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FUNCTION SPACES ON THE
OI/SHANSKli SEMIGROUP AND THE

GEPFAND-GINDIKIN PROGRAM

by
K. KOUFANY(*) and B. 0RSTED

0. Introduction.

For a semi-simple Lie group G, one often studies its representations by
restricting to a maximal compact subgroup K. An important category are
the Harish-Chandra modules, which are modules M for the Lie algebra Q
with an admissible action of K. Analytic continuation in the parameters
defining certain standard modules M leads to the problem of irreducibility
of M and the problem of finding the Jordan-Holder composition series in
terms of K-types at the reducible points.

In this paper we treat in a special case the analogous problem when K
is replaced by one of its non-compact real forms H c G. Admissible
(g, X)-modules are then replaced by (3, ff)-modules, where the H -types
are infinite-dimentional irreducible discrete series (or continuations) of
finite multiplicity.

Studying spectra of non-compact subgroups is common in the physics
litterature, as well as in certain aspects of representation theory. Here we
want to mention the works of Jakobsen and Vergne [11] for the spectrum
of the scale extended Poincare group inside SU(2,2) and (for unitary
representations) the spectrum of H C G when both have a Hermitian
symmetric space. Also connected with the present point of view is the

(*) This work was supported by the Danish Research Academy.
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study by Kashiwara and Vergne [13] relating asymptotic K-types and a
certain TV-spectrum.

We consider G^ == SU(2,2), K^ = S(U(2) x U(2)) and H^ =
S(U(1,1) x U(l,1)) and the analytic continuation of the holomorphic
discrete series of G^ induced from a character of K^. The corresponding
series M^ of (^b, J^-modules is well-known, in particular the composition
series, see Speh [23], at the reducible points A = 1,0, —1, — 2 , . . . . Here M\
has a bottom subquotient equals to the "smallest" irreducible unitary
representation of G^, the so-called wave representation W. Replacing K^
by H^ we compute explicitly the composition series for the corresponding
(^TI^-modules M\. In particular we find the H^-types occurring in W
(these could also have been found by the methods of Jacobsen and
Vergne [12]). In effect we realize TV in a space of functions (solutions
to the wave equation) on G = U(l,l) viewed as a Lorentz manifold locally
conformally equivalent to Minkowski space, in agreement with the results
in [24]. For A = 2 we obtain a new realization of the classical Hardy space
for U(2), i.e. a unitary irreducible representation of SU(2,2), as a space of
holomorphic functions on Ol'shanskii's semigroup. Contrary to the claim
by Gindikin [4], p. 679, we show in section 4 that the classical Hardy space
is strictly contained in the OPshanskil Hardy space. The difference is due
to a decay condition at infinity in the semigroup to ensure a removal of
singularities of the holomorphic functions.

Our technique is as in [19] that of expanding the distribution
det(l — a;)"^ this time on U(l, 1), in terms of matrix coefficients of
holomorphic discrete series representations, and from this read off the
Hermitian invariant form on M\. As a final note, we compare the
composition series, the harmonic analysis and the wave equation on U(l, 1),
U(2), and Herm(2,C) (v^^T times the Lie algebra of U(2), viewed as
Minkowski space). The connection between the three spaces is given by
Cayley transforms, and all three admit SU(2,2) as the conformal group of
(local) transformations.

This paper is organized as follows:

1. Cayley transform and geometry of F0.

2. The reproducing kernel over r°.

3. Composition series.

4. The Hardy space and the wave equation over U(l, 1).
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1. Cayley transform and geometry of r°.

Let G* = SU(2,2), then G^ = SL(4,C). Let us consider on C4 the
Hermitian form ff1 defined by

/^, r,) = ̂  + $2??2 - $3»?3 - ̂ ?4, (^ r] € C4).

For X € .M(4,C), let X- be its adjoint with respect to ^

f3\X^n)=f3\^X^),

x^=j^x-j\ J b = ( ^ J),
where X* = X*.

We realize then SU(2,2) and su(2,2), its Lie algebra, as

SU(2 ,2)={9€SL(4 ,C) ; f f « = f f - 1 } ,

su(2,2) = {X e A^(4,C); X'1 = -X, tr(X) = 0}.
We remark that g 6 SU(2,2) if g is of determinant 1 and satisfies

9*^9 = J^.

Let G = U(l,l), then GC = GL(2,C) and consider on C2 the
Hermitian form /? defined by

/3($, rf] = -^ + ̂ r?2, ($, r] € C2).
For X € M(2, C), let X'1 be its adjoint with respect to /3

/3(X^)=/?($A),

X^JX-J, .=(-; ;).

We realize then U(l, 1) and u(l, 1), its Lie algebra, as

£7(1,1) = { ^ C G L ( 2 , C ) ; g ^ g - 1 } ^

u(l , l )= {XeA^(2 ,C) ; X^ =-X}.
We remark that g € U(l, 1) satisfies

g " J g = J .
and that if X e zu(l, 1) then f3{X^ Q € R for all $ € C2. Let G be the cone
in zu(l, 1) defined by

C = {x e zu(l, i); /?(X^Q ^ o, v^ e C2}.
It is clear that G a is closed convex cone which is pointed
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(i.e. C C\ —C = {0}), generating {i.e. C — C = %u(l, 1) or equivalently
C0 ^ 0) and Ad (G)-invariant. Then (cf. [8]) F = Gexp(C) is a closed
semigroup contained in GL(2,C). The decomposition F = Gexp((7) is the
so-called OUshanskiz decomposition. In this paper, except in the last sec-
tion, we will not use the OPshanskil coordinates. In fact F can be simply
described as follows:

r = {7 e GL(2,C); /?(7^) ^ /3(^0, V^ e C2}
={7€GL(2,C); J-7*J7^0}.

The group G* acts on the generalized unit disc

-D = [Z e M(2,C); I - Z * Z > 0 } ,

via

g.Z={AZ+B)(CZ+D)-1, g = (^ ^).

The scalar holomorphic discrete series representations are

(1) (^VK^det^Z+P)-^-1-^), 9~1-^ ^)>

for A = 4,5,6, . . . which all are unitary and irreducible in the Hilbert
space H\(p) of holomorphic functions on Z>, square integrable with respect
to Lebesgue measure times the density

det(J-Z*Z)A-4.

The Hilbert space H\(T>) has the reproducing kernel (up to a
constant N\ depending on A, see [19])

(2) K^(Z, W) = Nx det(J - Ty*Z)-\

The infinitesimal Harish-Chandra module M^ consists of all holomor-
phic polynomials in V and admits a {^-action corresponding to (1) for all A.
Furthermore, we have the "binomial formula" [19]

det(J - WZ)^ __________
= ̂  a^(\)(detW^D^,(W)(det Z^D^Z),

(3)
"-mjW

=(2J+1)
r(m + X - l)r(m + 2j + X)

r(m + i)r(m + 2j + 2)r(A - i)r(A)



OL'SHANSKII SEMIGROUP AND GEL'FAND-GINDIKIN PROGRAM 693

where the sum is over m == 0,1,2,. . . and all matrix coefficients
D3 ,(Z) of the spin j representation of SU(2) i.e. j = 0 ,^ ,1 , j , . . .
and 9, q' = —j, — ^ + 1 , . . . , ^ — 1 , J . Here r(.r) is the usual continuation of
{x — 1)! for any x.

