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PIERFS FORMULA FOR FLAG MANIFOLDS
AND SCHUBERT POLYNOMIALS

by Frank SOTTILE

1. Introduction.

Schubert polynomials had their origins in the study of the cohomology
of flag manifolds by Bernstein- Gelfand-Gelfand [3] and Demazure [7]. They
were later defined by Lascoux and Schutzenberger [17], who developed a
purely combinatorial theory.

For each permutation w in the symmetric group Sn there is a Schubert
polynomial 6w in the variables a-i, . . .^Xn-i. When evaluated at certain
Chern classes, a Schubert polynomial gives the cohomology class of a
Schubert subvariety of the manifold of complete flags in C"'. In this way,
the collection {©^ |w c Sn} of Schubert polynomials determines a basis
for the integral cohomology of the flag manifold. Thus there exist integer
structure constants c^y defined by the identity

©n-©.=]^©w.
w

No combinatorial formula is known, or even conjectured, for these cons-
tants. There are, however, a few special cases in which they are known.

One important case is Monk's formula [21], which characterizes
the algebra of Schubert polynomials. While this is usually attributed
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to Monk, Chevalley simultaneously established the analogous formula
for generalized flag manifolds in a manuscript that was only recently
published [6]. Let Sk be the transposition interchanging k and k + 1.
Then ©^ = :z-i+ • • • +a;fc = .81(^1,... ,Xk), the first elementary symmetric
polynomial. For any permutation w € 5^, Monk's formula states

G w ' G s k =©w'5i (a ; i , . . . , ^ ) =^@wta^
where tab is the transposition interchanging a and &, and the sum is over
all a < k < b where w(a) < w(b) and if a < c < 6, then w(c) is not between
w(a) and w(&).

The classical Pieri's formula computes the product of a Schur poly-
nomial by either a complete or an elementary symmetric polynomial. Our
main result is a formula for Schubert polynomials and the cohomology
of flag manifolds which generalizes both Monk's formula and the classical
Pieri's formula.

Let Sm(x-i,...,Xk} and sim(a;i, . . . ,^) be respectively the com-
plete and elementary symmetric polynomials of degree m in the variables
a;i,... ^ X k . When evaluated at certain Chern classes, they become the co-
homology classes of special Schubert varieties. Let £(w) be the length of a
permutation w. We will show:

THEOREM 1. — Let A;,m,n be positive integers, and let w € 5n.

1. ©w • Sm (^1, • • . , Xk) = S ©^ the sum ov^ Oil V = Wtai &i • • • ̂  bm^
v

where a^ <, k < bi and £{wta^ bi " ' to, bj = i(w) + i for 1 < i < m with the
integers & i , . . . , bm distinct.

2. 6w ' s\m (a- i , . . . , Xk) = ̂  @v, the sum over all v as in 1, except that
v

now the integers a i , . . . , a,m are distinct.

Theorem 1 computes some of the structure constants in the cohomol-
ogy ring of the flag manifold. If n is taken large enough, equivalently, if the
index of summation is over v e Sn+m, then these cohomological formulas
become identites among the Schubert polynomials.

These formulas were stated in a different form by Lascoux and
Schiitzenberger in [17], where an algebraic proof was outlined. They were
later independently conjectured in yet another form by Bergeron and
Billey [2]. Our formulation facilitates our proofs. Using geometry, we expose
a surprising connection to the classical Pieri's formula (Lemma 11), from
which we deduce Theorem 1. In Theorem 5 this connection is used to
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determine additional structure constants. Theorem 8 utilizes the formulas
of Theorem 1 to give a formula for the multiplication of a Schubert
polynomial by a hook Schur polynomial, indicating a relation between
multiplication of Schubert polynomials and paths in the Bruhat order on
Sn- This is exploited in Corollary 9 to deduce an enumerative result about
the Bruhat order on Sn'

This exposition is organized as follows: Section 2 contains prelimi-
naries about Schubert polynomials while Section 3 is devoted to the flag
manifold. In Section 4 we deduce our main results from a geometric lemma
proven in Section 5. We remark that while our results are stated in terms
of the integral cohomology of the complex manifold of complete flags, our
results and proofs are valid for the Chow rings of flag varieties defined over
any field.

We would like to thank Nantel Bergeron and Sara Billey for suggesting
these problems and Jean-Yves Thibon for showing us the work of Lascoux
and Schiitzenberger.

2. Schubert polynomials.

In [3], [7] cohomology classes of Schubert subvarieties of the flag
manifold were obtained from the class of a point using repeated corre-
spondences in P1-bundles, which may be described algebraically as "di-
vided differences." Subsequently, Lascoux and Schiitzenberger [17] found
explicit polynomial representatives for these classes. We outline Lascoux
and Schiitzenberger's construction of Schubert polynomials. For a more
complete account, see [20].

For an integer n > 0, let Sn be the group of permutations of [n] =
{l ,2, . . . ,n}. Let tab be the transposition interchanging a < b. Adjacent
transpositions Si = ̂ z+i generate Sn' The length, ^(w), of a permutation
w is characterized by i{wtab) = ^(w)+l if and only if w(a) < w(6) and
whenever a < c < 6, either w(c) < w(a) or w(6) < w(c).

