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MULTISUMMABILITY FOR SOME CLASSES
OF DIFFERENCE EQUATIONS^*)

by B.L.J. BRAAKSMA and B.F. FABER

1. Introduction.

This paper concerns linear and nonlinear difference equations whose
linear part involves the difference operator

(1.1) Ty(x) := y(x + 1) - A(x)y(x)

where x € C, A(a-) is an invertible (n x n)-matrix meromorphic near oo and
y : C —>• C71. We are interested in multisummability properties of formal
solutions of Ty(x) = G{x, y) where G{x, y) is holomorphic at (oo, 0) and
does not contain linear terms in y.

To formulate the results we need a formal fundamental matrix Y(.r)
of the linear homogeneous equation Ty(x) = 0 :

(1.2) Y(x) = M(x) C^ r^cje9^^.

Here
f M(x) e Gl(n, C^-1^]]^1^]),? e N,
Lj € End(rij, C), n\ + ... + Ura = ̂ 5

(1.3) < \j € -Z,Ai ^ ... ^ X^Cj € C*,

qj{x) = 0 or qj(x) is a polynomial in x1^ of degree less than p
with leading term bjx^, 0 < ̂ < 1, by; ^ 0.

^ Part of this work has been performed in the University of Southern California.
The authors want to thank the Department of Mathematics of USC and in particular
Professor W.A. Harris, jr, for their hospitality and support.
Key words : Difference equations - Formal power series solutions - Normal forms -
Multisummability - Borel and Laplace transforms - Gevrey series - Stokes phenomenon.
Math. Classification: 39A10 - 40G10 - 44A10.
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(cf. [Tur60], [Pra83], [Duv83], [Imm84]).

In general M(rr) cannot be lifted to a meromorphic matrix but only on
suitable sectors there exist corresponding holomorphic lifts which exhibit
a Stokes phenomenon.

The levels of the difference operator T are said to be A;i,..., kq where
0 < A;i < ... < kq = 1 and k^ € (0,1) occurs iff there exists j such that
\j =0,Cj = 1,% ^0,^=^.

A direction 0 (interpreted as a real number or as a half line
arga; = (f)) will be called singular for this operator ifexp{.rlog(c^)-h^(a;)}
has maximal descent in the direction 0 as \x\ —> oo in case Xj =
0^x\og(cj) + Qj{x) ^ 0. Here all possible determinations of the logarithm
are taken into account. These directions are said to be of level 1 except
if \j •==- O^Cj = l,qj(x) ^ 0. In the latter case it is said to be of level fij.
In case \j = 0, Cj = 1, also (f) = Tr/2 mod TT are singular directions of level
1. Note that in case Aj = 0, |cy| -^ 1 there are infinitely many singular
directions which have Tr/2 mod TT as accumulation points.

With these definitions our main result is

THEOREM 1.1. — Let A{x) be as above and let G{x, y) be holomorphic
in rc"1^ and y in a neighborhood of (oo,0) and such that it does not
contain a linear term in y in its Taylor expansion with respect to y . Let
y(x) C C71!^"1^]] be a formal solution ofy(x + 1) - A(x)y(x) = G(x, y).

Let (Ji,..., Iq) be a multi-interval such that I\ D ... D Iq, \IH\ > ̂ / k h
and Ih does not contain a pair of Stokes directions ((f) — 7r/(2A^),0 +
7r/(2kh)), where (f) is any singular direction of level k^,'

Then y(x) is (fci,..., kq)-summable on (Ji,..., Iq) in the following cases:

1. \rn > Al ^ 0, 7T ^ Iq mod 27T.

2. Ai = \m = 0.

3. Ai < \m ^ 0 and 0 ^ Iq mod 27T.

Moreover, y(x) is 1-summable in upper and in lower halfplanes if
\Cj\ -^ 1 in case \j = 0.

For the definition of multisummability we refer to section 3. In case
q = 1 we have 1-summability and so Borel-summability. In this case the
Borel sums of the formal solutions may be represented by convergent
generalized factorial series. The theorem may be extended to cases where
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A{x) and G(x, y) correspond to multisums of formal series in a; as in the
case of differential equations (cf. [Bra92]). Theorem 1.1. remains valid if
G(x, y{x)) is replaced by G(x, y(x-\-l)) as can be seen by expressing y(x+l)
by means of the difference equation in terms of y(x).

The result may be reformulated for left-difference equations w(x —
1) — A{x)w(x) = G(rr,w) by means of the substitution w(x) = y{—x)
and A(x) := A(-x),G{x,w) := G(-x,w). Moreover, this implies that
Ty{x) == G(x,y) corresponds to w(a;+l)-A~1 (-x- l)w(x) = -A'^-.r-
l)G(-x - l,w(x + 1)) and thus it follows that the statement in case 3 of
the theorem is a consequence of that of case 1.

Different (slightly more general) formulations of the main result are
given in sections 4 and 10. In section 10 we also consider the reduction of a
general nonlinear difference equation to one of the type considered in Theo-
rem 1.1. Section 11 contains an application to normalizing transformations
for the difference operator T.

The method of proof of the main result is similar to that for the
multisummability for meromorphic differential equations in the style of
Ecalle (cf. [Eca87], [Eca93], [Bra91] and [Bra92]) with a modification due
to Malgrange (cf. [Mal]).

Multisummability of formal solutions of difference equations does not
always occur and one has to apply the more general notion of accelero-
summability of Ecalle in such cases (cf. [Eca87], [Eca93] and [Imm]).
However, our method shows that formal solutions y always can be lifted to
holomorphic solutions in upper and lower half planes with y as asymptotic
expansion, the lifts need not be uniquely determined by y (cf. Remarks 4.1
and 10.1 and [vdPS]).

The paper is arranged as follows. In section 2 we introduce some
notations and recall properties of Borel and Laplace transforms and in
section 3 we recall two equivalent definitions of multisummability. In section
4 we give an alternative formulation of the multisummability result for the
linear difference equation. In section 5 we derive the convolution equation
which corresponds through Borel transform with this difference equation
and in section 6 we prove the result in the linear case by means of
these convolution equations. This proof depends on two lemmas which
are proved in sections 8 and 9. For this we need to study an auxiliary
operator associated with the difference operator. To this study section 7
is devoted. In section 10 we consider the nonlinear difference equation.
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Section 11 concerns the normalizing transformations mentioned above and
a fundamental matrix of a linear difference equation in a special case.

We want to thank G. K. Immink and M. van der Put for useful
discussions.

2. Preliminaries.

Here we present some concepts and results which we use lateron. For
more details we refer to Balser [Bal94], Ramis [Ram93] and Malgrange
[Mal].

By Coo we will denote the Riemann surface of the logarithm. For I
an arbitrary, bounded interval in R, we define

S { I ) ={x C Coo; arga; € I}.

We call S{I) a closed (open) sector, if I is closed (open). Sometimes we will
write 5(0,6) for S ( I ) with I = (a, 6), or just S if no misunderstanding is
possible. Throughout this paper intervals and sectors will be open, unless
stated otherwise. By |J| we will denote the length of interval I .

Let A(0,r) be the open disc around 0 with radius r > 0 and
S ( I , r) := S ( I ) H A(0, r). A neighborhood of 0 in S ( I ) is an open subset U
of S ( I ) such that for every closed subinterval I ' of I there exists an r > 0
such that S'(J',r) C U. A neighborhood of oo in S { I ) is an open subset
U of S ( I ) such that for every I ' as above there exists r > 0 such that
{x€S(r)\\x\>r}cU.

If I is an interval then we define 0(1) as the set of germs of functions
holomorphic on a neighborhood of 0 in S ( I ) and the corresponding sheaf
on R is denoted by 0. Replacing 0 by oo we define in the same way a sheaf
Ooo.

The subspace of / € 0(1) with the property that / has an asymptotic
00

expansion f{x} ~ f(x) := ^ OnX'^^^x — ^ O . - r G 'S'(J), where {dn} is a
n=o

sequence in C, and p is positive, is denoted by A{I). Replacing a*^ by
j^-n/p g^ 0 by oo we define in the same way Aoo{I). The corresponding
sheaves on R are denoted by A and Aoo'

From here on k will always be a positive number.
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A function / in 0(1) (Ooo(I)) is said to be exponentially small of
order k at 0 (oo) if to every closed subinterval I ' of I corresponds a b > 0
such that

f{x) = C^exp^M-^)), x -^ 0 {f{x) = 0(exp(-b\x\k))^ x -^ oo),
x e 5(J').