We now wish to realize the representation U\ over a different domain,
namely the interior r° of the OPshanskil semigroup F, via a certain Cay ley
transform and study the analogues of (1), (2) and (3).

The Silov boundary of V is U(2) whereas that of F0 is U(l, 1), so in
effect we replace harmonic analysis on U(2) by harmonic analysis on U(l, 1).
Since

U( l , l )^ (U( l )xSU( l , l ) ) /Z2

the unitary irreducible representations are those of U(l) x SU(1,1) that
are trivial on (—1,—J). We shall in fact only need the holomorphic discrete
series (although the principal series mysteriously seems to turn up in an
analytic continuation), namely

(4) 7Tn,,( e^g) = e1"9 ̂ (g), g € SU(1,1)

where n C Z and TTj are the holomorphic discrete series representations
of SU(1,1), j = 2,3, . . . and n + j must be even. Recall that

(5) {7^,(g)f)(z)={cz+d)-jf(g-l'^ 9-1 = Q \\

where SU(1,1) acts on the unit disc by fractional linear transformations,
and the monomials

^"•(^W k=w--
form an orthonormal basis. The distribution character of (5) is then on the
compact Cartan subgroup given by

/ e^ 0 \ _ e-^'-1^
^'l 0 e-^J ~ eie _ e-i0'

and correspondingly, the character of (4) is

/ /. / P102 0 \ \ n p-^O'-l)^
(f.\ ^ • f p ^ t ^ - e^01—______•W ^,[e ^ ^ ^ ) ) - e ^ _ ^_^

Our main task will be to expand the distribution det(l — x)~x viewed
as a suitable boundary value of an holomorphic function, on U(l, 1) in
terms of the characters \n,j{x).



694 K. KOUFANY AND B. 0RSTED

To see how this question ties up with the representation theory, we
consider the generalized Cayley transform C from Herm(2,C), the space
of 2 x 2 Hermitian complex matrices, to U(l, 1). The transform C is quite
analogous to the usual Cayley transform, but it only compactifies certain
directions in Herm(2, C) (it is in fact a partial Cayley transform in the
group-theoretic sense):

C(X) =(X- iJ)(X + iJ)-\ X e Herm(2, C).

On the complexification of Herm(2, C) (away from the singular set where
the inverses are unbounded) for 7 = C(Z) and 71 = C(Z^) we have that

^(z~zl*)=^(J~7)-l(J^+7)%t/+^t7(J^+7l*)(J-^)-l)
=(J-^)-i(J-^j^)(J_^)-i.

Also, since C(Z) = I - 2iJ(Z + zJ)-1, we have the relations

J - 7i*J7 = 2(Zi + i j y~ 1 (^(Z - Zi*)) (Z + iJ)-1

={J^-I)r(j-^{z~z!))^~I)^
From this we find the image of the generalized upper half-plane

T = { Z = X + z y c A ^ ( 2 , C ) ; X* =X, V * = y andV>0}

under C, indeed one verifies by these relations.

LEMMA 1.1. — The transform C is an analytic diffeomorphism from
an open dense subset ofHerm(2,C) (and its complexification M(2,C)) to
an open subset ofU(l, 1) (and its complexification GL(2, C)); furthermore,
C maps an open dense subset of T biholomorphically onto the complex
manifold r° = {7 C GL(2, C); J - 7*^7 > 0}, the interior of F.

In fact, modulo a set of measure zero, namely

S; = [Z € T; det(Z + iJ) = 0},

r° is just another realization of G^/K^. To be specific, let

J ' - i 3 ° }J ~ l o - j )
and realize G^ as all matrices satisfying

(7) g ^ f g = J ^ detg=l.
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Then the usual fractional linear transformations

^ .7=(A7+B)(C7+^) - \ 9=(^ ^)

defines an action of G^ (with singularities of measure zero) on F0. Indeed

J - { 9 ^ r j { g ' - i }
=(C7+^)* -1[(C7+^)V(G7+^)

-(A7+B)*J(A7+B)](G7+^)-1,

= (G7 + ^)*~1 [J - ̂ J 7] (^7 + ̂ )~\

using (7) i.e.
A*JA-C*JG=J,
A*JB-C*JD=0,
B*JB-D*JD=-J,

which gives that both r° and U(l, 1) are preserved under the action (when
defined). Note that

X«—>X' =-iJX

is a linear isomorphism from Herm(2, C) to u(l, 1), the Lie algebra ofU(l, 1),
and that

C(X) ={iJX' - i J ) { i J X ' + iJ)~1

^^(x'-.opc'+T'r1^
where conjugation by iJ preserves U(l, 1).

Remark 1.2. — This version of Cayley transform, i.e.

cW^x'-JHx'+J)-1

has surprising and interesting properties for a large class of linear Lie
groups: U(p, g), Sp(n, R), 0*(2yi) and S0(2, n). It was introduced in WeyPs
book [25] and has been studied by Hilgert [7] and Paneitz [21] and more
generally for all hermitian symmetric spaces of non compact type by Faraut
and Koranyi [2] and Loos [16]. Many of our results will generalize using
this.

Note that r° is not simply connected, so that non-zero analytic
functions in r° do not necessairly have analytic logarithms. Concerning the
geometry of F0, we note the following explicit computation (some of which
is known from the general theory).
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LEMMA 1.3. — If 7 € r°, then I ± 7 is non-singular. The semigroup
r° is closed under forming adjoints', furthermore, for all 71,72 ^ F0,
J — ^J^-2 is non-singular.

Proof. — If 7 € r° then for any non-zero a € C2

(8) /?(7a,7a)</3(a,a).

Therfbre, 7 does not have eigenvalues d=l. Suppose 71,72 € r°, then

J ~ 72 7^7172 = ^ - 7$^72 + 72 (J - 7^7i)72 > 0.

For the next assertion, we use the relation for 7 G r°

(J - ̂ -\J - 7^7*)(^ - 7*)-1 = (^(7 - I)Y~\J - 7*^7)^(7 - -O)"1.

It is easy to check that r° is both left and right invariant under U(l, 1)
(this in general follows from OPshanskil [17]), and also from (8) that
I ± 7 in non-singular for all 7 € F0. But then the last assertion follows
immediately. D

The semigroup property gives the following characterization of r° due
to OPshanskil [17].

