
ANNALES DE L’INSTITUT FOURIER

UWE FRANKEN

REINHOLD MEISE
Extension and lacunas of solutions of linear
partial differential equations
Annales de l’institut Fourier, tome 46, no 2 (1996), p. 429-464
<http://www.numdam.org/item?id=AIF_1996__46_2_429_0>

© Annales de l’institut Fourier, 1996, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1996__46_2_429_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
46, 2 (1996), 429-464

EXTENSION AND LACUNAS OF SOLUTIONS
OF LINEAR PARTIAL

DIFFERENTIAL EQUATIONS

by U. FRANKEN and R. MEISE

The question whether certain zero-solutions of linear partial differen-
tial operators can be extended to larger domains, preserving certain prop-
erties, has a long history, beginning with Riemann's theorem on removable
singularities of analytic functions. Various types of problems have been
discussed in the literature. As typical examples we only mention Kisel-
man [10], Bony and Schapira [2], Kaneko [10], Liess [12] and Palamodov
[21]. It seems that the extension of all C°° -solutions of a given operator
to a larger real domain has not found much attention so far. For con-
vex, open sets it was treated as a subcase in the article of Kiselman [10]
and for solutions of systems over convex sets it was investigated by Boiti
and Nacinovich [1]. However, the solution of L. Schwartz's problem on the
existence of continuous linear right inverses for linear partial differential
operators with constant coefficients, given by Meise, Taylor and Vogt [15]
indicates that this question is of interest in a different context. They show
that P(D) : P'(^2) —>' P'^) admits a continuous linear right inverse if and
only if for each relatively compact open subset uj of fl, there exists another
subset a/ D u of ^ with the same properties, such that for each / € ^'(a/)
satisfying P(D)f = 0 there exists g e P'(^) satisfying P{D)g = 0 and
f\u} = 9\u)' For convex sets fl, this property is equivalent to a condition of
Phragmen-Lindelof type for plurisubharmonic functions on the zero variety
V(P) = {z e (C71: P{-z) = 0}.

Key words: Whitney extension of zero-solutions - Phragmen-Lindelof conditions for
algebraic varieties - Fundamental solutions with lacunas - Continuous linear right in-
verses for constant coefficient partial differential operators.
Math. classification: 35E05 - 35B60 - 32F05 - 46F05.
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Motivated by these results we investigate in the present paper under
which conditions an analogue of Whitney^s extension theorem holds for
the zero-solutions of a given linear partial differential operator P(D) with
constant coefficients. To formulate our main result, let K be a compact,
convex set in 1R71 with non-empty interior, denote by HK its support
functional and let

£(K) := {f C C(K) I /I o e C°°(K) and (/| o )^) extends continuously to

K for each a € IN^},

S^^K) := {/ e G00^71) I f\K == 0},

both spaces being endowed with their natural Frechet space topology.
Further, let £p(K) (resp. Ep^SR^)) denote the space of all zero-solutions of
P(D) in £(K) (resp. C'^IR71)). Then the main results of the present paper
are stated in the following theorem.

THEOREM. — For K and P as above, the following conditions are
equivalent:

(1) the restriction map RK : ^(B") -^ Sp{K\ pK^f) := f\K is
surjective

(2) the map pK m (1) admits a continuous linear right inverse, i.e.
there exists an extension operator EK '- Sp(K) —^ SpCS^) satisfying
PK ° EK = id^p(K)

(3) P{D) : £(W,K) -^ £{W,K) is surjective

(4) there exists a continuous linear map RK '' ^(IR71, K) —^ ^(IR71, K),
such that P(D) o RK = id^iR",.^)

(5) the algebraic variety V(P) satisfies the following condition PL(K)
of Phragmen-Lindelof type: There exist A > sup |.z'|, k > 0 such that

x€K
each plurisubharmonic function u on V(P) which satisfies (a) and (/?) also
satisfies (7), where

(a) u(z) ̂  HK(Imz) + 0(log(2 + |^[)), z C V(P)

(/3) n(z)^A|Im^| , z 6 V{P)

(7) u{z) < HK(lmz) + fclog(2 + |^|), z € ^(P),

and where HK denotes the support function of K.
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Note that the theorem extends a result of de Christoforis [3] who
proved that (3) holding for all compact convex sets K with non-empty
interior is equivalent to P being hyperbolic with respect to all non-
characteristic directions. However, the latter condition is strictly stronger
than those given in the theorem.

0

Note further that the condition PL(Jf) implies the condition PL(Jf)
which was used by Meise, Taylor and Vogt [15], sect. 4, to characterize when

0 0

P(D) : C^CK) —> C°°(K) admits a continuous linear right inverse. For
homogeneous polynomials the converse implication holds, too, however, it
remains open whether it holds also for non-homogeneous polynomials.

The main steps in the proof of the theorem are the following: First
we use Fourier analysis, an idea of proof from Meise and Taylor [13] and a
result of Franken [4] improving a theorem of Meise, Taylor and Vogt [16],

0

to characterize when for convex compact sets K C Q C IR"^ K -^ 0,
the restriction map PQ,K : Sp{Q) —> ^p{K) is surjective. One of the
characterizing conditions is the Phragmen-Lindelof condition PL(K,Q)
(see 2.9) which also characterizes the surjectivity of PQ,K '• ^p{Q) —^
Vp(K), where Vp(L) = {^ C V\L) \ P{D)p. = 0}. From this we obtain
that (1), (3) and (5) are equivalent (see 2.11). Then we show that (1) is
a local property of QK and use this to get "fundamental solutions" (see
3.3) having certain lacunas. Together with a particular Whitney partition
of unity in IR/1 \ K these "fundamental solutions" allow the construction of
RK in (4). By a result of Tidten [24] on the existence of continuous linear
extension operators for the functions in £{K)^ (2) is an easy consequence
of (4).

In [5] the main results of the present paper are used to characterize
the homogeneous differential operators P(D) that admit a continuous linear
right inverse on C7°°(^), fl, any bounded, convex, open subset ofIR71 in terms
of the existence of fundamental solutions for P{D) which have support in
closed half spaces.

Acknowledgement: The first named author acknowledges the support
of his research at the University of Michigan in Ann Arbor by the "Deutsche
Forschungsgemeinschaft".
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1. Preliminaries.

In this section we introduce most of the notation that will be used
subsequently and we prove some auxiliary results on plurisubharmonic
functions and weighted spaces of analytic functions on algebraic varieties.

1.1. Spaces of C°°-functions and distributions. — For an open set
Q C M71 we denote by £(Cl) the space of all C°° -functions on f2, endowed
with the semi-norms

\\f\\L,i := sup sup l/^)], L CC ̂  I € IN^.
xeL\a\^i

For a closed set A C M71 we denote by £(A) the space of all (7°°-Whitney
jets / := (/^aeiN- € C(A)^ on A, i.e. / satisfies:

II/IK, „ ,up .up wr^ < ̂ ,
"̂  ^1^ la; ~ 2/1

where

(R^frw ̂  rw - ^ -f^^y-^
\0\^l-\a\ p '

and L CC A, / € INo. We endow ^*(A) with the semi-norms

11/11^= 11/11^ + I I / H L , Z , ^ccA, Z e I N o .

Moreover for a compact set A C IR" we define

P(A) := {/ € fOR") | Supp(/) c A},

endowed with the induced subspace topology. For an open set f2 C IR71 we
let

P(^) := {/ e f(IR71) | Supp(/) CC ^} == irid P(L),
LCCn

endowed with the inductive limit topology. If S is either open or compact
then S ' { S ) resp. V{S) denotes the dual of the space £{S) resp. V{S). For a
compact set L C S we define the space of C°° -functions resp. distributions
on S with lacunas in L by

£(5, L) := {/ e £(5) | f\L = 0}, ^(5, L) := {/. € ^(5) | ̂  = 0}.
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1.2. Remark. — Let A C IR71 be closed. By the extension theorem of
Whitney [W] each C'°°-function on A can be extended to a C^-function
on IR71 (which is real-analytic outside A), i.e. the restriction map RA is
surjective, where

RA : f(IR") ^f(A), RAW := (/^IA)^".
0

If A is convex and A -^ 0 then the definition of Whitney jets is much
easier:

£(A) ={f C £(A) | for each a € 1N^ there exists /Q' C G(A) : .Tj o = f^}.
A

Note that in this case the extension of C00-functions can be done by a
continuous linear operator. This is a consequence of a general result of
Tidten [T], Satz 4.6.