For each integer n > 1, let Rn = Z[^i,... ,Xn}' The group Sn acts
on Rn by permuting the variables. For / E Rni the polynomial / — Sif is
antisymmetric in Xi and a^+i, and so is divisible by xi — a^-n. Thus we
may define the linear divided difference operator

9i=(xi-Xi^)~l(l-Si).
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I f w = Sa^Sa^ ' ' ' Sap is a factorization ofw into adjacent transpositions with
minimal length (p = ^(w)), then the composition of divided differences
9ai ° • • • ° Qap depends only upon w, denning an operator 9w for each
w € Sn' Let WQ be the longest permutation in Syi, that is wo(j) = n+l—j.
For w € 5yi, define the Schubert polynomial ©w by

©

—/) i ^/y71"1^"2 . . /r -.^w — ^'w^wo Y—l —2 '^n—1) •

The degree of o^ is —1, so 6w is homogeneous of degree ( j — ^ ( w - l w o ) =\2/
W

Let S C Rn be the ideal generated by the non-constant symmetric
polynomials. The set {©^ [w 6 Sn} of Schubert polynomials is a basis
for Z{a*^ "-x^Z[ \ij < n—j'}, a transversal to S m Rn' Thus Schubert
polynomials are explicit polynomial representatives of an integral basis for
the ring Hn = Rn/S.

Recently, other descriptions have been discovered for Schubert poly-
nomials [I], [4], [10], [11]. One may define Schubert polynomials ©w for all

00

w 6 Soo = U ^n' Then {©^ | w € 600} is an integral basis for the polyno-
n=i

mial ring Z[a;i, 3:2 5 • • •]• While our methods involve cohomology calculations
and so are a priori valid only in the rings Hn^ they imply identities among
Schubert polynomials in the ring Z[a:i, x^...].

A partition A is a decreasing sequence Ai > Aa > • • • ^ \k of positive
integers, called the parts of A. Given a partition A with at most k parts,
there is a Schur polynomial s\ = s\(x-^,..., Xk)i which is symmetric in the
variables r c i , . . . , Xfc. For a more complete treatment of Schur polynomials,
see [19].

The collection of Schur polynomials forms a basis for the ring of
symmetric polynomials, Z[a;i,..., Xk]31'- The Littlewood-Richardson rule is
a formula for the structure constants c^ for this basis, called Littlewood-
Richardson coefficients, which are defined by the identity

S p , ' Si/ = ^ ^ ^fjii/ ^\-
\

If A and p, are partitions satisfying \i > /^ for all z, we write A D /^.
This defines a partial order on the collection of partitions, called Young's
lattice. Since c^ = 0 unless A D p, and A D v (cf. [19]), we see that
Z^ ^ = [s\ [ Ai > n — k} is an ideal. Let An,k be the quotient ring
Z[m,...,a;fe]5fc/Zn,fc.
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To a partition A we may associate its Young" diagram, also denoted A,
which is a left-justified array of boxes in the plane with \z boxes in the ith
row. If A D ^, then the Young diagram of /^ is a subset of that of A, and
the skew diagram X/ JJL is the set theoretic difference A — p,. If each column
of X / p , is either empty or a single box, then A//^ is a skew row of length m,
where m is the number of boxes in A//2. The transpose /^ of a partition ji
is the partition whose Young diagram is the transpose of that of /^. We call
the transpose of a skew row a skew column. The map defined by s\ i—> s\t
is a ring isomorphism An,k ~^ ^n,n-k-

If w has only one descent (k such that w{k) > w(A:+l)), then w is
said to be Grassmannian of descent k and ©^ is the Schur polynomial
^(^i,..., ̂ fc). Here A is the shape of w, the partition with A: parts where
Afc+i-j = w(j)—j. For integers k,m define r[k,m] and c[A;,m] to be the
Grassmannian permutations of descent k with shapes (m, 0, . . . , 0) = m
and (I771,0,..., 0) = I771, respectively. These are the m + 1-cycles

r[k,m\ = (k-\-m k+m-1 ... k+2 k+1 k)
c[k,m] = (fc-m+1 k-m-{-2 ... k-1 k fe+1).

3. The flag manifold.

Let V be an n-dimensional complex vector space. A flag -F, in V is a
sequence

{0} = FQ C Fl C F2 C • • • C Fn-l C Fn = V,

of linear subspaces with dimc-F% = i. The set of all flags is a -n(n — 1)
JL

dimensional complex manifold, called the flag manifold and denoted F(V).
Over F(V), there is a tautological flag F^ of bundles whose fibre at a point
-F, is the flag F». Let —xi be the Chern class of the line bundle ^/^_i.
Then the integral cohomology ring of F(V) is Hn == rL\x\,..., Xn}/S, where
S is the ideal generated by those non-constant polynomials which are
symmetric in r r i , . . . ,Xn- This description is due to Borel [5].