PROPOSITION 1.4. — Consider the action

aw +6 / a b \
q - w = ———;5 a = ( ,
" cw+d " \c d )

ofGc = GL(2,C) on the unit disc D = {w € C; |w| < 1}. Then g belongs
r-1 H SL(2,C) = { 7 6 SL(2,C); J - 7*J7 < 0} if and only if g ' D C D. D

We let K = U(l) x U(l) be the maximal compact subgroup in G;
Kc consists of the diagonal matrices and

^^{Co ^H^KM3}

={(w~l ° ); W < W < H-'t.l \ 0 ZQw} ' ' ' ' ' ' J

Thus the character (6) has an analytic extension to r° D Kci namely

/ /w~1 0 \ \ n w3

^•K o J)=ZOT=~^
and so \n,j h^18 an analytic continuation to the open set of elliptic points
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in r°. In fact, ̂ nj is analytic on all of r°, but for the moment, let's also see
how the matrix coefficients ofTTyij in (4) behave under analytic continuation
into r°. These are in terms of the orthonormal monomial basis e/e for the
representation space of TT^ given by

(10) Dr^(g)=(7^^(g)e^e^^

at this point with j = 2,3,4, . . . , n + j even and r, s = 0,1,2,. . . . By virtue
of Proposition 1.4 ^n,j(^f) leaves the representation space stable, and it
follows that (10) is actually analytic on r°. We note for later use a few of
the coefficients (10)

Do^)={det^n+^a-^

D .̂(7) = (det ̂ "-^ca-^-1,(11)

where 7 = ( , ) € F0 ensures that\ c a/

\a\2+\b\2-\c\2-\d2>Q, and

(-1 + |a|2 - |c|2) (1 + |&|2 - |d|2) - \ab - cd\2 > 0,

so that a~3 is indeed analytic. Strictly speaking, to make (det ^y^77^)/2

analytic for all n, we should in r° disregard the hypersurface det 7 = 0 .
This means those 7 = ( , ) for which c = Aa, d = Xb, \\\ < 1 and

lap-I^O-lAl2)-1/

It is also interesting to note at this point that the complexification of
the non-compact Cartan subgroup H of G does not meet r°. Indeed

HC={ZO(XX+-^ ^:;);-oeC,AeC\{0}}

where one of the conditions to be in r° reads

N'QA + A-1!2 + |A - A-1!2 - |A - A-1]2 - |A + A-1!2) > 0

which cannot be satisfied. Thus there are no hyperbolic elements
in r°, and analytic functions ^(7) that are G-invariant in r°, i.e.
(t)(9^9~l) = ̂ (7) (9 e G), will be determined by their values on r° D Kc.

As is apparent from the above considerations, we shall be dealing
with functions analytic in a domain, except possibly along a complex
hypersurface. Fortunately, typically those singularities are removable by a
square integr ability condition.
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Let O(^) denote the space of holomorphic functions in a domain ^},
and recall (see e.g. Rossi and Vergne [22]) the tube domain realization of
the representation (1) of G17:

For A = 4,5,6, . . .

Hx(T) = [f e 0(r); [\f(X+iY)\2d^{X+^Y)<oo^

where d^\{X-}-iY) = (del Y)x~4:dXdY, and dX dY is Lebesgue measure
in T C C4, is a Hilbert space with reproducing kernel (normalizing the
measure appropriately)

-\
K^Z^W)=(det^(Z-W-))2z

and the G^-action as in (1), this time G^ realized via

a ^ P a - f /b/ - (° ~~1}9 J 9 ~ J 5 J ~ \I o ) '

Now we wish to realize this representation over r° using the Cayley
transform C above; the main difficulty being that this is singular on T
(but with an inverse on F0) and that the group action is singular on r°.
Intuitively, T equals r° with a complex hypersurface added at infinity,
namely the hypersurface S C T

S = { Z e r ; det(Z+%J)=0}.

To make the correspondance between functions on T and functions on r°
precise, we need the following

PROPOSITION 1.5. — Let f be a holomorphic function on T\ E, square
integrable with respect to dp,\^ A > 4. Then f is actually holomorphic on
all of T.

Proof. — The measure dp,\ is locally equivalent to Lebesgue measure;
also S \ {—iJ} is a complex submanifold since

det(Z + iJ) == znz^ - Zi2Z2i + ̂ n - ̂ 22) +1, Z = ( z 1 1 z12 )
^21 ^22 /

from which we see that the differential (^22 + ^ —^21? —^125^11 — i) only
vanishes at Z = —iJ. We shall first prove that the given function / can
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be holomorphically extended across S \ {—iJ} and then use essentially the
same argument to extend it across —iJ. Locally around a given point of
S \ {—iJ} we can find complex coordinates (Zi,^ Z y ^ Z ^ ) so that S is
given by Z^ = 0 and

(12) [\f{Z^Z^Z^Z^)\2 <oo

locally around {Z^Z^Z^Z^) = (0,0,0,0) with respect to Lebesgue
measure in these coordinates. Consider the Laurent expression of / in
these coordinates

+00

/(Zl,Z2^3^4) = ̂  UZi,Z2^3)^
n=—oo

where an is holomorphic. For n > 1 (fixing the first three variables)

r-n /•27T 2

a_^=\'— I "/(re^e^d^l , z = r e 1

'o
— / /(re^e^d^ , z=re1^
27T Jo^r '̂î=(^••2-^(•-)

where M(r) = f^ \f(re^e)\2rd0 is from (12) integrable near r = 0. But
this implies that for all integer k > 0 there exists an rjc < l/^ so that
TkM(rk) < I/A; and therefore rfcM(rfc) -^ 0 as k -^ 0. This in turn implies
that a-n = 0 for n > 1. We conclude that ^{Z^.Z^.Z^.Z^} is actually
holomorphic in Z^ at Z^ = 0 so that / extends across any point of
E \ {-iJ}. Finally the possible singularity at Z = -iJ is removed in a
similar fashion, n

Remark 1.6. — We could also have used the formula

/.27T /.I /•I +°°

/ / \f(reie)\2rdrd0= 27T ̂  Kpr2^ dr
JQ JQ JO n=-oo

+00

where j(Z} -= ^ On Zn near Z = 0. The integral is only finite for dn = 0
—00

for n < 0. Note also that the same argument using Laurent series in several
variables shows that a square-integrable function, holomorphic except
possibly on a complex submanifold, actually has removable singularities
there. Also, other L^-conditions will do the job only when p >_ 2.
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Now we introduce, for A = 4,5,. . . , the Hilbert space

Hx(r°) = \F e o(r°); / \F^d^) <oo},L Jr° )

where dy\ is the restriction to r° of the Lebesgue measure of Vc times the
density

det^-y^-4.

The Cayley transform 7 = C(Z) gives a correspondence

(13) f=W) where /(Z) = det(Z+ iJ^F^)
for A = 4,5,6, . . . between 0(T \ E) and 0(r°).