The subspaces of such functions are denoted by A^~k(I) and AJQ'1^^!)
and the corresponding sheaves on R are denoted in the same way with
deletion of the symbol (J).

If / G Ooo{I) and for every closed subinterval J' of J, there exist
positive constants A, B, R such that

\f(x)\ ̂  Aexp^la^), if \x\ > R,x G 5(J'),

then we say that / is exponentially large of order ^ k at oo on S ( I ) .
By £ { I , k ) we denote the set of these functions, which, moreover, are
holomorphic on the complete sector S ( I ) and belong to A(I).

If I is a bounded interval in R and {Ij}j^j^ where J is an interval
of Z, is a family of open intervals with Ij D Ii = 0, if \j — l\ ^ 2 , and
Uj^jlj = J, then we call {Ij}j^j a good covering of I .

Now let {fj}jeJ be a family of functions, with fj 6 Ooo(Ij) and
^•+1 - /, € A^^Ij H J,+i), jj + 1 G J. Then {^},ej is called a A;-
precise quasi-function at oo on J with respect to the (good) covering
{Ij}j^j. Two such ^-precise quasi-functions {fj}j^j and {gi}^j with
respect to good coverings {Jj}j^j and {Ii}^j are said to be equivalent, if
fj —gi € A^^^j HJi). With this equivalence relation c± the quotient sheaf
(0/.A^-fe)oo := ^cxD/^.^"^ is given by the equivalence classes of fc-precise
quasi-functions at oo on J.

In an analogous manner we define the quotient sheafs (A/A^~k)oo•) and
(A^'^/A^'^oo? for 0 < k < 1. If {fj}jeJ form a representative for / C
{A/A^^ oo (-0 ? with respect to a covering {Ij}j^j as above, all fj e A(Ij)
have the same asymptotic expansion /, as exponentially small functions
have asymptotic expansion 0. Therefore, we write / ~ /. Similarly we may
give a meaning to / = O^x^) for / as above.

LEMMA 2.1 (cf. Malgrange and Ramis, [MalR92]). — Let 0 < k < I ,
and I an open interval of length \I\ > 7 r / k . Then (^"^/^"Qoo^) = 0.
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Now we are able to give the definition of the (generalized) Borel
transform of order A;, denoted Kk- Let I = (a, b) be an interval in R, with
\I\=b-a> 7 r / k , and let / € (O/A^)^!) with f(x) = O(a^), x -^ oo,
for some real q. Let I ' := [a', b'\ be a compact subinterval of I with
|J'| > 7 r / k . Let {/j}^i be a representative of the restriction of / to
a neighborhood of J' with respect to a good covering {Ij}^^ of that
neighborhood.

Suppose that fj is holomorphic on the neighborhood Uj of oo in S{Ij).
Choose Xj € Uj D L^+i, if j = 1,.... m - 1, XQ = Re^ e (7i, Xm = Re^ C
Um^ where b\ — ai > 7 T / k and -R > 0. Let /o = /m+i = 0. Then we define

1 m r^j
<^) = ^/(^) :=—— ̂  / e^)'/,^) d(^)

^^i7^-1

1 m /-^C^g^j) .
(2.1) - ̂ - E / e(a;t) (^+1 - fW d^'

^,=0^

Here oo(a) means that the path of integration ends at oo in the
direction arga; = a. Thus (f) is holomorphic on a neighborhood U of 0 in
S'(J), with I = (—&i + _ - , —a\ — —, ), and independent of the choices for

\ ZiKi ^iK '
the Xj. However, variation of a\ and b\ gives analytic continuations of (j).
By variation of I ' we obtain (f) € 0(J*), with J* = (-6 + —, -a - — ). If

\ ZrC ZiKi /
f can be represented by a single holomorphic function on a neighborhood
V of 0 in I (i.e. if all the fj are analytic continuations of each other), then
this generalized Borel transform equals the classical one :

Bkf(t)= { e^f^d^),
Jr

where F is a contour in V from oo(ai) to 00(^1). In particular,

(2.2) BkX-\t)=tx-k/^{\/k).

On the other hand, if (f) is holomorphic on a neighborhood U of 0 in 5'(J*)
where J* := (-&*,-a*) and (j)(t) = 0(f),t -^ 0 in [/, for some r > -fc,
and for j = 1,... ,m, tj € £/ with —6^ = arg^ < ... < arg^i = —a^,
arg^'-i — arg^- < — i f ^ ' > l , then the family {/j}^i defined by

rC

(2.3) f,(x) = ( t 3 e-^^r) d^), t, 6 U,
Jo
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is a fc-precise quasi-function at oo on I = (a^ — —, b^ + — ). Varia-
tion of a\ and b\ gives continuation of {fj} in the sense of fc-precise
quasi-functions. Hence we obtain an element in (0/A^~k)oo(I) where
I = [a* - 9 7 ^ * + ^Y which we denote by L^, the finite Laplace
transform of order k of (f). If </> is holomorphic on the full sector 5'(J*),
and has exponential growth of order ^ k at oo on this sector, then the
classical Laplace transform of order k of ( f ) :

Lk(/)(x)= F e-^ (j>(r) d^)
Jo

is equivalent (in the sense of /^-precise quasi-functions) to the finite Laplace
transform of order k of (f).

As in the classical case we have, under certain conditions, that
^k=B,1:

THEOREM 2.1 (Malgrange [MalQl]). — Let m > 0,1 > k > 0,^ =
(I/A; - l/l)~1,! = (a, b) an interval in R, with b - a > 7 r / k and J* =
(-6+7r/(2A;),-a-7r/(2AO).

Then Bk is an isomorphism

from ̂ -^GAAA^U-O onto ̂ -^(J*) and

from ^-^(A/^-QooGO onto ̂ -^(J*,^),

with inverse Ck and C[ respectively. Here C[ can be represented by finite
Laplace integrals of the form (2.3) with tj replaced by expressions involving
the independent variable x (cf. [BIS]).

^ °°
Let f(x) = x'^ ^ OnX'^. We define the formal Borel operator

n=0

Bk of order k by applying the Borel operator termwise using (2.2) :

00

(.4) ^^-^ î̂ .

If now f(x) € ^"^A/^-^oo^) and f(x) ~ f(x),x -^ oo, then we have

(2.5) Bkf(t) ~ Bkf(t).

The formal Laplace operator Ck of order k is defined as the inverse
operator of Bk -
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We define the ^-convolution of two functions. Let f,g e 0(1) and
f(t) = 0(1^), g(t) = O(^), t ^ ^ t e 5(J), for some a,/3 > 0. Then
(cf. Martinet and Ramis [MarRQl])

(/ *. g)(t) := [ t /((^ - T^/^T) d^)
Jo

defines an element / *^ 9 ^ 0(1) with (/ *^ g)(t) = O^+^-^.t -^ 0,1 €
5(7). The convolution property of the classical Borel transform (of order
k) extends to the generalized transform :

If l^ k,m > 0, |J| > 7 r / k and f,g C ^-'"(A/^-Qoc^) then

(2.6) ^(/^) = (^/) ̂  (Bkg) e ̂ -^(J*), r a^ before.

Finally, we define the ramification operator of order k :

(2.7) p,f(x) := /(a^).

Note that, in fact, Bj, = P^Bpk , £fc = Pk^Pk, and /*^ = Pk\Pkf^Pk9)'

3. Definition of multisummability.

The following definition of multisummability is due to Malgrange and
Ramis [MalR92] (for a slightly different formulation see Balser and Tovbis
[BT93]).

DEFINITION 3.1. — Let r e N, 0 < ki < ... < kr < kr-^-i := oo,p > 0.
00

A formal power series f(x) = ^ CnX-"^ is said to be ( /ci, . . . ,^)-
n=0

summable at oo on a multi-interval (Ji,... ,7y.), Ji D 1^ 3 ... D 7^
|J,| > TT/^-, if there exist ^ e (A/^"^1)^^), ^ = 0 , . . . , r with
Jo ''= R' satisfying the following conditions:

• /o(^) ~ /(.x*), ̂  ̂  oo on S(Io), fo(x) has period 2p7r in aigx.

• fj-i \ij = fj mod A^3, j = 1,... , r.

Then by definition the multisum of /on(Ji , . . . ,Jy.) i .s( / i , . . . , /y .) .

