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SCATTERING THEORY FOR 3-PARTICLE SYSTEMS
IN CONSTANT MAGNETIC FIELDS :

DISPERSIVE CASE
by C. GERARD and I. LABA^*)

1. Introduction.

A system of N interacting particles of masses mi and electric charges
qi in a constant magnetic field B == (0,0,2&) in R3 is described by the
Hamiltonian

N .
(1.1) H=^——{D,-q,Jx^^V^x,-x,)^

1 zmi i<3

where J is the vector potential associated with the field. We will use the
transversal gauge in which J is the skew-symmetric matrix

/O -b 0\
(1.2) J:= [ b 0 0 .

\0 0 O/

We consider the case when N = 3 and assume that all of the particles are
charged, i.e., ^ ^ 0 for 1 ̂  z ^ 3. No other conditions on the charges of
particles will be needed. In particular, the system is allowed to have neutral
proper subsystems (pairs).

The main task of scattering theory is to describe the large time
asymptotic behaviour of the solutions of the Schrodinger equation

.9u
^-9t=HU•
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For an TV-particle system described by (1.1), with pair interactions V^
vanishing at infinity, one expects that it either remains stable or breaks
up into asymptotically independent stable subsystems called clusters. This
statement cast into precise mathematical terms is called asymptotic com-
pleteness.

In [GL1] and [GL2], we proved asymptotic completeness for short-
range and long-range systems of TV charged particles in a constant magnetic
field, under the assumption that they have no neutral proper subsystems.
In this paper, the latter assumption is not required. However, our results
are restricted to the 3—body case, and to Coulomb-type interactions.

We saw in [GL1] that the behaviour of noninteracting clusters depends
on their electric charge. Bound states of charged clusters escape to infinity
only along the field and their transversal to the field coordinates remain
bounded. On the other hand, bound states of neutral clusters may travel
across the field with a nonzero average velocity which depends on their
internal structure. We emphasize that this has nothing to do with the
free motion of the center of mass which occurs in the absence of external
forces. Noninteracting charged particles, quantum or classical, can perform
only bounded motion in the directions transversal to the magnetic field;
whether the sum of their electric charges is zero or not is irrelevant. The
motion of clusters of charged particles across the field becomes possible if
the Lorentz forces are cancelled by the interactions between the particles.
This can occur only for bound states of neutral clusters. We call this
case dispersive^ since the effective kinetic energy of such states is given
by a certain dispersive Hamiltonian. For a more detailed discussion of the
properties of bound states, we refer the reader to [GL1].

It is expected that if an TV-particle system breaks up into clusters
moving away from one another, the asymptotic behaviour of these clusters
will be similar to that described above. Thus, if neutral clusters are present,
there will be scattering channels corresponding to the unbounded motion of
those clusters across the field. The mathematical analysis of these channels
is significantly harder than that of channels involving only charged clusters.
Before we state and prove our results rigorously, let us describe heuristically
the general outline of the paper, the main difficulties we encountered in
solving the problem and the methods we employed to overcome them.

Our main result - asymptotic completeness - is stated in Section 4
(Theorem 4.5). In order to formulate it rigorously, we first need to review
our discussion of the separation of the center of mass ([GL1]), which will
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allow us to introduce a suitable notion of reduced Hamiltonians. We do this
in Section 3. The bound states, scattering states, and channel identification
operators are defined in Section 4. Our assumptions on the pair interactions
Vij are stated in Section 2, where we also review the notation used in this
paper.

The main steps in our proof of asymptotic completeness are the
following. We first prove the Mourre estimate (Sections 6 and 7), from which
the minimal velocity estimate follows (Section 8). This shows that, for
states orthogonal to the bound states of the system, the system breaks up
into clusters moving away from one another with nonzero relative velocities.
To decouple the different scattering channels, we apply standard arguments
(i.e., the construction of the asymptotic velocity - see Section 4) to the
propagation in the direction of the field, and use the methods of [GL2] to
treat the propagation in the transversal directions (Section 9). Finally, in
Section 10 we combine these results to replace the exact evolution e'^11 of
the system by the asymptotic evolutions used in the definition of the wave
operators.

The proof of the Mourre estimate contains most of the new ideas in
this article. Since this part of the paper is also quite technical, we explain
it here in some detail.

Given two selfadjoint operators: H and B, we will say that B ^ c
at H = X if E^(H)BE/^(H) ^ cE^(H)2, provided that the interval
A = (A — <$,A + 6) is sufficiently small (see Definition 5.1). We will also
use the notation :

inf B = sup{c e M B ^ c at H = X}.
H=\

We say that H satisfies the strict Mourre estimate with the conjugate
operator A at energy A if

inf [H, iA] > 0.H^X' J

The importance of the Mourre estimate in spectral and scattering theory for
multiparticle systems is well-known (see e.g., [Mo], [PSS], [SS1-5], [CFKS],
[DG], [HuSi]). If H satisfies the strict Mourre estimate at all points A
in an interval J, its spectrum in this interval is absolutely continuous.
Moreover, one obtains the limiting absorption principle, local decay and
minimal velocity estimates. In particular, the Mourre estimate is a key
part of the existing proofs of asymptotic completeness ([SS1], [Gr], [Del]).
For this purpose, one needs to show the Mourre estimate for all values
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of A, except possibly for a closed and discrete subset of R, consisting of
thresholds and eigenvalues of H. (In fact, one first has to show that, up to
a compact error, a similar estimate holds at all points, including possible
eigenvalues of 7J, away from the threshold set, and then deduce from this
the above statement. This step will not be discussed here; an abstract
version of the argument involved is given in Lemma 5.4.)

In [GL1], where we proved the Mourre estimate for Hamiltonians of
the form (1.1) under the assumption that all proper subsystems are charged,
the main difficulty was that conventional separation of the center of mass
motion was not possible. Instead, we had to exploit the fact that the mag-
netic Hamiltonian has a constant of motion called pseudomomentum, and
define the reduced Hamiltonians using suitable unitary operators Ua- The
rest of the proof of the Mourre estimate was similar to that for TV-particle
Hamiltonians without a magnetic field. For comparison purposes, let us
sketch it briefly. Let A = ^ {{Dz, z ) + {z, D^)) be the generator of dilations
in the direction of the field. A standard argument involving a partition of
unity shows that one can obtain the Mourre estimate for H, with A as
the conjugate operator, from similar estimates for the Hamiltonians Ha of
noninteracting clusters (given a cluster decomposition a, i.e., a partition of
the set {! , . . . , N} into disjoint nonempty sets, Ha is obtained by subtract-
ing from H the interactions Vij between particles belonging to different
clusters). We assume that all clusters in any decomposition a consisting of
at least two of them are charged. We then have

^=|<+^a,

where _ D^ is the kinetic energy of the motion of the centers of mass of
z

the clusters in the direction of the magnetic field, and Ha - the energy of
the motion within clusters together with the energy of the bounded motion
of their centers of mass across the field.

To prove the Mourre estimate, we proceed by induction in a. If
^ = ^min is the decomposition into N clusters, each consisting of one
particle, H^^ has only pure point spectrum (the Landau levels of the
noninteracting particles). Then

^J^,,.A]=^^>0,
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if A ^ crpp^""""). For a ̂  amm; we obtain that

inf [H^iA] = mf « + [H^iA])
Ha—A -"a—• / l

= inf ( inf D2, + inf [i^.zA])
Xi+\2=\^D^=\i ° ^a=A2L J/

inf (2Ai+ inf [^.zA]).
Ai+A2=A,Ai^O v ^=^2 /

By the previous step of induction (i.e., the Mourre estimate for jy"),
inf [Ha,iA} > 0 if Aa is not a threshold or eigenvalue of H0^^ Hence

H0' ==A2

the right-hand side of the above equation is strictly positive unless Ai = 0
and A = Aa is a threshold or eigenvalue of ft".

If the total charge Q = ̂  ̂  of the system is nonzero, one eventually
obtains the Mourre estimate for H with the conjugate operator A at all
energy values A € R\T, where the set r (consisting of the eigenvalues of Ha
for all a) is closed and discrete. If the system is neutral (Q = 0), the result
is similar, except that the Mourre estimate is localized not only in energy,
but also in pseudomomentum. Consequently, for all scattering states of the
system (defined in Section 4), the clusters separate with nonzero relative
velocities in the direction of the field.

This picture changes radically if we allow the system to have neutral
subsystems. Let N = 3, and consider the Hamiltonian Ha of noninteracting
clusters for a cluster decomposition a = {(1,2), (3)} containing a neutral
pair (1,2). We have

TT j~)2 i rja.c i rra.n-"a = -^D^ -\-H ^ +H ^

where - D^ is, as before, the kinetic energy of the motion of centers of^
mass of clusters along the field, H01^ is the kinetic energy of the motion
of the third particle across the field (the spectrum of H0'^ consists of its
Landau levels Aj), and H0'^ is the Hamiltonian of the neutral pair (1,2)
with its center of mass motion along the field removed.

The separation of the center of mass motion across the field, and the
corresponding notion of reduced Hamiltonians, for the neutral pair is rather
different from either the charged case or the free case (with no magnetic
field). We use the fact that the pseudomomentum k of the neutral pair
commutes with Jf"'", to write H01^ as a direct integral

rw
= / H(k)dk,11^=

Jp2
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where each H(k) acts on L2^3). If, as before, we let A = , ( (Z^,^) +
z

(^Z^)), we may have

inf [^A]= inf DJ =0,
Ha=\ J J^a=A ^

whenever A — Aj € o-pp(H(k)) for some j G N and fc € M. The set of such
values of A cannot be expected to be discrete. In fact, suppose that there is
an eigenvalue E(k) of H(k) with the corresponding eigenprojection P(A;),
satisfying suitable regularity assumptions (stated in detail in Section 4).
Let

re
= / P(k)dk.

Ju
P=

Ju
Since A commutes with fc, we have

/.e
P[HaJn,^A]P= / P(k)[H(k),A]P(k)dk=0,

Ju

by the virial theorem. (The same argument shows that the Mourre estimate
cannot hold for Ha with any conjugate operator commuting with k.)

Let Ba,p = ̂ P^kE{k),Dk) + {D^kE(k)))P. Then

/•©
P[Ha-n,iBa,p]P= / \^E(k)\2P(k)dk,

Ju

and its infimum at Ha = A is strictly positive, provided that A — Aj is not
a critical point of E(k) for any j € N. The set of such critical points can
be excluded as a secondary threshold set (Definition 6.6).

This is the main idea behind the construction in Section 6.2. Namely,
we define the conjugate operator for Ha as A+cBa, where Ba is essentially
the sum of operators Ba,p of the above form for all possible eigenvalues and
eigenprojections E(k) and P(k). One then has to use the local inequalities
for commutators (for a fixed value of A;, or for k in a neighbourhood of
a point) and continuity of the operators involved to obtain inequalities
uniform in k. This part of the proof is rather technical.

Note that the definition and properties of the operator Dk appearing
above depend on the choice of the direct integral representation of Jf"'".
Throughout this paper, we will use the representation described in Section
3, and it is in this representation that Dk will always be defined.
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The physical interpretation of the above argument is as follows. It was
shown in [GL1, Proposition 6.4] that, for a bound state u of the neutral
pair such that Pu = n, ̂ kE(k) is the average velocity of the center of mass
of the pair. Thus Ba can be understood as (^, z^), where y^ is the position
of the center of mass of the pair, and v^ - its velocity. However, we must
warn the reader not to take this too literally, since v^ is only the average
velocity over long periods of time (the actual velocity is not constant), and
neither is Dk simply identical to y^.

The conjugate operator for H is obtained by gluing together the
different conjugate operators for the channel Hamiltonians Ha : A + cBa
for the cluster decompositions which contain a neutral pair, and A for
those consisting of only charged clusters. The details of this construction
are explained in Section 7. In particular, our argument showing that the
"cross-terms" ([^, Ba} for a -^ b) are small uses that for 3-particle systems
the regions of configuration space corresponding to different two-cluster
decompositions are disjoint.

Another point which we would like to mention here is the decoupling
of the channels transversally to the magnetic field. To prove asymptotic
completeness, we must show that the system cannot oscillate between
various configurations containing neutral clusters. Once more, we use
in an essential way the fact that we deal with a 3—particle system.
Different 2—cluster configurations can then interact only through the free
region where all three particles are well separated. However, since these
particles are charged, an argument from [GL2] shows that the free region
is inaccessible to scattering, which leads to the asymptotic decoupling of
the 2—cluster channels.

The last step in the proof of asymptotic completeness is the analysis
of the dynamics of the clusters moving away from one another with nonzero
relative velocities. It is well-known that, while for short-range systems the
motion of the centers of mass is asymptotically free, in the long-range case
a modified asymptotic dynamics has to be used instead. More precisely,
one shows that for large time the evolution of the system is approximated
by

^iSa^Da^^-itH0'

where 5a($a^) is an approximate solution of the classical Hamilton-Jacobi
equation, and e~^tHa is the internal dynamics of the clusters. A key point
is that Sa and H0^ commute, so that the internal and external dynamics
are decoupled.
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For a neutral cluster in a magnetic field, its internal structure and
the motion of its center of mass in directions transversal to the field
are interdependent. If an additional long-range time-dependent force (the
intercluster interaction) is present, we expect that, as for standard TV-
particle systems, the center of mass dynamics has to be modified. This,
however, cannot be done without altering the internal structure of the
cluster.

For the physically important Coulomb potentials (or, more generally,
for Coulomb-type interactions - see Definition 2.1), the problem becomes
much easier. Given a cluster decomposition consisting of a neutral pair (1,2)
and a charged particle (3), we first replace the coordinates of the particles
1,2 by the coordinates of the center of mass of the pair. We then use that,
for such potentials, the total interaction between the pair (1,2) and the
particle (3) is short-range. Hence, although the neutral pair can escape
to infinity across the field, no modification of the asymptotic evolution in
transversal directions will be needed. We do not know how to solve the
general long-range 3-body problem, which seems to be much more difficult.

The phase-space analysis of scattering and time-dependent approach
to proving asymptotic completeness was initiated by Enss [El]. This
approach turned out to be particularly successful in the TV-body scattering.
The three-body long range problem was solved by Enss in [E2]. Asymptotic
completeness for TV-body systems with short-range potentials was proved
by Sigal and Softer [SS1], who also developed many of the techniques used
in the long-range case [SS2], [SS3], [SS4]. A geometrical construction due
to Graf [Gr] simplified considerably the original proof of [SS1]. Finally,
asymptotic completeness in the long-range case was proved by Derezinski
[De] and Sigal and Softer [SS5].

One of the most important tools in scattering theory, which also turns
out to be essential in our work, is the method of positive commutators.
Although it can be traced back to earlier work of Kato, Putnam, and
Lavine, its usefulness was limited until the discovery of the Mourre estimate
[Mo]. For TV-body systems the Mourre estimate was first proved in [PSS];
a simpler proof was given later in [FH]. This method was further developed
in numerous papers, including [BG] and [SS1], [SS2], [SS3].