1.3. Partial differential operators. — Let (C[^i , . . . , Zn] denote the ring
of all complex polynomials in the variables z\^..., Zn. For a polynomial
P € (C[^i , . . . , Zn} of degree m

P(z) = ̂  a,^, z C (C71,
\a\^m

we define the partial differential operator

P(D) := ̂  a^-Ha",
|o;|^m

where Q06 denotes the a-th derivative in the distribution sense. P(D) is a
continuous linear endomorphism on each of the spaces £(S),Vf(S), where
S C IR71 is either open or compact. The corresponding spaces of zero-
solutions of P{D) are defined as

W) := {f e £(S) | P(D)f = o}, Pp(5) := {/. e v\S) | P(D)^ = o}.

A distribution E € ^'(IR71) is called a fundamental solution for P(D) if
it satisfies P(D)E = SQ, where 60 denotes the point evaluation at zero.
The principal part Pm of P is defined as Pm{z} := S a^. A vector

|o!|==m
AT e IR" is called characteristic for P if Pm{N) = 0. P or P(D) is said to
be hyperbolic with respect to N e IR71 \ {0}, if N is non-characteristic for
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P and if P(D) admits a fundamental solution E e P^IR71) which satisfies
Supp(^) c H-^(N), where we let

H±{N) := [x e IR71 | ± {x,N} ^ 0}

and where <•, •) denotes the Euclidean scalar product on ]R71.

In the present paper we are going to characterize the linear partial
differential operators P(D) and the convex compact sets L in IR71, L ^ 0,
for which all elements of £p(L) resp. Vp(L) can be extended to elements of
^(R71) resp. VpCBy). To do this we will use Fourier analysis. Therefore,
we show in this section that £p{L) and Vp(L) are isomorphic to certain
weighted spaces of holomorphic functions on the zero-variety of P. To prove
this we need the following two lemmas.

1.4. LEMMA. — Let K c IR71 be compact and convex with 0 e K.
Then there exists a number C > 0 so that for each x e 9K there exists
A e G'L(n;]R) satisfying:

WA^^I^CK

(2)A(( l , . . . , l ) )= : r

(3) C-1^! ^ \A\z)\ ̂  C\z\, for all z e (C71 and the Euclidean norm

Proof. — For each x € R71 \ {0} let {x/\x\, f^x),..., f^{x)} be an
orthonormal basis in IR". Then let e := -(!,...,!) and define for 0 < 6
the linear map A^ : V —> ̂  by

A^6(z) := (z, e)x + <?(z, h{e)}h(x) + ... + < ,̂ fn(e))fn(x), z € (C71,

n

where (^1^2) := E ^ij^j, ^1,^2 € (C71. Note that A^^) c IR71.
j=i

By our choices, Aa;^ satisfies (2) for each 6 > 0 and each x € 9K. Using
0

a compactness argument, 0 e ̂  and A^((l,.... 1)) = a: it is easy to see
that there exists 6^ > 0 such that A^ satisfies (1) for each 0 < 6 < <$i and
all x G 9K. To show (3) note that

< )̂ = <^ ̂ e + 6{z, h{x)}f^e) + ... + < ,̂ fn(x))fn(e), z C (C71.
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Since {e/|e|, f^(e\... /n(e)} is an orthonormal basis of ([<n, we have

/ \ n
| ^ ( y \ | 2 l | 2 j | 2 [ / JL \ |2 _ L ^ 2 V ^ | / f.(^\\\2 ^ (^n
\-i±x,6\z}\ ~ \e\ \x\ \\z'>\ I / I ' ° / . \\Z'>J3\X}1\ ? z e VL •

\ l^l / ,=2

Using the fact that also {xl\x\,f^(x),... ,/n(^)} is an orthonormal basis
of (C71, the following holds for 6 := ^i:

4

min (^ .m^ 'y1 ' i61) ̂  ̂  K6^'< max (^ slyl' ̂ 1)14

Hence A := Aa;^ satisfies (3) with a sufficiently large number C > 0 which
depends only on <?i and K,

1.5. DEFINITION. — For a compact, convex set K in IR71, its support
function HK is defined as

HK(y):=SMp{x,y), 2/CIR71.
xCK

In the following lemma we construct certain plurisubharmonic func-
tions. The first inequality in the lemma also follows from Langenbruch
[L], 1.2. To prove the second property we use a different method for the
construction.

0

1.6. LEMMA. — Let K C 1R7" be compact and convex with K -^ 0.
For each k ^ 1 there exist numbers I ^ A;, C > 0 and a continuous,
plurisubharmonic function w : ̂  —> M such that for each z C (C71:

(1) HK(Imz) - Hog(l + H) ^ w{z) ^ ^x(Im^) - Hog(l + \z\) + C

(2) sup{|w(0 - w(^)| | $ € ( E ^ l ^ - z\ ̂  1} ^ G.

0

Proof. — Without loss of generality we may assume 0 C K. Let k ^ 1
be given. For T ^ 0 we define

p ,̂,.̂ ^̂ ,̂ ,̂ .
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By the proof of Meise and Taylor [14], 2.3, there exists a number T ^ 0
such that the function u\ : (E —> IR

( -|Im^| -kPT(z) if Imz^ 0
uz(z):= 2

-\lmz\-kPT(z) if Im^O
z

is subharmonic on (C. Moreover, one can find l\ ^ 1 and (7i > 0 such that

\Imz\ - h log(l + \z\) - Gi ^ m(^) ^ | Im^| - Hog(l + \z\)

for all z G (C. Next let Q := [0,1]'1 and
n / 1 \

(^) ^= ̂  (^i(^) + . Im^- } + nCi.
j=i v /

v^::= 2^ nl(^)+ ^ I m^ -h nGl

Then for all ^ C (E71 :

(3) HQ(lmz) - nh log(l + \z\) ^ v(^) ^ ^(Im^) - Hog(l + \z\) + nCi.

Now fix a; € 5^C and let Ax € GL(n;IR) be the map in Lemma 1.4. It is
easy to see that the function

w{z) := sup v{A^(z)), z C 0^
xCQK

is continuous and plurisubharmonic on ([m. Let (72 > 0 be the constant in
1.4(3). By 1.4(1), 1.4(3) and (3) above we have

w(z) ̂  sup (^A.(Q)(Im20 - Hog(l + |A^(^)|)) + nGi
xe9K

^^(Im^)-A:log(l+ —|^|)+nC'i
(^2

^ HK^Z) -k\og(l + |^|) + A;log(C2) 4- nCi.

Hence w satisfies the second inequality in (1) with C := k\og(C^) + uC\.

To show the first inequality let z € (C71 be given. Choose a point x G 9K
with HK^^-Z) = (Im/z, x) and note that 1.4(1) implies

HK(lmz) - nC^h log(l + \z\) ̂  HK^Z} - nh log(l + C^\z\)
^(a;,Im^-^ilog(l+|A^(z)|)
^ ^(Q)(Im^) - nh log(l + IA^Z)])
^ ^(A^(^)) ^ w(^).
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Thus the first inequality in (1) holds with ( := nC^\\. To show property
(2) note that for each T ^ 1 there exists Cy > 0 so that for all z\, z^ € (C
with lm(zj) ^ 0, j = 1, 2 and |^i — 2^21 ^ 62 we have

|P^l)-Py(^)|^.

This implies for z\^ ^2 € (C71 with |^i — ^2] ^ C'2'-

Kzi) - ̂ 2)! ̂  n(C2 + 2A;Cr).

To show the inequality in (2) fix ^i, z^ € (D71 with \z\ — z^\ ^ 1. Choose
x^ x<2 C 9J<r such that for all x e 9K : v{A^{zj)) ^ v(A^(zj)) - 1, j =
1, 2. Without loss of generality we can assume w{z\) ^ w(z-z). Since
|A^i) - A^(^)| ^ C2\zi - Z2\ ̂  C2, for all x € 9K, we get:

w(^i) - w(z^) ^ ^(A^(^i)) + 1 - v{A^)) ^ n(C2 + 2A:Cr) + 1.

Hence (2) holds if C is sufficiently large.

1.7. DEFINITION. — Let L C IR71 be a compact, convex set with
0

L ^ 0, let V C (C71 be an analytic variety and let A(V) denote the space
of all analytic functions on V. For B ^ 1 define

<B^{/^A(y)|
11/11^ B ''= ^P |/(^)|exp(-^(Im^) ± Blog(l + \z\)) < oo},

z(EV

endowed with the induced Banach space topology. Moreover, define

A^(V) := ind A-^{V\ and A^V) := proj A^^(V).
-B-^oo B-^oo

1.8. PROPOSITION. — Let K C IR71 be compact, convex with K ^ 0,
let P = Pi • . . . • PI , where the Pj € (C [^i,..., 2^] are irreducible for 1 ̂  j ^ I
and pairwise not proportional and let V{P) := {z 6 (E^ | P{—z} = 0}.
Then the Fourier-Laplace transform F, defined by

F^) : z ̂  {^,exp(-i\x,z))), z € V(P),

is a linear topological isomorphism between the following spaces:

(1)^:£p(X),^A^(V(P))

(2)^:Pp(^^A^(y(P)).
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Proof. — (I): This holds by Meise, Taylor and Vogt [17], 3.4(3) for
^)=log(l+^).