This multisum is uniquely determined by / and (Ji , . . . , Ir). Note that
fr ^ Aoo(Ir) is an ordinary function on a neighborhood of oo in S(Ir), and
that

fj(x)^f(x), x -^ oo on 5(J,), V je {!,..., r}.
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Moreover, the existence of /o is equivalent with the condition that f{xp) is
Gevrey of order pk\.

There exists an equivalent definition which is closer to the original
definition ofEcalle's (cf. [Eca87], [Eca93], [Eca94], [Mal]) :

DEFINITION 3.2. — Let Ji,...,^ denote open intervals satisfying
the conditions in Definition 3.1, and let 1^, j = 1,... ,r be the following
interval: if dj is the center of Ij then —dj is the center ofJJ, and |jj| =
\Ij\ - T r / k j . Let 0 < fci < ... < kr < kr+i := oo, i^j := (^-1 - k^)~1,

j = 1, . . . ,r, and f(x) = E CnX-^P e C[[x-1^}}.
n==l

We say that f is (fci,... ,kr)-summable at oo on multi-interval
(A,...,^),if:

• (j)(t) := BkJ{t) = t-^ ^ Cnt^y/r^/^pki)) is convergent for small
n=l

positive |t|, and its sum can be continued analytically to a function
^et^P-^SW^,).

• f,(x) := 4r1^) e x~l/p{^/^~kj+l)ocW ̂  the property
thai Bk j-i/j can be analytically continued to a function 0j+i €
tl/p~feJ+l<^(JL_l, ̂ j+i), for j running from 1 to r — 1, respectively.

Define fr := L^^r ^ Aoo(^r)- Then the multisum of f on (Ji,... ,Jy.) is
defined to be (/i,.. . , fr).

A formal series with a constant term, g{x) = CQ + f{x), is said to
be ( A ; i , . . . , kr)-summable at oo on multi-interval (Ji,. . . , Ir) if f(x) has
multisum (/i,. . . , /r) on this multi-interval, and then the multisum ofg is
(CO+ fl,-",CQ + fr).

The equivalence of the two definitions follows from the isomorphism
Theorem 2.1 of Malgrange.

4. Reformulation in the linear case.

First we consider normal forms T for the difference operator T.
From the formal fundamental matrix (1.2) of Ty = 0 it follows that the
substitution y(x) := M(.r)^(a') transforms T to the normal form Tc:

(4.1) 7^):= 2/^+1)^^)
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m / i \ L,'m / . \L,j

where A0 (a:) = G^x^o^^^-^^ ( 1 + - )
j=i ^ x )

where A0 (a:) = (^^•c^0^-9^ ( 1 + -
—' \ x

From this one may derive a related normal form 1° (cf. [Tur60], [Pra83],
[Duv83], [Imm84]):

m

(4.2) t^x) = y(x + 1) - F(x)y(x)^(x) = (])^F,(;r),
.7=1

F,(^)=/,(^I,+^-1L„

where /j(^) = Cj if <?j(a1) = 0 and otherwise fj(x) is a polynomial in a;"1/23

of degree less than p,fj(x) ~ c^(l + ^jbjX^-1) (cj ^ 0) as x -^ oo, and
where L^ is a constant {nj x n^)-matrix and \j^j,bj,Cj are the same as
in (4.1). The formal normalizing matrix M(x) now is modified to M(x).

Using a truncation MN of this matrix we see that T can be mero-
morphically transformed by y(x) := M.N(x)z{x) to T where

(4.3) tz(x) = f^(rc) + x^{x)z{x\

with [i < mmj{\j} - 1, ¥(x) € End(n, C{x-1^}).

In order to prove the linear case of Theorem 1.1. it is sufficient to
consider the linear difference equation

(4.4) tz(x)=c(x)^

where c(x) is meromorphic in x~1^ at oo. We may rewrite this equation
in the following form:

(4.5) A^) := (3) ̂ -^ {z{x + 1) - z{x))
\h=0 )

( r \
-(^A^+x-l/PB(x)\z(x)=c(x)^

\h=0 )

where
(4.6)

' r G N; 0 = ko < ki < ... < kq = 1 < ... < kr, 1 ̂  q ^ r;
kh e p"^, h = 1, ...r; p € N;
A/i, /i = 0,..., r, is an (n^ x n/i)-matrix;
n/i is a nonnegative integer , n^ > 0 if k^ ^ 0,1; no + ..• + rir = n;
Ah, is invertible if 1 ̂  h ̂  r and n^ > 0;

. B(^) € End^C^-VP}),^) C C71^-1^}^1^].
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The translation of (4.4) into (4.5) runs as follows: If Xj > 0 then
there exists k^ = Aj + 1 and A^ consists of blocks cjlj corresponding to
all j with kh = Aj + 1. If Aj = 0,Cj 7^ 1 then riq > 0 and Aq contains
corresponding blocks (cj — l)Ij. If Aj < 0 then also rig > 0 and Aq contains
corresponding blocks —Ij whereas if none of these cases occurs we have
riq = 0. In case \j = 0,Cj = \^qj{x} ^ 0 there exists fc/i = /^j and
A/i consists of blocks l^jbjij corresponding to all j with k^ = /^j. The
case \j = 0,Cj = \^qj(x) = 0 corresponds to ko = 0, and Ao contains
corresponding blocks Lj. In general the n/i's of (4.6) will not be the same
as the TZ/S of (1.3).

The assumptions (4.6) include also cases where in the original differ-
ence operator T the matrix A € End(n,C{a•-l/p}[.z•l/p]) is not invertible
(corresponding to a block Fj which is x~1 times a nilpotent matrix).

In agreement with the definitions of singular and Stokes directions in
section 1 we now define:

DEFINITION 4.1. — A direction 0 will be called a singular direction
of level kj of the difference operator A (cf. (4.5)) where j = 1,..., g — 1,
if Aj + k^^lj is not invertible for some t with argt = —0. Moreover 0
will be called a singular direction of level 1 ifriq > 0 and Aq -{- (1 — e~t)lq
is not invertible for some t with a,rgt = —0, or ifn^ > 0 for some h < q
and 0 == 7T/2 mod TT. If 0 is a singular direction of level kj then the pair

( 7T 7T \0 — ——, 0 + —— ) is a pair of Stokes directions of level kj.
2iKi'j ZiKj j

Then we have

THEOREM 4.1. — Let the assumptions (4.6) concerning the difference
equation (4.5) be fulfilled and let z{x) € C^"1^]] be a formal solution
of (4.5). Let (J i , . . . ,Jg) denote a multi-interval satisfying the following
conditions:
(4.7)

f h ̂  h ~^> • • ' =) Iq, \Ij\ > 7r/kj(cf. Definition 3.1)',
\ Ij does not contain a pair of Stokes directions of level fcj; (1 ^ j ^ q).

Then z{x) is ( A ; i , . . . , kq)-summable on (Ji , . . . , Iq) in the following
cases:

(i) kr > l,Iq H {(2.7 + I)TT : j € Z} = 0 and ifriq > 0 then Aq + Iq
is invertible.

(ii) kr = 1 and either rir > 0 and Ar + Ir is invertible or rir =0.
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(iii) kr = 1, Ur > 0 and Ir H {2JTT : j € Z} = 0.

If {z\^ ...Zq) is the corresponding multisum then Zq is a holomorphic
solution of (4.5) in a neighborhood of oo in S(Iq) and zj is a solution of
(4.5) in (A/A^^W,) i f l ^ j ^ q - 1 .

Moreover, z(x) is 1-summable in upper and in lower halfplanes if
riQ = 0, q = 1, and ifn\ > 0 then Aq does not have an eigenvalue X on the
circle |A + 1| = 1.

It is easily seen that this theorem implies Theorem 1.1. in case G(;r, y)
is independent of y . Note that presence of a level kr > 1 causes obstruction
in the summability process in the left half plane, presence of level 1 with
Aq-}-lq not invertible causes obstruction in the right half plane (cf. [Imm]).
However, we will show that

Remarks 4.1. — The formal solution z(x) can always be lifted to
analytic solutions z^{x) in H-^ := {z € C : ±lmz > R} for some R > 0
such that z^(x) ~ z(x) as z —>• oo in H-^ with 0 ^ =barg^ ^ TT — e for
any e > 0. Similarly there are solutions as above with the condition on
arg^ replaced by e ^ ±arg^ ^ TT (cf.[vd PS]). These solutions need not be
uniquely determined by y.