Prior to our work ([GL1], [GL2]), very little was known about
multiparticle scattering in a magnetic field. In the case of one particle
in a constant field, asymptotic completeness for short-range and Coulomb
potentials was shown in [AHS1]; a different proof was given in [S]. The
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separation of the center of mass in the presence of a magnetic field
was considered in [AHS2]. The general long-range one-body problem was
solved in [LI] and [II]. Long-range two-particle systems with total charge
zero were studied in [L2] and [II]. In [12], Iwashita obtained the Mourre
estimate for reduced 3—particle Hamiltonians in certain special cases.
Asymptotic completeness for TV-particle systems containing no neutral
proper subsystems with short and long range interactions was proved in
[GL1] and [GL2] respectively. Let us also mention the paper [VZ] on the
spectral theory of TV-particle Hamiltonians with a constant magnetic field,
and several articles on one-particle scattering in a magnetic field vanishing
at infinity ([BP], [E3], [LT1], [LT2], [Ni], [NR]). In this paper, we also
draw upon certain ideas used by Derezinski in his study of dispersive
Hamiltonians ([De2]).

2. Notation.

We will first review the notation of [GL1] and formulate the hypothe-
ses we will impose on the interactions.

The coordinates in the configuration space X = R3^ will be denoted
by

x = (a;i,...,;r^v), X i = { y i , Z i ) ,

where (^, z^) = (yi^Vi^Zi) € M2 x R are the coordinates of the z-th particle
in the plane transversal to B and along the direction of B respectively. We
equip X with the metric

N

g{x,x) =^miXiXi.
i

Let us also introduce the TV-particle vector potential A:

A(a;i, . . . ,a;7v) = ( q - t J x - t , . . . , q N J x N ) '

A is a antisymmetric mapping A : X —> X' ^ which we will also consider as
an antisymmetric bilinear form on X x X.

We consider the following subspaces of X:

Z := {x <E X | Ax = 0} = {x 6 X | yi = 0, 1 < i ^ N},
Y := Z1- = {x € X | Zi = 0, 1 ̂  i ̂  N}.
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Then

X=Y^-L Z,

and the projections of a vector x e X onto these subspaces will be denoted
by y € Y and z € Z respectively.

We can now rewrite H as

(2.1) H=^D-Ax)2+V(x)=^+^Dy-Ay)2+V(x),

where

V(x):=^Vi,(xi-x,).
i<3

Let us recall some of the standard notation used in the JV-body
theory. A will stand for the set of all cluster decompositions, i.e., partitions
a = (Ci , . . . ,Cfe ) of {! , . . . , N} into disjoint non-empty sets Q called
clusters. The number of clusters of a will be denoted by #a. We will say
that a is a refinement of b and write a ^ b if all clusters of a are subsets of
clusters of b. The relation ^ defines a natural lattice structure on A with
the maximal and minimal elements

amax = ( {1 , . . . , N}), a^ = ({!},..., {N}).

The finest cluster decomposition c such that a ^ c and b ^ c will be
denoted by a V b. We will also write a < b if a ^ b and a 7^ &. For a pair
{ij} C { 1 , . . . , TV}, {ij) will stand for the N - 1-cluster partition

(<7) =({!},..., {Q,...,U},..., {TV}, {zj}).

Given a cluster decomposition a, X can be written as

Y — Y (^-L Ya
-A- — -^a W -A ,

where

Xa= {x ^ X \ Xi= Xj for all i,j such that (zj) ^ a},

X a = [ x^x e X | ̂  m,^ = 0 for all Cj, € a ^
I zeCfe J

It is easy to check that

a ̂  b iff Xb C Xa,
-^ax ={xeX \Xi=Xj for all ij}, Xa^ = X.
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For a € *A, we will denote

Ya:=Xa^Y, z,:=x,nz,
ya ̂  ̂ -a ̂  y ^a ̂  j^a ̂  ̂

Note that the projections on Z and Xa commute for all a € A, so that

Y — V ffi 7 Y01 — V0' a^ 7°'•AO, — I a W ^ai •/Y — JL W ^ •

The symbols

^a ? VCL 5 ^a 5
a a a

x '> V i z i

will stand for the orthogonal projections of re G X on the above
spaces. We will denote by (Ax)a the restriction of Ax to Xa, and by
Aa a,Aaa,Aaa,Aaa the restrictions of the bilinear form A to X01 x Xa, Xa x
X0,^ x X^X" x Xa respectively.

For any a € A, we can write

H = Ha + -^05

where

Ha :== |(D - A.r)2 + V0^), V^) := ̂  .̂(̂  - ̂ ),
(^)^a

is the cluster Hamiltonian, and

la := V(X) - V^X^ = ̂  V^X, - X,)

{iMa

is the intercluster interaction.

As we mentioned in the introduction, we assume in this paper that
all particles are charged, i.e.,

(0) qi ̂  0 for all i.

In particular, our system is allowed to have neutral proper subsystems
(pairs). We will say that a € A11 if a contains a neutral pair, and a ^ Ac

otherwise.

Let us now state the hypotheses that we will impose on the interac-
tions.
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(VI) Vij is a multiplication operator on L^R3) such that Vy i s — A
bounded with relative bound 0.

(V2) zV^Vij(x) is -A bounded. Moreover,

i) ^(^iW-A+l)-1!!^!),^^,

ii) IF^^I^V^-A+I)-1!!^!), R ̂  oo.

(V3)

||(-A + ir^yyK-A + I)-1]] < oo, |a| ^ 2.

(V')

Vij=V^+V^ where

liy^X.^-A+i)-1!!^,
|^y/,(^)| ̂  c^x}-^, e > o, |a| > o.

r^
^•(a-)=^+^-, where

IIF (^ ^ 0 ̂ (-A + 1)-111 € £l(^)'

IIF (^1 ^ 1) %^'11 ̂  <7J?-IQI-'1' ^ > ()' I"! ^ L

Finally, we will assume that the interactions are of Coulomb type.

DEFINITION 2.1 — The interactions Vij are said to be of Coulomb
type if:

V^x) = qiq,V\x).

The key property of the Coulomb interactions which we will use in
this paper is that if Ci is a neutral cluster, then ^ ^(^i ~ x) vanishes if

ieCi
Xi = X j for (ij) £ Ci.

Hypothesis (VI) and a result of [GL1], which we state below as
Proposition 2.2, ensure that H is self-adjoint.
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PROPOSITION 2.2 — Assume that (VI) holds. Then V is -{D- Ax)2

bounded with relative bound 0. Consequently,

H= l(D-Ax)2-{-V(x)
Zi

is selfadjoint with the magnetic Sobolev space

H^R^) := {u € L2^) | (D - Ax^u e L2^)}

as its domain.

Other consequences of hypotheses (V) will be given later in Lemma
3.1 in Section 3.

We use the following convention for cut-off functions. F ( ' € f^) will
stand for a smoothed out characteristic function of ^, equal to 0 outside fl,
and to 1 in a slightly smaller set, and 1̂  will denote the sharp characteristic
function of Q,. Finally, {x) is a smooth function greater than some e > 0
for all x and equal to \x\ for \x\ > 1.

3. The pseudomomentum and the reduced Hamiltonians.

To formulate our main result, we will need some of the definitions of
[GL1], in particular, the concepts of the bound and scattering states and
the reduced Hamiltonians.

Let

K := D + Ax.

The observable K is the generator of the magnetic translations :

e^'^u^x) = e^^u^x + x ' ) , W € X,

and satisfies

(3.1) kJ^-A^^O.

One deduces from (3.1) and from the fact that

V(x+x/)=V(x^ x'^X^

that the pseudomomentum

Ka^ ••= D^^ + (Ax)a^
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satisfies [H^iKa^^} = 0. Similarly, for any cluster decomposition a G A
the external pseudomomentum

Ka := D^ + (Ax)a

satisfies [Ha^Ka] = 0.

The commutation relations of the components of the external pseu-
domomenta can be summarized by

^[{xf,Ka},{xlf,Ka)\ = -2(o-', Arc"), x ' , x " € Xa.

To understand these commutation relations it is necessary to analyse the
restriction of A to Xa. Let us consider a cluster decomposition a equal to

a=(Ci,...qj.
We denote by

Qc, := ̂  Qi
i^Ci

the total charge of the cluster Q, we call the cluster Ci neutral if Qci = 0
and charged if Qci 7^ 0. We denote by (jc^ and (tn^ the numbers of charged
and neutral clusters of a respectively. We define

Xc, '= [x € X | x, = Xj if (i,j) C Q, xj, = 0 if A; i Ci},

X01 := {.r e| ̂  m,^ =0, ^ == 0 if A; ^ Ci}.
ieCi

We have

tta ((a

(3.2) x,=^Xc, X^^X^.
i i

Clearly, the bilinear forms Aaa and A010' can be decomposed into blocks
with respect to the direct sum decomposition (3.2).

Let Ci be a cluster of a. If we identify Xci with R3, we see that the
matrix of (x^ Ax} restricted to Xci is equal to Qci J ' Consequently, the two
orthogonal to the field components of Kci = ̂  Ki, where C\ is a cluster of

i^Ci
a, commute if Ci is neutral and have the Heisenberg commutation relations
if Ci is charged. One can use these facts to find unitary transformations
reducing the channel Hamiltonians Ha to simpler models. Let us briefly
recall the discussion of this reduction given in [GL1].
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We define

X,":= ^ Xc,,X^.= (]) Xc.,
neutral Ci charged Ci

x^:^ (3) xQ,xa'c:= ^ x^.
neutral Ci charged Ci

so that
X — Y" ffi Y0

a — A^ W AQ,

x0 ̂ ^^©x^.
We denote by 7^^^7^an^7^^,7^ac the orthogonal projections on these spaces.
The spaces VJ1, Y^, V"11, V^ are defined as the intersections with Y of the
corresponding subspaces of X.

We saw in [GL1] that there exist bijective linear mappings

M^ : Y^
<: v^

. J^Bca

• r*]̂ ,
such that the following linear transformation is symplectic

Xa : T^X -^ T^R^ x T^R^ x r*yj1 x T^Za x T^X"
(^O^^,^),

where
( ^l _ (^l ^af\ ^l _ (.cf ..cf ..nf y l \
I JL —{Jb^^JL )',^a ~ \ya ^ ya ^ VCL i ^ a ) ^

} ^ — (^ ^af} ^ — (n^ n^ r^' C 1 }L S " V S a ^ S ) i Sa ~ \'/a i ' l a 5 ' l a i Sa^

and
(-^(^^(A^)^^,^),
M^ + Aa ̂  - A^^xa) =: {y^, ̂ ),
^(^ + (Ax)^) =: ̂ ',
-V.I. ,n\ _. n/
"aV/aJ —' »a '
•^a ^^ ^a?

Ca =: ̂

/-a /la rf. —. caf
S •/1 a^a —• s ?

In the above equations, one copy of R^ is denoted by Y^ and the other
copy by Y^. Note that if one identifies (y^^y^) with the two orthogonal
to the field components of y^ and (%,%) with the two orthogonal to the
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field components of 77^, then one can identify the range of the symplectic
transformation \a with T*X, which leads to simpler formulas. However,
we will not make this identification in the sequel.

As in [GL1], one can find a unitary transformation Ua implementing
\a,i such that

(Ua: L\X) - L^Za x Ya x Ya x VJ1 x X-),
v • ; 1 UaKaU^ = (£»,„ D^, y-a, DynJ.

If we put

UaHaU^ =: Ha,

we have

(3.4) Ha = J D2^ + R^(D^, y^ x'1) + J (P^n - 2Aa,n "a;0)2

4 1 (£»^ - Aaaxa)2 + ̂ (a;0),

where ^(^'yS'^") i8 a second order polynomial equal to

^aOM,^) = J (m-l(r|ca,yca)-2Aa,caxa)2,

and the Weyl quantization is defined by

(3.5) P^^DW :== (27r)-" /' fe^-^P f^-^,^ yQ/)^.
J J \ z /

For a e ^l, we define

(3.6) ^a := <(^,^^a) + |(̂  - 2A^y)2

+ l(Da-Aaa^a)2+ya(a•a),

acting on L^V^ x Y^ xY^xX^. We also define

H-^Ha-^D^^U^Ua.

To end this section, we will now give some consequences of hypotheses
(VI), (V2) and (V3) which will be needed later.

LEMMA 3.1. — Assume that V satisfies hypotheses (VI). Let a e A.
Then

(3.7) Va is ^amax bounded.
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Assume that V satisfies hypotheses (VI) and (V2). Let a € A. Then

(3.8) i) Ff^l ̂ l\Va(Ham-+^)-l\\=o{l)^ ^oo,
\ H )

ii) \F(^- ̂ l^aV^^(^amax+^)- l | |=o(l), R^oo.\ H )

Let qa C ̂ (X^^) supported in {^amax||a;b ^ e(xam!ix), V6 ^ a}. Then

(3.9) i) (^a(^amax + ̂ -1 is compact on L2(Xam&x x Y^J,
ii) (^amax + i^qaZ^^W— + z)-1

is compact on L^X01"^ x V^^).

Assume that hypothesis (V3) holds. Then

(3.10) IK^+zr^y^+^llOo, |a ^2.

Proof— To prove (3.7), (3.8) and (3.10) we use Kato's inequality (see
for example [CFKS], Sect. 1.3) :

(3.11) le-^-^^l^) ^ e-^2 u\(x).

We deduce from (3.11) that if g(x) is a multiplication operator, we have

\g(x){l + (D - AxYr^x) ̂  |^)|(1 + D2)-^).

Applying this inequality we easily obtain (3.7), (3.8) and (3.10).

Let us now prove (3.9). Let us prove ii), the proof of i) being simpler.
We write

(̂ nax ^ ̂ -^V^a^0111'' + l)~1

_ ^U-Omax I /^-l/, ~T7 T F I ^x max I -̂  1 \ ( U-Omax _L/;^-1= (^amax + i^qaZ^zIaF (\xa^- ^ l\ (^-x + ^
\ ^ /J?
/ |/y«^max [ \ ^

+ (^amax + i)-\aZ^.IaF ( {-^ ^ ij (^amax + Z)-1.

The first term on the right hand side of (3.12) goes to 0 in norm when R
goes to oo by (3.8) ii). The second one is seen to be compact using the fact
that Va is ^amax bounded (see (3.7)) and writing

z^.Va=[V^i(z^D,)}.

This ends the proof of the lemma. D
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4. Asymptotic completeness.

In this section we state the main result of this work — the asymptotic
completeness of long-range wave operators. We start by recalling the
discussion of the notions of bound states and scattering states given in
[GL1].

The definition of a bound state depends on the total charge Q =
n
^ qi of the system. This reflects the fact that the properties of the
i=l
pseudomomentum are different for charged and neutral systems.

DEFINITION 4.1 — Assume that Q ̂  0. Let

^scatt := U^U^H———) 0 L\Z^J)^

Abound := U:__ (^pp^——) 0 L\Z^J).

We have

L (^0 == ^scatt 0 Abound-

If the system is neutral, ^amax acting on L2^^ x X^^) can be
written as a direct integral

y® .
U-Omax — / U-amax/y, \/7y,
11 ~ I ±1 ^/amax^'/amax?