THEOREM 1.7. — For A = 4,5,.. . and suitable normalization of the
densities, C\ gives a unitary transformation from H^T0) to 7~i\(T), and
the pre-image of the reproducing kernel Kj^ for /H\ (T) gives a reproducing
kernel for H\(T°), namely

(14) ^(^O-detG/^i*^)"^.
Furthermore, H\(T0) is for all A > 4 a reproducing kernel Hilbert space
with kernel (14).

Proof. — Relative to Lebesgue measure, the Jacobian of C is equal
to a constant times | det(Z + iJ)^8. Also, with 71 = C(Z\) and 7 = C{Z)
from the relations preceeding Lemma 1.1 and in the proof of Lemma 1.3 we
get that

(15) det(2(^+%J))Adet( l(^-^l*))~Adet(2(Zl+^J))A

=det(J-7l*J7)-A

as well as for / = C;,(F), / G 0(T0)

(16) [ \F^\2d^)= [ [/(Z^d/^Z)
Jro JT\^

with suitable normalization of the measures. Indeed, the left-hand side
of (16) equals (ignoring constants)

/ |det(Z + iJ^ f(Z)\2 |det(Z + ̂ "^^(det V)^4

JT\E _.
x |det(Z+^)| dXdr

= / [/(^['(defy)^;^^
JT\E

= ( ^(Z^d^Z).
Jr\s
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The inverse transformation to C\ is given by

(17) F(7) = det(zJ7 - ̂ J)~A/(^), Z = (7 + J)(zJ7 - iJ)-1

and this is well-defined on all of 0(T). If the integral in (16) is finite, i.e. if
F € 7^;\(r°), then by Proposition 1.5 / is holomorphic across S so that it
is actually an element of H\(T). Combined with (17) we thus established
the unitarity of C\^ and from (15) we read off the statement about the
reproducing kernels, namely (Hilbert inner products)

f(Z)= (/,^(Z,.)) ^de^Z+^-^F,^,-)) =det(Z+zJ)-\F(7)

where 7 = C(Z) and / = C\{F). Note that in particular we get that
J^(7, •) € ^A(r°) (7 € r°) and that these span all of ?^(r°). Our main
goal is to study 1-i\(Y°) under continuation in A; the first step as stated in
the last part of Theorem follows easily by considering evaluation at a point
in r° of functions in H\(T0), A > 4: Let 7 € F0 be fixed and apply Cauchy's
integral formula to an F € 7^\(r°) on a small polydisc around 7. This gives

, . ^ ^ ^ 1 [ F(r)^, rj2 ,T?3 ,^4) dy^i d^ dyy3 d^4
v / w ~ (27T2)4 7 (77i - 7l)(r72 - 72)(^3 - 73)(^4 - 74)

where (?7i, 7725 ^35 ?74) are complex coordinates and the integral is over

|m - 7l| = 1^2 - 72| = 1^3 - 73| = 1^4 - 74| = €.

Integrating (18) over [e-i, e^ we get by a simple Cauchy-Schwartz inequality
that F \-^ F(7) is continuous on H\(r°) and therefore

(19) F(7) = (F,^A(7j)

for some K\{^, •) G 7^(r°). That this is the same kernel as given in (14)
follows by analytic continuation on A. D

The geometry of F0 is considerably more difficult that of T or P,
the trouble being that it is incomplete as a homogeneous domain for the
automorphism group G^. This corresponds in part to the fact that the Silov
boundary G = U(l, 1) ofr° is conformally incomplete (as Minkowski space:
the Silov boundary of T). We mention here the following result which may
be checked by tedious coordinate computations, or by using the remark at
the end of the paper [20].
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PROPOSITION 1.8. — Consider the following basis for the Lie algebra
u(l,l) ofG:

f-i 0\ /O 1 \ /O -i\ ( i 0\
eo=[ o J5 ^(i o)5 ^L o)5 ^(o J5

and the corresponding invariant bilinear form

3 3

Q (^ ^e,, ̂  ;ẑ  = x^ - x\ - x\ - x^.
i=0 i=Q

Then the Cayley transform C is conformal from Minkowski space to G
equipped with the invariant Lorentz structure coming from Q.

Remark 1.9. — The positive cone (forward timelike) in u(l, 1) is
given by

—iJ(xoeo + rciei + x^ + ̂ 363) > 0;

and C is causal in the sense that it preserves the field of positive cones in
Herm(2,C) (resp. G).

2. The reproducing kernel over r°.

In this section we shall obtain the analogue of (3) based on an
expansion of the distribution det(J - /y)~x on G in terms of characters of
irreducible unitary holomorphic representations of G. The situation is quite
similar to the following simple one-dimensional case:

For any real A, (1 - e^)"^ is a distribution on the unit circle as a
boundary value of the holomorphic function (1 - z)~x in the unit disc. To
see this, we find its Fourier series

(l-e^-^^^l^^^^e^
\ Hi /

n=0

where the binomial symbol as usual is defined in terms of F(s) = ( 5 — 1 ) !
and as meromorphic functions

(20) (-•)"(-;)-(T1)

for all n == 0,1,2,. . . . For positive A these coefficients exhibit at most
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polynomial growth since

log (^A(A+l ) . . . (A+n- l ) ) ^ log (A( l+^ ) . . . ( l+^ ) )

^ l o g ( A ) + A + • • • + A

Z 7Z

< log(A) + A log(n) = MAr^)

so that indeed we have that (1 — e^e)~x (as boundary value from inside the
unit disc) is a distribution. Also, for all real A, (1 — z)~x has a uniformly
convergent Fourier series inside the unit disc.

Similary, consider the function det(J — 7)"^ for A an integer; this is
analytic in r° and in analogy with the monomials in the unit disc we wish
to expand it in terms of the characters

(21) W7)=^i^rr ^o(^ ^-°).

LEMMA 2.1. — Function (21) is analytic in r° if and only ifn-\-j > 0.

Proof. — We have Xnj{979~1) = XnjW for all g e G, and from (21)
this is analytic on r° r\Kc since here \zow~1 \ < 1 < ZQW ; also, as remarked
earlier, r° contains no hyperbolic elements, so all we have to check is
whether Xnj is analytic on the set

^{^-(S 2)}
where the condition to be in F0 is \d\ < 1 < |a| (and possibly d = 0). But
rewriting (21) we get on such a 7 that

^•(^o^""^"^2

which is analytic precisely when n + j >_ 0. D

Now let first m = —A be a positive integer and consider in (21)
ZQ = e101 and w = e102; since we want to expand det(J — ^)~x as a
boundary value from r°, the series must involve only negative powers
of ZQW and positive powers of ZQW~1, namely

(22) det(J - 7F = (-IF ̂  ̂ (-m)W7)



704 K. KOUFANY AND B. 0RSTED

where the left-hand side equals
(1 _ e^^^))^! _ e^i-W771

= (-I)771 e"71^91'^ (l - e"'^1"^2))77^! - e^1"6'2))771

00 00

=(_l)^e^m(01+02)y(-l)fcfm)e-^fc(01+02)N^(-l/fm)e^^l-02).
fc=0 ^=0

After this is multiplied by e102 - e~^2, anj(-m) in (22) is then found as
the coefficient to e^01 e"^"1^2 by reordering the double series. This turns
out to be after some simplification

(23) a^(-m) = (-l)^^! - j ) m!(m+l)!
v / 'Jv / v / v J ) k\{m-k+l)\e\(m-^l-e)\
where

^= ||(^+j). k=m- ^(n-j).