(2): Using standard arguments from functional analysis and the
Paley-Wiener theorem for C°° -functions one gets the following topological
isomorphisms

Vp(K), ̂  V(K)/P(-D)V(K) ̂  A^VPA^a171),

where P(z) := P(-z), z e (E71. We claim that the map

p : A^VPA^Cn —— AJ,(y(P)), p{f + PA^)) := /|v(p)

is a topological isomorphism. Using this claim it is easy to check that the
resulting isomorphism is F.

To prove our claim, note that by the open mapping theorem it
suffices to show the bijectivity of p. To see that p is injective let / G
Aj^Q!71) satisfy /|y(?) = 0. By hypothesis, P is equal to a product of
irreducible polynomials, hence Hansen [Ha], 2.2, implies f / P e A^").
By the Malgrange-Ehrenpreis lemma (see Hansen [Ha], A.I) we have
f / P C Aj^O^). Hence p is injective.

To show that p is surjective let / € A^(V(P)) be given. Then for each
k e IN choose a plurisubharmonic function Wk '. (C71 —^ M and l(k) ^ A:,
C(k) > 0 as in Lemma 1.6. By the estimates for / and 1.6(1) there exist
numbers Gi(fc) ^ 1 such that for each k € IN :

|/(^Ci(A;)exp(w^)), ZCV(P).

By 1.6(2), the functions w^, A; € IN, satisfy the hypothesis of Hansen [Ha],
2.3 (Extension theorem). By the proof of Hansen [Ha], 2.3, there exist
numbers M > 0 and C'z(k) > 0, k € IN, so that for each A; € IN there exists
a function fk € A^^ satisfying fk\v{P) = f and

(3) \fk(z)\ ̂  C2(k)exp(wk(z) +Mlog(l + H)), z € (C".

By Hansen [Ha], 2.2, and A.I, there exist numbers C^{k) > 0, k G IN, and
functions g^ e A^^ such that /fc+i — fk == PQk and

\9k{z)\ ̂  W) exp(wk(z) + Mlog(l + \z\))
^ GsWe^exp^Imz) - (fc - M)log(l + H)), z € (C71.

Now observe that for k G IN there exists a function bk € A^CC71) such that:

\gk(z) - bk(z)\ ^ 2-fcexp(^(Im^) - (fc - M)log(l + |^|)), z G (C71.
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This implies that the following function is well-defined:

k-l oo

^=-I>+E(^-^)-
j=l j=k

Moreover hk G A^^ and there exist numbers €4 {k) > 0, k (E IN such
that:

(4) \hk{z)\ ̂  C^k)exp(HK(Imz) - {k - M)log(l + |^|)), z e (E".

By definition we have gk = hk — /^-n- This implies that the following
function is well-defined:

g := fk + Phk, where /c G IN.

From the inequalities (3) and (4) it follows that g G AJ^(V(P)). Obviously
P(^)=/.

2. The P(P)-extension property for compact, convex sets.

In this section we introduce the P(D)-extension property for compact
0

sets K C IR" with K 7^ 0. We show that it is equivalent to a certain
condition of Phragmen-Lindelof type holding on the zero-variety of P. Also,
it is equivalent to the surjectivity of P(D) on the space ^(IR71,^). Thus
our results extend those of de Christoforis [Ch].

2.1. DEFINITION. — Let K C Q C IR71 be closed, convex sets in ]Rn

with K ^ 0 and P € (C[^i , . . . , Zn}.

(a) We say that {K^Q) has the P(D)-extension property if for each
f C £p(K) there exists g € £p(Q) with g\K = f. If Q =^Kn we say that
K has the P(D)-extension property.

(b) If the conditions in (a) are satisfied for Vp instead of£p, and ifK
and Q are compact we say that (K^ Q) (resp. K ) has the P(D)-extension
property for V.

Thus, K has the P(D)-extension property, if the analogue of Whit-
ney's extension theorem holds for the zero-solutions of P(D). The following
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lemma shows that it makes no difference to extend zero-solutions or arbi-
trary solutions of P(D).

2.2. LEMMA. — Let K c Q C W be closed, convex sets with K ^ 0
and P e (E[^i , . . . , Zn}. The following assertions are equivalent:

(1) (K, Q) has the P(D)-extension property,

(2) for each u e £(K) and v e £(Q) satisfying P(D)u = V\K there is
w e £(Q) with P(D)w = v and W\K = u,

(3) P{D) : £(Q,K) —— £(Q,K) is surjective.

Proof. — (1) =^ (2): Suppose (K, Q) hos the P (^-extension property
and let u, v be given as in (2). Using Whitney's extension theorem and the
fact that P(D) : £(]Rn) —— £(]Rn) is surjective, one can find a function
h e £{Q) such that P(D)h = v. Then we get P(D)(u - h\K) = 0 in £{K).
By (1) there exists a function g e £(Q) with P(D)g = 0 and g\K = u-h\K'
Hence w := g + h has the required properties.

(2) => (3): Let v e £(Q,K) be given and define u = 0 on K. By
hypothesis there exists w € £(Q) with P(D)w = v and W\K = u = 0,
hence w e£(Q,K).

(3) =^ (I): Let / e £p(K). By Whitney's extension theorem there
exists F e <f(Q) with F|^ = /. Then P(D)F € <?(0, K). The property (3)
implies that we can solve the equation P(D)G = P(D)F with G e £(Q, K).
Then the function g := F - G is in fp(Q) and satisfies g\K = /.

2.3. Remark. — Lemma 2.2 holds too if we replace "P(P)-extension
property" by "P(D)-extension property for P'", ̂  by "P'" and if Q is
compact.

The following lemma shows that it suffices to consider irreducible
polynomials in order to decide when a pair (K, Q) of compact and convex
sets satisfies the P(Z))-extension property.

2.4. LEMMA. — Let K c Q C IR71 be compact, convex sets with
K ^ 0, Pi, ?2 € (C[^i,...,^] \ {0} and let P := P, . P^. Then (K^ Q)
has the P(D)-extension property (for V) if and only if (K, Q) has the
Pj{D)-extension property (for V^, where j = 1,2.

Proof. — We prove the lemma only for the class £.
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"= '̂ : Let g € £(K) with Pi(D)g = 0. There exists g e £(K) with
P2(D)g = g^ This implies P(D)^ = 0. By hypothesis there exists G € £(Q)
with P(jD)G = 0 and G\K = ^. Then G := P^G satisfies Pi(D)G = 0
and G|j< = g.

"^=" : Let g G f(J<T) with P(2^)p = 0. There exists a function
gi € £(Q) with Pi(jD)^i = 0 and ^i|j< = P2(D)g. Choose a function
92 e S(Q) with P2(2^2 = 9i. Then P^)^ - g^) = 0- KY hypothesis
there exists / e <?(Q) with f\K = g - 92\K and P2(D)f = 0. We set
G := / + ^2. Then we have P(J9)G = P^(D)(P2(D)f) - Pi(D)g^ = 0 and
G\K = f\K+ 92\K = 9.

To formulate a characterization of the P(D)-extension property in
terms of a condition on the zero-variety V(P) of P we need the following
definitions.

2.5. DEFINITION. — Let V be an analytic variety. A function u :
V —> 1R U {—00} is called plurisubharmonic ifu is plurisubharmonic in
the regular points Vreg ofV and locally bounded on V. In order that u is
upper semicontinuous on the singular points Vsmg of V we let

n(C) = limsup u(z), < e Vsing.
Yreg^———C

By PSH(V) we denote the set of all plurisubharmonic functions on V which
are upper semicontinuous.

2.6. LEMMA. — Let Q^K C IR77^ be compact and convex sets with
K C Q. Moreover let V C (C71 be an algebraic variety.

(a) We say that V satisfies the Phragmen-Lindelof condition PL(K^ Q)
if for each k ^ 1 there exist I ^ 1 and C > 0 such that for each u € PSH(V)
the conditions (1) and (2) imply (3), where:

(1) H(^^(Im^)+0(log(l+H)), z^V

(2) u(z) ^ HQ(lmz) + Hog(l + \z\\ z € V

(3) ^)<^(Imz)+nog(l+H)+G, z e V .

V satisfies APL(K^ Q) if the above implications hold for all plurisub-
harmonic functions u = log |/|, where / is a holomorphic function on V.