J Y '0'max

where the reduced Hamiltonians ^""^(^amax) ac^ on -^2(^amax). We then
define:

DEFINITION 4.2 — Assume that Q = 0. Let

^scatt := ̂ __ ^(Z,̂ ) 0 ̂  ^(^^-(^J)^^^ ,

Abound := ̂ __ ̂ (̂ .J 0 F^ ^(^-(^JW.J .
\ '/ ̂ ax /

We have

L (X) = Hsc&tt ® Abound.
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In both cases the states in T^bound describe a bounded cluster of
particles. Their behaviour depends on the total charge of the system: a
charged cluster can travel to infinity only in the direction of the field,
whereas a neutral cluster can also travel across the field. The basic
properties of the bound states, such as an expression for the asymptotic
velocity of their center of mass, are given in[GLl], Propositions 6.3, 6.4.

The goal of scattering theory for Hamiltonians of the type (1.1) is
the classification of the states in T^scatt- A first classification, introduced in
[GL1], can be expressed in terms of the observable of asymptotic velocity
along the Z axis.

THEOREM 4.3 — Assume that hypotheses (VI), (V2) hold. Let
J C C^Z^^Y Then there exists

/ yO-max \

(4.1) s- lim e i t H J ( - — — } e-^.
v / t^+oo \ t J

Moreover, there exists a unique vector of commuting selfadjoint operators
^amax+ with a dense domain which commute with H such that the limit
(4.1) equals J^^).

Theorem 4.3 gives a first classification of the states in L^X). Indeed,
if we put for a € A Z^^ = Z H X^^ and define

7-' ._ yo,max\ | | y
- ' - a •— ^a \ U i

max\ 7"i
a \ LJ ^b

b^a

we have

(4.2) (J Ta = Z0—, Ta n Tb = 0, a + b.
a^A

Thus
J_

L^X^^^ET^C—^L^X)).
aCA

One of the results of [GL1] was that if the system has no neutral proper
subsystems, then

^(C^^X^W)- Abound.

This was a consequence of the Mourre estimate proved in [GL1] under
this assumption with the generator of dilations in the z direction as the
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conjugate operator. If the system consists of a neutral interacting pair
and a third (charged) particle, one cannot expect the Mourre estimate to
hold with a conjugate operator acting only in the direction of the field (or,
more generally, commuting with the pseudomomentum of the neutral pair),
for reasons which were discussed in the introduction. We still have that
Abound C '̂{o}^1™"^ but ^{(^(C^^) could also contain scattering
states made of neutral clusters moving only transversally to the magnetic
field. This is one of the main new difficulties encountered in the presence
of neutral clusters. It will be adressed in Sections 6, 7 and 8.

Proving asymptotic completeness means giving a complete classifi-
cation of the states in T^scatt m terms of the wave operators. In order to
define the wave operators, we need to introduce the channel identification
operators and the modified free dynamics. The latter, needed because of
the long-range nature of the interactions, is not different from that used
for standard ./V-body problems and will be discussed later. The channel
identification operators, which we now define, deserve more attention.

The reduced Hamiltonian H0^ introduced in Section 3 can be written

H- = F H^drj^

as

^^

where

^W = ̂ (^^S^^+j^-SA^n^^'+J^a-A0^)^^^),

acting on L2^ x X0'). The Hamiltonian ^a describes the dynamics of
noninteracting clusters of particles, after the unitary transformation Ua
has been applied. To introduce the channel identification operators, it is
convenient to separate H0' into parts corresponding to the charged and the
neutral clusters. Using the decomposition X0' = Xa^@-LXa^, we can write
the internal potential V0' as:

where

y0^) == v05^0'0) + v0511^11),

ya,c^a,c) ̂  ^ ^

(%j)e charged Ci
ya,n^a,n) ̂  ^ ^

(ij')e neutral Ci
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Hence the reduced Hamiltonian H01^) can be written as a sum:

HaW=Ha-nW^H^

where H0'^ and ^^(rf^) correspond to the charged and neutral clusters
of a respectively. Precisely, we have

(4.3) ^a'n(^)= i(^-2Aa,na^a)2+j(^^n-Aaa^n)2+ya'n(^n),

acting on L^X"'11), and

(4.4) H^ = R^Dy^y^) + |(D,a,c - A^x^)2 + V^^),

acting on I^^Y^ x X0'^). Thus, for example, if a is a cluster decomposition
containing a neutral pair (a = {(1,2), (3)}, where q\ + q^ = 0), H0'^ and
H0'^ are the reduced Hamiltonians of the neutral pair (1,2) and the charged
particle (3) respectively.

The channel identification operators can now be defined as follows:

(4.5) II, := U: [iU '̂) ̂  F ^(^(^Wl Ua.
L JY^ J

Note that

E^H^) 0 Epp(^a'n(^)) = iU^W).

and that

Abound = ̂ anila^.

The following straightforward generalization of [GL1], Proposition 6.6
holds:

PROPOSITION 4.4. — Let u G RanIIa. Then:

lim sup HPf^ ^l^e-^^^O,
-R-^teR \ R )

lim sup ||F (^ ^ 1\ e-^-nll = 0.
R^^tCR \ H )

Proposition 4.4 states that noninteracting charged clusters can escape
to infinity only in the direction of the magnetic field. The behaviour of
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neutral clusters is rather different. To explain this, suppose that we have
an eigenvalue

y^3^E(^),

with the corresponding eigenprojection P(?7^), satisfying suitable regularity
assumptions (similar to those below), such that

H^WPW^E^PW.

Then there exist states for which the kinetic energy of the center of mass
of the neutral clusters moving under e~^tHaIla is given by an effective
Hamiltonian

|^+E(^+(A^).

To study the scattering channels associated with such effective kinetic
energies, we need certain implicit assumptions on their behavior, which
we will now describe.

We recall that ^^(X) denotes the space of functions / in C^X)
such that 9^f is Lipschitz for |a| = n. For a cluster decomposition a
containing a neutral pair (^1,^2)5 we will denote by

^{E !^+|).'̂ 4
(J=Zl^2 J )

the set of the Landau levels of the neutral pair, and by Fa — the set

Fa = {(A, 772) I A € appGy^a.A i r^} cRx VJ1'.

Hypothesis (H) There is a locally finite covering of Fa by open sets
Vj = Ij x ^-, Ij C R, ̂  C VJ1', (71'1 projections Pj : ̂  -^ B(H), and
C2'1 functions ujj : fl.j —> R, such that:

i ) r , n v , = { ( A , ^ ) l ^e^ - , A=^-(^)};

ii) E^^H^W) = W) for ̂  € ̂ ;

iii) The set Ta^ • of the critical values of ujj on f^ is finite.

It follows from Theorem 6.1 (iii) and (v) that these conditions are
satisfied for all simple discrete eigenvalues of H0'^^). They seem very
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difficult to check for the possible eigenvalues of ^"'"(T^) embedded in the
essential spectrum. Nevertheless, we think that they allow to understand
the behavior of a physical 3—body system with neutral clusters. Note also
that similar conditions were imposed by Derezinski [De2] in his study of
dispersive TV-body Hamiltonians (i.e., N— particle Hamiltonians with the

quadratic kinetic energy term . D2 replaced by a more general term (^(D)).
This fact illustrates a similarity between dispersive TV—body Hamiltonians
and TV—body Hamiltonians in magnetic fields.

Let us now introduce the modified free dynamics that we will use
to construct the wave operators. It is well-known that for long-range
interactions the intercluster interaction cannot be entirely neglected as
the clusters escape to infinity with non-zero relative velocities, so that
one has to modify the free evolution appearing in the definition of the
wave operators. The modification needed uses a solution of the classical
Hamilton-Jacob! equation. For simplicity, we have chosen the Dollard
modifier [Do], in which an approximate solution of the Hamilton-Jacobi
equation is used. Let us also observe that since we assume that the
potentials are of Coulomb type, the effective intercluster potential between
a neutral pair and a third particle will be of short-range (see the remark
after Definition 2.1). This is the reason why we only need to modify the
dynamics in the direction of the magnetic field. Let us denote

(^')^a

and

(4.6) I^x):=F(^M^l\I^x).t

Then Ia(t^x) satisfies

(4.7) \Q^Ia^x)\ ^ C^)-'"'-^6, |a| ^ 1

for all e > 0. Define

[ t 1
Sa{t^a)= -^+^aM,<a)^.

Jo z

Note that Sa(t,D^) and H0^ commute and:

Sa(t^a)=^ i f ae^ .
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The main result of this paper is the following theorem:

THEOREM 4.5. — Let H be given by (2.1), where V satisfies the
hypotheses (V), (V), and (LR) with ^ > \/3 — 1. Moreover, assume that
the condition (Q) holds and that the hypothesis (H) is satisfied for all
cluster decompositions a containing neutral pairs. Then:

i) E^^-^L^X)) = Abound.

ii) the modified wave operators

^ := s - lim e^e-^^-^X
t—>00

exist and their ranges are mutually orthogonal.

iii) the system is asymptotically complete :

(]) Ran^=^scatt.
O^Omax

Note that by i), the states with zero asymptotic velocity along the Z
axis coincide with the bound states, as in the cases considered in [GL1],
[GL2]. However, while in [GL1] and [GL2] this was an intermediate step in
the proof of asymptotic completeness, here it is obtained as a consequence
of it.

5. Local inequalities for operators.

In this section we present an abstract version of a few standard
arguments of the Mourre theory for N— particle systems, which we will
need in Section 6.

DEFINITION 5.1. — Let A, B and H be self-adjoint operators on a
Hilbert space H, and let c e R. We will say that:

(i) B ^ c at H = EQ if there is a 6 > 0 such that for any function
f C C^OK) supported in {EQ - 6, EQ + 6) we have

(5.1) f{H)Bf(H) ̂  cf\HY

(ii) B is almost positive (B a-^ 0) at H = EQ if B ^ —e at H = EQ
for any e > 0;
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(iii) B > A (resp., B a- ^ A^ at AT = Eo if B - A ^ 0 (resp.,
B- Aa-^0) at H = EQ.

DEFINITION 5.2. — Let B{k,E) and H{k) be measurable families of
self-adjoint operators on U for k G ^i C M771, E e I C K. Let

U = /^ 7f(A;)^, B=B{E)= ( B(k,E)dk.
Jfli JQi

We wiJJ say that :

(\) B ̂  c locally in H uniformly for (A:, E) C ̂  C ̂ i x J, if there is
a & > 0 such that for any / € C^°(R) supported in (—6,6) we have

f(H(k) - E)B(k,E)f(H{k) - E) ̂  cf2(H(k) - E) for all (k,E) e ^;

(ii) B a-^ 0 iocaiiy m H uniformly for (k, E) e ̂  C f^i x J, if for
any e > 0 B ^ —e locally in H uniformly for (/c, E) G f^.

LEMMA 5.3. — Let B{k^ E) and H(k) be as in Definition 5.2. Assume
that the mapping f^i 3 k —» H(k) is continuous in the norm resolvent
sense, and that the mapping f2i x I 3 (A;, E) —^ f{H(k))B(k, E)f(H(k)) is
norm continuous for any f e C§°(R). Let ^ be an open subset of^i x I.

(i) IfB{ko, Eo) a-^ 0 at H{ko) = EQ for some {ko, Eo) e fl, then for
any e > 0 there is a neighbourhood U of (A:o, Eo) such that B ^ —e locally
in H uniformly for (k, E) € Z^.

(ii) If B a-> 0 locally in H pointwise on fl, (i.e., B(k,E) a-^ 0 at
H(k) = E for any (/c, E) € ^l), then B a-^ 0 locally in H uniformly on any
compact subset off^.

Proof. — Since (ii) follows easily from (i) and a standard covering
argument, we will only prove (i).

Pick e > 0. Then there is a SQ > 0 such that for any Cg° function /o
supported in (£"0 — ^o? EQ + ^o) we have

fo(H(ko))B(k^Eo)fo(H(ko)) ̂  -^H{ko)).

Moreover, we can choose /o so that /o = 1 on (£'0 — ^o/2, EQ + 6o/2). By
our assumptions on continuity, there is an open neighbourhood U\ of fco
and ^i > 0 such that for all k 6 U\, \E — EQ\ < &i,

(5.2) f^H(k))B(k,E)fo(H(k)) ̂  -yg(H(k)) - J.
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Let ^2 = min(^o^i), A = (EQ - ̂ /IO.EQ + <^/10), and 6 = ̂ /10. Then
for any E € A and for any function / supported in (E — 6, E + 6) we have
ffQ = f, Multiplying (5.2) from both sides by /, we obtain that for all
keUi,

f(H{k))B{k^E)f(H(k)) ̂  -ef\H(k)).

Hence we can take U == U\ x A. D

The main tool which we will use to establish local almost positivity
of operators is the following lemma, which in fact is essentially known in
the Mourre theory (see [FH]).

LEMMA 5.4. — Let B and H be self-adjoint operators on 7i such that
B is H -bounded, let c be a positive constant, and fix EQ € R. Suppose that
for any e > 0 there is a compact operator K^ such that

(5.3) B ^ c - e + K ^ at H = EQ.

(i) If EQ is not an eigenvalue of H , we have B a-^ c at H = EQ.

(ii) Suppose that EQ is an eigenvalue of H. Let P = E^Eo}{H) be
the corresponding spectral projection, and let CQ = ||P£?P||. Then

B a-^ c(l - P) - 2coP at H == EQ.

Proof. — Let us first note that, instead of arbitrary functions / C
(7^°(R) supported in (£'0 — 6, EQ + <$), it suffices to consider those for which
in addition 0 ^ / ^ 1 and / = 1 on (EQ - 6 / 2 , EQ + 6 / 2 ) . Throughout the
proof, fg will denote a function for which these conditions hold.

To prove (i), for a given e > 0 we first choose 60 > 0 and a compact
operator K^ such that

(5.4) f^H)Bf^(H) ^ (c - e)fJ^H) + f^{H)K^{H).

Multiplying then (5.4) from both sides by fs{H) for 6 < 6o/2 and using
that fs(H) —> 0 strongly if EQ is not an eigenvalue of H, we obtain that
for 6 sufficiently small

fs(H)Bfs(H) > (c - e)/|(ff) + fsWKJsW > (c - e)fJ(H) - efj(H),

which shows that B a-^ c at H = EQ.
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Let us now prove (ii). Let P" be a sequence of finite-dimensional
projections such that P = s- lim -P" and P" < P. We write

B = Ci + C-i + C^ + €3,

where

Ci = (1 - P")B(1 - P"),
(5.5) C2=(1-P)BP",

C'3 = PBP - (P - P")B(P - P") > -2coP.

Fix e > 0, and choose 6 > 0 and JCg such that (5.3) holds for f = fg. Then

(5.6) fsW.fsW ^ (c-e)/i(JT)(l-P")-^(ff)(l-P")^(l-P")^(ff)
> (c - e)/i(ff)(l - P) - fs(H)(l - P")X,(1 - P")/5(H),

where we have used that Pn ^ P. Since K(, is compact and Pn —> P
strongly, for sufficiently large n we have

(5.7) ||(1 - P")^e(l - P") - (1 - P)W - P)|| < e.

As in the proof of (i), we now use the fact that fs{H)(l — P) —> 0 strongly
as 6 —> 0 to obtain that for 6 < <5o,

(5.8) \\f6(H){l - P)Xe(l - P)f6{H)\\ < 6.