Given a subset S C V, let {S) be its linear span and for linear
subspaces W C U let U — W be their set theoretic difference. An ordered
basis /i, /2, • • • ? fn tor V determines a flag E», set Ei = (/i,..., fi) for
1 < i <: n. In this case, write £• = (/i,..., fn)' A fixed flag F» gives a
decomposition due to Ehresmann [9] of ¥(V) into affine cells indexed by
permutations w of Sn' The cell determined by w is

X^F. ={E. =(/!,... , fn) | /z € Fn+l-̂ ) - -Fn-w(z), 1 < Z < n}.
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The complex codimension of X^F, is £(w) and its closure is the Schubert
subvariety Xu;F». Thus the cohomology ring of ¥(V) has an integral basis
given by the cohomology classes^ [X-iyF,], called Schubert classes, of the
Schubert subvarieties.

Independently, Bernstein-Gelfand-Gelfand [3] and Demazure [7] re-
lated this description to Borel's, showing [X^F,] = Q^-i^[XwoF^\.
Later, Lascoux and Schiitzenberger [17] defined Schubert polynomials, and
since x^^x^2 - ' ' Xn-i equals [X^F,], the class of a point, showed that
[X^F»] = ©w(^i? • • • ?^n)- We adopt the convention of writing @w for the
Schubert class [X^F,]. Since the composition

Z[.TI, . . . ,Xn} ̂  Z[^l, . . . ,^n+m] -^ ^n+m

is an isomorphism in low degrees, one may deduce identities of Schubert
polynomials from product formulas for Schubert classes.

This Schubert basis for cohomology diagonalizes the intersection
pairing; if £(w) + i(v) = dimF(V) = _n(n - 1), then

Zi

^ (K - ! Gwo if V= WQW
^W ' ^V —— \ „ .T_ •^ 0 otherwise.

For each k < n = dimY, the set of all ^-dimensional subspaces of
V is a k(n—k) dimensional complex manifold, called the Grassmannian of
A;-planes in V, written GkV. A fixed flag F, gives a decomposition of G^V
into cells indexed by partitions A with k parts, none exceeding n—k. The
closure of such a cell is the Schubert variety

^F. = [H 6 GkV | dimH^}Fn,k^-x, > J for 1 < j < fc} ,

whose codimension is Ai+- • -+AA; = 1^1-
The evaluation of a symmetric polynomial in k variables at the Chern

roots ;ri,... ,a;n of the dual of the tautological fe-plane bundle on G^V
identifies H^GkV with the ring An,k of §2. The classes [^^•] form a basis
for the cohomology ring of GkV and [^A^»] is s\{x\^..., Xk)- We will write
s\ for the Schubert class [f^F,].

If V C V has codimension d, then GkY C GkV is a Schubert
subvariety whose indexing partition is dk, the partition with k parts each
equal to d. It follows that ^-(n-k^F* = {Fk}^ so Sfn-k^ ls ^ne class of a
point.

^ Strictly speaking, we mean the classes Poincare dual to the fundamental cycles in
homology.
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The Schubert basis diagonalizes the intersection pairing; for a parti-
tion A, let X0 be the partition (n-k-\k,..., n-fc-Ai). If |jLA|+[A| = fc(n-fc),
then

s^ . s = { ^-A^ if Ac = ^
10 otherwise.

The Schur polynomial Sm is the complete symmetric polynomial of degree
m in a;i , . . . , Xk. The Schur polynomial Sim is the mth elementary symmet-
ric polynomial in x\,... ,Xk. Pieri's formula is a formula for multiplying
Schur polynomials by either Sm or ^m. For Sm, suppose |̂ | + [A0] + m =
k(n— k\ then

e e c. — J s(n-k}k ^f ^/ ^ is a skew row of length m
°jLt ' ̂ ^ ' ^m — ^ v /

L U otherwise.

For A; < n, the association £, i—^ ̂  defines a map TT : ¥(V) —> GkV.
The functorial map TT* on cohomology is induced by the inclusion into Hn
of polynomials symmetric in a;i, . . . ,a^. That is, An,k c-^ Hn. If A is a
partition with k parts and w the Grassmannian permutation of descent k
and shape A, then TT*S\ = ©^.

Under the Poincare duality isomorphism between homology and
cohomology groups, the functorial map TT^ on homology induces a group
homomorphism TT^ on cohomology. While TT^ is not a ring homomorphism,
it does satisfy the projection formula (see Example 8.17 of [12]):

7r,(a-7r*/3)=(7r,a).^

where a is a cohomology class on F(V) and f3 is a cohomology class on
GkV.

4. Pieri's formula for flag manifolds.

An open problem is to find the analog of the Littlewood-Richardson
rule for Schubert polynomials. That is, determine the structure constants
c^ for the Schubert basis of the cohomology of flag manifolds, which are
defined by the identity

©w6,=^c^6,.
u

These constants are positive integers as they count the points in a suitable
triple intersection of Schubert subvarieties. They are are known only in
some special cases.
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For example, if both w and v are Grassmannian permutations of
descent k so that Gw and ©,; are pullbacks of classes from GkV, then
the classical Littlewood-Richardson rule gives a formula for the c^i/s.