(b) We say that V satisfies PL^K.Q) if for each I ^ 0 there exist
k ^ 1 and C > 0 such that for each u € PSH(V) the conditions (1)' and
(2)' imply (3)', where:
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(1)' ^K^(Imz)-^log(l+[^|)+0(l), z e V , forallj^l

(2/ u(z) < ^Q(Im2:) - A;log(l + \z\), z € V

(3)' n^) ^ ^(Im^) - nog(l + |^|) + C, z e V.

V satisfies APL^K, Q) if the above implications hold for all plurisub-
harmonic functions u = log |/|, where / is holomorphic on V.

(c) We say that V satisfies PL(K, Q) if there exist l^ 0 and C > 0
so that for each u € PSH(V) the conditions (1) and (2) imply (3), where:

(1) u(z) ^ HK(lmz) + 0(log(l + |z|)), z e V

(2) u(z)^HQ(lmz), zeV

(3) u(z) ^ HK(lmz) + nog(l + |^|) + C, z e V.

Remarks. — A similar but different Phragmen-Lindelof condition was
used by Hormander [7] to characterize the surjectivity of linear partial
differential operators on A(»), the space of all real-analytic functions on a
convex open set ^ in IR/1. Hormander was the first one who noticed that
conditions of this type arise in connection with certain problems for partial
differential equations.

The conditions formulated in 2.6 are close to those used by Meise, Taylor
and Vogt [15] to characterize when P(D) admits a continuous linear right
inverse on <f(^) or P'^), ̂  as above. For references to other PL-conditions
we refer to the comprehensive article of Meise, Taylor and Vogt [18].

2.7. PROPOSITION. — Let K c Q C IR71 be compact and convex sets
with K ^ 0 and P e (C[zi , . . . , ̂ ]. The following assertions are equivalent:

(1) (K,Q) satisfies the P(D)-extension property

(2) V(P) satisfies APL(K,Q)

(3) Y(P) satisfies PL (K,Q).

Proof. — (1) ̂  (2): By Lemma 2.4 we may assume that P is a product
of irreducible polynomials which are pairwise not proportional. Then the
Fourier transforms ̂  : Sp^K)'^ —> A^(V(P)) and ^Q : £p(Q)[ -^
AQ(y(p)) in L8 are topological isomorphisms. By definition, the pair
(K, Q) has the P(J9)-extension property if and only if the restriction map:

R: fp(Q)^^(^ /^/|^



EXTENSION AND LACUNAS OF SOLUTIONS 443

is surjective. Obviously, the map L := FQ o J? o f^ is equal to the
inclusion map A^(V(P)) ̂  AQ(V(P)). Hence R is surjective if and only
if A~^(V(P)) is a topological subspace of AQ(V(P)). Since both spaces
A~^(V(P)) and AQ^V^P)) are (DFS)-spaces Baernstein's lemma (see e.g.
Meise-Vogt [20], 26.26) implies that this is equivalent to

. for each bounded set B C AQ(V(P)) the set B U A~^(V(P))
v } is bounded in A^(V{P)).

0

Since for each convex, compact set L C IR71 with L ^ 0 the sets

B^L:={feA-,(V(P))\ sup \f(z)\
zev{P)
exp(-ffL(Im^) -mlog(l+ \z\)) ^ l},m e IN,

form a fundamental sequence of bounded sets in A~j^{V{P)), (4) is equiva-
lent to

/ . for each k ^ 1 there exists I ^ 1 and (7 > 0 such that
( ) B^QnA^(V(P))cCBi,K>

Obviously, property (5) is equivalent to the Phragmen-Lindelof condition
APL(X,Q).

(2) ̂  (3): This follows from Franken [F2], Thm. 10.

Remark. — The equivalence of the conditions 2.7(1) and 2.7(2) also
follows from Thm. 3.2 of Boiti and Nacinovich [BN] who investigated when
solutions of systems can be extended.

2.8. PROPOSITION. — Let K C Q C IR^ be compact and convex sets
0

with K ^ 0 and P € (C[^i , . . . , Zn}' The following assertions are equivalent:

(1) (K^ Q) satisfies the P(D)-extension property for V

(2) V(P) satisfies APL^K^Q)

(3) Y(P) satisfies PL' (K,Q).

Proof. — (1) ^=> (2): As in the proof of 2.7 one can show that (1) is
equivalent to

for each zero-neighborhood U C A^(V{P)) there exists a zero-
( ) neighborhood V C AQ(V(P)) satisfying V H A^(V(P)) C U.
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o
Since for each compact, convex set L C IR71 with L ^ 0 the sets

U^k:={feAt(V{P))\ sup |/(z)|
zev(P)
exp(-HL(lmz) + Hog(l + \z\)) < oo}, k e IN,

are a fundamental sequence of zero-neighborhoods in A^(y(P)), (4) is
equivalent to

/ . for each / ^ 1 there exist k ^ 1 and C > 0 such that
[ ) CUQ,k^A-^(V{P))cUK^

It is easy to check that (5) is equivalent to the Phragmen-Lindelof condition
APL'^.Q).

(2) ̂  (3): This follows from Franken [F2], Thm. 10.

2.9. THEOREM. — Let K C Q C IR71 be compact, convex sets with
0

K ^ 0 and P € (C[^i , . . . , Zn}' Then the following assertions are equivalent:

(1) (K, Q) has the P(D)-extension property

(2) {K, Q) has the P(D)-extension property for V

(3) Y(P) satisfies PL(K, Q)

(4) V(P) satisfies PL\K,Q)

(5) V(P) satisfies PL(K,Q).

Proof. — (1) <^> (3) and (2) ̂  (4) hold by Propositions 2.7 and 2.8.
Hence the proof is complete, if we show that (3), (4) and (5) are equivalent.
In doing this, we let V := V(P).

(3) =^ (4): Let I ' ^ 1 be given and choose IQ ^ 1, Co > 0 according to
PL(K, Q) for k = 0. Then define k ' := V 4- lo and let u e PSH(V) satisfy
the inequalities 2.6(1) and 2.6(2) with A;'. Then the function

v{z) := u(z) + k ' log(l + M), z C V

satisfies the inequalities 2.6(a)(l) and 2.6(a)(2) for k = 0. By the property
2.6(a)(3) we have:

u(z) + (// + Zo)log(l + M) ^ HK^mz) + <olog(l + \z\) + Go, z G V,

which implies 2.6(3)' with the numbers V and Co.
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(4) =4> (5): It is easy to see that (2) implies the existence of fcg ^ 1,
and C'Q > 0 such that for each number A c [1,2] and for each u e PSH(V)
the conditions (i)' and (ii/ imply (iii/, where:

(i/ ^)^^K(Im^)-jlog(l+|z|)+0(l), z^V

(ii/ u{z) ^ H^lmz) - A;olog(l + H), z € V

(iii)' u{z) ̂  H^mz) 4- C^ z € V.

Now let ZA be a plurisubharmonic function on V satisfying (1) and (2) of
PL(K, Q) and fix ZQ G V. Choose a function y e P([-l, I]'1), <?(^o) 7^ 0 so
that:

log |̂ )| ̂ \lmz\-j log(l + |^|) + C'O'), ^(O) = 0.

By 1.6 there exist w e PSH^) and numbers <i ^ 2A;o, Gi > 0 such that
for all z € (C71:

^(Imz) - <i log(l + |^|) ^ w(z) ^ HK(Imz) - 2ko log(l + \z\) + d.

For £ > 0 let

Ve(z) := ^ (U(Z) + W{z)) + ^log |̂ )|, ^ € V.

By the properties of u and w, the function v^ satisfies

(5) ^(z)^ffK(Im^)+£|Imz|-j log(l+|^ |)+0(l) , ^ e V all j e IN

and

(6) ^(z)^I :fQ(Im^)+£|Im^|-A;olog(l+|^ |)+ ^Ci, ^ € (C71.

Now fix A € ] 1,2]. By Dint's theorem there exists e > 0 such that for all
0<6 < e :

HK(y)+6\y\ ^ HxK(y). z/eiR"
HQ(y)+6\y\ ^ H^{y^ y € IR71.

(6) and (7) imply that the function Ve — -C\ satisfies (i/ and (ii)' for the
2i

sets \K and XQ. From (iii)' we get for all 0 < 6 < e:

J (u(z) + w(z)) + 6log |̂ )| ̂  H^{1mz) + Co + JGi.

Passing to the limit 8 = 0 this implies

^(u(zo)^-w(zo)) ^If^(Im^o)+Co+ ,Ci.
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Since ZQ was arbitrarily given and the above inequality holds for all A € ]1,2]
we get

u{z) ^ 2HK(Imz) - w(z) + 2Co + Ci
^ ^(Imz)+^log(l+|^[)+2Go+Gi.

Hence u satisfies (5) of PL(K, Q) with h and C := 2Co + Ci.