Hence for large enough n and for 6 < 6o^

UWC^H) ^ (c - e)fJ{H){l - P) - 2e,

which implies that

(5.9) Ci a-^ c(l - P) at H = EQ.

Finally, consider the term C^ + C^. Using the inequality

(e-i/2c2 + 61/2P7l)(e-l/2C2* + e1/2?") ^ 0,

we obtain that

C2 + Ga* ^ -eP" - e-1^^^.

Note that the operator

fs{H)Wfs(H) = fs{H)(l - P)BPnfj(H)B(l - P)fs(H)
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is compact since P71 is a finite rank projection. Once more, we use that
fs{H)(l - P) —> 0 strongly as 6 —> 0 and argue as in (i) to show that

(5.10) C2+G2* a-^0at^=£;o.

This, together with (5.5) and (5.9), implies part (ii) of the lemma. D

6. The Mourre estimate for the channel Hamiltonians.

This section will be devoted to the proof of the Mourre estimate for
the channel Hamiltonian ^max, where a € A is a cluster decomposition
containing a neutral pair. Throughout this section, a will denote such
a decomposition. Without loss of generality, we can assume that a =
({1,2}, {3}), where 91+^=0.

Recall that in Section 3 we defined the reduced Hamiltonian Jf^ax
acting on ^(Y^ x Y^ x X01"-), and the Hamiltonian

J^ax ̂ ff_1^ ^ ̂  H^-Ua ,
9 -"max Omax t^ax 5

acting on L^X0— x V^ax)- This is the original 3-particle Hamiltonian
after one has separated out the trivial part of the center of mass motion
(along the z axis).

Let us first recall a few simple facts proved in Section 5 of [GL1]. For
a e A, a ̂  Omax? we denote

JL^max ;̂  jyOmax _ ̂  ̂ O^ax ̂

We have seen in [GL1], Sect. 5 that ^max is unitarily equivalent to

J^x+^

acting on L2^— x Y^ x Y^ x Y^ x X0). We will denote by ^max the
unitary transformation implementing this equivalence. It has the following
invariance property:

(6.1) [/"max^aniax^amax* ^ ^Omax

for

Aamax ''= ^ ((^^^^-x) + (I^ax,^———)) .
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We have

ff" = Ra(Dy^) + I (2^ - 2A» 0^)2 + ̂  (D» - A0^0)2 + V^).

Note that Ra(Dyc, ̂ ) does not depend on x01 since the only charged cluster
in a is a single particle and hence has no internal variables. Let

H^W := I (^ - 2Aa V)2 + J (D° - A^)2 + y^0),

on L^X0), rf^ e Y^ (see (4.3)). This is the Hamiltonian of a neutral pair
of particles after applying the separation of the center of mass as in [GL1],
Sect. 3.1. Finally, we put :

A^J^D^+^a^)).

6.1. Spectral theory of H^^).

This subsection is devoted to a brief analysis of the spectral theory
of Ha'n(rf1^). We will prove the following theorem, which can also be found
in [AHS2]. Recall from Section 4 that

(6.2) T^ := {^ ̂  \B\(n, + 1)^ e 4 ,
i -, Tll^ v z / J

denotes the set of Landau levels for the pair of particles (1,2). Let

S::=infK)=JsN|B|.

THEOREM 6.1. — Assume the hypotheses (V). Then:
i) ^"'"(r^) is self adjoint with domain

D '= {u e L^X^D^WU e L^x-)};
ii) the essential spectrum cress^0511^)) ls ̂ "^ to P2?+oo[?'

iii) the eigenvalues of H0'^^) can accumulate only at r^ ;

iv) if E(rf^) is a discrete eigenvalue of H0'^^), then lim E(rf^) =
7^—>-+00

yn .
^a?

v) the map

Y^' 9 ̂  ̂  ffa'"(^)
is analytic in norm resolvent sense.
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To simplify the exposition, in all proofs in this section we will use the
following notation. We will denote the parameter rf^ by k, the Hamiltonian
H^W by H(k)^ where

H(k) := J (k - Aex)2 + J (D - A,x)2 + V{x), acting on L2^),

and X,x,V,Ae,Ai stand for Xa,xa,Va,2Aaa,Aaa respectively. We will
also write <^ A and Ai instead of Co? A", and A"""^, and jFf instead of
^max ^ avoid any possible confusion, we will never use this simplified
notation in the main text.

Proof of Theorem 6.1. — Let us first prove i). Using Kato's inequality
as in Lemma 3.1, we deduce from hypothesis (VI) that V is relatively
bounded with relative bound 0 with respect to

J^-Ae^+J^-A^)2.

The above operator is a second order elliptic operator (i.e., its symbol
h{k',y^) satisfies -(^2 + y2) ^ h(k',y^) ^ c($2 + y2)), from which one
easily deduces that it is selfadjoint with domain D.

Let us now prove ii). We denote

W) := J (k - Aexf + J (D, - A,.r)2

(6.3) = | D2, + | (fc - Ae2/)2 + | (^ - A^)2

=:JDJ+^).

Let us start by studying the spectrum of HQ(k). We claim that a{HQ(k)) is
independent of fc. Indeed, if we denote by T(k) the unitary transformation
implementing the symplectic transformation

y -^ y + yo
rj^rj- AiVo,

for a vector yo € Y such that AeVo = ky we have

T(k)Ho(k)T(ky = Ho(0).

Moreover, by the arguments of Section 3, we see that
/•e
/ Ho(k)dk
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is unitarily equivalent to

E^^.-^)2'

whose spectrum is the set r^ of the Landau levels of the neutral pair. Hence

(6.4) aWk))=r^.

We deduce immediately from (6.4) and (6.3) that

a(^oW)==[S^+oo[.

Thus, to prove ii), it suffices to show that

(6.5) {H{k) + i^V^Ho^k) + i)~1 is compact.

This follows from i) and Lemma 6.4.

iii) follows from Lemma 3.1 below and the abstract Mourre theory
[Mo].

To prove iv), we compute

(6.6) T{k)H(k)T{kY = J (A^yf + J {D - A,xf + V(x + 2/0) =: HTW^

where we recall that Ag^/o = k. We will prove that as k —^ oo, HT{k)
converges in norm resolvent sense to

(6.7) H^T '= \ {Aey)2 + | (D - A,x)\

This fact clearly implies iv). To prove our claim it suffices to show that

(6.8) lim V(x + yo)(y2 + D2, + i)~1 = 0.
k—»-oo

This is an easy consequence of hypotheses (VI) and (V2) i). Finally,
v) follows by differentiating (H{k) — z)~1 with respect to k and using the
characterization of the domain of H{k) given in i). D

LEMMA 6.2. — Let fs e Cg°(R) be a cutoff function supported in
[ E - 6 , E - ^ 8 } . Then:

/,(^a'n(^))[^aln(^),^Aa]^(^a'n(^))
= /.(^n(^))^/,(^n(^)) + ̂ i(^),
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where

(6.9)
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i) ^i(^) is compact on L^X"),
ii) rf^ \—> K\(rf^) is norm continuous,

iii) ||̂ i «)|| ^0^77^-^00.

An operator

K1 = r î(^x,JY^'
where K\{rf^) satisfies (6.9), is called a—compact (see [PSS].)

Recall that in all proofs in this section we are using the simplified
notation defined at the beginning of the proof of Theorem 6.1.

Proof of Lemma 6.2. — Since

[H(k)^A]=D^-(z^,V)^

we have

Ki{k) = -fs{H{k))(z^,V)f6(H(k)).
This operator is compact on L^^X) by Lemma 3.1 and Theorem 6.1 i). To
handle the limit k —> oo, we write as in the proof of Theorem 6.1 iv):

T{k)W}T{kY = -fs(H(k))z\/,V(x+yo)fs(H(k))

for VQ = A^lk. To show that this operator goes to 0 in norm when k goes
to oo, we use hypothesis (V2) ii) and argue as in the proof of (6.8). D

We will denote by

(6.10) ^(I^dist^,^),

the distance from E to the threshold set for the neutral pair r^. Note that
we will not follow the usual convention, according to which (^{E) would
stand for the distance only to the thresholds to the left of E. Later, this
will allow us to avoid certain technical complications due to the lack of
continuity of the latter function.

LEMMA 6.3. — Let E e M. For any e > 0 there is a 6 > 0 such that
for any function fg C C§°((E —<$,£ '+ 6)) we have
(6.11)

/,(^a'n(^))^/,(^n(^)) ^ WE) - e)^^^)) + JM),
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where K^{rf^) satisfy :

i) K^(rf^) is compact on L2(Xa),
(6.12) ii) rf^ \-> K^{rf^} is norm continuous,

iii) ||JM)||^Oas^^oo.

Proof. — Since Dj = 2(Ho(k) - Ho^k)), D^ commutes with Ho^k),
and a{Ho(k)) = 7-a, for sufficiently small 6 > 0 and all k we have

(6.13) fsWk^fsWk)) ̂  2dn(E)f6Wk))2.

Using that f(HQ(k)) - f(H{k)) is compact on L^X) for any function
/ € C§°(R) and for any k, we obtain (6.11). The properties i)-iii) of K^
are shown as in Lemma 6.2. D

The following Mourre estimate for H0'^^) is an immediate conse-
quence of Lemmas 6.2 and 6.3.

LEMMA 6.4. — For any rf^ C Y^, E e R, and e > 0, there is an
operator -Ke(^) compact on L^X") such that

[^(^^A0] > ̂ (E) - e + K,{r^ at ^(r^) = ̂ .

In the next subsection we will also need the following lemma :

LEMMA 6.5. — i) Let E e R and e > 0. Then there is a constant
C > 0 such that

(6.14) [^a-n(^), zA0] > 2dn(£;) - e at IT1'11^) = ̂

uniformly for \rj^\ > C.
ii) J f J c M i s a compact interval, for any e > 0 there is a C > 0 such

that (6.14) holds uniformly for |̂  > C and E e I .

Proof. — i) Choose a 6 > 0 such that (6.11) holds for a function
fs € C§°([E - 6, E + ^]) such that fg =. 1 on [E - 6 / 2 , E + 6/2}. We can
apply Lemmas 6.2 and 6.3 to this function, and choose a constant C > 0
such that ||^i(fe)|| < e and H^WH < e for |fc| > C. Then

(6.15) f,(H(k))[H{k),iA}fs(H(k)) ̂  /,(^(fc))D^(^(fc)) - e
^(2dn(E)-e)fj(HW)-2e
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for all | k I > C, which implies i) (with 3e instead of e).

ii) follows from i) by a standard covering argument. D

6.2. The Mourre estimate for ^max.

In Section 4, we introduced the set (H) of implicit conditions on the
point spectrum of H^^). In the rest of this section, we will assume that
these conditions are satisfied.

We will first define the threshold set. Let

I 3^-{EMl^(».+j),».^}(6-i6) ^^{y-NiBi^+^^ .eN 1
Ta :- )

be the set of Landau levels of all particles. As we will see later, the Mourre
estimate may fail at these energy levels. We will also have to exclude other
energy levels, which are defined below.

DEFINITION 6.6. — The secondary threshold set To is the set

^ := {A+ / , |AeT^ , /^ef^},

where r^ = ^ ̂  \B\ (j + J) | j e N^ is the set of the Landau levels of
the third particle, and r^:== u7"^5

3

where Ta^ are defined in hypothesis (H).

The physical meaning of this definition can be understood as follows.
We have seen in [GL1, Sect. 6] that the motion of the center of mass of
a bound state of a neutral cluster of particles is given by a dispersive
Hamiltonian H^^), so that its effective kinetic energy is given by an

.eigenvalue uj{rfi). The set f^ is the set of critical values of this kinetic
energy.

LEMME 6.7. — The set Ta U fa is discrete and closed.

Proof. — Recall that we are using the same simplified notation
(defined at the beginning of the proof of Theorem 6.1) as in the previous
subsection. Clearly, it suffices to show that To can accumulate only at
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To, which in turn will follow if we prove that the only possible points of
accumulation of f^ are in r^ (the set r^ of the Landau levels of the neutral
pair is denned in (6.2)).

Suppose that A ^ r^. By Lemma 6.5 i) and virial theorem, there are
C > 0 and e > 0 such that (A — c, A + e) is disjoint from r^ and

F, n ((A - e, A + e) x VJ1')) C (A - e, A + e) x {|A;| ^ C}

(recall that Fa was denned in Section 4, before the statement of the
Hypothesis (H)). Consequently, it is enough to show that A is not a point
of accumulation of critical values oiujj for |A;| ^ C. By Lemma 6.2 of [GL1],
the set fa = Fa U (r^ x VJ17) is closed. Hence the set

r an ( [A -e ,A+e ]x { | f c | ^C } )
= ran( [A -e ,A+e ]x { |A ; | ^C} )

is compact. We can therefore cover it by a finite number of open sets Vj
as in Hypothesis (H). Hence the set f^ H (A — e, A + e) is finite, and, in
particular, A is not an accumulation point of f^. D

We can now state and prove the main result of this section — the
Mourre estimate for ^max.

THEOREM 6.8. — Let A € M\Ta U r^. Then there is an operator

BaW = ^ «m(A;^max,D^),^) + <^,m(A;D^nax,D^)))

for some C'1'1 function ^(C^"1^?7?^)? an(^ a faction ao(A) > 0, such that

(6.17) [H^^iA^-^cBa] ̂  min(l,c)ao(A) at ^max = A.

Proof. — We will fix the value of A as in the statement of the theorem;
although the constants, operators, etc., appearing in the proof will usually
depend on A, we will not display that dependence explicitly unless it is
necessary to do so.

Let fs denote a function in C§°([\ — 6, A + 6}) such that fs = 1 on
[A--(V2, A + (5/2]. We have

fs{H)[H^A,}fs(H)

= E/ ^(jc'+A.+^fc)) (C2 + TO),zA]) /.(JC'+A.+^fc))^^,
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where Kj = -^ \B\(j + . ) , j e N, are the Landau levels of the third7/13 \ z /
particle. Since H(k) are bounded from below uniformly in k, there are only
finitely many values of j (j = 1,2,.. . ,7Vo) for which fJ^^^-Aj+H^k)) ̂
0, and the sum on the right-hand side is in fact finite. For 1 ̂  j ^ NQ, let
\j = \-Aj and fj(s) = /<$(5+A^) (so that fj is supported in (Xj-6, \j+6)).
If 6 is small enough, the supports of //s are disjoint for different values
of .7.

Let

d(E) :=dist(E,Ta)

be the distance from E to the threshold set Ta. Note that d{E) is a
continuous function of E. Moreover,

(6.18) d(E + s) ^ d{E) + s for all E e R, s > 0,

and

(6.19) dTY(E-Kj)^d(E)

(recall that d" is defined in (6.10)).