Indeed, the sum in (22) only involves finitely many characters, all analytic,
namely 0 < fc, £ < m+1. It is important at this point to notice, that \n,j for
J = 1,0, —1, — 2 , . . . is the character of the analytic continuation of discrete
series representations. The formula

^-i{j-\)e ^-i(j-iye _ ^3-1)0 e^-7"1^
- ) eiO — Q-i0 = Qi0 _ ^ - i O " ^ ^iO _ Q-i0

reflects the composition series of the representation (5) forj == 0, —1, — 2 , . . . .
Indeed the corresponding Harish-Chandra module has the representation of
dimension j as invariant subspace, and 71-1-j as quotient, j = 0 , — l , — 2 , . . . .
Now the decomposition (22) does possibly involve these characters
of reducible Harish-Chandra modules, as schematically represented in
Figure 1.

The square denotes are those characters that we are summing over
in (22) not including j = 1. As we shall see in section 4, Figure 1 also
gives a picture of composition series for a Harish-Chandra module for
G^ = SU(2,2). Two of the dotted lines vary with m = -A, and we now
wish to study the analytic continuation to positive A.

To be more specific, we shall prove that (22) still is true with the
right-hand side locally uniformly convergent in r° and the coefficients given
by the analytic continuation of formula (23). The summation in (22) is then
not over a bounded region in the (n,j) plane but rather as indicated on
Figure 2. This picture too represents a certain composition series for G^.
Since we are dealing with G = U(l, 1), only n + j even is to be considered
in these pictures.
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Figure 1 (A = -m = -2).

Using relation (20) we easily get that the analytic continuation of dnj
is given by

(25) ^njW == ( j -1)
(A+ fc -2 ) ! (A+^-2 ) !
kU\(\-l)\(\-2)\

THEOREM 2.2. — On r0, we have the following locally uniformly
convergent expansion, valid for A = 2,3,4, . . .

det^-^ = (-1)^ ̂  a^(A)xn,,(7)

where the summation isovern-^-j even, n+^ > 0, n—j < —2A anddnjW
is given by (25).

Proof. — Just like in the estimate of the growth of (20), the coef-
ficients (25) are dominated by a polynomial in k and / (for fixed A). Since
\nj on the diagonal matrices in T° is given as in the proof of Lemma 2.1
and r° contains no hyperbolic elements of GC, we deduce that the series
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Figure 2 (A = -m = 4 "dual to A = -m = -T').

in question is locally uniformly convergent. Finally the sum is easily found
on Kc using the binomial formula. Q

Remark 2.3. — One case of particular interest is A = 2 where
^j = J - 1? which is exactly the formal dimension of TTnj as a discrete
series representation of G. This case will be studied later in'more details.

Now the reproducing kernel itself (14) can expanded using Theo-
rem 2.2, namely

^(71,72) =det(J-72* ̂ 71)-^
= (-1)^ det(J - W^

=^anj(A)Xnj(^72*^7i)

(same summation region as in Theorem 2.2 and Figure 2). On the other
hand, ^nj can be computed directly as a trace on F0 by the remarks
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following (10). This means that
00

Xnj(7)=E^(^
r=0

where the sum is locally uniformly convergent in r° (c/. the character
formulas in [6]) and

Xnj(W-ri) = E W^W^i).
r,s=0

Now the operation 7 \—> J^J is the analytic continuation of the inverse
on G; therefore

D^{W)=D^)

so that we finally get

THEOREM 2.4. — The kernel K\ has locally uniformly convergent
expansion valid for A = 2,3 ,4 , . . .

(26) ^A(7i,72) = E^W^^)-^^

where the summation is over all matrix coefficients of TTyij, n + j > 0,
n— j <_ —2A and cinjW is given by (25).

This is the analogue that we wanted to (3), note the close connection
between the two formulas, in particular that the (formal) dimension appears
as a factor, and that by replacing in (3) m + 1 by t and m + 2j + 1 by k one
obtains the coefficients (25). This suggests a deeper connection between
the finite-dimensional representations of U(2) and the infinite-dimensional
representations of U(l, 1) via analytic continuation.

In the formulation of Theorem 2.4 we tacitly included the repre-
sentations U\ for A = 2,3; although not discrete, they still have the
reproducing kernel K\ as is well-known from the usual realization of U\.
Let 7^^(r°), be the corresponding Hilbert space. In particular we have
7^(r°) = (^(^(T)) (at those points A = 2,3), and Theorem 1.7 is also
valid for A = 2,3.

PROPOSITION 2.5. — For fixed A = 2,3 ,4 , . . . H\(T°) has as an
orthonormal basis the functions

(27) ^)=a^Wl/2DS^)

with even n+ j > 0, n — j < —2A, 5,r = 0,1, . . . and a a multi-
index (n,j,5,r).
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Proof. — We proved the expansion of the reproducing kernel

^(71.72) = ̂ ^(7i)^(72)
a

which is the general expression given an orthonormal basis for the Hilbert
space. The functions (^(7) occurring in the sum actually all belong
to 7^^(r°), a fact which is based on the following two lemmas:

LEMMA 2.6. — The domain r° is given explicitly as all complex 2 x 2

matrices 7 = ( , I satisfying\ c d /

\a\2+\b\2>\C\2^\d\2

(28)
(-1 + |a|2 - |c|2) (1 + |&|2 - |d|2) > \ab - cd\2

and for all 7 e F0, |&|, |c| and \d\ is bounded by a polynomial in |a|.

Proof. — From the first of the inequalities (28) (which just express
that J — 7*</7 has a positive trace and determinant) it is clear that it
suffices to find a polynomial p(|ft|) in |a| (independent of c and d) so that
\b\ < p([a\) everywhere in r°. Since |a|2 > 1 + |c|2 is immediate we only need
to find a polynomial bound for b independent of d for each fixed a and c.
The second inequality implies that (using \ab—cd\2 > \ab\2 +|cd|2 —2\abcd\)

_1 + \a\2 - |c|2 > ̂ (l + |c|2) - 2[abcd\ - \d\2 + \ad\2.

If we let x = |&|, y = |d[, a = 1 + |c|2, (3 = |ac|, 6 = [a\2 — 1 and
^ = — l + | a | 2 — |c|2, then 6, ̂  > 0 and the inequality reads

ax2 -2l3xy-{-6y2 < f,

which is interior of an ellipse in the (a;, 2/)-plane since the discriminant

D = -a6 + (32 = (1 + |c|2) (1 - |a|2) + [aW
= l - | ^ | 2 + | ^ 2 ^ o .