(5) =» (3): Let fc ^ 1 be given and fix u e PSH(V) satisfying 2.6(a)(l)
and 2.6(a)(2) for the number k. By 1.6 there exist w e PSH((C71) and V ^ fc,
C' > 0 such that

^(Im^-r^l+I^D^w^^^^m^-fc^l+I^D+G' , ^e(C71 .

Next let

^) ''= 2 (n^) + w^) - c'^ z^v'

Obviously, v satisfies (1) and (2) of PL(K,Q), hence it satisfies condition
(3) of PL(K, Q) by hypothesis. This implies for z e V

u(z) ^ 2v(z) - w(z) + C'
^ ^(Im z) + (21 + /') log(l + |^|) + 2C + C1.

Thus we have shown that V satisfies PL(K, Q).

Remark. — As the proof of Theorem 2.9 shows, the conditions (3),
(4) and (5) in 2.9 are equivalent for any algebraic variety V and not only
for Y(P).

Recall that an algebraic variety V is called homogeneous, if for each
z C V and each A € (C, also Xz belongs to V.

2.10. PROPOSITION. — Let K C Q C BV be compact, convex sets
0

with K ^ 0 and let V be an algebraic variety.

(a) IfV is homogeneous then V satisfies PL(K, Q) if, and only if each
u C PSH(V) satisfying condition (1) and (2) in 2.6(c) also satisfies

u(z) ^J^(Im^), zeV.

(b) IfV satisfies PL(K, Q) then V also satisfies PL{\K, XQ) for each
A > 0 .
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(c) The condition PL(K,Q) is not changed if condition (1) in 2.6(c)
is replaced by

u(z)^HK(lmz)^-0(l).

Proof. — (a) Choose I and C according to 2.6(c) and let u € PSH(V)
satisfy (1) and (2) in 2.6(c). Since V is a homogeneous variety, for each
R > 0 the function up{z) := Ru(z/R), z € V, is plurisubharmonic on V
and satisfies (1) and (2) in 2.6(c). By 2.6(c)(3) we get

1 I C
^(0 ^ o^R(^) ^ HK^mz) + _ log(l + |̂ |) + - for z € V.-if H H

Since the right hand side tends to ̂ (Im z) as R tends to infinity, u satisfies
(3).

(b) This is easy to check.

(c) This can be shown as in [MTV1], 2.8(a).

2.11. THEOREM. — Let K c IR71 be a compact, convex set with
0

K ^ 0 and let P € (C[^i , . . . ,2^]. Then the following assertions are
equivalent:

(1) K satisfies the P{D)-extension property

(2) ( K ^ Q ) satisfies the P(D)-extension property for each compact,
convex set Q in IR71 with K c Q

(3) (K,Q) satisfies the P(D)-extension property for some compact,
0

convex set Q in S^ with K C Q

(4) P(D) : S^.K) —— S^^K) is surjective

(5) K satisfies the P {D) -extension property for V

(6) ( K ^ Q ) satisfies the P(D)-extension property for T)' for each
compact, convex set Q in IR^ with K c Q

(7) (K,Q) satisfies the P(D)-extension property for V for some
0

compact, convex set Q in IR71 with K C Q

(8) P{D) : V'^.K) —— P'(]R71,^) is surjective

(9) V(P) satisfies PL(K,BA) for some A > 0 with K C BA, for
BA := {x € IR711 \x\ ̂  A}.
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Proof. — (1) => (2) => (3): This is obvious.
o

(3) => (4): Without loss of generality we may assume that 0 € K.
Choose p, > 1 suoh that fiK C Q. By hypothesis {K^K) satisfies the
P(-D)-extension property, hence V(P) satisfies PL(K^fiK) by 2.7. Hence
2.10(b) implies that V(P) satisfies PL(^n-ljf,^nX) for each n € IN.
Consequently, by 2.7 and 2.2, the pair (y^'"1^, /^JC) satisfies the condition
2.2(2) for each n € IN. Let now g € £(IR71, J<T) be given. Set /o ''= 0 e £(K).
By 2.2(2) we can find recursively functions fn € S^K)^ n € IN such that
/nl^n-i^ = fn-i and P(D)fn = ̂ n^ ^ ^ INo. Obviously the function
/ € ^(IR71, .FQ defined by /|^K := fn, n C IN satisfies P(D)f = p.

(4) => (1): By Whitney's extension theorem, (4) implies that P(D)
is surjective on £(Q^K). Hence (1) holds by Lemma 2.2.

The proof of the equivalence of the properties (5) - (8) is the same
as the one of the equivalence of the properties (1) - (4).

(3) ̂  (7): This follows from Theorem 2.9.

(2) => (9) => (3): This follows from Theorem 2.9.

Remark. — Theorem 2.11 extends a result of de Christoforis [Ch],
who proved that condition 2.11(4) holding for all convex, compact sets K
with non-empty interior is equivalent to P being hyperbolic with respect
to each non-characteristic vector. As we show in Example 3.13, there exist
operators P(D) which are not hyperbolic at all and convex, compact sets

0

K in JR^.K 7^ 0, which have the P(D)-extension property.

From Theorem 2.11 and Proposition 2.10(b) we get the following
corollary.

2.12. COROLLARY. — If a convex, compact set K C IR/1 with non-
empty interior has the P{D)-extension property, then \K has the P(D)-
extension property for each A > 0.

2.13. COROLLARY. — Let K C IR71 be a convex, compact set with
K ^0andJe tPe (C[z i , . . . ,ZnJ .

(a) If K has the P(D)-extension property then P(D) : £(K) —^ 8(K)
and P(D) : ^(IR71) —> ^(IR71) admit a continuous linear right inverse.
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(b) If P is homogeneous and if P(D) : £{K) -^ £(K) admits a
continuous linear right inverse then K has the P(D)-extension property.

Q

Proof. — (a) Without restriction one may assume 0 € K. Then it
follows easily from Corollary 2.12 and Theorem 2.11(6) that ^ = K and
^2 = IR" satisfy condition 2.1(3) of Meise, Taylor and Vogt [MTV]. Hence
(a) and (b) follow from [MTV], Thm. 2.7.

(b) By Meise, Taylor and Vogt [MTV], the hypothesis implies that Y(P)
satisfies the condition PL(^), stated there. Since P is homogeneous, it
follows from Meise, Taylor and Vogt [MTV1] that V(P) satisfies the
condition PL(K,Q) for each convex set Q with Q D K. By Theorem 2.11
this implies (b).

2.14. COROLLARY. — Let P e (C[^i,. . . ,^] be a non-constant
polynomial and let Pm denote its principal part. If the convex, compact

0

set K C IR71 satisfies K ^ 0 and has the P(D)-extension property then K
also has the Pm(D)-extension property.

Proof. — By Corollary 2.13(a), the operator P(D) : E{K) -> 8{K)
admits a continuous linear right inverse. Hence it follows from Meise, Taylor
and Vogt [MTV], 4.5 and [MTV1], 4.1, that P^(D) has the same property.
Thus the result follows from Corollary 2.13(b).

3. Local and linear P(P)-extension property.

In this section we show that the P(D)-extension property for a
compact convex set K is equivalent to some local P(D)-extension property,
to the existence of "fundamental solutions" with certain lacunas and to the
existence of continuous extension operators for the zero-solutions of P{D)
onK.

Notation. — For e > 0 and x e IR71 let Be(x) := [y e M71 | \x-y\ ̂  e}.
o

3.1. LEMMA. — Let K C IR71 be compact, convex with K -^ 0, x G
OK and P e (C [z\,.... z^\. Then the following assertions are equivalent:

(1) there exists e > 0 such that for each f e £p(Be(x) D K) there are
0 < 6 ^ e and g e £p (B^)) satisfying g\B,{x}nK = f\B,{x)nK'
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(2) there exists e > 0 such that {Be(x) H K,B^{x)) has the P(D)-
extension property.

Proof. — Obviously, it suffices to show that (1) implies (2). To do
this, choose e > 0 according to (1) and consider the Frechet spaces

E := £p (B,(x) H K) , Fn := £p ((B,(x) H K) U B^(x)) , n e IN.