Since H(k) is bounded from below uniformly in k, for any function
/ G Co°°([A, - 1, A, + 1]) we have f^H{k) + -C2) = 0 if |C| is large enough
( I C I ^ ^i)- By Lemma 6.5ii), for any e > 0 there is a constant 62 = C^e)
such that for 1 ̂  j ^ ^Vo,

[7:f(fc),zA] ^ 2dn(A,• - JC2) - e ̂  2d(A - JC2) - e at ̂ (^ = A, - JC2

uniformly for |fc| > 62 (e) and |C| < Gi (the second inequality follows from
(6.19)). Let C(e) = max(C'i, C^e)). Then, if 6 is sufficiently small, we have

/T\

/Kc,wcwfi ̂ (2 + fl(t)) (t'+^f*).'-4)) /> (i<2 + iw)d(dt
-'/(Li.c./'d^^^^^^-i^-Q^dc^w)^
'C)!^.)^-^^^2^^)^

where we have used that by (6.18),

(6-20) d(x-^2)+^2^dW.
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Since A ^ To, we can pick e = d(\) > 0, and for Co = C(d(A)) we
obtain :

(6.21) F ^C^W) (C2 + [H{k\iA]) f^+H{k))^dk
J|(C,fe)|^Co v 2 / V 2 S

^ r ^^(^C'+^A;))^^.
^|(C^)l^o v z /

Let

^^{(^^lA.eappdc^^fc))},

andle tMo={ | (C , fc ) | ^ Co}.

By Lemmas 6.4 and 5.4, and by (6.19), for each (C,/c) G S^ we have

(6.22) [^(A;),zA] a-^ 2dn(A,-jc2) ^ 2d(A-JC2) at H(k) = A,-^C2.

Note that (6.22), Lemma 5.3 (i), and the virial theorem (see e.g., [CFKS],
Thm 4.6) imply that S -̂ is a closed set, hence Sj H Mo is compact.

Let (Co, ko) € Sj. By hypothesis (H), there exists a neighborhood V3

of (Co^o), a C1'1 projection P^A;), and a C2'1 function ^'(A;), such that

(6.23) ^ (fc) + J C2 = A,, (C, k) G ̂  H S,,

P^(fc)=E^(^(JI(fc)), (^^eV^.

Moreover, since Xj ^ f^, we can choose V-7 such that on V3 H {< = 0} we
have

(6.24) |W(A:)|>0.

In particular, (6.24) implies that C^IV^A;)!2 > 0 for all «, k) € S^. Since
S. H Mo is compact, there is a constant 0o > 0 such that for 1 ̂  j ^ No,

(6.25) inf{C2 + IV^^)]2 | «, A;) € S, H Mo} > ̂ .

Let ao = min(d(A),0o/2), and let e = ao.
By Lemmas 5.4, 6.4, and the virial theorem, for each «, fc) C £^ we

have

(6.26) [^W^A] a-^ 2d(A - JC^l - P^k)) at J^(fc) = A, - ^C2,
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where, as before, we have used (6.19) to replace d11 by d.

Let us now fix j, 1 ̂  j <^ No, and consider the points (C,A;) in the
compact set MQ = {|(C,A;) | ^ Co}. For each (^k) e Ej H Mo, let '̂ be
its open neighbourhood chosen as above (i.e., so that (6.23) and (6.24) are
satisfied). For (C,A;) e MQ \ S^, choose an open neighbourhood U3 such
that W H T,j = 0.

By (6.22), (6.26), and Lemma 5.3 (i), we can assume that

[ H ( k ) ^ A } ^ 2 ( d ( \ - l ( : 2 } - e \ ,\ \ z / j
and

\H{k\iA\ ̂  2d(\ - JC^l - P^k)) - 6,

at H{k) == \j - _ (^ uniformly on each of the neighbourhoods U3 and
V3 respectively. (Note that the continuity assumptions of Lemma 5.3 are
satisfied by Theorem 6.1(v), Lemma 6.2, and Hypothesis (H).)

Since the set Mo is compact, we can choose a finite subcovering of it:
{Vf}z=i,...,z,{^f}^=i,...^ (I = Z(j), m = m{j)). Take a partition of unity
such that supp^j C Vf, supp^j c U{,

I m

^ ̂ -(C, k) + ̂  <^,(C, k) = 1 on Mo.
i i

Then, if 6 > 0 is sufficiently small,

/^ f, ( j C2 + ff(fc)) (C2 + [H(k), iA\} /, ( j c2 + ff(A))dCdfe

^ Ef ^-(C^) (C2 + 2rf(A - JC2) - e) ^(JC2 + ̂ (fc))dC^
1=1 ^-^O \ ^ ^ / / V Z /

777' /*ffi / /

+Ey ^-(C^) (C2+ (2<A- JC2) -e) (1 -^)))
l==l JMQ \ \ " / / /

^(JC^ff^M^

^ E F (f>U^^(2dW-€)f^l<:2+H(k)}d(:dk
^^ '/MO v •" /

m /•© i

(6.27)+^ / X?j(C^)(2<A)-6)^(-C2+^(A;))(l-^(^))d^
^^ ^MO v z /
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rn /•e / 1 \ •+E / ^^(c^v^-c'+ff^c^wdcrifc
z=l ^^o

^ Vd(A) F 4>2i^k)^(^2+HW)d<:dkE<A)/' ^.(c^vjdc'+^w)^^
^ JM^ v2

TO /•® / 1 \ .

+^d(A) / x^^^/K-C^^^l-P^WXdfc
^ 7Mo v 2 /

"l y® / 1 \ •E / x^^^/^-c'+^c'PfWdc^.i -'MO v z /

^i JM^ v2

i=l
m r® / 1+E/ x?,,(c,^(^-+

z==l </Mo

We define
. mBi^1^a = | EX^(C,A:)^(A;) ((V^'(A:),D,) + (Z^V^(fc))) ^'(A:)xKC^)^\^K)^k/ ~r \^ki vu^^/i ^ ^ Y^^Ans?"-^

and
No

Ba=E^-
J=l

Using the identity

(6.28) [HW^P^WDkP^k)}
= [^W^WDkP3^)} = P^k^WP^k)^

we obtain

(6.29) f,(H)[H^cBi}f,(H)
m »Q) -j

^E / X?,,•(C^)/J(-C2+ff(fe))^Wc|Va;f(fc)|2dC^.. . _ Ujvs?
^^Mo._i JMo

By (6.25),
(6.30)
y^^2^(^^2^|v^(fc)|2)^(^ ^ mi^l.^ao/jdc'+^W)^^).

Moreover, if j ̂  I , and if the neighbourhoods Vf and 6 > 0 are sufficiently

small, we have /, ( J C2 + ̂ )) X^ (C^) = 0, since /, ( J C2 + ̂ (fc)) is, by

definition, supported in , <2 + AT(A;) - A -̂ ^ 6, and, by continuity of H(k)
2 ^

(Theorem 6.1(v)), \^i is supported in ^C2 + H(k) - \i ^ Co for some
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small eo > 0. Hence

f,(H)[H^cB^(H)^0^ ifj^l.

Collecting (6.21), (6.27), (6.29), and using (6.30), we obtain:

fs(H)[H^(A, + cBaWH) ̂  mm(l,c)ao/|(H),

which completes the proof of the theorem. D

7. The Mourre estimate for the 3-particle Hamiltonian.

We will now prove the Mourre estimate for ^amax under the assump-
tion that the total charge of the system Q is nonzero. The main idea here
is to glue together the estimates obtained for the channel Hamiltonians
jf^max for all 2—cluster partitions a. If a contains a neutral pair, we will
use the conjugate operator constructed in Theorem 6.17 in Section 6. Oth-
erwise, we will use the Mourre estimate proved in [GL1], Section 5 with
the conjugate operator A""1^.

Note that one cannot usually obtain a global Mourre estimate from
local estimates for different conjugate operators, because of the cutoff
errors. However, for 3—particle systems these errors are localized in the
free region and therefore can be estimated relatively easily.

Another difficulty that we will have to face comes from the separation
of the center of mass motion for the full Hamiltonian ^amax. If a contains
a neutral pair, the unitary transformations ?7amax an(^ ^a are incompatible
in the sense that one cannot identify their ranges in a natural way, so that
one cannot make sense out of for example UaU^1 . A similar difficulty
was encountered in [GL1]. One way to deal with this problem is (as in
[GL1]) simply not to separate the center of mass motion. We will, however,
have to use the fact that the pseudomomentum of the center of mass
-^amax ls conserved. This will allow us to localize the Mourre estimate in
the (noncommuting) pseudomomentum variables. Such localization will be
needed to control certain delicate error terms.

In this section, we will impose the conditions (V) and (V) on the
potentials, and the condition (H).
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Let us first define the threshold set. We will write:

^n^a^"1"1), a^,:=0,

Ta := |j n u o-b,'a '-

b<a

where a-a := o'pp^H0') if a G A0, and Oa = fa if a G A" (recall that to was
defined in Definition 6.6). Then:

(7.1) T=T,__U IJ Ta.
Ha=2

It follows from Lemma 6.7 that r is closed and discrete.

Next, we will glue together the operators constructed in the previous
section for different cluster decompositions into an auxiliary conjugate
operator. We fix an TV—body partition of unity

i-E^^)'
aeA

with the following properties:

supp^a c {x^^ e x^^ I \xam&x\ ̂ l,\xa\^ ^l^"1^!,
\X\a ̂  ̂ al^"1^!}, for a / Omax

(7.2) \9^qa\ = 0(^)-lal), for a + a^ax,
^^eCo00^—).

Since N = 3, we can also assume that

(7.3) qaQb = 0, if (to = tt& = 2, a ̂  &.

If (a = 2 and a G ^l", i.e., a contains a neutral pair, we define

Ba := U^BaUa,

Ma := qaFaBaqaFa,

where Ba is the operator constructed in Theorem 6.17, and Fa is a cutoff
function of the form:

F ^ F ( - ^ ^ l ) .
V^Omax^ /

If ((a = 2 and a does not contain a neutral pair, we put Ma = 0. Then:

(7.4) M := E Ma.
tfa=2
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In Theorem 7.1 below, we will use the conjugate operator A01"^ + cM, for
c small enough. Using Nelson's commutator theorem (see e.g., [RSII]), we
see that A""^ + cM is essentially selfadjoint on C§°{X).

Recall that the total pseudomomentum ^amax = (Aimax + (^Oamax)
is a constant of motion for the Hamiltonian H. For \ G C^QR2), we denote
by x(^ax) the operator

(7.5) X(^ax) = ̂ axX-^ax^^J^ax.

The main result of this section is the following theorem, which will
be a key step in the study of the scattering states of H.

THEOREM 7.1. — Assume hypotheses (Q), (V), (V) and (H). Let
X ^ r. Then there exist a(\) > 0 and c > 0 such that :

[I^max^^nax + cM)] ^ a(A) + J^ax at ^amax = A,

where ̂ ax ^ an operator such that for any \ e C§°(R2) x(Ka^)Ra^
is compact on X^^ x Y°

- "•rnax

Since in this section we will never use the original Hamiltonian H, or
the operator A = ~{{z,Dz) + (2^,^)), we will simplify the notation and
write H and A instead of H^^ and A01"^. Consequently, the superscript
^max will also be omitted from symbols such as, for instance, ^max. Note,
however, that we will have to distinguish between x and .r"111 ,̂ and therefore
we will continue to write e.g., x^^ and ^/amax (i.e., symbols such as x and
y will retain their usual meaning).

We will obtain the Mourre estimate by gluing together the estimates
proved in the previous section for the cluster decompositions containing a
neutral pair, and estimates similar to those of [GL1] for cluster decomposi-
tions in which all clusters are charged. To this end, we will use the channel
expansion in Proposition 7.7, which essentially says that the error terms
due to M are localized in the free region. We will then choose the constant
c sufficiently small so that in the free region the commutator is dominated
by the positive term [Ha^.iAa^], and use Theorem 6.17 to demonstrate
that the terms corresponding to a e A, [}a = 2, are positive.

The first two lemmas deal with the cutoffs Fa and the errors related
to them. The reason why these cutoffs are necessary is as follows. The
Mourre estimate for Ha^ proved in Section 6, implies that, for the bound
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states of a neutral pair, \x^\ grows linearly in t. This, however, does not
automatically mean that so does la:""1^ |. To ensure that, we need the cutoffs
Fa. In particular, note that the property i) in Lemma 7.5 below, which will
be used later to prove the minimal velocity estimate, would be false without
these cutoffs.

On the other hand, one can show that the errors due to Fa are small.
The intuitive reason for this is that a charged particle cannot escape to
infinity across the field on its own, so that no propagation should take
place in supp qa \ supp Fa.

LEMMA. 7.2. — Let a e A be a 2—cluster decomposition with a neutral
pair. Then on suppqaFa one has:

|̂ | ̂  C7(^—).

Proof. — We have

^Omax ^ ^.Gmax^ _^ ^.Omax^ _p ^-Omax^

On supp^a one has \ya\ ̂  6a(xam&x), and on suppFa, \y^\ ^ (x^^). Hence
on supp Qa Fa, one has

TT"——^! ^ C(xamax).

Since Tr""1^ is invertible on y^, this proves the lemma. D

The next lemma will be needed to estimate errors related to the
cutoffs Fa.

LEMMA 7.3. — Let f C C§°(R), \ C C§°{R2), and let a e A be a
cluster decomposition with (a = 2 containing a neutral pair. We have :

\\X(Ka__)f(H)(l - Fa)qa(xam-)\\ < 00.

Proof. — Clearly, we have

\Wa^J{D+Ax)a^\\<^

and

\\f(H)(D - Ax)^J\ < oo.
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Taking the difference, we obtain:

(7.6) Wa_)f(H){Ax)a^J < oo,

To fix the notation, let us put a = ({1,2}, {3}) so that

yl - (o, o, ,3). ,g = ( mlyl + m2y2, mlyl + m^, o).
\ m\ + ̂ 2 î + ̂ 2 /

Using the fact that qi + 92 = 0, g3 7^ 0, we see that (Aa;)a^ =
(?^5 ̂ ^ ^^).where^= J(9i (2/1-2/2)+932/3), M= mi+7712+^3,
so that on supp 9a we have

(7.7) \ys\ ̂  c^(Ax)a^) + 02(2/1 - 2/2) ^ ci((Aa;)^,) + c^)
^Cl((Arr)^,)+C4(5a^amax),

where c^ denote constants which depend only on the masses and charges of
the particles. On the other hand, on supp (1 — Fa) we have

(7.8) ^amax) ^ |2/S| = |2/3|.

Combining (7.7) and (7.8), we obtain that on supp^a(l — Fa),

{x——} ^ C((A^_),

provided that c^S0' < 1. This, together with (7.6), completes the proof of
the lemma. D

The following properties of the operator M and of the energy cutoffs
f(H) for / € C§°(K) will be used in the proof of Theorem 7.1.

LEMMA 7.4. — i) Let q € C00^"1^) with

l/^ n\ < r1 /^"maxY—HlO^max^l ^ ^Oi\X ) 1

and let f e C§° (M). Then

[f(H)^q]=K(H^i)-\

where K is a compact operator on L^X""^ x Y^ ).

ii) Let qa € C00^1—) such that

\^a n I < C /^."maxN-l^llOa^maxyal ^ ^a\X ) • ,

supp^a C {xamax\ \xb\ ̂  e{xam&x}, V& ^ a},
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and let f eC§°(R). Then

qaf(H)-qafW=K(H+i)-\

where K is a compact operator on L2(Xam&x x Y^^)-

Proof. — To prove that various operators are compact, we will use the
following property, which follows from Proposition 2.2 and formula (3.6):

(7.9) ^amax)-e(^' + z)~1 is compact on L2^^ x Y^) for e > 0.