But the size of this ellipse is polynomial in |a| and |c|, and therefore the
size of r° is polynomial in [a|.

LEMMA 2.7. — For a fixed \ = 4,5,. . . , the functions D^ in (11) will
belong to T~t\(r0) for j sufficiently large and n + j = 0.
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Proof. — The integral to be proved finite is

II^II^/J^I2^17-^17^"4^

= [ H-^^-i+ia^-ici^a+i^-idi2)
Jr° l ^ A-4

- |ad - cd\2 ̂  d7

where d7 is Lebesgue measure. Integrating first &, c and d for fixed a gives
at a polynomial in |a| (of degree depending on A) times lal"27. Therefore
the total integral (having |a| > 1) is finite for j sufficiently large. D

Since Ti^T0) carries a unitary representation of G^ the restriction to
H^ = S(U(1,1) x U(l, 1)) will again be unitary; but for different (n,j) the
matrix coefficients (27) span inequivalent representations of H^. Thus we
have that {(/?^}n7^A(r°) is an orthogonal system in 7^\(r°), which we know
is a reproducing kernel Hilbert space of holomorphic functions. It remains
to show, that all the functions (^ occurring in the expansion formula for
^(71572) belongs to 7^\(r°), in order to conclude that they form an
orthonormal basis. This is exactly what we shall establish in more general
form in the next section, where in particular a single D0^0 with n + j = 0
and j large will be shown to be cyclic for the action of the Lie algebra ^b

ofG^.

3. Composition series.

We have realized the holomorphic discrete series representation (1)
of G^ over F0, i.e. in H\{r°) the action is

(29) (^(^)/)(7)=det(G7+^-A/(^-l•7), 9~1 = (^ ^)

where G^ is realized as in (7) (in particular the subgroup H^ has B = C = 0).
Note that even when the action of a g G G^ is singular on r°, the
determinant factor in (29) ensures that the whole expression is again
holomorphic in r°; this again follows from Proposition 1.5.

Now we wish to compute explicitly the differential of the action (29)
on our basis vectors (11) to get:

(a) the composition series in terms of these for the analytic continuation
in A, and
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(b) the Hermitian invariant inner product on the corresponding (0^ H^)-
modules.

Consider again the functions on r°

^•(7)=(7^nj(7)^,^)

this time including j = 1,0, —1, — 2 , . . . (so that e.g. ̂ '°.i span a 4-dimen-
sional representation of H^) and the infinitesimal action on these by the
complexification of ^. As a basis for the latter we choose

ri = \ 0 0 ) ' ri=rti (transpose)

where i == 1,2,3,4 and

/ I 0\ /O 1\ /O 0\ /O 0\
^lo oJ 5 ^lo oJ 5 y 3 = lo i)5 ^"li oJ

together with a basis for i^, the Lie algebra of H^. In every unitary
representation of G17, Y^ will be the skew-adjoint of the operator of Y%
(z=l ,2 ,3 ,4) .

A short calculation with the representation Tij of SU(1,1) shows that

<^) = '-̂ <^2(7) - ̂ '°l,^(7),

^•(7)=-6^'°i,,^(7)

together with earlier noted

< .̂(7) = c^-°i,,^(7), .̂(7) = (det ^(n+^/2a-^•

where 7 = f , ) .\c d /

Now under the action of the universal enveloping algebra of t^, (n^j)
is fixed and D0^0 carried to any other D^8 where 0 <: r, s < —j when j < 0
and 0 < r, s < oo otherwise. On the other hand, the operators Y^ and Yz
will permute the lowest ^-types above:
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LEMMA 3.1. — For every A, the differential of (29) gives the following
actions of T^ and T%:

T n°'° ( n ^ 3 j •\n^° -L^^n1'11 1 • D^ = -[——^-J^-J)Dn-lJ^l + —^-^n-lj-1.

T n0'0 ^ \ -L ILZ^^n0'01 1 ' D^ = ̂  + —^—J^+ij-i,

T n°'° n+^ n°'1
12 • ^nj = ̂ —^n-l,j-l^

^ r»0,0 / ^ . ^-J^pl^
1 2 • -Dnj = -^A + —^—J^+ij_i,

T n0'0 — yl+^ n0'0-L3 • ̂ n,j — -—^—^_i^-i,

^ nO.o ^x . ^ " • ^ ^ ^ ^ i ^ n0'0 ^ -L ^ • ^ n 1 ' 1
^ • ̂ n:, = [[x + -2-J J^ 4-jj^+i^i - [X + ̂ -p,+i,,_i,

'r n0'0 n"h^ n0'0^ • ^nj = -^—^n-ij-i^

^ n0'0 f\^n_l\n^l
T4 • ̂ nj = [x + -Y-J^n+lj-r

Proof. — Straightforward differentiation along one-parameter sub-
groups in G^, e.g. for the fourth formula,

^ n°'0^ d fn-L x^Mn0'0^"^^" ^+^1^•^•(7)=^[(1+^)^,(^^ d+tdJj^

= (A+ i(n-^)) 62^(7) = -(A+ i(n-j))^i,,-i(7). D

Note that ̂  has a basis that acts diagonally on the D^8^ resp. raises
and lowers the indices r and s by 1 according to the representation T T J .
By a simple application of the Poincare-Birkhoff-Witt Theorem we can now
conclude using Lemma 3.1 and the above remark:

THEOREM 3.2. — Let 2 <, X be an integer and consider the action
of g^ given by the differential of (29); then the algebraic span M\ of
{D^5; 0 < n + j even, n — j < —2A} is irreducible.

Proof. — Every linear combination of the D7^8 in question can by
successive applications of operators from ^ be mapped to D^ with
n + j = 0 and n — j = —2A (see Figure 2) and this vector is cyclic. On the
other hand, M\ is invariant because if we let for example

^(S ;)6*
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then Z lowers the r-index:

Z .^.= (const xr)^,

so that
^0,0 _ / . - , ^ n0,l[Z,Yi].^.=(const)^'_^,_,.

Similarly we can find a basis for (^ that permute the T^s and T^s: in fact
^ are the fixpoints of an involutive automorphism of ^b, and ^ = (^ 9 q^ is
a direct decomposition into the +1 and -1 eigenspace, where c^ is spanned
by the T,'s and Y^s. In particular [i^, q^ c q1' so that if y = D^, Y e qb

and Zi , . . . ,Zfc ^ ^ then

(yZi. . .Zfc) .^=([y,Zi]Z2. . .^)-^+(^ir^2. . .^)^
and we get by induction on k that

qh • MA C MA.