Further define

rn : Fn -^ E , r^(/) := f\B^x)nK'

To show that E == |j r^(Fn), fix / € ^. By (1) there exists n € IN
neIN

and g e £p (B^(x)) satisfying g\Bs.{x)nK = f\B^{x)nK' Hence g can be
rt n

extended to g e Fn satisfying r^g) = f. By Grothendieck's factorization
theorem (see Meise and Vogt [MV], 24.33), E = \J r^(F^) implies the

neIN
existence of some m € IN satisfying rm(Fm) = E. To prove that this implies
(2), let rj := e- and fix / € £ {B^{x), B^{x) D K). By Whitney's extensioni i t
theorem there exists F e £ (Bg(a;), Be(x) D K) such that F\a^x) = /• Next
choose G € £ (Bg(x)) satisfying P(D)G = F and note that G\B^{x)nK
is in £p {Be(x) H K). Hence there exists h e £p ((B^(x) H K) U -S^-(^))
satisfying ^|Be(o;)nx = G|Be(:r)nx- Consequently, ^ := G\B^x) - h\B^{x) is
in £ (Brj(x)^ Brj(x) D ^C) and satisfies

P{D)g = P(D)G\a^ - F\B^x) = /.

Thus, P(D) : £(Brf{x),Br){x)r}K) -^ £{B^x),B^x} H K) is surjective.
By Lemma 2.2 this proves (2) for e = rj.

0

3.2. DEFINITION. — Let K C IR71 be compact, convex with K ^ 0
and let P G (C[^i , . . . , z^] be non-constant.

(a) We say that ̂  has the local P(D)-extension property at x € cW
if one of the equivalent conditions of 3.1 holds.

(b) We say that K has the local P(D)-extension property if each
point of 9K has this property.

3.3. LEMMA. — Let K and P be as in 3.2. IfK has the P{D)-extension
property then it has the local P{D)-extension property, too.
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Proof. — Fix x e QK and e > 0. By Lemma 2.2 it suffices to show
that

P(D) : £{B,(x\ B,(x) H K) -^ £(B,{x\B,{x) n K)

is surjective. To prove this let / e £{Be(x), B^(x) n K) be given. Then
F e £(Be(x) U ^T,^), defined by F\B^ = / and 0 otherwise, extends
/. By Whitney's extension theorem there exists Fi e £(]Rn,K) such that
F is the restriction of Fi to Be(.r) U K. Since J<: has the P(D)-extension
property, Theorem 2.11(4) implies the existence ofGe £(^Rn, K) satisfying
P(D)G = Fi. Obviously^ := G\B^} isinf(Be(o-), B^(x)nK) and satisfies
P{D)g = /.

3.4. LEMMA. — Let K and P be as in 3.2. IfK has the local P(D)-
extension property then the following holds:

for each A, A > 0 there exists an equicontinuous set B C P'([-A, A]71),
(*) so that for each x e 9K there exists E^ e B satisfying P{D)E^ = 60

and Ex IpQ-A^n^x-a;^ 0.

Proof. — By hypothesis, for each x e 9K there exists e(x) > 0 such
that (B^x)(x) r\K,B^x)(x)) has the P(D) -extension property. Obviously,

m
there exist points a-i, ... ,Xm e 9K such that 9K = |j B^x.\{xj) n 9K.

j=i
Let Bj := B^^(xj) and choose a number 6 > 0 so that for each x e 9K
there is 1 ̂  j ^ m with Bs(x) C Bj. Next fix A, A > 0 and find Ai ^ A so
that for alia- € 9K:

(1) X i ( B s ( x ) ^ K - x ) Z ) \ ( K - x ) , B^(0)D[-A,A]71.

By Hormander [H2], 10.7.10, the operator P(D) has a fundamental solution
E € P'(IR71). For x € M71 define the shift operator

T, : ^(IR") ——> ^(M71), T,(^] :=^(. +^))

and let E^ := Ta;(£'). Then for each x e R71 we have P(D)E^ = ^. It is
easy to see that for each 1 ̂  j ^ m the map

T, : 9 K H B , —.Op(Ai(B,nA:)), ^^^|A,(B,nx)

is continuous. This implies that

^ := {Ex^\x, (B,HK) \ x ( ^ 9 K n Bj}
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is compact in Pp(Ai(Bj H K)). Since (^ H ^B^-) has the P(-D)-
extension property, 2.11(6) and 2.10(b) imply that the restriction map
pj : 'Dp(Ai-B^) —^ T>p(\t{Bj n K)) is surjective. Hence pj lifts compact
sets. Therefore, there exists a compact set Cj in 'Dp(AiB^) satisfying
Pj{Cj) = ^r ^ow nx x € c^ choose j = j(a') such that Bf{x) C Bj
and find Fx e Cj- such that pj(Fx) = E\^\\^{BJHKY Then note that (1)
implies

Ai(^- - x) D Ai(^(.r) - .r) = B^(0) D [-A.A]"
and

Ai(^- n K - x) D \i(Bs(x) n K - x ) 3 \{K - x).
Therefore E^ : V(\i{Bj - x)) -^ (C, defined as

E^) := (E^\^B, - ̂ ) (^(' - >ix))

is in P'(Ai(B^ -x), \z(Bj r} K - x)) and satisfies P(D)E^ = ^o. From
the construction it is obvious that

B:={^|[_A,A]n \V^9K}

is compact, hence equicontinuous in P'd—A.A]71). Therefore B has all the
required properties.

0

3.5. LEMMA. — Let K C IR71 be compact, convex with K ^ 0 and
A > 0 such that K C [—A, A]71. There exists a collection of closed cubes
{Qj)jew m IR/1 and functions {(pj)j^ in £(IR71) such that:

00

(1)J^\K= UO,
j=i

(2) there exist 0 < rriQ < 1 < MQ < oo such that for all x G Qj:

mo diam Qj ^ dist(a;, K) ^ MQ diam Qj

(3) for all j G IN with Qj n [-A, A]71 ̂  0 we have diam Q^ ^ 1

(4) there exists C > 0 such <;hat for a2J j € IN:

»{z e IN|Q, n Q, ^ 0} ̂  G

(5) there exists A > 0 such that for each j e IN with (9^n[—A, A]71 7^ 0
there exists x j C 9AT satisfying

K-QjC\{K-Xj)
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(6) Supp(^) c Qj, for each j e IN

(7) for each m e IN there exists Cm > 0, so that for all j € IN, x €
ffi71:

I^Qr)! ^ C^(diam Q^-l^l, |a| ^ m

(8) 1 = E ^•(.x-), for each x e IR71 \ K.
j=i

0

Proof. — Without loss of generality we may assume that 0 € K.
Then there exists e > 0 such that Be(0) C K. For ^ e ZS and r € (2~^Z)n

let Q(Z,r) := [-2-^ 2-^ + r. Then diamQ(^r) = v/n2-^+1. We define
Mi := {Q(l,r)\r G (2-^Z)n}. For B ^ 1 we denote by M^a the set of all
cubes Q(l^r) € M^ satisfying

D

— diamQ(^r) ^ dist(Q(;,r),Jf) ^ 2BdiamQ(Z,r)

and we let MB := \J{MI^B\I € 2Z}. For a sufficiently large number B ^ 1,
which will be fixed later let (Q(l^ rj))j^ be some collection of the cubes in
MB. For j G IN define Qj := Q(^—l, rj) and note that there exist functions
((^•eiN in ^(IR") so that the properties (1), (2), (4), (6), (7) and (8) hold
for arbitrarily given compact sets K whenever B ^ 1 is sufficiently large
(see e.g. Stein [S], Chap. 6).

To show the properties (3) and (5) observe that for each j e IN the
following holds:

/ D \ D

( — — 1) diamQj = — diamQ(^, rj) — diamQ^

^ dist(0(^-, rj), K) - diQimQj ^ dist(Qj,K)
^ dist(Q(lj, rj),K) ̂  2BdiamQ(^, rj)
^ B diam Qj.

Hence (3) holds whenever 4(v/rL4 + 1) ^ B. To prove (5), note that the
convexity of K and the choice of e > 0 implies

^(i-A)e(A^) C K for each x e K, A € [0,1].

For j e IN there exists a unique xj € 9K with xj G ]0, rj] (where
]a,6] = {(1 - A)a + Xb | A € ]0,1]}). Now fix x G K \ (IR^-) arbitrarily.
Then there exists a unique x^ e ]0, x} such that a*'- - Xj G 1R(x -rj). Then

^(i-K.|/|o;|)£(^) CK.
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Obviously we have: |a^|/[;r| = |^j|/|rj|. Since disi(rj,K) + \Xj\ ^ |rj| we
get

f l -^ ) ,=f l -^ l )^—dis t ( r ,^ )\ M7 \ hi 7 hi
^ — dist(Qj,K) ̂  — ( — - l ) diamQ^.