We will use the following functional calculus formula for / C (7o'°(M)
(see [HeSj]) :

(7.10) /(A) =— I 9^f(z)(z - A^dz A d z .
27T Jc

Here / € C§°(C) is an almost analytic extension of / satisfying:

(7.11) f\p = /,
\^f(z)\^Ck\Imz\\ VfceN.

Let us first prove i). Using (7.10), we get

K=[f(H)^q}(H-{-i)

= — I 9^f(z){z - ̂ r1^ iq}(z - H)-\H + i)dz A d-z.
^ Jc

We write

(z-Hr^H^z-Hr^H+i)
= (z - H)-\H + i)(H + ̂ [H^q^z - H)-\H + i).

The term (H + ̂ ^{H.iq} is compact on £2(Xamax x VoLax)' and we have

\\(z-H)-\H+i)\\^C\lmz\-\

for z € supp/. Using the estimate (7.11), we see that K is compact as a
norm convergent integral of compact operators.

Let us now prove ii). Using again (7.10), we write:

K=qa(fW-fW)(H+i)

=— ! 9^f{z)q^z - H)-1^ - Ho)-\H + i)dz A d^.
27r Jc
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qa(z - H)-tla(z - Ha)-1 = (Z - Hr'QaUz - Ha)-1

+(^ - ̂ r1^, iqa](z - H)-1!^ - Ha)-1.

We conclude as in the proof of i), using (3.8) and (3.9) of Lemma 3.1. The
details are left to the reader. Q

The next lemma describes some of the properties of M. For m e M
we denote by Sm(Xam&x) the space of functions / such that

\80i f\<C /^"maxVm-lQil
\UXama•x.J\ ^ ^CH\'^ I .

LEMMA 7.5. — Assume the hypotheses (H). Then the following
estimates hold:

i) IK^"1-)-^!! <oo.
Let ̂  € ^(X0—) for eCR. Then

ii) IIIM,^]^1—)-6!! < oo.

Let qi 6 SQ(XaTaw), i = 1, 2 and q^ = 0 on suppgs. Then:

iii) ^qiMq^x01111-)}} < oo.

Proof. — It suffices to prove the lemma with M replaced by one of
the Ma. Using the invariance of the Weyl calculus under linear symplectic
transformations, we have

Ba=^ «(2^max, Dy^ + {Ax)^)^) + he

and

Ba = J «(D^, Dy^)^} + he.

Since (y, A y ' ) = 0 for y , y ' e YJ1, we can as in [GL1], Sect. 3.1 find a unitary
transformation U wich conserves the position operator ^amax and sends Ba
onto Ba. (Note that the transformation Ua introduced in Section 3 does not
have this property). We can therefore replace Ma by qaFa(ma{D), y^)qaFa,
for some C1'1 function rria. Property i) follows then from Lemma 7.2.
Applying Lemma A.3 in the Appendix for m == 1, we obtain ii) and iii). D
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PROPOSITION 7.6. — We have

\\(H + ̂ [H, iM](H + z)-1!! < oo.

Proof. — We can replace M by one of the terms Ma. We have

{H + z}~^[H, iMa}{H + z)-1 = {H + z)-1^, iqaFa}BaqaFa(H + z)-1 + he
+ (^ + ̂ -^?0, iBa]qaFa(H + z)-1

+ (Jf + ̂ -^aW, iBa]qaFa{H + z)-1

=:Jl+J2+^3.

Let us first consider Ji. We note that (H + z)-1^^^]^"1^) is
bounded, which by Lemma 7.5 i) implies that I\ is bounded. The term 1^
is bounded by the arguments of Section 6. Let us now consider the term
J3. Using the cutoff g^ we have

qaFa[Ia^Ba\qaFa = 9(A[^a, iBa}qaFa,

where due to hypotheses (V) and Lemma 3.1 we have

^=4S+^
(7.12) i^(xamax)(xam^)l+e(H + i)~1 is bounded,

|OQi ^ /^dmax^l < ̂  //,.Omax\-e-|Q:| W^
lO'a^max^a^ /I ^ ^O'Y11' / 5 vu-

We estimate the term containing [I^iBa] by 'undoing5 the commutator
and writing

MaW + Z)-1 = qaFaB^——}-1

x {a;amax)^(^+^)- l x {H+i)qaFa{H+i)-\

which shows that

(H + z)-1^^^, iMa}qaFa{H + z)-1

is bounded. To estimate the term containing Ja,z? we use Lemma 7.5 ii).

PROPOSITION 7.7. — Let ja be an N-body partition of unity such
that, in addition to properties similar to (7.2), one has

(7.13) Qa = 1 on suppja for (ta = 2,
Qb = 0 on supp^a for jja = 2, & 7^ a.
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Then

f8{H)[H, iA + icM]f6(H) = ̂  jafsW^ iA + icB^feWja
(ia=2

(7.14) +Ja^^(^a^)[^^^A]/,(^^J^__

+ ̂ Ja^j6{Ha^J[Ha^icMb}f6{Ha^JJa^ +^
t(b=2

where J? denotes an operator such that x(^amax)^ ls compact for \ €
/^00/1D)\GO W.

Proof. — The criterion that we will use to ensure compactness of
operators is (7.9). Let us first consider the commutator

MH)[H^A]W).

Arguing as in [GL1], Sect. 5, and using hypotheses (V), we obtain the
following channel expansion:

(7.14) f,{H)[H^A}hW = ̂ jlfW[H^A}fW
aCA

= ^ Jaf6W[H^iA]f6(Ha)qa^R.
0'^Cima.x

Let us now consider the channel expansion of the commutator fs(H)[H, iM}fs{H).
We have :

f,(H)[H^iM]MH) = ̂ j^H)[H^M]f,{H)
ae.A

= ^ jIfsWH^M^sW+R,
a-^a'ma.x

using Proposition 7.6. Using Lemma 7.4, we have then

jif^H^H^M^W =jaf6{Ha)ja[H^M}fs(H) +J?
=Ja^(^a)ja[^a^M]/,(^)+jV,(ffJ^[Ia^M]/,(^)+^

Let us first consider the term jaf6(Ha)ja[Ia^^]' Let ja,i be a cutoff
function with the same properties as ja equal to 1 on supp^a. By Lemma
7.5 iii), we have

f6WJaMIaf6(Ha) = f6WJaMJa,lWHa) + A,

which shows that

Jaf6(Ha)Ja[Ia^ iM]MH) = JaWaWa. zM]f^H) + ̂
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where la = ja,ila == n + ^a satisfies the properties (7.12). We prove that
the term containing Ia,s is compact by the same arguments as in the proof
of Proposition 7.6. To handle the term containing Ia,i we use Lemma 7.5
ii). We obtain that

Jaf6{Ha)Ja[Ia^M]f6(H) = R.

Let us now consider the term jaf6{Ha)ja[Ha^M}fs(H). We have

Jaf6{Ha)Ja[Ha^M}f6{H) = ^ JafsWJa^ zM^H).

(eneutral pair

Let us consider different cases.

Case 1 : j)a = 2. Then by property (7.13) of the cutoffs 9b, we have

ja[H^iMb}=^ b^a.

It remains to consider the term

(7.16) Jaf6WJa[Ha^Ma]f6(H).

We have

[Ha,iMa] = [Ha,iqa]FaBaFaJa + he

+ qa[Ha, iFa}BaFaqa + he + qaFa[Ha, iBa}Faqa

=:Jl+J2+^3.

Using Lemma 7.5 iii) and the property (7.13) ofja, we see that

f6(Ha)JaIlf6(H) = R.

Using Lemma 7.3, we get similarly that

f6WJaWH)=R.

It remains to consider Js. We have

Ua[H^iBa\U^ = [H^iBa} = n(£^max,D^),

for some G1'1 function n (see (6.28)). Using Lemma 7.5 ii), we get :

Jah(Ha)JaqaFa[H^iBa}Faqah{H)

= Jaf6{Ha)qaFa[H^iBa}FaqaJaf6(H) + R

= Jaf6(Ha)qaFa[Ha,iBa}Faqaf6{Ha)Ja + ̂
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Hence
(7.17)

Jaf6{Ha)Ja[Ha,iMa]f6(H) = JafsWqaF^H^IB^FaqafsWJa + P.

Using then Lemma 7.3 and Lemma 7.4, we can get rid of the cutoffs qa and
Fa modulo a term R. We finally obtain

(7.18) Jaf6{Ha)qa[Ha^Ma}f6(H) = JahW^ iB^WJa + P.

Case 2 : a = Omin- We have

Ja^[Ha^iMb}=ja^[Hb,iMb}-ja^[Vb,iMt,}.

Using Lemma 7.5 iii), we see that

fs(Ha_)ja^ [V\ iMb}ja^fs(Ha^)
= Wa^JJa^V'MJa^Js^Ha^n) + R,

where V1' = Ja^^V1' = V^ + V^1 satisfies the properties (7.12). By the
same argument as in the proof of Proposition 7.6, we see that

(7.19) ^(^^J^_[^^M^_A(^a^) = R.

Next, writing [Hb.iMb] as above, we get that

Ja^j6{Ha__)Ja^[H^iM,]f6(H)

(7.20) = Ja^f6(Ha_)[H^ iM,}ja_MH) + R

= Ja^j6{Ha^J[Hb,iMb}f6{Ha^JJa^ + P.

Putting together (7.15), (7.18) and (7.20), we obtain the lemma. D

Proof of Theorem 7.1. — Let ja and R be as in Proposition 7.7.
We will use the expansion (7.14) for fg e C§°([\ - 6,\ + 6}) with 6 > 0
sufficiently small. The terms in (7.14) with (a = 2 will be treated using
Theorem 6.17. To handle the term with a = amin; we note that since

[Ha^zA}=D^^

and A ^ Ta^, we have

(7.21) f6(Ha_)[Ha^iA}f6(H^J ^ aofJ{H^J.

On the other hand, using Proposition 7.6 i), we have

^ f6{H^J[H^icM,]fs(H^J ^ -aic/|(J^J.
ttfc=2
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We pick then c such that
1

OilC<^ ^Oo,

and we have

3a^ f6 (̂ anun ) [̂ m , ZA} fs (Ha^ )ja^

(7.22) + ̂  Ja^^(^a^)[̂ a^^cM,]/,(I:fan,in)^^

t(6=2

^ ^ ̂ Oja^in/I (^an.in ̂ in-

Applying then Theorem 6.17 to the terms with )ja = 2 in (7.14), we get:

fs(H)[H^A+icM}fs(H)^co ^ JafJWja^ + R = cofJ(H) + R.
a/Omax

This completes the proof of the theorem. D

8. Minimal velocity estimate.

This section will be devoted to the proof of a minimal velocity
estimate for the evolution of a state in T^scatt • In this section, we will assume
the hypotheses (V) on the potentials and the hypothesis (H). We will also
assume that the total charge Q of the system is nonzero. (If Q = 0 and all
particles are charged, all pairs are also charged. This case was treated in
[GL1] and [GL2].)

Recall that we defined in Section 7 the operator x(-^amax) ^or X ^
^^(^a'max)' ^s a ^rst ^P) we neea tne following abstract propagation
estimate which is due to Sigal-Soffer [SS3]. Its proof will be given in the
Appendix.

PROPOSITION 8.1. — Let H be a Hilbert space, H - a self-adjoint
operator on H with domain D(H), and A - a self-adjoint operator such
that ad^(Jf + i)~1 is bounded for a = 1,2. Assume that for A c M we
have

(8.1) E^H)[H,iA}E^H) ̂  coE^(H).

Then for all g e C§°(R) with s\ippg c] - oo, co[ and f € Co10 (A), we have
/•+00 / A \ ^

(8.2) / ||9(-)/(ff)e-^<^CM2.
J\ \t / t
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s-^gf^}f (11)0-^=0.

We will use a version of this propagation estimate which is localized
in pseudomomentum. We first state a consequence of Theorem 7.1.

PROPOSITION 8.2. — Let f € C§°(R) be a cutoff function supported
in (A - 6, X + 6), where X (f. r U app^0—), and let \ e Cg°(Y^J. Then,
if 6 > 0 is sufficiently small, there exists CQ > 0 such that

X(^a^J/(^amax)[^amax^Aamax + ZM]/^——)^^)

^ coX^Jf^H——MK^J.

Proof. — This follows from Theorem 7.1 and Lemma 5.4i). D

The following lemma will also be proved in the Appendix.

LEMMA 8.3. — Assume that hypotheses (H) and (V) are satisfied.
Then

l |adS+cM(^+^)~ l l l<^ a= l ,2 .

Let us denote by A\ the operator A 4- cM (recall that this operator
depends on the energy level A). Using Lemma 8.3 and Proposition 8.2, we
obtain the following propagation estimate.

PROPOSITION 8.4. — Let f e C§°((\ - 6,\ + 6)), where A ^ r U
app^"^) and 6 > 0 is sufficiently small, and let \ e C§° O^nax) • Then

for g e C'o'°(R), supp^ c] - oo, co[, we have
/'+00 A l i

i) j y^X^^H^u^-^^CM2,

ii) s-^g^^K^Jf^H^e-^^^O.

To deduce a minimal velocity estimate from Proposition 8.4, we will
need the following lemma.
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LEMMA 8.5. — Let f be as in Proposition 8.4. For eo small enough,
we have

( I rpO'ma.'x. | \ / | A - | \

f^H^F -̂1 ̂ eo)F(^ ^co) =0(t-1).

Combining Lemma 8.5 and Proposition 8.4, we obtain:

PROPOSITION 8.6. — Let f G C§°(K) be supported away from
r U Opp^""1^) and let \ e C§° (Y^^). Then we have for CQ small enough:

/*+00 1 | JJ.

i) j ^(^^^x^a^J/^—^ll'y^C'llul2,

ii) s-^F(ka^ < ̂ (K^J^H^e-^^ = 0.

Proof. — Since the conjugate operator A\ depends on the energy level
A, we cannot apply Lemma 8.5 and Proposition 8.4 directly to a function
/ as in the statement of the proposition. Instead, we have to use a covering
argument. For each A € supp /, we choose a 6 > 0 such that Lemma 8.5 and
Proposition 8.4 hold for functions supported in (A — ^, A + ^), and deduce
that i) and ii) hold for such functions. We then choose a finite subcovering
of supp / by intervals (A — 6, A + (5), and write / as a sum of a finite number
of functions supported in these intervals. D

( [ rpd'ma.x |

Proof of Lemma 8.5. — Denote by R the operator f(H)F —,— ^~c

) / 1/yO'max | \

eo , and by R\ the operator f^(H)F-^ [ '—,—' ^ coj for C§° functions Fi
and /i of slightly larger supports such that ff\ = /, FFi = F, and /i
is supported away from r U Opp^^^). It is easy to check the following
estimates:

(8.4)

|[fi(l-ai)||=0(t-1),
||^(1-^i)^0—) || =0(1),
||[fi,Ai]||=0(l).