Another case is Monk's formula, which states:

6^.©^=^e^,
the sum over all a <, k < b with £(wtab) = ̂ (^) + 1. We use geometry to
generalize this formula, giving an analog of the classical Pieri's formula.

r[fc,m]
Let w, v € Sn' Write w——>v if there exist integers ai, & i , . . . , dm, bm

with

1. V=Wta,b,'"ta^b^,

2. di < k < bi and t{wta^ bi " • tea bj ̂ (w) -+- i for 1 < i < m, and

3. the integers &i, &2? • • • ^m are distinct.
c[fc,m]

Similarly, w——w if we have integers a i , . . . ,&^ as in (1) and (2)
where now

(3)' the integers a\, 02 , . . . , dm are distinct.

Our primary result is the following.

THEOREM 1. — Let we Sn. Then

1. For all k and m with k + m < n, we have Gw ' Gr[k,m] = S ^v
r[fc,m]

W—————>V

2. For all m < k < n, we have 6w ' ©c[fc,m] = S ^v'
c[k,m]

W—————>V

Theorem 1 may be alternatively stated in terms of the structure
constants c^.

THEOREM I7. — Let w,v C Sn. Then

! r[k,m}
1. For all integers fc, m with k + m < n, c^^ ^ = 1 if w——>v

0 otherwise.

{ c[k,m]
2. For all integers k, m with m < k < n, c^^ ^ == 1 if w——>v

0 otherwise.

We first show the equivalence of parts 1 and 2 and then establish
part 1. An order <k on Sn is introduced, and we show that ^ r. i is 0

W 7*[/C,7?T.J
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unless w <k v. A geometric lemma enables us to compute c ^ r ^ i when
w <k v.

LEMMA 2. — Let WQ be the longest permutation in Sn, and k-\-m <
n. Then

1. wor[fc,m]wo == c[n—k^m}.
r[k,m\ c[n—k,m}

2. Let w, v G Sn. Then w ——> v if and only ifwQWWo ———> WQVWQ.

3. The map induced by Gw 1-̂  ©wowwo ^ an automorphism of Hn.

4. Statements 1 and 2 of Theorem V are equivalent.

This automorphism ©^ i-̂  ©wowwo is ^e analog of the map
s\{x-^,... ,0-fe) i—^ SA^^I? • • • •>Xn-k) for Grassmannians.

Proof.— Statements (1) and (2) are easily verified, as wo{j) =
n-}-l-j.

Statement (3) is also immediate, as @w ^—> Gwowwo leaves Monk's
formula invariant and Monk's formula characterizes the algebra of Schubert
polynomials.

For (4), suppose k + m < n and w, v e Sn and let w denote WQWWQ.
The isomorphism Gy ̂  G^ of (3) shows c ^ r . ^ = (?_-——-. Part (1) shows

w7-[/c,?7ij wr[k,'m} ' '

c^_——- = c - r_ „ .. Then (2) shows the equality of the two statementswr[k,m] wc[n—/c,mj v / i ^

of Theorem V. D

Let <k be the transitive closure of the relation given by w <k wtab
where a < k < b and £(wtab) = i(w)-\-l. We call <k the k-Bruhat order,
in [18] it is the ^-colored Ehresmanoedre.

LEMMA 3. — Ifc^^^ ^ 0, then w <j, v and £(v) = £(w) + m.

Proof. — By Monk's formula, w <k v if and only if ©y appears with
a non-zero (necessarily positive) coefficient when Gw^Gtkk+iY^'^^ ls

written as a sum of Schubert classes.

Since r[k^m} = t^fc+i • ^fcfc+2 • • '^efc+m? Monk's formula shows that
Gr[k,rn] ls a summand of (©s,,)771 with coefficient 1. Thus the coefficient of
@v in the expansion of @w • (65 J772 exceeds that of @v in ©^ • ©r[fc,m]-
Hence C r ^ , = 0 unless w <k v and i(v) = £(w) + m. D

In Section 5 we use geometry to prove the following lemma.
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LEMMA 4. — Let w <k v be permutations in Sn' Suppose v =
wt^ bi • • • tam bm^ where ai < k < bi and £(wt^ b ^ ' • • ta, &J = £(w) + i for
1 < i < m. Let d = n - k - # { & i , . . . , ̂ }. Then

1. There is a cohomology class 6 on GkV such that TT^(©^ • G^ov) =
6 • Sdk.

r[k,m}
2. If w ——> v, then there are partitions \ D fi where X/jji is

a skew row of length m whose jth row has length #{i\di = j} and
7T^(©^ • Gwov) = S^, ' S\c = ̂ C^Syo.

v

We first use this to compute some structure constants. For v a
partition with k parts, let w(^) be the Grassmannian permutation of
descent k and shape v.