It is sufficient to prove the theorem for the case that the formal
solution z (x) and the right-hand-side c(x) of (4.5) are both of order
0 ( x ~ N / p ) ^ x —> oo for sufficiently large N e N with at least N / p > 1.
This follows by subtracting from the formal solution z{x} a partial sum of
some sufficiently high order. Then the remainder satisfies again (4.5) with
c(x} replaced by another function which has a zero of that order at oo.

The proof of Theorem 4.1 will be given via convolution equations
corresponding to the difference equation (4.5). These equations will be
derived in section 5. In section 6 we then give the proof for case (i) of
Theorem 4.1 and of Remark 4.1. The proof for case (ii) and case (iii) is
similar (cf. also the correspondence between cases (i) and (iii) mentioned
in sect.l).

5. The convolution equations.

We apply Borel transforms to the difference equation (4.5) with
c(x) = O^-^) with N sufficiently large. Let k e -N H (0,1]. Suppose
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that z(x) C x~N^P(A/A^~k)^{I) for some open interval I with length
> Tr/fc. Then also the difference z{x + 1) - z(x) is in this set (cf. [Imm84,
§16]). Let u(t) := Bkz{t). Then u(t) e tK~kA(^) where J* and I are
related as in Definition 3.2.

The convolution equation associated with (4.5) involves the operator
Fk defined by

(5.1) FkU•=Bk{xl-k(z(x+l)-z(x))}, where^e ^N0(0,1], z = CkU.
P

It follows that Fku(t) € t^'^A^F}.

If k = 1 it is easy to see that xl~k(z(x + 1) - z(x)) simplifies to
£fc{(-l + e-^u^t)}^), and therefore

(5.2) F^u(t)=(-l+e-t)u(t).

In case k < 1 we rewrite the difference z(x + 1) - z (x) as a perturbation of
the derivative z ' { x ) of z{x):

(5.3) z(x + 1) - z{x) = z\x) + /* {x + 1 - y)zf\y)dy = z\x) + Wz(x).
J x

Now, as z(x) G .^•-N/p(-4/^-fc)oo(^), also the derivative z^x) is a member
of this set. Hence, so is Wz(x}. We have z ' ( x ) = -kxk~lCk{tku}(x) and
as a consequence we may write:

(5.4) Fku(t) = -A(^) + Hku(t\ if 0 < k < 1,

with

(5.5) Hku{t) := B^^Wz^t) = Bkix^WCkuUt).

We will investigate the operator Hjc in section 7.

Next, we define (n x n)-matrices Mj as follows:

My := x^-^io e... e x^-1-^!^^ e ij e . . . © ir, i ̂  j ^ q.
Then A2: - c = 0 in (A/A^^)^) is equivalent to ^.M^(A^ - c) = 0
in ^(JJ), if ^ and JJ are related as in Definition 3.2. The lefthand side
of this equation may be expressed in terms of

(5.6) u := ̂ .z,/3, := ̂ .{M^-^B},^ := Bk,{M,c}.
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Utilizing (5.1), (5.2), (5.4), (2.2) and (2.6) we get a convolution equation
QjU = 7^ where

(5.7) Q,:=^,M,A^,j=l,...,g.

We can rewrite these convolution equations in the form TjU = u. Denote
by v^ the components of n-vector v corresponding to the h^ block and
let

(5.8) G , : = H k , .

Then we get

• if 0 < j < q and k := kj

'(T,u)W = (^)-i[(G^)-A,(^^^)W

-03, ̂ )W-^)],
0 ^ h < j ;

(5.9) < (T,u)W = (A.+kt^r^G^W-^^u)^-^};

(I>)W = -A-^^^^kt^W-{^^^G,u)W

+(^•*fcu)(/l)+7w],

j < h ̂  r,

• if 3 = q

(5.10)
•(T,u)W = -(l-e-t)-l[A,(F^*^)W+(^^)W+^)],

0 ^ h < q;
(T,u)W = -(A, + (1 - e-*)!,)-1^ * u)W + 7^];
(T,u)W = _A^[(^^.(l-e-^)W+(^*u)W+^'1)],

q < h ̂  r.

The equations with h = 0 and h = q are deleted if no = 0 and
riq = 0 respectively. We will prove Theorem 4.1 by means of the convolution
equations

TjU^u, j=l,...,g.
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6. Proof of Theorem 4.1.

The proof of Theorem 4.1, case (i), follows easily from the two lemmas
below, that we will prove in sections 8 and 9, respectively.

00 ^

LEMMA 6.1. — Let z{x) = ^ dmX'171^ be a formal solution of
m=N

(4.5). Let u\ = Bk^z. Then u\ is a convergent power series in t1^ in a full
neighborhood ofO with sum u^t) G ^/^-^C71^1^}, which is a solution
of

(6.1) T^u(t) = u(t).

Moreover, C^u\ ='• ^o Is a solution of (4.5) in (A/A^^^CR). In
particular z^) € C^x-1}}^/^).

Define

/ I i \-1

(6.2) ^:= — - ,— J=l,...,q-l^q:=kq=l.
\ ^3 ^J+l /

Let (Ji , . . . , Iq) be a multi-interval satisfying the conditions in (4.7) and the
additional one of Theorem 4.1, case (i). If dj denotes the center of 7j, let
J* and Ij be the intervals with center —dj, and length |J*| = |Jj| — 7r/A;j,
[J^.l == |J^] — 7r/A;j-)-i (j = 1, . . . ,^) ; Jo := R" Since Jj does not contain
any pair of Stokes directions of level kj^ and Iq D {(2j + l)7r;^ € Z} = 0,
it follows that —J* does not contain a singular direction of level kj, and
1^ C (—7r/2,7r/2) mod 27T. Using these conditions and notations we have

LEMMA 6.2. — Let j e {! , . . . , q} be such that there exists a
solution Uj € ^/^"^ An(ij--L) ofTjU = u. Then uj possesses an analytic
continuation in S ( I ^ ) , which will be denoted by uj as well, and which has
exponential growth at oo of order at most K J . Moreover, Zj := C^^Uj is
a solution of (4.5) in (A/A^'^^^Ij), 1 ̂  j ^ q - 1; Zq := L^Uq is a
holomorphic solution of (4.5) in A^Iq).

Ifj ^ q—1 then u^+i := Bkj^Zj satisfies Tj^u = uina neighborhood
ofOin S(ij), ^-+1 6 ̂ /P-^1^71^)-

Remark 6.1. — Also if the cases (i), (ii), (iii) of Theorem 4.1 do not
necessarily occur the previous lemmas remain valid except for the statement
on Uq and Zq. However, if q = 1 or q > 1, ±7r/2 G Iq-i then u\(t) if q = 1
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and Uq(t) = B\Zq-\(t) if q > 1 are analytic in a strip around the imaginary
axis where ±3t ^ 0 except for values of t where Ag + (1 — e^^lq is not
invertible or t = 2g7ri,g e Z*. Moreover, Uq has exponential growth of
order at most 1 in this strip.

The proof of Theorem 4.1, case (i), now proceeds as follows: The
conditions of Lemma 6.2 are satisfied for j = 1 because of Lemma 6.1.
Then Lemma 6.2 implies a.o. that its conditions are satisfied for j = 2.
Repeating this reasoning for j = 2 , . . . , q consecutively we get solutions Uj
of TjU = u and solutions Zj of (4.5) in (A/A^^^Ij) for j = 1,. . . , q.

Since Zj = C^B^ZJ^ and Zj € (A/A^^^^Ij) we see that
z3-l\Ij = zj moa A^'^. Hence (z i , . . . , Zq) is the ( f c i , . . . , A;g)-sum of z on
(Ji, . . . , Jg). This proves Theorem 4.1, case (i).

The proof in the cases (ii) and (iii) is similar. Remark 4.1 follows from
Remark 6.1 by choosing the intervals Ij suitably and defining z^. as Laplace
transform of Uq with path of integration in the strip around the imaginary
axis. The last assertion of the theorem concerning the case no = O? Q. = 1
is obtained in the same way but now we may take the positive or negative
imaginary axis as path of integration in the Laplace integral for z^.

Remark 6.1 will be proved in section 9.

7. Properties of the operator H]^.

In this section we will investigate the operator Hjc defined in section
5 for k e (0,1) D -N. The results are summarized in Lemma 7.2 at the

P
end of this section. They will be of use, when proving Lemmas 6.1 and 6.2.