Let

Ai(^):=J?iAi^.

Picking eo <S; 1, we have

l|Ai(*)|| ^ | cot,
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so that

(8.5) ^l^^^o.
L

It therefore suffices to prove that

(8.6) RfF(^}-F{Alw)}=0(t-l).
\ t t )

We write F(s) = (s + i)F^i(s), where:

|^F_i(s)| ^C^s)-1-", |a|^0.

We have

<8-7) R(F(A^)-F(M1))
.,^.^^^^^)^^)_^^,^.^v^^^^_,^
= 0{t-1^

by (8.4). Moreover, by (8.4),

^(Ai - Ai(^)) = JtAi - JP^iAi^i = 0(1).

Hence the first term on the r.h.s of (8.7) is 0(t~1) as claimed. To handle
the second term, we use the following functional calculus formula (see [G]):

(8.8) F-i(B) = — ( 9-.f-^z){z - B^dz A d z .
27T Jc

Here /-i is an almost analytic extension of / satisfying:

(8.9) /:i,̂  = F-i,
\9^Mz)\ ̂  ̂ ^^-"-'"l-^IIm^l^, V^V e N, a e N2.

Hence:

"^.^)-F-.(A^))
^ /* ^ .- / ^ / Ai^-^Ai A i ( ^ ) \ / Ai^)\^y^./-^)^--^) (-^-^)(.--^)^A^.
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NOW

(t^-^r^-^-^'r
-(^•x^P^ -¥}('-¥}"
^(^-4T^](2-tn4•-Af)(^-Afr•

Recall that for any selfadjoint operator B, one has

(8.10) ||(B + i){z - B)-1!! ^ C(z}\lmz\~\

Using (8.10) and the estimates (8.9), we see that the second term on the
r.h.s. of (8.7) is 0(t~1). This completes the proof of the lemma. D

9. Propagation estimates for the free region.

In this section we prove estimates on the propagation for e"^^ in the
free region where all particles are separated. To do this, we will need the
center of orbit observable, which is defined as follows:

DEFINITION 9.1. — The center of orbit observable is

C:=|(2/+A-1^),

where we consider A as an invertible mapping Y —>• Y ' .

We will denote by c the corresponding classical observable

(9.1) c^J^+A-^) .

There are at least two reasons why the observable C is useful in the study
of A/'—particle systems in a constant magnetic field. Since C is a constant
of motion for a Hamiltonian of non-interacting particles, it is convenient to
use C instead of y to prove estimates on propagation across the field. On
the other hand, estimates on C and y are essentially equivalent, since the
difference between C and y is bounded by the total energy of the system
(see Lemma 9.4 ii) below). In [GL2], the observable C was used to obtain a
bound on the size of charged clusters of particles. We will first recall some
of the properties of C. We refer the reader to [GL2] for the proofs.
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The center of orbit is an observable with values in Y which satisfies
the following commutation relations:

(9-2) [(c^/)^(C^ff)}=-^{A-lrJ^rf).

We will need a functional calculus for the (noncommuting) observable
C which is defined as follows.

DEFINITION 9.2. — For F e C§°(Y), we define

(9.3) F(C) := (2^)-^ ( F^y^^dr].

Let us discuss briefly some of the properties of the functional calculus
defined by (9.3). First of all, F(C) is selfadjoint if F is a real-valued
function. More importantly, this functional calculus is equivalent to the
Weyl calculus defined in (3.5).

PROPOSITION 9.3. — For F e C§°(Y), we have

(9.4) F(C)=F(cr(x^D).

Proof. — See [GL2], Prop. 7.3.

The following lemma, most of which was proved in [GL2], summarizes
the basic properties of C.

LEMMA 9.4. — i) Let F € L°°(Y) and a > 0. Then

(H+i)F(^){H^i)-1 =0(||F|U.

ii) For any ̂  e C§°(R) and F <E C§°{Y), we have

^)(^)-^))=0«-«).

iii) For any ̂  € C^(R) and F € C§°(Y), Fi € C°° (Y) C\ L°° (Y), such that
FI ^ 1 on supp F, we have

^(Fi^-Fi^F^^^Oit-201).A' ' \ \ta} u0/ y t 0 ' ) ) ' '
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iv) Assume that (V3) holds. Then for F e C§°(Y), we have

[(^+^)-\^F(G)1=-[(^+^)-\^C]V^(^)+0
L \ v / ] i \L /

Proof. — Statements i), hi) and iv) are proven in [GL2], Lemma, 7.4.
To prove ii), we apply the identity

r 1
gzA _^B = / e^sA(A - B)e^{l~s)Bds

Jo

to A = (^,77), B = (^,77). We obtain:

'<m(F(^-F('.}')
=r° f F(r])drj f xWe^'^ «A - a,^))^1-^*'^.

Since

C-y=^A-l{Dy-Ay),

we see that (H +i)~l(C —y) is bounded, which using i) gives that

^(^^a))'0^'-
This completes the proof of ii). D

Let H be an N— particle Hamiltonian in a constant magnetic field
satisfying the hypotheses (V). We will denote by W(t^ x) a time-dependent
potential satisfying:

\9^W^x)\<^C{t}-1-^ /^>0,

U(t) will stand for the unitary evolution generated by H(t) = H-{-W(t^ x),
and Df will denote the Heisenberg derivative associated with the evolution
U(t):

D t : = 9 t ^ [ H ( t ) ^ ' } .

Let us first establish existence of the asymptotic energy (for proof, see
[GL2], Lemma 7.5).
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LEMMA 9.5. — Let \ <E C§°(R). Then the norm limit

(9.5) l̂im^ U(tYxWU(t) =: 7(x)

exists. Moreover, there is an unbounded self-adjoint operator H^~ with a
dense domain such that the limit in (9.5) equals \{H~^).

Our next result says that the center of orbit (and hence the transversal
to the field coordinates of the particles) cannot grow faster than 0(1) along
the evolution.

LEMMA 9.6. — Let F € Cg°(Y) satisfy F(y) = F(\y\) with 0 ^ F ^ 1,
F = 1 near 0 and F ' = -f2. Let

^(SO-
Then for R ̂  Ry the limits

(9.6) Fo- = s - Urn U{tYFR{f)U(t}
t—>00

exist. Moreover,

(9.7) s- lim F^ = 1,
-R—>oo

and

(9.8) [J^F^O.

Using Lemma 9.4 ii), we deduce from Lemma 9.6 the following
corollary.

COROLLAIRE 9.7. — Let F e C§°(Y) such that F(y) = F(\y\) with
O ^ F ^ 1 , F = 1 near 0 and F ' = -f2. Then for R^RQ the limit

(9.9) F^ = s - lim U(tYF f ^ ) U(t)
' t—»oo \^ tti, j

exist and equal Fj^.

Proof of Lemma 9.6. — We compute for \ e C§°{R):

(9.10)

o< (.(MM =^) (-^^(^) ̂ (I)^(^))
+[̂ , a-), ̂ (^)]F( ̂  )xW + he,
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for

^K^-^^)-
Using the functional calculus formula (7.10), we obtain:

(9.11) [x(H),W(t,x)}=0(t-1-'1).

If xi 6 C§°(R) is another cutoff function with XiX = Xi we have

x(M^©^)
xWf^)xi{H)MWxiWf^)xW + O^R-1),

On the other hand, we have

\\Xi(H)M{t)xi(H)\\ < j^,

which , together with (9.10), (9.12), gives:
(9.13)

D< (xWF^)xw) > ̂ (^(l^xW+o^-^+or1-^
for R^ RQ. Next, we note that by a density argument, it suffices to prove
the existence of the limit (9.9) for a state u such that ^(-H^)^ = u ^OT

some \ € C§°(R). For such n, we have

^)*F(M)[/(^=^)*F(M^2^^(^^^i)

= U^YxWF ( ̂  ) x(H)U(t)u + o(l).

Following a standard procedure (see [SS1]), we first deduce from (9.13) that

s- lim U(trxWF(^}x(H)U{t)
t—>oo \ JrCt /

exists. By a density argument,

s-^U(trF(^)u(t)=:F^

exists and satisfies 0 ^ Fj^ ^ 1. Using again (9.13), we have for u € L2(X)
such that u = ^(ff)^:

?1^) ^ (£/(to)*xWF(^)xW^(^o)^|^ + 0(^o 1^"2) + ̂ )-
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Since for fixed to F[ —— ) tends strongly to 1 when R goes to oo, we\ Rto /
obtain that

lim (F^u\u) = |K,
ri—>00

which shows that s— lim F^ = 1. This completes the proof of the lemma.
R—>oo

D

We define the "free region" Va^n as

(9.14) Va^ = {y € y ||̂ | > 0, Va ̂  a^n}.

This is the region of the configuration space in which all three particles
are separated. The following proposition shows that no propagation takes
place in Va^n-

PROPOSITION 9.8. — Let g € C^y^J, g ^ 0, and let \ € C§°(R).
Then for any a > 1/2,

/»+00 /-I Jj.

(9.15) j \\g(-^)xWU(t)u\\2-^<oo,

^(^11=0.

Using Lemma 9.4 ii), we deduce from Proposition 9.8 the following
corollary.

COROLLARY 9.9. — Let g e C^C^n), 9 ^ 0, and let \ € C^W-
Then for any a > 1/2

(9.16) F00 \\gWxWU(t)u\\2 ̂  < ex),
J-^ II \ L / l i t

|| / y \ |l
lim \\g[ —)ut =0,

t-^-oo II \ta / II

Proof of Proposition 9.8. — Let g be as in the statement of the
proposition. Pick a smooth function F with supp F C Yamm ? homogeneous
of degree 0 for large enough y , such that (y^ VF(?/)) ^ g2(y)' Consider the
propagation observable

^(t)=xWF^)xW.
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The Heisenberg derivative of ^>(t) is equal to

D^(t) = xW9fF(^)xW +XW [^^(^)] XW +0r1-^).

r\

Let us first compute —^>(t). By Proposition 9.3, we havedt

9tF^)=8tGW(t,y,Dy),

for G(t,y,»7) = FJ^0^). Since (y,V^(y)) ^ g^y), we obtain

W,^)^.^^).

Using sharp Garding's inequality (see [Ho], Thm. 18.6.7) and symbolic
calculus, we get

(9-17) 9'F(^-^(^))2+o(rl-a)•
Let us now estimate the term \{H) \H^iF^ -^ ) x{H). Using Lemma 9.4

L v La / J
iii), we have

(9.18) xW [ff'^F(^)] XW = x(H) f^_,zF(^)] xW

+XW [j(t,a;),F(^)] x(ff)+0(<-20),

where

Z(t,a;)=Fi(^)/a^(a;),

and -FI € C'^°(yamin) 18 a cutoff function satisfying Fi = 1 on supp-F. The
first term on the right-hand side of (9.18) is 0 since [Ha^,C} = 0. To
estimate the second one, we note that hypotheses (V) imply that

I(t,x)=IS{t,x)+Il(t,x),
(9.19) IKff+f)-1/^)!! ̂  Ct-^0,

Iw^aOlssc'r1-^
Using formula (9.3), we write:

^,a;),^(^)1= f'FW y'e^^^ [jM,̂ 1 e^-^^dsdn.
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Using (9.19) and Lemma 9.4 i), we finally obtain

(9.20) xW \H^F ( c ] ] xW = O^-2").
L v ' / J

(9.17) and (9.20) imply that

-D^(t) ̂  ̂ xW (^(^)) xW +o(r2Q),

from which it follows by a standard argument that
/•oo / r1 \ rl+

(9.21) / \\g ^-)xWU(t)u\\2-<oc,
Jl \i / i

and that the limit

\im{U{t)u,<S>(t)U(t)u)
t—>00

exists for u such that \{H)u = u. Repeating the above argument with F
replaced by g2^ we obtain that

(9.22) ^ \\9(^} xWU(t}u\\ exists.

By (9.21), this limit is zero, which completes the proof of the proposition.
D

10. Proof of asymptotic completeness.

In this section we prove the results of Section 4 for short-range and
Coulomb-type interactions.

Recall that in Section 4 we introduced the asymptotic velocity ob-
servable ^amax+ for the evolution e~^tH. To prove the asymptotic com-
pleteness of the wave operators, we will consider separately the states
in RanEr^^"18^), for all a € A. As explained in Section 4, the space
RanE'̂ o}^""1'"^) could also contain scattering states such that neutral
clusters are moving only transversally to the magnetic field. We will see
later, as a consequence of asymptotic completeness, that such states do not
exist. However, we cannot exclude them at this stage of the analysis.

Let us now introduce some notation which will be used later. For
a € A, a ^ ^max; we denote by Ua,i(t), i = 0,1, the unitary evolutions
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generated by the time-dependent Hamiltonians:

Ha,o(t)=Ha+Ia(t,x),

Ha,l(t)=Ha+Ia(t,x),

and
fT ^ _ f H a + I a ( t , X a ) , if a € .4",

a>2w-tHo+-ra(^a), ifae^,
H . . . j H a + I a ^ X ^ ^ l f a e A ' 1 ,

a ' 3 { ' ~ \ Ha + Ia(t, Za), if 0 € A",

where the effective time-dependent potential Ia,t(x) was defined in (4.6),
and

W-.=F(^^}i1^.
\ L /

Note that as Ia(t,x), the effective potential Ia(t,x) satisfies the estimates
(4.7).

We will denote by C?"1^4^ ^ == 0, • • • , 3 the observables of asymptotic
velocity along Z for the evolutions Ua,i{t). Before proceeding to the proof
of asymptotic completeness, we have to analyze in detail the states in
E ^aniax+) n^scatt. For such states, we will use the results of Sections 9
and 8 to replace the evolution e~^tH by Ua,o(t).

PROPOSITION 10.1 — Assume that hypotheses (Q), (V) and (H) hold.
Let u G ^o}^0"1'̂ ) H ^scatt. Then

U= ^ Ua,
tta=2,ae.4n

where

lim Ua o(tYe"^^Ua exists.
t—f-OO '

Proof. — Let u € ^(C^^n^scatt. Note that for x e C§°(Y^),
we have

X(JR:a^,ax)('^scatt) C T^scatt

and that ^(^a^ax) tends strongly to 1 when ^ tends to 1. Therefore, by a
density argument, we may assume that

U=X{K^JU^ X^CS°(Y^

u = /(H^^u, supp/ H r U app(7:famax) = 0.



864 C. GERARD, I. LABA

It follows then from Proposition 8.6 that

( J/'y.G'max j \

Ut=F ——— ^eoj^+o(l) .

On the other hand, since u C E^^^^), we have for any e > 0:

^=F( 1 ^- 1 ^e)^+o(l) .

Combining these two estimates, we get:

( l-i.a.max| \

Ut=F ^-——'^eoj^+^l) .

Using also Lemma 9.6, we can assume that

( Ly0'max | \

(10.1) Ut = F co ^ 1±—-1 ^ C^Ut + o(l).

Let now

i-E^"^)
aCA

be a standard TV—body partition of unity on y""1^ with

suppga C {^—H^l ^ ei, 1^1 ^ 62, V6 ^ a},

qa = 1 on {^—H^l ^ Jei, |̂ | ^ 262, V& ^ a}

for some ei, €2 with ei < CQ. Using (10.1), the fact that N = 3, and Corollary
9.9 for a = 1, we obtain:

_ / nyO'max \

Ut = ̂  ^a[————J^+o(l).