THEOREM 5. — Let w,v e Sn and k < n be an integer. Suppose
w <k v and £(v) = £(w) + m. Let 01,61,... ,0m, &m be such that v =
w^! 61 • • • ta^ bm where a, <, k < bi and i(wta^ ̂  • • ' t a , &J = £(w) 4- i for
1 < i < m. Let v be a partition with k parts.

r[k,m]
1. If w ——> v, the structure constant c^.. equals the Littlewood-

Richardson coefficient c^, where \/^ is a skew row of length m whose jth
row has length ̂ {i | a^ = j}.

c[k,m]
2. If w ——> v, the structure constant c^^. equals the Littlewood-

Richardson coefficient c^, where X/fJ, is a skew column of length m whose
jth column has length #{% | bi = j}.

Proof. — Using the involution ©^ ^ ©wowwo^ it suffices to prove
part (1). Recall that 6^) = TT*(^). As ©^ and s^-k^ are the classes
of points, TT^Gwo = 5(^_fc)fc. By the projection formula and part (2) of
Lemma 4,

^w^) s{n-k)k = 7^*(c^w(l/) ^wo) = 7T*(©w • GWQV ' ©w(^))

= 7T*(©w • Gwov) ' S^

= [^^^^ ] •^
\ K /

= ^^(n-fc)^ D

Proof of Theorem 1'. — By Lemma 3, we need only show that if
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w <k v and £(v) - £{w) = m, then

{ r[k,m]
cvwr[k,m]= 1 if w————v

0 otherwise.

Begin by multiplying the identity ©^ • Gr[k,m] = E c^^ ml ©^ ^v 1. ' J
6^0 v an(^ use tne intersection pairing to obtain:

@w • Gwov ' @r[k,m} = <r[fe,m] ©WQ-

Recall that ©^[fc,m] = 7r*5yn(a*i, . . . ,^). Apply the map TT* and then the
projection formula to obtain:

7T*(©^ • GWQV ' TT^Sm) = C^^m] ^(©wo)

7r^(©^ • Gwov) ' Sm = ^r^m] s{n-k)k•

By part (1) of Lemma 4, there is a cohomology class 6 on GkV with

7T^(6^ • ©wo^) • Sm = ̂  • S^k ' Sm

But 5^ • Sm = 0 unless d + m < n - k. Since d=n-k- # { & i , . . . , &m} >
n- k - m, we see that c^^ = 0 unless m == #{61,... ,^J, which

r[A;,m]
implies w ——>• z?.

r[A;,m]
To complete the proof of Theorem I7, suppose that w ——> v. By

part (1) of Theorem 5, c^^ = c^, where A//-A a skew row of length m
and m = (m, 0 , . . . , 0). But this equals 1 by the classical PierFs formula for
the Grassmannian. D

The formulas of Theorem 1 may be formulated as the sum over certain
paths in the A;-Bruhat order. We explain this formulation here. A (directed)
path in the /c-Bruhat order from w to v is equivalent to a choice of integers
01,61,... ^CLm^m with di <_ k < bi for 1 < i < m and if w^ = w and
w^ = w^-1) . ta, b,, then £{w^) = £(w) + i and w^ = v. Here, the path
is

w = w^ <k w(l) <k w^ <k • - <k w^ = v.

LEMMA 6. — Let w,v € Sn and k^m be positive integers. Then
r[k,m]

1. w ——> v if and only if there is a path in the k-Bruhat order of
length m such that

w^(ai) < w^(a2) < > • • < w^^dm).
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c[fc,m]
2. w ——> v if and only if there is a path in the k-Bruhat order of

length m such that

w^(ai) > w^(a2) > • • > w^a^).

Furthermore, these paths are unique.

r[k,m}
Proof. — If w ——> v, one may show that the set of values {w^ (a^)}

and the set of transpositions {tcabi} depend only upon w and v, and not
on the particular path chosen from w to v in the A;-Bruhat order.

It is also the case that rearranging the set {w^(a^)} in order, as in
(1), may be accomplished by interchanging transpositions ta.bi and ta^by
where c^ ^ aj (necessarily hi ^- bj). Both (1) and the uniqueness of this
representation follow from these observations. Statement (2) follows for
similar reasons. D

For a path 7 in the A;-Bruhat order, let end(7) be the endpoint of 7.
We state a reformulation of Theorem 1.

COROLLARY 7 (Path formulation of Theorem 1). — Let w € Sn.

1. ©w • Qr[k,m} = S ^end(7)? t^e sum over all paths 7 in the k-Bruhat
7

order which start at w such that

w^(ai) < w^(a2) < • < w^(a^),

where 7 is the path w <k w^ <k w^ <k ' " <k w^.

Equivalently, c ^ ^ i counts the number of paths 7 in the k-Bruhat
order from w to v such that

w^ai) < zt/2^) < • • • < w^a^).

2. ©^ • Gc[k,m} = S ®end(7)? the sum over all paths 7 in the k-Bruhat
7

order which start at w such that

w^(ai) > w^(a2) > • • • > w^)(a^),

where 7 is the path w <k w^ <k w^ <k • " <k w^.

