vanishes, Sj has exactly one point where the curvature vanishes. Since ^
is a polynomial, the curvature at that point cannot vanish of infinite order.
Hence, at that point Sj is a curve of finite type M, 2 ^ M < oo.

We shall first analyze the integral over Sj. Our observations above
show that after perhaps applying a linear transformation,

S, = {(5, ct> (s)) : ̂  (0) = 0, k < M, ^M) (0) = 1, H < c} .

Applying Taylor's theorem we see that (j)(s) = ^(s)^^ where g is smooth
and g(0) = 1. Hence, the integral over Sj can be written in the form

U^2) = fe-i^s^rsM^^s^p(s)ds,

where without loss of generality p is a smooth cutoff function supported in
the interval (—2,2) and p = 1 near the origin. As before we may assume
that |^i [ ^ C\^\ since otherwise the phase function in the expression above
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has no critical points and so an integration by parts argument shows that
the integral has rapid decay in [$i|.

Let po be supported in the interval (1,2)(J(-1,-2), such that
EA^slEEl.Let

4,a($i,$2) = [e-i^^rsM^s9ap^2ks)ds.

Each Ik,a is defined over a a dyadic piece of Ej where the curvature does not
vanish. To take advantage of this fact we shall need the following stationary
phase result (see e.g. [So], p. 48).

LEMMA 13. — Let S be a smooth hypersurface in R71 with non-
vanishing Gaussian curvature and dp, a smooth compactly supported
measure on S. Then

|̂ (0| ̂ const.(l+|$|)-^.

Moreover, suppose that F C R^ {0} is the cone consisting of all ^ which
are normal to some point x € S belonging to a fixed relatively compact
neighborhood M ofsupp dp. Then

(^) ^(0=0(1+1$!)-^ V7v, if^r,

^(O-E6"^^^ i^er,
where the finite sum is taken over all Xj e At having $ as the normal and

^\a - /^l ^ ̂  /-. . i^x-21-l-l.vl|(^)\(0 ^(i+[d)~

If we make a change of variables sending s —> 2~ks, we get

4,^1,6) = 2-^2-^ />e-^(2-fcr^+2-MfcrsM^2-fcs^)^^,(5)^.

The idea here is that as k —^ oo, fi^"^) -> p(0) = 1 and hence
4,a($i,6) ^ S-^-^Jo,^-^!^-^^). Using Lemma 4 we write

4,a(^6) = 2-fc2-?ae^fe(2~fc^'2~Mfc^)6,,,(2-^l,2-M^2),

where each bk is a symbol of order -. qk is a homogeneous symbol of
order 1, and the Hessian of g^ has rank one everywhere.
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Note that since the Gauss map is smooth, for k large,

^(2-^1,2-^2) ̂  9(2-^1,2-^2),

where q is the phase function given by Lemma 4 corresponding to the curve
(^(O)^). One can check by a direct computation (see e.g. [lol], proof of
Theorem 1.1) that 9(2-^1,2-^2) = g($i,$2). In fact,

Î̂ T
^^)=c^^.

It also follows that there exists a uniform constant C > 0 such that

C l̂̂ î )! < 1^(2-^1,2-^2)1 ^ C\q(^^

Similarly, {&fc($i,$2)}fc is contained in the bounded subset of symbols of
order — i.e,

(24) \D^b^i^2)\ ^ C î| + Î D- Î,

where C is a uniform constant.

We must estimate

/>oo\"2-fc2-^afce-^(r^fc(2"^112"M^2)+Arm)bfc, W^r^-^rr^dr.
^ k

After interchanging the sum and the integral and making a change of
1 2variables sending r —^ rA-^, we get A~^ x

(25) ^2-^2-^° /^e-^^2"^1'2"^2^"*"^^
fc yo

&fc,aKlA-*2-fc,r$2A-*2-Mfc)rrmQdr.

We estimate the integral first. Let ^(r) = rAk + y^1, where

Ak = gfc(2-^l,2-Mfc$2)A-^ ^ g($i,$2)A-^ = B.

Differentiating we see that the critical point is at ro = CA^1"1, whereas
^"(r) = G^-2. We split up the integral in (25) into three parts: f^° =

Jo2 ~*~ f^-0 ~^ f^ ' ^^ ^lrs^ an^ ^^^d integrals are handled by integration
by parts just as in the proof of Theorem 7. The main contribution comes
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from the second integral f^°. Applying the van der Corput Lemma (see
e.g. [St2], p.332) we see that the expression in (25) is bounded by

(26) IAI-^-^IBI-^T^+^-T+T^ ̂ 2-^2-^^
k

\b(r^X-^2-\r^\-^{2-lk)\.

We may assume that \Ak\ is large because if not, an integration by parts
as in the proof of Theorem 7 yields the correct decay. We may assume that
|$i| + 1^21 ^ C\\\ for a sufficiently large (7, since otherwise an integration
by parts argument shows that the integral in question has rapid decay in
1 ^ 1 + 1 6 1 .

We are left to estimate the sum in (26). Recalling the definition of A^
and using estimate (24), we get

^-k2-9Qk\bk(r^\-^2-\r^\-^2-Mk)\
k

^C\B\~^^ ^ 2- fc2Mfc2-¥afc+C f ^ 2-^2-^.
B-^I^-W B^1^-1^

Since m ̂  M, both terms are dominated by C'lBl"'"^"1"^^. Hence, we
see that the expression (26) is dominated by

(27) |A^^-Q|B^2&+^^.
2

Using the fact that a ^ 1 - — and that \B\ is large, we see that (27) is
--2-- m

dominated by C\\\ m Q!, which completes the proof.

Remark 4. — Again, as in Remark 3, it is not hard to see that
this estimate for F^^ remains in effect when there is no cutoff function -0.
Again, we make no assertion regarding decay in $ in this case.

4.1. An application to a class of dispersive equations.

LEMMA 14. — Let m > 1 and _ < Re(a) < m. Then for s € R,

I ̂  ̂ --mst^-^ ^ ̂  (i ̂ . |,|)̂ ^ ^

I./O

where, for m and Re(cr) fixed, Cm,o- is polynomially increasing with 1m (a).
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The next result follows from Lemma 14 and the latter part of Theorem
11, including Remarks 3 and 4.

THEOREM 15. — Let

F^,A) = [ei^•^x<s>^<S>z(x)A!y(x)dx,

where <I> and A are defined as in Theorem 11 above. (Note that the integral
is over the whole space, i.e. there is no cutoff function.) Then

iF^A^GIAr^-1^, Re(z)<l-2

iTv

THEOREM 16. — Let

^(^t)=ye^(a;•^t^))|P(^A($)^|(l-^)/(0^

where P is a nondegenerate homogeneous polynomial in two variables of
degree m > 2, and A is defined as above. Then for any e > 0,

(28) IM^ l̂-^-) ll/ll̂ .

Proof. — When Re(0) = 0, inequality, (28) holds by PlancherePs
theorem. When Re(0) = 1, inequality (28) follows from Young's inequality
and Theorem 15 above with (^, A) replaced by {x — y ^ t ) , and upon writing
p($) as an integral in y. An application of Stein's analytic interpolation
theorem then yields the result.

Remark 5. — Note that if 0 = 0, UQ = UQ is the solution for the
initial value problem (4) in the introduction. If we ignore the zeroes of
P and A, and observe that P is homogeneous of degree m and that A is

2
homogeneous of degree 0, then (28) with p = -——-, says that UQ (-,t) has1 + u

/2 \ /essentially (m — 2) ( - — 1 ) derivatives in L^ when /C l^ l^p^ .
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