(ta=2

We claim now that the limits:

(10.2) lim e^qj^^e-^u = Ua,
t—>00 \ t /

\\mUa,o(tYqa{y^l-\-itHUa,
t—>00 \ t /

exist. Let us indicate how to prove the existence of the first limit in (10.2),
the proof for the second one being similar. We compute the Heisenberg

( yO-vn.a.y. \

derivative of Ma(t) = x(H)qa —— )x(H) and obtain

1 / -i/Omax / / -i/Omax \ \ \

DtMa(t) = -xW -"—— + (D - Ar,V(fo(2——)) xW.
Li \. (,• \ \ . T / / y
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Since N = 3, the function Vga is supported in the free region Ya^n
defined in (9.14) and in the region ^^ax ^ ^o}. We can then use
the propagation estimates in Corollary 9.9 and Proposition 8.6 for the two
evolutions e~itH and Ua,o(t) and Lemma A.I in the Appendix to obtain
the existence of the above limit. It remains to check that Ua = 0 for a C A0,
or equivalently that

(10.3) s- lim 9a(^-^)^a,o(^) = 0, a € A°.
t—>oo t

Since a does not contain neutral clusters, it follows from [GL2], Cor. 7.7

and e.g., Lemma 9.4 ii) that for a > -.

s- limF(^^ ^l)^,o(^=0,
t—^oo \ t /

which implies (10.3). This completes the proof of the proposition. D

The following proposition follows from the arguments in [GL1], Thm.
6.6.

PROPOSITION 10.2. — Assume that the hypotheses (V) hold. Let
a ̂  Omax- Then the limits

s- lim Ua^tye-^ET^C^).
t—>00

s- lim e^Ua^ErM^^
t-^oo

exist.

Combining Propositions 10.1 and 10.2, we see that we can replace the
evolution e'^u of any state u € Hscatt by a superposition of the effective
evolutions Ua,o(t), Ua,i(t). It remains to replace these evolutions by the
simpler evolutions ^0,2(^)5 Ua^{t}. This is done in a slightly more abstract
setting in the next proposition.

PROPOSITION 10.3. — Let W(t, x) be a time-dependent potential such
that

\^^W^x)\<^C{t}-1-^ /^>0.

For a -^ amax, let Ua(t) be the unitary evolution generated by
Ha + W(t,x). Let Ua,eff(t) be the unitary evolution generated by

Ha+W^Za)ifa^A^
Ha+W(t,Xa) ifaeA11.
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Let us denote by Camax+^ (^lax+ the observables of the asymptotic velocity
along Z^^ for the evolutions Ua(t) and £/a,eff(^). Assume that ^ > \/3-1.
Then the limits

s- lim Ua^tyUaWET^C^).
t—>00

s- ̂  UaWU^sWE^ (Ce^^
exist.

Proof. — If a €. Ac, then the proposition follows from [GL2], Prop.
8.1, Equ. 8.14. Let us therefore assume that a € A11. Since fi > \/3 — 1,
we can first apply the arguments of Derezinski [Del] in the z variable as in
[GL2] to obtain the existence of the limits

s- lim Ua^tyUaWET^^^
t—>00

S- ̂  UaWUa'WET^^^

where Ua'(t) is the evolution generated by Ha+W{t, ̂ a, Xa)' We then apply
Corollary 9.9. to the Hamiltonian H0' acting on L2{Xa x Y^) with a time-
dependent potential W(t^ y^ equal to Ja^^0, Xa) or J^a^(^a, Xa), where the
variable Xa plays the role of a parameter. Since jja = 2, we obtain the
estimates:

(10.4) s- lim Ff^i ^ l)Ua'{t) = 0,
t—^oo \ t /

/+00 IIF(^1 = ̂ )xWU^t)u\\2^ < oo,

for a > . For fi > -, we can apply Lemma A. 2 in the Appendix with the
/\ya\ \

operator ^>(t) equal to F[ -—- ^ 1) to obtain the existence of the limits

s- lim Ua^{tYUa'(t), % = 0 , 1 .
t—>00

To check that the hypotheses of Lemma A.2 are satisfied, we use (10.4) and
the fact that

F (^ ^ 1\ (W^y^xa) - W(t^xa)) = 0(t-1-^ e L\dt).
\ T /

This completes the proof of the proposition. D

Proof of Theorem 4.5. — Let us first prove iii), i.e., the completeness
of the modified wave operators. Property i) will easily follow from iii). We
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first consider the vectors in RanE/r^C""12"^), for a -^ Oniax. Combining
Propositions 10.2 and 10.3, we obtain the existence of the limit

(10.5) lim Ua^tYe-^Er^C-^).
t—>00

If a € A^, i.e., a does not contain neutral clusters, then by [GL2], Prop.
8.2, we deduce from (10.5) the existence of

(10.6) s- lim e^^^^e-^ET^C^) = S^.
t—>00

Moreover, we have (see [GL2], Equ. 8.5)

(10.7) 5^=11^,

which proves that

(10.8) RanEr^C0111^) C RanQ^, for a € A0.

Let us now consider the case of a € A^ (i.e., a contains a neutral cluster).
Since a € A^ and the long-range part of the interaction is of Coulomb type,
wehaveJa(^a) = 0, i.e., ̂ M = e-^^nd Sa{t,D^) = ̂ tD2^ hence
the limit (10.6) exists. Let us denote by C^ the observable of asymptotic
velocity along Z0- for the Hamiltonian ft" acting on L2^ x Vj1). We have

m (/•a.-\-\rz:-\- _ '^-r
^{0}(C )^a - ^a'

^a+^+ — '='+
•^a ~ ^a '

On the other hand, applying [GL1], Thm. 6.7 to ^a, we obtain:

(10.9) ^o^^IL,

so that

(10.10) Ran^Ta^"^) C Ran^, for a e A11.

Let u be a vector in E^o}^"1^) H^scatt. Combining Propositions 10.1
and 10.3, we can write

u = ^ Ua
aa=2,ae.An

where the limit

lim Ua2(tYe~^tHUa=Ua,2
t-—>00
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exists. Note that since a e A11, we have Ua,2(t) = e"^0. Moreover, since
Ua C ^{o}^"1^), we have

lim F (^ ^ e) e-^ua^ = 0, Ve > 0.
t—>-oo \ ^ /

By standard arguments in the z variable, this implies that Ua^ = 0 and
hence Ua = 0. This proves that ̂ (C0111^) = 11̂ ,, which completes the
proof of i) and iii).

Let us now prove ii) i.e., the existence of the wave operators. I f aeA 0 ,
the existence of the limit

s- lim e^e-^^")-^!!,
t—>00

was proved in [GL2], Thm. 4.7. Let us consider now the case a e A11.
Applying standard arguments in the z variable, (see e.g., [GL2], Prop. 8.2),
we see that there exists a dense subset P in ^(X) such that for u C V
there exists a cutoff function qa C Cg°(Za) supported in

{ZaeZa\\Z^^€Q, V6 ^ a},

such that

e-^Il^u = qa( ̂  )e-itHau + o(l).
if

Moreover, by (10.9), we have

f \za\ \
lim F '—i ^ e e-^llau = 0, Ve > 0.

t—^oo \ t )

Hence, applying Proposition 10.3 to the time-dependent potential W(t, x) =
Ia(t,x), we obtain the existence of the limit

lim Ua^tYe-^^u.
t—>00

Using then Proposition 10.2, we show the existence of

^e^e-^n^=f2+n,

which completes the proof of the theorem, n
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A. Appendix

We collect here some technical results needed in the main text.

We start by recalling a few abstract arguments used in scattering
theory. The first one is a version of the Putnam-Kato theorem which was
developed by Sigal-Soffer [SS1].

Let H(t) denote a time-dependent self-adjoint operator on a Hilbert
space H and let U(t) be the evolution generated by H(t). We will denote
by D<I>(t) the Heisenberg derivative associated with U(t):

D<D^) := ^{t)+i[H(t)^(t)}.

LEMMA A.I. — Suppose that ^(t) C (^(R^BC^)) is a uniformly
bounded function whose values are self-adjoint operators. Assume that
there exist CQ > 0 and operator valued functions B(t) and Bi(t), z =
1, . . . ,n, such that

(A.ll) D<^) ^ W(t)B(t) -^B;(t)B,(t).
i=l

Suppose that for i = 1,..., n,

F mtwt^dt ^ ciHi2.
JlJl

Then there exists C\ such that
/•oo

(A.12) rWWt^dt^CM
Ji

2dt€C,\\(^)\\2.

The next argument is a version of Cook's method due to Kato. Let
H\(t) and H^(t} be two time-dependent self-adjoint operators with a fixed
domain T>{H). Let Ui(t) be the unitary evolutions generated by Hi(t). We
put

^^M ''= ^Mt)+iH^{t)-^{tWt).dt

LEMMA A.2. — Suppose that ^(t) e C^R+^C^)) is a uniformly
bounded operator-valued function. Assume that

n

|(^2|Dl,2$Wl)| < ̂  ||B2i(̂ 2||||Bu(̂ l||,

i=l
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/•oo
/ \WtWt)<t>fdt^c\\cf>\\^
Ji

and for (f) in a dense set Pi,
/.oo
/ ^(tWt^fdt^c^f.
Ji

Then the limit

s- lim U;(t)<S>(t)U^t)
t—^00

exists.

We can now prove Proposition 8.1.

Proof of Proposition 8.1. — Let g C C§°(] - CXD, ci]) with ci < Co. Let
/•+00

F= g\si)dsi.
JS

We consider the propagation observable:

<S>(t)=f{H)F^)f(H),

and compute

D<^)=9^)+[^z^)].

We have

(A.13) D$(t) = /(ff) fk^(^)1 - -Iff2^)) /W-
^ 1 \ t / / J I' \ v / y

Let us compute the term 7 ,̂ iF ( — ) . We have

[(^)-1,^)]
=(27r)-1 I'F^H+^-^ie^^dff

=(27r)-11 (F^ae^^ /' e-^^Kff+^-^zAle^^^dCT
t J Jo

= (27^)-lrl fff g^-^g^'y^-^^H+i^^e^^dedada'

= (27^)-lrl ///' g(a)g(a')ei^+a'^-e^[(H+ir\^A}ei(CT+(T')e&d0dada'.
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Let

B := [(H + i)-\ A], B(s) := e-^Be^.

Note that since ad^H + i)~1 is bounded, we have

(A.14) ITO-B^II^C^-^I.

We have

(A.15) e^7^1-^Be^^ = e^ B( ae + (1 ~ g)a/ )ei(T^
b

=e^<T£56^<^ '?+0(r l).

Using (A.15), and the fact that g € -^(R), we obtain:

[(H+i)-1, iF(^)\ =(H+^)-l\H,iF^)'\(H+i)-l

(A.16) = ̂ (^(H+ir^iA^H+ir^^+O^t-2).

Note that a similar argument shows that for g, h € C'o'°(R):

(A.17) [̂ U^)] =0(r1).
1_ \ t / J

Multiplying this identity from both sides by f(H)(H + z), we obtain:

fW^iFf^fW
L v v / \

=^f(H)(H+i)g^)(H+irl[H,iA}(H+i)-lg(^)(H+i)f(H)

=^f(H)g^)[H,iA}g(^)f(H)+0(t-2).

Let /i € Cy(R) with /i/ == f. Using then (8.1) and (A.17), we get:

f(H) [ff,^(^)j fW - ^Wff(^)[ff,zA]ff(^)/(ff)+0(r2)

=^f(H)g^)f,{H)[H,iA]f,(H)g^)f(H)+0(t-2)

^^fWg^^fW+O^t-2).

Since supp^ c] - oo, ci], for Ci < CQ, we have finally

D$(A) > (co - ci)1/^)^ ( A } f(H) + 0(<-2),
r \ t /
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from which (8.2) follows by the standard method of propagation estimates.

Computing then the Heisenberg derivative of f ( H ) g ( — ) f { H ) and using
(8.2), we obtain the existence of the limit in (8.3). By (8.2), this limit has
to be zero. This completes the proof of the proposition. D

Let us now prove Lemma 8.3.

Proof of Lemma 8.3. — Note that the case of first order commutators
has already been settled in Proposition 7.6. Since here we will need their
exact expression, let us recall it. We will replace M by one of the Ma. We
have

adA(^+z)-1 = (.H^+z)-l(L^ax -^-V^xy^K^+z)-1,

adM^+zr^^+zr^.Mj^+z)-1,

and using the computations in the proof of Proposition 7.6

[H, Ma} = [H, qaFa}BaqaFa + he

qaFan^(D,^ , Dy^ + {Ax)^)qaFa + QaFa^ ̂ a]^^a

=: Ji + J2 + k

for ria € CQ^(Z^m^ x VJ1). Moreover (see the proof of Proposition 7.6):

qaFa[Ia,Ba]qaFa = qaFa[I^ Ba}qaFa + qaFa[I^ ̂ a^a.

To estimate the second order commutators, we have to estimate the four
terms ad^+z)-1, ad^(^+z)-1, ad^(^+z)-1, ad^^+z)-1.

1) To see that the term ad^(^f + z)~1 is bounded, we use ( Y ) : we
write V^ = V01'8 +1^ and 'undo' the various commutators involving Va^.

2) The only term in ad^^^ + z)~1 which deserves some attention
is {H + ̂ ^ad^^T^^ + z)~1. The terms containing [A,Ji] and [A.Js]
are easily seen to be bounded. The term containing [A, Ts] is bounded by
undoing the commutators containing 1^.

3) Similarly, to estimate ad^ ^(H + z)~1, it suffices to examine
the term {H + z^ad^^^ + z)~1. It is easy to see that (H +
z^IJD^amax^A/fa^ff+z)"1 is bounded. It remains to consider

qaFa^——VV^^B^qaFa = qaFa^-^I^B^qaFa

=qaFa[zam^!^Ba}qaFa.

By the usual argument, this term is bounded.
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4) Finally, let us consider the terms ad^^(J7 + z)~1. Again, it
suffices to examine

(^+^)-lad^^(^+z)-l.

Note that if a ^ b, since qaQb = 0 (see (7.3)), we have ad^^^ = 0, so
that we may assume that a = b. The term ad^A ls seen to be bounded
using the argument in the proof of Lemma 7.5. The term ad^a^ is also
bounded : in fact [Ba, QaFa} and [Ba, n^(D^max, Dy^ +(Arr)^)] are bounded
using Lemma A.3 below. The term ad^Js is also bounded by undoing all
the commutators containing 7^. D

The following lemma is an extension of Leibniz rule to pseudodiffer-
ential calculus due to Calderon (see [M], Thm. 6 p. 306). Recall that S^X)
denotes the space of functions / such that

I^A.r)!^^^)6-'"!.

LEMMA A.3. — Let /(a;) € S^X) and g e C'"1-1'1^) such that

IWOI^C", |a|<m.

Then we have

f(xW)= ^ (^-9^g(D)9^f(x)+R^
\0i\^m—l

where Rm{x}'m~e is bounded on L^X).
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