Here the induction starts due to the relations in Lemma 3.1. But then we
also have for the universal envelopping algebra that

U^c) • D^ = M.

for any (n, j) in the considered range, in particular for the lowest n + j = 0
and n - j = -2A. Here we used the fact that any D^3 is of the form

- ^jwithZi, . . . ,Zfce^.Zr--Z^jwithZi, . . . ,Zfce^. ' D

Proof of Proposition 2.5 (last part). — We saw that at least our matrix
coefficient D^ (with 0 ^ n+j even and n-j < -2A) belonged to ̂ (F0)
for j sufficiently large. G^ acts unitarily via (29) on 1-i\(T°) so in particular
(this being a reproducing kernel Hilbert space of holomorphic functions)
G^ will map D^ to elements of 1-i\(r°). Therefore, all of M\ is contained
in the Hilbert space, and since

^(71,72) = ̂ ^(72)^(71)
0-

as in section 3, we get that the sum is over an orthonormal basis:

a C {(n,j); 0 < n-^-j even, n- j <, -2A}.

From now on we will work with both D^8 and the normalized matrix""ij
coefficients ̂  as in (27).

It is worth noting that in fact we have proved that the matrix
coefficients D^ have specific decay properties in r° given by
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COROLLARY 3.3. — For any A = 4,5,. . . and n + j even we have that

I |^(7)|2d^(7)<oo
jr°

if and only if 0 < n + j and n — j < —2A. In particular, finiteness of the
integral is independent of r and s. Here again di^\ is Lebesgue measure
times the density det(J — 7*J7)A-4.

Consider now the (^b, (^-module

V\ = span{^; a = (n,j, r, s), n + j even}

which contains the irreducible submodule M\ when A = 2,3,... . When A
is not an integer, ^ is transitive on the set of basis functions with j > 2
as well as on the set of basis functions with j > 0 and 0 < r, s < —j; this
is easily derived from the relations in Lemma 3.1. Whereas these two sets
of basis functions span invariant subspaces, V\ itself for general A has the
defect of "leaking" along j = 1 (corresponding to the limit of holomorphic
discrete series for SU(1,1)). The formulas for the action of Ti and Ts
in Lemma 3.1 no longer hold when j = 1, and instead we have (j = 1)

J Yi . <°i(7) = - i (n + l) '̂°2,i(7) + ̂ °i,2(-7).

(30) { T3 • <°i(7) - (A + | (n - l))̂ :°i(7) + ̂ i.2(7).

From these we can generate the action of any combination of the T^ and T%
using

Yi • d = 0 and Ts • d = (A + l)d2

and the other similar relations.

Thus we are led to consider the invariant ^-module R\ consisting of
rational functions (in the components a, &, c, d of 7) which are regular on F0

and on G. We have V\ C R\ non-invariantly, but we can still from studying
V\ get part of the composition series for R\. The most notable part occurs
when A = 1 as what we shall see explicitly in the next section corresponds
to solutions of the wave equation on G.

THEOREM 3.4. — Mi has as an irreducible subspace

W = span{D^.; j - 1 = \n + 1 , r, s G N and n e Z},

and this can be completed to carry the mass zero positive frequency wave
representation ofG^ (see [11]).
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Proof. — When A = 1 setting n = —1 in (30) we get

Ti . Z)°^(7) = ̂ °2(7), Ya • 0°-?.i(7) = <2°(7),

and by inspection once again of the formulas in Lemma 3.1 we see that W
is invariant. At the same time

^1(71572) = ̂  ^(7i)^(72)
a

where the sum is over cr's occuring in W. Indeed, the normaliza-
tion constants (25) turn out to be, when £ = j (n + j) = 0 or
f c = - l - ^ ( n - j ) = 0 ,

(fc-l)!(-l)! j-1
anj(l) = ° - 1) fc!0!0!(-l)! = ̂ T = 15

or

^(l)-^-l)(0;^:ff-JYl=l•

Also, in the degenerate case j = —n = 1 again a-i^i(l) = 1 since (as in the
calculation above) we can work with analytic continuation in A and j.

In this way W is completed by assigning

{D .̂; j - 1 = \n + 1| r, s C N and n C Z}

as an orthonormal basis, and on TV, G^ acts unitarily and irreducibly,
namely equivalently to the mass zero positive frequency representation. D

More general than the computation above is the observation that
on M\ we have an invariant Hermitian form (•, '}\ which continues to all
the H^ -types in Figure 2 as a meromorphic function of A:

PROPOSITION 3.5. — The Hermitian form

/n^ n^N /, /> ^ ^ 1 A^!(A-1)!(A-2)!(^^^A = 6^ 6s^ 6^ ^-(JTT) ( A + A ; - 2 ) ! ( A + ^ - 2 ) ! 5

where £. = ^ (n + j), k = —A — ^ (n — j), n + j even, satisfies the invariance
property

(31) {X • v, w)^ + <^, X . w);, =0 (X € ^)

with respect to the notation given by the differential of (29); here v and w
are arbitrary in the algebraic span of the D^ ^s with j ^ 1 and the left
hand side of (31) is to be viewed as a meromorphic function of A.
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Proof. — By the Poincare-Birkhoff-Witt Theorem it suffices to
check (31) for r = s = 0 and X a generator inside the Lie algebra
of H^. Take for example X = Ts with skew-adjoint Ts as earlier in this
section; then

<Ts . 2%,̂ 2Q, = (,(n+j) + 1)<<^>. ,

Wi^pTa . D .̂), = -(A + j (n - j) + , - 1)

Y -J—/D0'0 D0'0 \x • _ ^^n+lj+l^ri+l^+l/A

so that invariance in this case follows from the expression above, since
^-1_ l ( ^ _ j ) + j - i = = ^ + ^ - i . Similary we get the invariance for all the
generators T, (i = 1,2,3,4). • D

4. The Hardy space and the wave equation on G.

Our aim in this section is the study of the special cases A = 1
and A = 2.

As it was seen before,

C = { X e z u ( l , l ) ; /3(X$,Q^O}

is a closed, convex, pointed, generating and G-invariant cone. We can
then (cf. [8]) define the OPshanskiFs Hardy space over the semigroup
r° = U(l,l)exp(C°). Those spaces are studied abstractly in some
particular cases by Ol'shanskiFs [18], Hilgert and Olafsson [9] and in
more generality by Hilgert and Neeb [8]. The case of SL(2,R) was treated
by GePfand and Gindikin [3].

The OPshanskirs Hardy space H2^0) over F0 is the space of
holomorphic functions F on r° such that

||F||^=sup /iF^d^oo,
7er° JG

where dg is a fixed right invariant Haar measure on G.

The following "Paley-Wiener" theorem for ft2^0) was first given by
OPshanskirs [18] (see also [8] and [9]).
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THEOREM 4.1. — The representation of the group G in H2^0) can
be decomposed into a direct sum of the holomorphic discrete series
representations ofG which are C-dissipative. Q

A unitary representation TT of the group G on a Hilbert space U is
said to be C-dissipative if for all X e (7, d^(X) <_ 0 i.e. the spectrum of
the selfadjoint operator d7r(X) is contained in (-00,0].

We saw that

^2(r°) = spa5{D .̂; j ^ 2, 0 < n + j even and n - j ^ -4}.