We will write H in stead of Hk in this section. H operates on functions
u € t~rr~kA(I\ — > 1 (cf. (5.5), (5.3)), where I is some open interval (in

P
section 5 this was the interval J*). Let z := CjcU with u as above. Then

z^x) = -k(k - ̂ x^Ck^u}^) + k^x^-^Ck^u^x)

and
/•rc+l

Wz{x) = y {x + 1 - y){-k(k - l)^-2/:^}^)

+k2y^k-l^k{t2ku}(y)}dy.
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For convenience we will use the following notations:

v = pkU.W = pkWp^.H = pkHp^, and xk =: $,^ =: T,

where pk is the ramification operator defined in (2.7). Let J be the
interval defined by 0 G J <=> 0 / k € I . Choose M in the neighborhood
of 0 in S { J ) where v is holomorphic, and choose L ex.p(—^T)rav(r) dr
as a representative for C{rav(r)} (^). Substituting this in the expression
for Wz we obtain by means of a change in the order of integration if
|arg(^M)|<7r/2:

fJVlM

0
x^Wz^x) = r^^W^O = / e~^rv(r)w(^r)dr,

Jo

with

w(^T)=w{xk,tk)
/•rr+1

: = kx^ \ (x + 1 - y)yk~2{l -k+ kyH^e^ ^ -x ) dy.
J x

Obviously w^^r) is holomorphic in ^ C C\{0}, and entire in r.

We substitute y = x + s in the last integral. As 1/2 ^ |1 + s / x \ ̂  3/2, and
|(1 + s/x^ — 1| ^ cla:]"1 for some constant c > 0, for all 0 < s < 1 and
x € C with a; | ̂  2, we obtain an estimate for w:

|w(e,T)| < JCil^l-1/^! + I^De^ll^"*, if ̂ k > 2.

Now, recall that Hu(t) = Bk{xl~kWz(x)}(t'}, i.e. Jiv(r) = B^-^^WCv}
(r). This implies

1 ;• /•M
^(r) = —— \ e^dfi / e-^vWw(^rj)drj

27TZ Jc Jo
pMfM

\ r ] v ( r ] ) h [ r - r ] , r ] } d r ]
Jo

with

h{r^) = B{w(.,77)}(r) := ̂  f e^w^^.

So, also /i is holomorphic on Coo in the first variable, and entire in the
second, and ^(re2^^,^) = h(r^r]).

For C we choose a contour consisting of halfrays (oo, 2/>;-R)e^<91 and
(2^, oc^e102 (0\ < ^2)5 such that cos(arg(r^)) ^ —e along these rays
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(for some e > 0), connected through the arc Cp : |^| = 2kR, 6>i ^
arg^ ^ 02. Then, if R ^ 1, we can estimate the integrand above with
^l|^|-l/fc(l+|^|) exp(|T$|cos(arg(TO)+^i|^1-^ |). The exponent takes
its maximum on the arc when arg^ = -argr, and this maximum is
minimal for R w {rf/r^. Hence we choose R = max^/r^, 1} and obtain
the following estimates:

^y e^w^rj)d^ ^L^-^l+R^exp^R^

and

—— ( e^w^M ^^—^-^(l+^Dexp^^Tl).
JC\Cn \T\

Thus

\h(r^)\ ̂ L,R-l/k{R+—)(l-^R\rJ\)exp(L^R\r\)^ if R = m^x{\ri/r\\ 1}.

But this means that L{/i(.,77)}(r) makes sense, and L{^(-,^)}(r) ==
w(r,ri). If we substitute this in the expression for ^~l^l/kV^Cv(^) we
obtain:

^-i+iAy^(^ f e-^rv{r)dr F e-^h(^r)da
JQ Jo

[M ^ r^ rM
= / e ^dt \ rv(r)h(t - r^)dr + / e-^dt / rv{r)h(t - T,r)dr.

JQ JO JM JQ

As the second term in this last expression is exponentially small
for SR(MQ large positive, we see that ^-^^WCv and £{JJ rv(r)h(t -
r,r)dr} define the same element in (A/A^)^) where cf) e J iff \cf)+0\ <
7T/2 for some 6 e J. That is,

W) = (^r^^W^)^) = I rv(r)h(t-^r)dr.
Jo

However, this last expression still has meaning for functions v(t) that belong
to the set of holomorphic functions on S(J, r) (for some open interval J,
and some r > 0), that are bounded on S ( J ' \ r ' ) for any closed subinterval
J ' of J, and any r ' G (0,r). Moreover, H maps this set into itself.

Hence we have proved the following lemmas:
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LEMMA 7.1. — Let 0 < k < 1 and
.(^A+l)fe

Wfc(^r) :=^-1 / (^/fc+l-^ l / fc)^~ lA{l-^+A:7?T}e-T^-^d77,
^

and

^(T,77):=B{wfc(.,77)}(r).

Then /^(r^, 77) is holomorphic in r, r € C\{0}, entire in 77, and there exist
positive constants K\ and K^ such that

(7.1) Mr,77)| ̂ K^R-^ ^R+ —^ (l+^77|)exp(^2^|T|),

ifJ^max^/T^l}.

LEMMA 7.2. — Let J be an open interval. We define 1-ik = P k H k P k 1 ,
where Hk is defined by (5.5). Then Hk can be extended to a mapping of the
space of holomorphic functions on S ( J ^ r ) , that are bounded on S ( J ' \ r ' )
for any closed subsector o f J ' ofJ and any r' € (0, r), into itself. Ifv^t^) is
holomorphic in a (full) neighborhood U of 0, and continuous on the closure
U, then also 7-^^(1^) has this property.

Moreover, if v is an element of the function space described above,
then

(7.2) Hkv(t) = I r]v{r])hk(t - 77, r])d^
Jo

where hk is the function defined in the previous lemma.

8. Proof of Lemma 6.1.

For convenience we rewrite the system TjU = u to TjV = v, where
Tj = pk,Tjp^, v = pk,u. Writing

(8-1) Gj-Pk,Gjp^=pk,H^p^

(cf. (5.8), (5.5),(5.3)), ̂  = p^ 7j = Pk^^ so (cf. (5.6))

(8.2) f3, = B{p^M,x-^B}^ = B{p^M,c},



202 B.L.J. BRAAKSMA, B.F. FABER

the new system looks as follows:

• if 0 < j < q and k = kj
(8.3)

((T,v)W = (^)-I[(^)W-A,(^^^)W

-(^.^)W-^

0 ^ h < j;

(A, + m,)-1^)0'^) - (^ * ̂ (J) - ̂ l;(7 -̂)

(W^ -A^[(^-^ * ktv)W - ( ^/fc-2 , g^Wh ^r^-i) / ^(^--i) ^ /

+(^*^)+7?)],

j < h ̂  r,

• if j = q then Tq=Tq since ̂  = 1 (cf. 5.10).

Let us define k := k^, and ^)i = pfci^i. We may choose N so large that
the formal solution z(x) e C71^-1^]] is uniquely determined. So ^i is the
unique formal solution of T^v(t) = v(t). We will prove that it is convergent.

I fwis an Z-vector, w = (wi , . . . , wi}, then by |w| we denote its 1-norm,
|w| := |wi| + ... + |wJ.

We will frequently use the property below of the convolution opera-
tor : Let a, f3 > 0, and /, g holomorphic functions on a sectorial neighbor-
hood S = S { I , 6 ) of 0 with \f(t)\ ^ K\t\^-\ \g(t)\ ̂  L\t\^-\ if te ̂  for
some constants K, L,6 > 0. Then (/ * g)(t) is holomorphic on 5', and

|(/*^)| ^ KLB{a^)\t\a^-\ t e S.

Here B is the beta function. From Stirling's formula it follows that, given
w > 0, a > 0, there exists C > 0 such that for all z with 3?^ > 0

\B(w,z+a)\ ̂ GH-^

From (8.2) it follows that

((3[h\t)=0(t^)^ t^O {h=0)

{(3w{t)=0(t^-l)^t-^0 ( l ^ f a ^ r ) .

As c(x) = O^X-^P), we have i-^^) = 0(^/(^)-1), and
^h\t)=0(tN/W-l)^l^h^r.
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Choose p such that 0 < p < 27r and such that for 0 < \t\ ^ p the
matrices Ai + A^Ii and Ai + (1 - e'^Ii are invertible in case q > 1 and
q = 1, ni > 0 respectively. Define pi := pY^), and let TV^ be the Banach
space of functions /, for which t^-^^f^) is a holomorphic function from
A(0,/?i) to C71 with continuous extension to A(0,pi), provided with the
norm

||p,̂  = max^-^/^l; ^ c A(0^)}.