1^1 \rj\ \ 4 /

For all j C IN with Qj H [-A, A]71 ̂  0 we get from (3):

(1 - 1^1) ̂  T^Ti (^ - Q diam^ =- 'B diamQr

By the definition of x'^ for each j € IN there exists \j > 0 with
x — TJ = Aj(.z''- — a;j). Further, there exists A > 1 so that

\^ = ^—7^1 = ^ C [1 A] for each j e IN with Q.nt-A.A]71 ̂  0.
I i — i I I 7 1

Now fix B ^ 1 so large that SB > max(A,4(v/rL4 + 1)), let Sj € Qj be
arbitrarily given, define Sj := sj — rj and note that

( s - \
X S ' j —— X » f 5 •y —— /\ '̂ KL ^ - - • Z ' J f •

Aj /

For '̂ G IN with Qj H [-A, A]71 -^ 0 we now have

I J - 1 ^ A|5^| ^ AdiamQ^ ^ 63 diam^ ^ (1 - —— ) e,
Aj \ 1^1 /

hence

x1,-8^- €B(I_^.I/I,|),(^.)C^

and consequently

x — Sj € \j{K — Xj) C \{K — Xj).

Thus we have shown

(K\(^r,))-Q,C\(K-x,)^

for all j (E IN with Qj H [-A, A]71 ̂  0, which implies (5).
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3.6. LEMMA. — Let K C IR71 be compact, convex with K ^ 0 and
let P e (E[ z^ . . . , Zn}. If 3.4 (*) holds then P{D) : f(IR71, K) -^ ^(IR71, K)
admits a continuous linear right inverse.

Proof. — (a) First we show that for each compact, convex set L C IR"^
with K C L there exists RL,K € L^IR71,^)), satisfying

(1) P(D)oR^K(f)\L=f\L. f C S ^ ^ K ) .

To prove (1) choose A > 0 such that L + [-I,!]71 C [-A.Ap. For A
and K let (Qj)je]N and ((^)^IN resp. A ^ 1 be as in 3.5 resp. 3.5(5).
By hypothesis, there exists an equicontinuous set B C V ([-3A, 3A]71)
so that for each j C IN there exists Ej € B with P(D)Ej = So and

Supp(^) C [-3A.3A]71 \ \(K - Xj), where Xj e 9K is as in 3.5(5).
Choose a function ^ e 'P([-3A,3A]71) with ^ | [-2A, 2A]71 = 1 and define
the operator RL,K by

00

(2) RL,K{f):= ^ (x^)*(^/), /ef(lR",^).
J=l

0^01/^0

To show that this formula is well-defined let r C IN and L' CC IR71 be
arbitrarily given. Since -B C P'Q-^A^A]71) is equicontinuous there exist
LI CC IR^ Gi > 0 and I ^ r such that for all j e IN:

||(X^) * /l||l/,r ^ CM^I , ^ € 8^).

Choose a constant C^ > 0 so that for all \{3\ ̂  ^ and x € Li:

l^^l ^ ^H/iH^^+n+idist^,^)^^1, fc e f^",^),

where L^ CC IR71 is sufficiently large. By 3.5(3) for each j e IN with
LnQj ^ 0we have diam Qj ^1. This implies for all j € IN with QjHL ̂  0
and/E^IR^):

IIW-) * (^m^r ^ C, SUp SUp \^f^\x)\
\(3\^lxeLi

Ci sup sup I V f^^^-7^^)/^^^)
|^^eLj^\77

^Ci^supsup ^~^{x)\\f^\x)
\0\^i xCLi
-r^/3

^ C'l2'C'2C;/||/||£„2i+n+l(diam<9,)-( (ModiarnQj)^^1

=C73||/||^,2^+n+l(diamOJ)"+l,
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where C[ is the number in 3.5(7) and €3 := C^C^C[. Let C be the
constant in 3.5(4). Then for all / e S^.K) the following holds:

||^L^(/)||L/,^G3||/||^,2Z+n+i ^ (diamQ,)^1

j=i
Qj-nL^0

00

^ Csll/lk^+n+i E E (diamQ,)^1

fc=0 2-fc-l^diamQ^$2-fc
Q,ni/^0

00 / 1 \ n+l

^C-3||/||^,^+l^: ^ (-)

fc=0 2-fc-l^diamQ^2-fc v /

Qj-nz/^0

^ C'3||/||^,2(+n+lC (4^A)"^2fc"-fc(n+l)

fe=0

=2C'3C'(4^nA)"||/||^,2<+n+i.

Thus the formula in (2) defines a continuous linear operator RL K '•
£(W1, K) -^ f(lR"). To show RL,K(.W, K)) C f(lR", K), note that for
all j e IN with QjDL^0 and a; 6 K the following holds:

Supp ([Vjf)(x - •)) C x - Qj C K - Qj c \{K - Xj).

This implies

(\Ej) * (Vjf)(x) = (^Ej, (<pjf)(x - •)) = 0 for all x 6 X.

Hence we have shown that RL,K maps into ^(IR", AT). Moreover, for all j e
IN with QjHL^ 0 and a; € £ we have Supp ((<pjf)(x - •)) C [-2A, 2A]".
Then for all / e f(R", ̂ f) and x € £:

W) * (yj/)(a-) = £', * ̂ jf)(x).

This implies

P(£>)°^,^(/)|L= ^ ?(£>)£,* (y>,/) |^
J=l

Q^nL^0

c?o I oo \

= E ^*(^-/)|L= ^ ^ / i ^= / i ^ .
J=l \ J=l

QjUL^0 \QjHL^0
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Hence we have shown property (1).

(b) To construct a continuous linear right inverse for P{D) :
£(W,K) -^ £{W,K) assume 0 e K. Then note that for each p. > 0
the set u,K also satisfies the condition 3.4 (*). Therefore we get from part
(a) the existence of R^J^KJK ^ ^(^(K71, jK)) satisfying

P(D) o R^KJKW lo+i)x == / lo+i)^ f € SCS^JK).

Next define the sequence (^)jeiN in ^(^(IR71,^)) recursively by

(3) it := R^K^K, ^-+1 := ij + -R(j+2)J<,(j+i)J< ° (id^(iRn^) - P(D) o ̂ ).

To show that the operators ij are well-defined we claim that for each
/ € £{W,K) the following holds:

(4) P{D)i,(f) \^K = f \(WK

(5) ^+l(/) lo+l)K = ^(/) lo-+l)J<.

Obviously ^i = R^K^K has property (4). If ij satisfies (4) then

(id^(iR-,j<) - P(D)tj)(f) \^I)K = 0 \U+I)K'

Hence the operator

F, := ^+2)K,a+i)x°(id^(iRn^)-P(D)o,,) : S^^K) -^ ^(IR71, U+W

is well-defined. Moreover for / e ^(IR71, J^) we get

P(D)^i(/) |(,̂ )̂  = P{D)i,(f) |(,+2)X + (/ - P(D)i,(f)) |(,+2)^

=/ l(j+2)K.

Hence ^-+1 satisfies (4). Property (5) follows from the fact that the operator
Fj maps into ^(IR71, (j + 1)-?0. Now (5) implies that the sequence i\,i^...
converges to a continuous linear operator RK : ̂ (IR71, J^) —> ^(IR71, JC). By
(4) this operator is a right inverse for P(D) : ̂ (IR71, K) -> ^(IR71, J^).

0

3.7. DEFINITION. — Let K C IR71 be compact, convex with K ^ 0
and let P e (C[^i , . . . , ̂ ]. We say that JC has the hnear P(D)-extension
property if the restriction map RK : fp(IR71) -^ £p{K) admits a continuous
linear right inverse.
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3.8. LEMMA. — Let K C IR71 be a compact, convex set with K -^ 0
and let P e (C[zi , . . . , Zn}. Then the following assertions are equivalent:

(1) K has the linear P(D)-extension property.

(2) Let HK := {(u,v) e £(K) x f(]R71) | P(D)u = V\K}. There
exists LK C L^HK^^)) such that

P{D)iK = 7T2, PK ° l^K == 71-1,

where TT,, z = 1,2, denotes the projection map to the i-th factor.

(3) P(D) : S^^K) -^ E^.K) admits a continuous linear right
inverse.

Proof. — (1) ̂  (2): Let GK : Sp{K) -^ fp(IR71) be a continuous linear
extension operator for the zero-solutions of P(D) on K. Since (1) implies
trivially that K has the P(D)-extension property, we get from Corollary
2.13 that P(D) : ^(IR71) —> ^(IR71) admits a continuous linear right inverse
R. If (zA, v) € HK is given then

P(D) (u - R(v)\K) = P{D)u - P{D)R{v)\K = V\K - V\K = 0.

Hence u - R(v)\K € £p(K). This implies that the following map is well-
defined:

LK : HK -^ ^(IR71), LK(U, v) := R(v) + (TK{U - R(v)\K).

Note that LK is continuous, linear and has the following properties:

P(D)iK(u,v) = P(D)R(v) + P(D)OK(U - R(v)\K) = v.

^K{U, V)\K = R(V)\K + OK(U - R(v)\K)\K == P(v)\K + U - R(v)\K = U.

This implies (2).