Equivalently, c^^^ counts the number of paths 7 in the k-Bruhat
order from w to v such that

w^(ai) > w^(a2) > • • • > w^(a^).
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This is the form of the conjectures of Bergeron and Billey [2], and it
exposes a link between multiplying Schubert polynomials and paths in the
Bruhat order. Such a link is not unexpected. The Littlewood-Richardson
rule for multiplying Schur functions may be expressed as a sum over certain
paths in Young's lattice of partitions. A connection between paths in the
Bruhat order and the intersection theory of Schubert varieties is described
in [14]. We believe the eventual description of the structure constants c^
will be in terms of counting paths of certain types in the Bruhat order on
671, and that there will be appropriate generalizations for the other classical
groups. This should yield new enumerative results about the Bruhat orders
on their respective Weyl groups, in the spirit of Corollary 9 below.

Using multiset notation for partitions, (p,!9"1) is the hook shape
partition whose Young diagram is the union of a row of length p and a
column of length q. Define h[k\ p, q] to be the Grassmannian permutation
of descent k and shape (p,!9"1). Then Gh[k\p,q} = / ^ ' * s (p , l < l - l ) ' This
permutation, h[k\ p, ^], is the p + (/-cycle

(fc-g+1 fe-g+2 ... k-1 k k-\-p k+p-1 ... fc+1).

THEOREM 8. — Let q <: k and k-\-p <, n be integers. Set m =
p+q—1. For w € Sn,

@w ' 6/i[fe;p,g] = y^end(7)?

the sum over all paths 7 : w <k w^ <k w^ <k • • • <k ^m) m the
k-Bruhat order with

w^ai) < — < w^(ap) and w^\0p) > w^^+i) > • . • > w^a^).

Alternatively, the sum over those paths 7 with

w^^ai) > • • • > w^^dq) and w^^dq) < • • • < ̂ (a^).

Setting either p = 1 or q = 1, we recover Theorem 1. If we consider
the coefficient c^^ . of ©,; in the product ©^ • Gh[k\p^ we obtain:

COROLLARY 9. — Let w, v € Sn, and p, q be positive integers where
£{v) — £(w) == p + q — l = m . Then the number of paths w <k w^ <k
w^ <k ' • ' <k w^ = v in the k-Bruhat order from w to v with

w^^ai) < • • • < w^ap) and w^^dp) > w^^Op^) > • " > w^^m)

equals the number of paths with

^(ai) >"•>w(q\aq) and w^ (dq) < ' " < w^^m).
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Proof of Theorem 8. — By the classical PierFs formula,
Sp ' Si(g-l) = 5(p-n^g-2) +5(^i9-l).

Expressing these as Schubert classes on the flag manifold (applying TT*),
we have:

@r[k,p} • 6c[k,q-l} == @/i[A;;p+l,g-l] + Qh[k;p,q}'

Induction on either p or q (with m fixed) and Corollary 7 completes
the proof. D

5. Geometry of intersections.

We deduce Lemma 4 by studying certain intersections of Schubert
varieties. A key fact we use is that if X^F. and XyG. intersect generically
transversally, then

[X^F. QX,G.] = [X^F.\ • [X,G.] = ©^ • 6.

in the cohomology ring. Flags F» and (3, are opposite if for 1 < i < n,
Fi -\-Gn-i = V. The set of pairs of opposite flags form the dense orbit of the
general linear group GL(V) acting on the space of all pairs of flags. Using
this observation and Kleiman's Theorem concerning the transversality of
a general translate [16], we conclude that for any w,v G Sn and opposite
flags F. and G», X^F. and XyG. intersect generically transversally.

Deodhar [8] studies the intersection of two Schubert cells^F.^x^G..
He shows the intersection is non-empty precisely when w < v in the
(ordinary) Bruhat order. In this case, that intersection is decomposed into
locally closed subvarieties Dg_, each isomorphic to (C^ x C b, where o_ runs
over certain subexpressions of reduced words of z?, with a and b satisfying
£{v) — £(w) = a + 2&, and with a unique index ( T ' with b = 0. It follows that
X^F. {}X^G. is irreducible with a dense subset D^ ^ (C^^)-^).

These facts hold for the Schubert subvarieties of G^V as well. Namely,
if A and fji are any partitions with p, C A and F» and G» are opposite flags,
then f^F.Fl^cG, is an irreducible, generically transverse intersection
containing a dense subset isomorphic to (C^^I'^L

Let F» and F» be opposite flags in V. Let e i , . . . , en be a basis for
V such that e% generates the one dimensional subspace Fn-^-i-z Ft F[. We
deduce Lemma 4 from the following two results.
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LEMMA 10. — Letw.v e Sn withw <k v andt(v)-i(w} = m. Sup-
pose that v = wta, b , ' ' • ta^ bm with a, < k < b, and £{wta, b , ' • • ̂  bj =
£(w) + i for 1 < i < m. Let TT : F(V) —^ GkV be the canonical projec-
tion. Define Y = {e^ \j < k or w(j) ^ v{j)). Then Y has codimension
d = n - k - #{61,.. . , bm} and

7r(x^F.^X^F.)cGkY.