We will show that Ti maps TVp,^ into itself, and is a contraction if N is
large enough. Therefore, from now on v will denote a function in Wp^-

Let us first assume q > 1, i.e. k\ < 1.

Let w be a function such that t^'^w € Wp N for some /? e —N. If
pk

N 1
a + -, € —N, then (w * ̂ )(^) e H^, and

|(w * ̂ )(t)| ̂  B||^-^||^||^||^^-^|^|^+a+^-l, |^| ^ p.

Hence

{\t-\t3^v)W(t}\ < ^ll^llp^^-^-1^^1-1, (/i=0)
(8.4) ^

I KA^)^^)! < BlIvll^Ar-^ltl^1-!, (1^/^r)

r KI^)^)^)! < ailvii^jv-1!*!^, (h=o)
(8.5) \

IK^A-2*^)^)^)! ^ 5||<,N^-^|t|^+^-\ ( l^/ i^r)

for all t e A(0,p),andsome5 > 0. Hence, t-1^*^)^), ^-l(/3l*^)(/^) (1 ^
/i ^ r), etc. are elements of Wp,7v-

Finally, we need to take care of the expressions in T\v containing Giv'
To do this we use Lemma 7.2. From this lemma we know that Giv^)
is continuous on A(0,pi) and holomorphic in its interior. Moreover, that
lemma implies the following estimate for Giv : If g(r,rj) := hk^r.rj) then
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\Q^(t)\

<

/ ^(r])g(t-'r],r])dr]\
Jo

Mp^N [ t ̂ /w ̂ t-^n)drj\
Jo
/•N/2 / -i

IHI^ / ^/w ( i + — —f l + — — — — — ) (1+^)6^1-^
\ I1 '! '7/Jo \ \t\-r]

+IHÎ  f ^W-\\t\ - ̂  ((———)' + ———)
-'1*1/2 V^l-^ \ t \ - r ] }

l̂IH

x(l + 771+fe(|^| - rjr^e^W-^ drj
• 1 * 1 / 2ir1 / n^/(P^) drj

^0

r\t\
^\\v\\^ / ^/^-^l+^dtl -^d^

J\t\/2

for some constants L^,L^ independent of N and t. The last expression can
be estimated by utilizing the estimates for a convolution product and the
beta function as given above. Thus we obtain:

\Giv{t)\ ^ L\\v\\^N-^-^\t\^^t e A(0^),

and it follows that t^Gi maps Wp^ into itself if N is sufficiently large.
From the estimates for a convolution product mentioned in the beginning
of the proof it follows that also f-2+^Ai ^g^y belongs to Wp^ if v belongs
to that space and h > 1.

If q = 1 we have Ti = Tq = Tq. As 1 -e-* = Ot, t -^ 0, all expressions
occurring in Tq are essentially of the same order as the corresponding
expressions in 7i in the case q > 1.

So by choosing N large enough we can make Ti into a contraction on
Wp^. Hence equation T^v = v has a unique solution ^i in Wp^'

Its Taylor expansion in powers of ^A^) is its asymptotic expansion
and is therefore a formal solution of this equation. As the equation has only
one formal solution in C^^/^)]], we must have that v^ is the sum of 'Oi.

Moreover, we have the following relationships (cf. section 5): T^ =
v^ ̂  Tmi = HI Q Qmi = 71 <^ A2;o = c in {A/A^^^R).

This proves Lemma 6.1.
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9. Proof of Lemma 6.2.

We will prove this lemma in terms of the 'ramified' operators T^, Qj,
etc.. Let Jj (JJ16, Jj) be the interval defined by the relation '0 e Jj (J*, Jj)
if and only if 0 / k j € Ij (JJ, Jj)\ As Ij does not contain any pair of Stokes
directions of level k^ and Iq D {(2j + l)7r;j € Z} = 0, 7^ is regular in
S'(J;), and Ĵ * = 1^ C (-7r/2,7r/2) mod 27T. Define (cf. (6.2))

(9.1) ^ :=Kj/kj = -——±——,j=\,...,q-\, ̂  :=1.
"/j'+i — ^j

We have a solution Vj = pkjUj of the singular Volterra integral equation
TjV = v on a neighborhood of 0 in 5'(J^-i) (say Uj-i). Fix a t e
^-in6'(J;). Then

/•*
Tjv(t) - Tjv{t) = \ K{t,r)v(r)dr

Jt

for a certain holomorphic kernel K(t^r). Hence TjV = v is equivalent to
the regular Volterra integral equation

v(t)=r,Vj(f)+ [ K(t^)v(r)d^
Jt

which has a unique holomorphic solution Vj on 5(J*). However, for t C La-
this solution corresponds with ^-, i.e. vj is an analytic continuation of Vj.
We will write vj in stead of Vj.

Remains to prove that vj has the right growth rate. Let's first consider
the case j < q. We will write Sj = S { J J ) and k = kj. Let S denote a closed
subsector of Sj. With the pair {vj, S) we associate the continuous function

(9.2) i9,(s) = sup{|^(t)|;t e 5, \t\ = 5}, s € (0, oo);

^j becomes continuous on [0,oo) by putting ^j(O) = 0, since Vj(t} ~
pkjBk,z{t).

Next with Tj and Qj, and S we will associate dominating operators
Tj and Gj as follows. Let v be holomorphic on 5j, bounded on closed,
bounded subsectors of 5j. Define -0 by

(9.3) ^(s) :=S}ip{\v{t)\',t^S,\t\ =s},s<E (0,oo).
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We now consider the expressions occurring in the definition of 7; (cf. section
8). From (8.2) it follows that there exist positive constants Mi and Bi such
that

(9-4) W)\ + \^(t)\ ̂  Miexp(Bi|^|), ifteS.

Expressions in T,v of the form (/ * v)(t)^ with / holomorphic on S, and
\f(t)\ ̂  Me^l.W G 5, are estimated by

(9.5) |(/*^)| ^ (Me55 *^)(5),W € ̂  with s = \t\.

From Lemmas 7.2 and 7.1 and the definition of Qj in (8.1) we easily
derive the following dominating operator for Qj on 5':

(9.6) 1 )̂1 ̂ WO ̂ ^^(O^-^ (^+ ———\ (1+^)

exp(^-R(5 - 0)^,

( / f \k }
where J? = max < | —s— ) 1 \\^-u ' y

Let M > 0 and B > 0 which will be chosen later on. Then we define

(9.7)
__ 3-1

T, ^(s) := M e38 + {e38 * ̂ )(s) + ̂ {s-^ * ̂ )(s)
h=0

r y.

+ ^ (^-2*^)(5)+5-^(5) + ^ (^-2*^)(5)
/l=^+l /i=j+l

From (8.3), (9.2) and the estimates above it follows, that ^-(s) < T^j{s)
if s > 1, if we choose M and B large enough. Since ^(5) is bounded on
[0,1] we may choose M and B such that this inequality holds for all 5 ^ 0 .

From here on we will omit the indices j if no confusion is possible,
i.e. we will write ^ = ̂  (cf. (9.1)), T = 7;, etc.. Note that Q and T are
monotone operators.

Let

(9-8) ^)=Moecs'

for some positive constants c and MQ. We will first show that for sufficiently
large c > 0 and all MQ > 0

(9-9) ^0(5K^O(5),V5€[1,00).
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Finally we will prove that we may choose MQ such that

(9.10) ^(5)<,^o(5),V5e(0,oo)

where i? is denned in (9.2). This implies that Vj has the right growth rate.

For the proof of (9.9) we use two inequalities from [Bra91]:

If a, 6, c, ^ > 0, and 0 ^ a + 6 - l < a / ^ , then

(I) [\s - a)0-1^-^^ ^ Kc-^-^/^e^ for s > 0,
Jo

and, if c ̂  Co + 1, Co > 0, /^ 1, then

(II) f e^-^^da ^ Kc^^e^^ for s > 0,
Jo

where K is a constant independent of s and c.

From these inequalities it follows that all terms in the expression for T'0o(^)
involving ^o, but not G^o, can be estimated by Kc-^^s}, \/5 > 0, for
some constants K^ a > 0 independent of c and s, provided c ^ B + 1.

Next we consider the contribution from Q (as defined in (9.6)) to T. By
splitting the path of integration in the definition of G in a part from 0 to
5/2 and a part from s / 2 to 5, we may write G as a sum of two operators :
G=Gi +^2, with

r72 iG^(s) :=K, \ ^(0$(1+——,)(l+Oexp(^(5-$M,
*/o ° — s

and

G^(s) := K, [ s ^{^(s - Q1-^ + s^{s - ̂ -k + 1}
Js/2

exp^^-O^R.