(2) =^ (3): Obviously the map

JK : fOR", K) -^ H K , J K ( v ) = (0, v)

is well-defined, continuous and linear. By (2) the map L K ° J K '' <?(K71, K) —>
£{Vy1) is continuous, linear and has the following property:

^ K ° J K ( v ) \ K =^(0, 'y) |x=7Ti(0,^)=0, v^SCSy.K).
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Hence iK°3K{W,K)) C S{W,K). Moreover

P(D)iKoJK(v)=P(D)iK(^v)=v for veS^.K).

This implies that LK ° JK is a right inverse for P(D) : E^^.K) —>
£(W,K).

(3) =^ (I): By 1.2, the restriction map pK : f(IR71) -^ £{K) admits
a continuous linear right inverse EK- Let now / C £p(K) be given.
Then P(D)^(/)|^ = P(D)f = 0, hence P(P)^(/) € £(]R71,^). By
(3), there exists a continuous linear right inverse /^ e ^(^(IR71,^)) for
P(D) : S^.K) -^ S^.K). Therefore, the following map is well-
defined, continuous and linear

OK : £p{K) -. f(]R71), aK(f) := EK(f) - ^K {P(D)EK(f))

and satisfies

P(D)aK(f) = P{D)EK(!) - P(D)^K (P(D)EK(f)) =0 for / e £p(K).

This implies OK (£pW) C ^(M'1). Since [LK (P(D)EK(f)) \K = 0 the
map (JK is a continuous linear right inverse for p K -

Now we can formulate the main theorem of this section:

0

3.9. THEOREM. — Let K C IR71 be a compact, convex set with K ^ 0
and P € (C[^i, . . . , Zn}' Then the following assertions are equivalent:

(1) K has the P(D)-extension property

(2) K has the local P(D)-extension property

(3) property 3.4 (^) holds

(4) P{D) : S^.K) -^ S^.K) admits a continuous linear right
inverse

(5) K has the linear P{D) -extension property.

Proof. — The implications (1) =^ (2) =^ (3) =^ (4) =^ (5) hold by
Lemma 3.3, Lemma 3.4, Lemma 3.6 and Lemma 3.8, while the implication
(5) =^ (1) holds trivially.
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To show that condition 3.4 (*) becomes more explicit if 9K contains
flat pieces of dimension n — 1, we prove the following lemma, which is also
used in [FM].

3.10. LEMMA. — Let Q := [-1,1]^ K := [x e Q\Xn ^ 0} and
P € (C[^i, . . . ,Zn]. If (K^Q) satisfies the P(D)-extension property then
P(D) admits a fundamental solution E e P^R71) satisfying Supp(£') C
H^- := {x e IPT1 Xn ^0}.

Proof. — By Hormander [H2], 10.7.10, there exists E^ e P^IR/1) with
P{D)E^ = SQ. By Theorem 2.9 the pair {K,Q) has the P(J9)-extension
property for P'. Since 6o\K = 0, there exists F e P'(Q) with P{D)F = 0
and F\K = £'i|x. Then E^ := E^\Q - F satisfies P(D)E^ = 60 and
Supp(^) C Q n H^~. Choose a function (p e T>(Q) with ^|[-l/2,l/2lT^ ^ 1
and define E^ := (pE^. As in the proof of Hormander [H2], 12.8.1(i) =>
(ii), we get C > 1 such that the inequality (12.8.3) in [H2] is satisfied. By
[H2], 12.8.1, this implies the existence of the required fundamental solution
E € P^IR") with support in ̂ +.

3.11. THEOREM. — Let K C IR71 be a compact, convex set with
0

K ^ 0 and let P € (T[zi,. . . ,^]. Assume that for some N e S1^-1

and a e IR the set K is contained in {x e BV1 | (x, N) ^ a} and that
D := 9K n {x e IR71 | ( x ^ N } = a} contains a point ^ which is in the
interior of D relative to the hyperplane {x € IR71 | (a;, N) = a} and that
K has the local extension property at ^. Then P(D) admits a fundamental
solution E € P^IR") satisfying- Supp(E) C H~^~{N).

Proof. — Without restriction we can assume N = (0, . . . , 0,1), a == 0
and ^ = 0. By hypothesis, there exists e > 0 such that (Be H K,Be) has
the P(D)-extension property for Bg := Bg(0). Then let Qs := [-M]" and
Q~6 '•= [-^ 6}n~l x [-^ °] for 6 > ° and choose 6 < e so small that Qs C B^
and Q-g C B^K. Next fix / e £{Q6, Q~s) and define F e £{B^ B^nK) by
F = 0 on Be^K and F = / on Qs\BenK. By Whitney's extension theorem
[W] there exists F e S(B^B^K) satisfying F |Q,u(B,n^) = f \Q^{B^KY
By Lemma 2.2 the hypothesis implies that there exists G € f(-Bg, Be Ft jFC)
such that P(D)G = F. Hence ^ := G \Q^ satisfies P(D)g = / on Qs \ Q^
and g vanishes on ] - 6, ̂ [n-l x [-rj, 0[ for some 0 < rj < 6. Therefore, there
exists g e f(Q<$,Q^) satisfying P(D)g = /. By Lemma 2.2, this implies
that {Q6iQ~s) has the P(Z))-extension property. Hence the result follows
from Lemma 3.10.



EXTENSION AND LACUNAS OF SOLUTIONS 461

3.12. PROPOSITION. — Let K be a polyhedron and P € (C[^i , . . . , Zn}.
The following assertions are equivalent:

(1) K has the P(D)-extension property

(2) for each N e S71-1 which is an outer normal to any (n - 1)-
dimensional face of K there exists a fundamental solution EN € P^IR")
ofP(D) with Supp(^) c H-^(N)

(3) K has the linear P(D)-extension property.

Proof. — (1) =^ (2): By Theorem 2.11 there exists a compact, convex
0

set Q satisfying Q D K such that (K, Q) has the P(P)-extension property.
Hence (2) follows from Lemma 3.3 and 3.11.

(2) =^ (3): Obviously, (2) implies condition 3.4(*). Hence (3) holds
by Theorem 3.9.

(3) =^ (I): This is obvious.

As a direct consequence of Proposition 3.12 we get the following
corollary.

3.13. COROLLARY. — Let K^..., Km G IR" be polyhydra such that
K = H^j 11 ^ 3 ^ ^} h^ non-empty interior. Let P e (C[^i , . . . , Zn\.
Suppose that Kj has the P(D)-extension property for each 1 ^ j ^ m.
Then K has the P(D)-extension property, too.

3.14. Example. — (1) In Meise, Taylor and Vogt [MTV3] it is shown
that for each polynomial P e (E[^i , . . . , Zn] of the form

P(^,...,z,)=^zJ- ̂  z] resp.P(^,..,^)=^- ̂  ̂ ,
j=l j=r+l j=l j'=r+l

where 1 < r < n resp. 1 < r < n - 1 and A e M \ {0}, the operator
P{D) admits a fundamental solution EN with Supp£'jv C H^~(N) for each
N e S71-1 which is characteristic for P. From this and Proposition 3.12 it
follows that each polyhedron K in IR71 for which all (n - l)-dimensional
faces are characteristic for P, has the P(D)-extension property.

Particular examples are

Q^y^)=x2-y2+z and R(z^... ,^4) = ̂  + zj - zj - 4
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which both are not hyperbolic with respect to any direction. Note that the
boxes

^o(a,/?,7) :={(x,y,z) € R3 | \x - y\ ̂  a, \x + y\ ̂  /?, \z\ ̂  7}

resp.

^(a,/?,7^):={^€lR4 [ [ m - r ^ l ^ a ,
1^1 -+- X3\ ̂  /?, |.T2 - X^\ ^ 7, I.Z-2 + ^4| ^ 6}

satisfy the Q(D)~ resp. the -R(P)-extension property whenever a, /3,7,6 > 0.

(2) Whenever P(D) is hyperbolic with respect to TV € IR71, then there
exist compact, convex sets K which have the P (^-extension property. To
show this, assume without restriction that N = (0, . . . ,0,1) e IR71. For
0 < a < 1 let

B±(a) := {x e IR/1 | ̂  + • • . + a^_i + (^n =L a)2 ^ 1},

^(a):=B+(a)nB-(a).

Since P(D) is hyperbolic with respect to N there exist fundamental solu-
tions E± € ^'(IR^ and closed, convex cones F± in M71 with Supp(^±) C
r±, where

r^Wc^eiir11 ±xn>o}.
Now it is easy to check that there exists 0 < OQ < 1, depending on r-^- and
r- so that K(a) satisfies condition 3.4 (*) for each 0 < a ^ ao. Hence
K(o) has the P(D)-extension property for these a, by Theorem 3.9.
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