Also, if E. € X^F. HX^^F,', then there exist a basis /i,..., fn for V
with E. = { / i , . . . , fn), where, ifj > k with w(j) = v{j), then fj = e^y

r[k,rn}
LEMMA 11. — Let w, v € Sn with w ——> v and let a i , . . . , bm be

as in the statement of Lemma 10. Then there exist opposite flags G, and
G, and partitions A D / A , with X/fJ. a skew row of length m whose jth row
has length -#-{i | a^ = j} such that

TT(X^F.^}X^F.) =^G.F|^G;,

and the map ^\x^F.C}x^ ^ F . ' : X^F.^}X^vF. -^ ^G.n^G, has
degree 1.

Lemma 11 vividly exhibits the connection to the classical Pieri's
formula that was mentioned in the Introduction. A typical geometric proof
of Pieri's formula for Grassmannians (see [13], [15]) involves showing a
triple intersection of Schubert varieties(i) ^G.n^cG.pi^G;'
is transverse and consists of a single point, when G»,G,, and G," are in
suitably general position.

One could construct a proof of Theorem 1 along those lines, studying
a triple intersection of Schubert subvarieties

W ^WG» [ jX^Q^G, [ j Xy^y^jG, ,

where G»,G», and G.' are in suitably general position. Doing so, one
observes that the geometry of the intersection of (2) is governed entirely
by the geometry of an intersection similar to that in (1). In part, that is
because X^^G," = TT'^^G,'. This is the spirit of our method, which
may be seen most vividly in Lemmas 14 and 15.

Proof of Lemma 4. — Since F, and F^ are opposite flags,

^wF%\ jX^o^jF,
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is a generically transverse intersection, so in the cohomology ring

[X^F.^X^F.] = [X^F.] • [X^F.] = ©„ . 6^,.

Let Y be the subspace of Lemma 10. Since TT{X^F. n X^F.) c G^V,
the class 7r*(©^ - ©wov) is a cohomology class on GkY. However, all such
classes are of the form 6 ' [G^V], for some cohomology class 6 on GkV. Since
d is the codimension of V, we have [GkY] == s^, establishing part (1) of
Lemma 4.

r[fc,m]
For part (2), suppose further that w ——> v. If p is the restriction of

TT to X^F. ̂ \X^F., then

7r*(©w^wo^) =7r* ([^w^Pl^o^]) =deg^[7^(x^F.F|X^F./)] .

By Lemma 11, degp = 1 and 7r(X^F.^\x^yF.) == ̂ G. D^G.. Since
G, and (?•' are opposite flags, we have

7T*(©w • ©wo.) = 1 • [̂ V?. H^G;] == [̂ G.] • [nAcG:] = ̂  • 5Ac

=S^^^c.

v

The last equality follows by the Littlewood-Richardson rule and the identity
^.^A- D

We deduce Lemma 10 from two additional lemmas. We first make a
definition. Let W C, V be a codimension 1 subspace and let e e V — W so
that V = (W,e). For 1 < p < n, define an expanding map i^p : ¥(W) —^
¥(V) as follows:

^/, - N f ̂  if i<p(tpp^)i == < ,
[ (^z-i,e) if % >p.

Notethatif^=(/i, . . . , / ,_i),then^£;.=(/i, . . . , /p_i,e,/p,.. . , / ,_i).

For w e Sn and 1 < p < n, define w|p e Sn-i by

( w(j) if j < p and w(j') < w(p)
w\ (?) = '^O'-^-1) if 3>P and w(j) < w(p)

^U) - 1 if '̂ < p and w(j) > w{p)
w(^'+l) - 1 if j > p and w(j) > w(p).

If we represent permutations as matrices, w\p is obtained by crossing out
the pth row and w(p)th column of the matrix for w.

LEMMA 12. — Let W C; V and e e V - W with V = (W,e). Let
G, be a complete flag in W. For 1 < p < n and w € Sn,

^p {X^G.) c X^ (^wow(p)(G.)).
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Proof. — Let E. e X^G.. Then W has a basis /i,.. . , fn-i with
E. = ( / i , . . . , /^_i) and for each 1 ̂  i < n - 1, /, e GH_^(,). Then
we necessarily have ̂ (E.) = (0i , . . . , ̂ ) = (/i,...,/^_i, ejp,...,/^_i).
Noting

^ . ^fG' ^ - [ Gn+l-^ if ^ > w^)(^(p)(G.)}^,, - [ ̂ ^ ^ ^ ̂  ̂

we see that ^ € (^wow(p)(G.))^_^. Thus

^p (^wl.G.) C X^ (^^(p)(G.)). D

LEMMA 13. — Let W S V and e e V - W with V =- {W, e} and let
G. and G. be opposite flags in W. Suppose that w <k v are permutations
in Sn and p > k an integer such that w(p) = v(p). Let w^ be the longest
permutation in Sj. Then

1. t{v\p} - i{w\p) = £{v) - £{w) and w\p <k v\p.

2. ^(X^G.^X^^G.)

= x^ (^.(^(G-)) n )̂, (^(P)(G;)).
3.Jf E. e ^(^)^)(G.))n^)J^(p)(G;)), then E, =

(Ep-^e).