A s $ ( l + ———) (l+Qexp(^2(5-0) ^ Biexp(^2(5-0^),V5 > 0,
\ ° s /

V^ € (0,5/2), for some positive constants B\ and ^2, we obtain the
following estimate by applying inequality (II):

(9.11) QMs) ^ Lc~l/^o(s),\/s > 0, provided c ̂  B^ + 1,

for some constant L > 0 independent of c and 5.
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Next consider G^. Since ^"^(s — ^)l~k is uniformly bounded for
$ G (5/2,5), s G (0,1], we may deduce from inequality (I) with a = 1 — k
and b = 1 + k the following bound:

(9.12) ^o00 ^ Mic-^oOO,^ 6 (0,1],

for some M\ > 0 independent of c and 5. If 5 ̂  1 we have

^(5)^i f ^(Oexp^O-^)1-^
Js/2

{^(1 - d/s)1-^ + 5(1 - ̂ -fc + 1} c^.

Next, we substitute ^ = ^o and ^ = 5(1 — a)1/^ in this integral. Then
a € (0,^) with 6 := 1 — 2~^ < 1, hence (1 — cr)0 is bounded for any a,
and mi<7 ^ 1 — (1 — a)1^ ^ m2<7, Vcr e (0,^) for certain m\^m^ > 0
(dependent on /^). Furthermore, '0o(0 = '0o(5)exp(—c5^<T). All this yields
us the estimate

- r6

G2^o{s) ^ M's^(s) \ exp(-^a + K^sa^^a1-^ + sa^ + 1) d<7.
Jo

Observing that ^ ̂  1/(1 - k) (cf.(Q.l)), hence sa^ ^ (s^a)1-1' for s ^ 1,

we see that exp^c^cr + K[so'l~k) ^ exp ( ——cs^a ) if c is sufficiently

large. Utilizing this in the last integral and substituting w = cs^a we
obtain a final estimate for Q^Q^S) :

(9.13) GMs} ̂  M25c-(l-fe^o(5), V5 € [1, oo),

if c is sufficiently large.

From (9.11), (9.12), (9.13), and 1 / p , ̂  1 - k we may conclude that

^0(5) ^ ^^-^^(^ + 1)^0(5), V5 € (0, 00),

and, utilizing inequality (I) twice, with a = —1 + k ^ / k ^ b = 1 and 6 = 2 ,
that

(^h/fc-2 ^ ̂ )(5) ^ C^c-^o^), V5 G (0, cx)), if h ̂  j + 1,

for some positive constants (7i, 62 independent of c and 5.

The discussion above implies that there exist positive constants K^ a
such that Tz^o{s) ^ A^e^^+^c'"0'^)^)), for all s > 1 ifcis large enough.
So (9.9) holds if c is sufficiently large positive.
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To obtain (9.10) we choose MQ > maxo^i ^(s) (cf. (9.2) and (9.8)).
Let 5i := sup{s C (1, ex)]; 'ff(t) < ̂ o(t), if 0 ^ ̂  s}. Thus 1 < si ^ oo. If
5i < oo we deduce from the monotonicity of T that

^(5i) < T^(5i) < T^o(5l) ^ ^o(5l)

which is impossible by the definition of si. Hence 5i == oo and (9.10) follows
which completes the proof of the lemma in case j < q.

This proof also applies to the case j = g, with

_ 9-1

Tq^(s) •= M [e38 + (e55 * ̂ )(^) + ̂ (s-^ * ̂ )(^)
/i=o

(9.14) + ^ O^-2*^)
/i=g+l

Here we have used the fact, that in the right hand side of Tq = Tq (cf.
(5.10)) (1 - e-*)-1 and if nq > 1 also (Aq + (1 - e-^Iq)-1 are bounded on
S(Iq) for |^| ^ 1. Moreover, we have used that the factor 1 — e"* occurring
in (5.10) for q < h ̂  r is bounded since Iq C (—7r/2,7r/2) mod 27T. In fact,
operator Tq does not contain Qq and we could have estimated the growth
rate of the terms in TqV immediately, utilizing inequalities (I) and (II).

Now assume 1 ^ j ^ 9 — 1 , and the existence of a solution uj of
TjU = 'u, i.e. QjUj = 7j on Sj. We have proved the statement in the lemma
about the growth rate of Uj at oo on this sector. Thus we may restrict
Zj = Ck,Uj to Zj = C^Uj. Since A^- - c = 0 in (A/A^^)^!), and
A^- — c € {A/A^~ ^^So^) we deduce from the relative Watson Lemma
2.1 that A^'—c = 0 in {A/A^1^^1)1^^!). In particular, Zq is a holomorphic
solution of A^ = c on a neighborhood of oo in S(Iq).

The last statement of Lemma 6.2 now easily follows and the proof
is completed. The proof of Remark 6.1 is an obvious modification of the
previous proof, since (9.14) also holds on vertical strips away from the
singularities.

10. Nonlinear difference equations.

Let j?, v G N. Consider the following nonlinear difference equation:

(10.1) x-^y(x + 1) = F(x1/^ y(x))^ x € C, y{x) € C71,
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with F{x^y} holomorphic in a neighborhood of (oo.a).

Suppose that (10.1) has a formal solution
00

[ X ) = ̂

m=0

y(x) = ̂  a^-^, am e C71, ao = a.

We will rewrite (10.1) to a linear, inhomogeneous difference equation of
the form (4.5) plus a perturbation which is nonlinear in y . Let y(x) =

M+^-l
P(x) -+- x~^Py(x), with P(x) = Y, dmX-^P, where M,II e N are to

m=0
be chosen later in order to control the orders of the nonlinear part, while
bringing the equation to a suitable normalized form (cf. transformation
y{x) = S{x)y(x) below, and equation (10.3)). This yields the following
difference equation for y :
(10-2)

x-^Py(x + 1) = x - M / P F o ( x l / p ) + A^^x) + X-^PF^^ y{x)),

where
FO^/P) = ̂ +^(1 + I / X ^ / P {F(^,PCr)) - x-^PP{x 4-1)};

A{x1^) = (1 + l/xV^DyF^P.P^x)), i.e.A(a;)is holomorphic ina; = oo;

F^/P, y) = X^/P^I + 1/xV/P { F ^ / P , P{x) + x - ^ / P y ) - F ^ / P , P(x))

-DyF{xl/P^P{x))x-^Py}.

Hence F^{x^y) is holomorphic at (oo,0), and

F^(x,y) = 0(\y\2), y —^ 0, uniformly in x.
00

Equation (10.2) has of course y(x) = ^ am+p.x'1^^ as formal power
m==M

series solution. By substituting this series in (10.2) we see, that Fo(x), too,
is holomorphic at x = oo.

The homogeneous linear part x~y^Py(x + 1) — A(xl/P)y(x) is of the
form x~^^PTy(x), T defined by (1.1), and can be transformed to a normal-
ized form x'^^ty (cf. (4.3)) by a transformation y(x) = S(x)z(x) with
S{x) C G^n.C^"1/^}^1^9]) for some positive integer q. This transfor-
mation can be obtained by applying a method of Turrittin (cf.[Tur60]).
It consists of block-diagonalizations up to some order in the series expan-
sion and shearing transformations. There exists a bound for the number
of these transformations which only depends on n and y / p . The block-
diagonalizations only involve transformation matrices S(x) ~ J, but the
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shearing transformations involve matrices S(.r) which are regular at oo but
with S"^) = 0(3^) where A has an upper bound which only depends
on (n - l ) / p (cf. [Tur60], sect. 7). Hence S-\x) = 0(^°/^), x -^ oo
for some p,o e Z which is only depending on n,p and v. Then also
S-^x + 1) = 0(x^/P^), x -^ oo.