The condition n - j <, -4 is due to a decay condition at infinity in the
semigroup to ensure a removal singularities of the holomorphic functions.
In effect, it suffices to check this for F = D0,0 at an element 7 of the form

/ e5 0 \
7 = [ o -t ) with s.teR such that e~* < 1 < e5. Let

/(^det^+zJ)-2^)

be the corresponding function on T where

Z=C-1W=^(~T^S ^^————.Zo^ °)l n 1 r e i *-^+oo \0 z /
\ u T~e~t/ s^00

which is a singular point. On the other hand,

D^°(^) = e^-^e"^"^/2,

det^+zjr^^l-e^l-e-^)2,

and

det(Z + ̂ r^^) +- e-^^')/2 ̂ -^(l - e8)2

+^ e^^-^/2^2) e-^^')/2.

Thus to remove the singularity at ZQ we have to take \ (n - j) + 2 ^ 0,
i.e. n — j < —4.

THEOREM 4.2. — The Hilbert space ^(F0) is equivalent to the
classical Hardy space H2 (T) and it is a proper invariant subspace ofH2 (F0).
More precisely ̂ (r0) equals ̂ (r0) plus "two half lines".
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Proof. — The C-dissipative holomorphic discrete series representa-
tions of G are those TTnj {j >. 2) such that (7Tn,j(7)es, Cs) < 0 for all s € N
and all 7 C F0. Since this function is holomorphic and G-invariant it suffices
to calculate it on exp(ii D (7°), where t is the Cartan subalgebra

^{(T -^J^2^} of u(l•l)•
( e*1 0 \Let 7 = _^ ) € exp(zt n C0), then ti, t^ > 0. We have

(7r^(7)e,,e,) = e^^^-^^-^e-^^^)/2^),

so that TTnj is C-dissipative if n — j <: 0 and n + J > 0 (with n + j even).
Then by Theorem 4.1, H2^0) is the sum of the corresponding Ti-nj. The
Hilbert space H^0) is the sum of TTnj such that -j < n < j - 4, n + j
even and j > 2. Thus

^(F0) = 7<2(r°) C ("two half lines"),

as it is shown in Figure 3 (next page) where the gray domain corresponds
to^2(r°). D

Let S be the Cauchy-Szego kernel of H2^0) and K == K^ the
Cauchy-Szego kernel of T^F0). Recall that ^(71,72) = det(J - 7^7i)~2-

PROPOSITION 4.3. — The Cauchy-Szego kernel ofTI^r0) is given by

£'(71,72) = ^(7i,72)Q(7i,72) = ^(71.72) +-R(7i, 72),

where the Q and R are the G-bi-invariant positive definite functions

Q(7i, 72) = 1 + 2^- del C' (7172*).

^(71,72) = ((tr(7i72*) - 2)3(tr(7l72*) + 2))-l/2,

withC'(7)=(7-^(7+^-1.

Proof. — When A = 2, dnj = j — 1 which is exactly the formal
dimension of TTnj as a discrete series representation of G and the charac-

ter Xnj is given on 7 = ^ ^ ^Je r°nJ<:c (A < 1) by Xnj(7) = ^ _ \2'
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. n+ j==0 j = l n

Figure 3 (A = 2, ̂ (F0) and Jf2(r0)).

A2

Note that K{^, I ) = _ and#{n; n+jeven, -j < n < j} =^'+1,

so that the Cauchy-Szego kernel of J:f2(^o) is given by

00 u
5(7,7)= ^ anj(2)xn,,(7)=E EO'-1 )——^

-j<n^j j=2 -j<.n^j
n+j even TI+J even

J^2

1 ^.2 ^,, A2 3 -A
=Y^W-l^=-(^^TTxJ=2

=^(7,/)Q(7,Z)

^ ^ 3 - A

where

^'J) = T^ = 1 + 2/-det(^
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and where C' denote the Cayley transform €'(7) = (7 — J)(7 + J)~1. We
can also get an additive formula for the kernel 6'. In fact

5(7,1) = K ^ ^ I ) + 2 -^^ _ . , = K(^ I ) + J?(7,1)

where J%(7,1) can be written as

R^,I) = 2\A2^_1^ = 2((tr(^) - 2)3(trW + 2))-l/2. D

Remarks 4.4.

(i) Theorem 4.2 gives a counterexample to the claim by Gindikin [3],
p. 679.

(ii) Up a constant, the function R appears in GePfand and Gindikin's
paper [3] (see also [1]) as the Cauchy-Szego kernel of the OPshanskiFs
Hardy space over the OPshanskiFs semigroup r~1 D SL(2,C).

(iii) In [3], GePfand and Gindikin claim that the OPshanskiFs semigroup
in SL(2,C) is biholomorphically equivalent to the tube domain consisting
of matrices in Sym(2,C) with positive definite imaginary part. This is
not true. In fact, the tube domain is simply connected but the semigroup
is not. They also claim that the Hardy space over this semigroup is
equivalent to the classical Hardy space over the tube domain. We prove,
in [14] and [15], that this is not true in general, in particular when
G = Sp(n,R), S0*(2r) and V{p,q). For example, for G == Sp(n,R) we
prove that H 2 ^ / ^ ) ^ ^(F^odd, where P5 is the double covering of
the open semigroup F0 having G as Silov boundary.

Let us consider now the case when A = 1. Let L be the operator

9 :^( 9 \2
L=(Q0+i) +"SU(1,1)+1

in the coordinates U(l) x SU(1,1) where Osu(i,i) ls the Casimir operator
of SU(1,1). For all x = (e10, u) € U(l, 1). We have

'̂̂ ^(e^Tr;-^

^(n+l^+jO-^+l)!)^)
^-(n+^+O-l)2)^)

so that, if D^ e W then LD^ = 0.
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Remarks 4.5.

(i) We have e-^(e^)) = (^ + i)f{x). This means that

92

L = e-^Lo e^ where LQ = ̂  + ^su(i,i) + 1.

(ii) Z/o is the natural conformlly invariant Yamabe operator.

(iii) Consider f(X) = | det^+zJ)]-^^) where X* = X and ;r= C(X)
= (X - iJ){X + zJ)"1. Then the general theory ensures that D/ = 0 if
and only if LoF = 0, where D is the wave operator in Herm(2, C) identified
with the flat Minkowski space. Indeed,

det(X + iJ) ^ I det(X + iJ)2 ~
| det(X + iJ)\ ~ y det(X + iJ) det(X - iJ)

^ ./det(xT^_,^^ ._
l / - 3 j - / - l ^ • T \ —— \ • UV?L w / —— ^V det(X - zJ) K /

Hence

PROPOSITION 4.6. — We have e^0 TVe~^ C kerLo. D

We finally remark that the case A == 1 corresponds to the right wave
equation on ?7(1,1) as a space-time with the metric dx2 = d02 + du2 where
du2 is given by the Killing form on SU(1,1).
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