So, writing p in stead of pq, we have transformed (10.2) into a
difference equation for z(x) of the following form:

(10.3) /^z(x) = c{x) + E(x, z(x)),

with A the difference operator as defined by (4.5), and

c(x) = (D x^h ) x^-^/PSix + l)-1^1^),
\A;=0 /

E^z) = ̂ x1-^^] x^-^/PS(x-^l)-lF^S{x)z)^
\k=0

and we choose ^, M > v + ^Q + p. Then we know the following of c and E:

c(a;) is holomorphic in x~1^ at oo, and c(x) = O^"^), x —> oo, where
^V = M - (z/ + IIQ + p) > 0 (cf. remark at the beginning of section 5);
E(x,z) is holomorphic in x~1^ and z in a neighborhood U of (oo.O) and
E(oo,z) =Oi f2 ;e£ / .Wechoose£ /=Ai(oo ,po)xA^(0 ,po) , Ai(oo,po) =
{x <E Coo; 1^1 > poL A^(0,po) = {(2/i, ...^n) e C71; 1^/1 < po}. In
particular we may expand E(x, z) in powers of z:

E{x^z)= ^ Em^z^^x.z^eU.
meN^lml^

The levels of equation (10.3) are defined to be the levels of the linear part
^z{x). As before we will associate a system of convolution equations with
each level of (10.3). Let z(x) e X-^P^A/A^)^!), and u(t} := Bkz(t) €
t-^/PA71^), I and J* related as in Definition 3.2. We define

(10.4) S,^u(t)) := ̂ ,£;(.,/:,,0)(^) = ^ (̂ ,, *^. n^)(t),
meNr^,|m|^2

where Smj := B^E^ and u^rn(t) := B^^u^, the 'm-fold5 ^-
convolution of u. Let matrices M -̂ and convolution operators Qj be defined
as in section 5. Then

Az(x) =c(x)+E(x,z(x))



212 B.L.J. BRAAKSMA, B.F. FABER

A^-kin {A/A^ ^^(Jj) is equivalent to

Q,u(t) = Bk,{M,c}{t) + (^,M, *fc, £^(^))^)

in A71^). Rewriting these convolution equations in the form XjU = u thus
yields the following convolution equations where k=kj:

• if 1 ^ j ^ q - 1:

fx^ = ^^-(^-'(ro^r^

0 ^ h < j;

(10.5) < X,u^ = T^-^+kt^r'Wu)^^

X,uW = T,uW-A^8^u)^\

j < h ̂  r,

• if j = q :

(X,uW = r^)-(l-e-^(,^*^(^n))W,

0 ^ h < q;
(10.6) \X,u^ = ^^-(A.+O-e-^I,)-1^^^)^;

X,uW = T^uW-A^e^u)^\

q < h ̂  r,

and we define ̂  := p ^ X j p ' ^ 1 . Analogous to Lemma 1 in [Bra92] we now
have the following lemma which can be proved in a similar manner.

LEMMA 10.1. — Iff e Wp^ (cf. sect. 8), and m e N71, |m| ^ 2, then

it d}\^ {n^/pfel)!!/!!^^^^}!-!..,
l '*771^1^————r{\m\N/pk,)—————M ?

where /^^ is the m-fold convolution off.

Moreover,

I^^I^^M^l-^+i/Pexplco^l,^!,...^,

where K, b^and CQ are certain positive constants.

Utilizing this lemma we may show as in [Bra92] that X\ - 7i is a
contraction in W^N with norm tending to 0 if N —> oo. In sect. 8 we saw
that 7i is a contraction with norm remaining away from 1 as N —>- oo
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and therefore the same holds for X\. Hence Lemma 6.1 remains valid for a
formal solution z(x) of (10.3).

Next we may prove an analogue of Lemma 6.2. First we may show that
a solution uj C tN/p~k3An(ij-'i) of XjU = u can be analytically continued
in S ( I ^ ) (cf. Lemma 3 in [Bra92] and its proof in sect.5 in that paper).
That this solution uj has exponential growth at oo of order at most KJ
can be shown using the majorant method as in sect. 9 and [Bra92], sect 6.
We now use a dominating operator Xj of Xj which is an extension of the
dominating operator Tj of Tj as defined in (9.7) and we may deduce from
Lemma 10.1

_ _ 3 oo
(10.7) ^00 = T^(s) +L(^-^+l/p)/^co. , ̂  c î̂ ),

h=0 m=2

where L and c are positive constants. From this the order of exponential
growth of Uj can be deduced as in sect. 9.

Thus we may show

THEOREM 10.1 — Theorem 4.1 also holds if the linear difference
equation (4.5) is replaced by the nonlinear difference equation (10.3)
under the assumptions that E{x^z} is holomorphic in x'1^ and z in
a neighborhood of (oo,0),E(oo,z) = 0 if \z\ is sufficiently small and
E{x, z} = 0(H2) as z —> 0 for x in a fixed neighborhood ofoo.

It is clear that this result implies Theorem 1.1. Moreover we see

Remark 10.1 — Remark 4.1 is also valid for the nonlinear equation
(10.3).

11. Multisummability of a 'normalizing9 transformation.

Consider the difference operator

(11.1) y{x+l)-A(x)y(x)^

under the assumptions, that A(x) = F(a-) + x^F(x) where ¥(x) is of the
form as in (4.2) with all \j = A, p, < A - 1 - 1 / p and F(x) is holomorphic
at infinity in x ~ l / p .
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Let T(x) = I + X-^P^X) e Gl^.C^-1^]]) be a formalizing5

transformation matrix for (11.1), i.e. the transformation y = T(x)w
conjugates (11.1) with the operator w{x + 1) - ~F(x)w(x). Hence

(11.2) T(x + l)-lA(r^)T(al) = F(x).

Then

THEOREM 11.1. — The normalizing transformation matrix T{x) is
multisummable in all directions, except at most countably many. In any
case 7T/2 mod TT will be singular directions of level 1.

For general results concerning normalizing transformations see [Imm84,
§18], [ImmQl], and [GLS].

Proof. — From (11.2) we obtain a matrix difference equation for T(x):

T(x+l)=A(x)T(x)F(x)~\

where
m

(11.3) ¥(x)-1 = x^ (DteW- + ̂ H,^)),
j'=i

9jW = ̂  gjix-1/^ ^o ̂  0, Hj{x) € End(n,, C{x-1^}).
1=0

If X denotes a (n x n)-matrix, we will write X,,; for the (n x riv)-
matrix consisting of the riv columns corresponding with the Vth block in
the partition of F(.r) above, (so 1 ̂  v ^ m), and X^ will denote the Vth

diagonal block. Using (11.3) we obtain a difference equation for T.y(x)
that we can write as follows:

/ m \

T.^x+1) = (^^,(^.)+^-iR(^) T.^x^x^AWT.^xWx)^
\ ̂  ]

where hjy{x) is the polynomial in x~1^ of degree ^ p — 1 given by

fj(x)gy(x) = hjy(x) + 0(x~1), x -^ oo;

in particular hjv(oo) ̂  0 and hw{x} = 1.

So T»^(a;), considered as a (n x n^)-vector, formally satisfies a
difference equation of the form as in Theorem 4.1, case (ii), with a
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non-degenerate block of level 0, which causes Tr/2 mod TT to be singular
directions of level 1 of this difference equation. The result now follows from
that theorem.

THEOREM 11.2. — Under the assumptions made above the difference
equation y(x + 1) = A(x)y(x) possesses a formal fundamental matrix

v^G^e^x^,
m

where Q(x) = (9 Qj(x)lj, qj{x) a polynomial in x~1^ of degree at most p,
j=i

m
A = @ Aj, Aj an (rij x nj)-matrix, and

j=i

G{x) G C^.r"1/23]] is multisummable in all directions except at most
countably many.

To show that G(x) is multisummable we first derive a difference
equation of which G{x) is a formal solution and then show that Theorem
4.1, case (ii) is applicable, similarly as in the proof of Theorem 11.1.

Remark 11.1. — This theorem implies that y(x) = G(x)w(x)
where G{x) is the multisum of G(x), conjugates the difference opera-
tor (11.1) with the normal form w(x + 1) — C(x)w{x) where C(x) :=

. ^ A f l + ^ ) exp{Q(x+l)-Q(x)}.
\ x )

Remark 11.2. — In case A(x) is as in (11.1), but with not all \j equal
(and ji ^ min{Aj} — 1 — 1/p), the normalizing transformation matrix T(x)

of Theorem 11.1 (considered as a T^-vector) satisfies a difference equation

T(x + 1) = ((]) x^x) + ̂ F(a;))T(^),

where 'Fi(x) is as in (4.2), F(x) is holomorphic in x~1^, di runs through
the set of differences of A/s, and d < mm{di} — 1. Hence positive and
negative numbers dj occur and therefore Theorem 4.1 is not applicable (cf.
section 4). However, Remark 4.1 is applicable and thus formal normalizing
transformations T can be lifted to analytic transformations in lower and
upper half planes.
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