4. IfF. and F. are opposite flags in V and E. e X^F.^\X (n) F . ' ,
then Ek C F,_^) + F^_^

Proof. — First recall that £{vtab) = ̂ )+1 if and only ifv(a) < v(b)
and if a < j < b, then v(j) is not between v(a) and v(b). Thus if
^(vtab} = ̂ {v) +1 and p ^ {a, b}, we have £{vtab\p) = ̂ (v p) 4-1. Statement
(1) follows by induction on i(v) — £(w).

For (2), since (w^)|p = w^^p) and w^w^v = v, Lemma 12
shows

^(^G.^X^^G.)
c x- (^n)w(p)(G•)) H )̂. (^(P)(G.)) .

The flags ^(-)^^(G.) and -0^(p)(G.) are opposite flags in V, since G.
and (7, are opposite flags in W. Then part (1) shows both sides have the
same dimension. Since ^p is injective, they are equal.
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To show (3), let E. € X^ (^n)^(G.)) ft^), (^(p)(G.))- By
(2), there is a flag .̂ € X^G. n^^-i)^)0* wit^h ^p(^.) = .̂, so
J^=(^_i,e)=(^-i,e).

For (4), let W = ^n-w(p) + ^(p}-i an<^ e any nonzero vector in
the one dimensional space ^n+i-w(p) D^r p)- The distinct subspaces in
F, ̂ }W define a flag G., and those in F. ^}W define a flag G.. In fact,
^(n)^(G.) = F, and ^w(p)(G.) = ̂  and G, and G. are opposite
flags in W. By (2),

^ (x^G.Qx^n-i)^G.) = X^F.QX^F.'.

Thus flags in XyjF.^}X (n) F,' are in the image of if) p . As k < p,
(^pE.\ =EkCW, establishing part (4). D

Proof of Lemma 10. — Let F. and F. be opposite flags in V, let
w <k v and let ^» G X^-F, F[X^o.yF»'- Define a basis e i , . . . , en for V
by Fn+i-^n^ = <^) for 1 ^ j < n. Suppose v = wt^b^-'-tambm
with di < k < bi. Let { p i ^ ' - ' ^ P d } be the complement of { & i , . . . , ^ m }
in {A;+l , . . . ,n} . For 1 < i < d, let Yi = (ei , . . . ,e^(p^-i,e^(^)+i,... ,Cn).
Since w(p^) = v(pi) and A; < pi, we see that Y» = ^n-w(pz) + ̂ (pz)-!' so
part (4) of Lemma 13 shows Ek C Yi. Thus

d
Ek C F| V, = (e^-) | j < ^ o r ^ = 6,) = V.

z=l

Since w(p,) = v(pi) for 1 < z < d, we have ̂  = (J^-i,e^)),
by part (3) of Lemma 13. So if E. = (A, • . • ,/n), we may assume
that fp, = e^(p,) 6 Fn+i-^p^^F^ for 1 < i < d, completing the
proof. D

To prove Lemma 11, we begin by describing an intersection in a
Grassmannian. Recall that fl.\F. = [H € GkV | dim 7? Q ̂ -j+A, >
j for Kj<A;}.

LEMMA 14. — Suppose that L i , . . . , L/c, M C V with

^=^e£lQ•••9^•
Let 7j == dim Lj — 1 and m = ri + • • • + r^. Then there are opposite flags
F. and F.1 and partitions A D /^ with \j — ^j == rj and X / p , a skew row of
length m such that in GkV,

^^F.^^cF. ={H ^GkV\dimH^\Lj=l for 1 < j < k}.
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Proof. — Let /^ = 0 and /jtj = r^+i + • • • + rj, for 1 < j < k and
^ = ̂  + P-j for 1 ̂  3 ^ ̂  Choose a basis e i , . . . , en for V such that

L^ = {efc+l-^+^, efc+2-j+^., . . . , eA;+l+r,-j+/^ = Cfc+1-j+A,-)

M= (e^+fc+i, . . . ,e^).

Let F. = (en . . . , ei) and F. = (e i , . . . , e^). Then

^-^-^-^Q^Q-Q^
Fn-fe+(fc+l-7)-A^^. = ^fe+l-j+A, = ^J ® " • Q Lfc.

If ̂  C ̂ F. n ̂ A^.', then dim H Q Fn-k^j-^ > j for 1 < j < k and

dim H Q <_^(^,_,)_^^_^ ^ /; + 1 - j,

for 1 < j < k. Thus for 1 < j < k,

dimH^Fn-k+j-^ n^n-^^+i-^-A^,., > 1-

But ^n-A;+j-^n^n-fe+(fe+l-j)-A^,^. = L^ so dim H fl ̂  > 1 tor

1 < J < k. Since ^-n^z = {0} if/^ ^ we see that dimH^[Lj = 1.
Thus

^F.^^cF. c[HeGkV\dimH^L,=l for 1 < j < k\.

We show these varieties have the same dimension, establishing their equal-
ity: since |A| = \fi\ + m, and F. and F.' are opposite flags, ^l^F.^^cF.
has dimension m. But the map H ^ (H Q L i , . . . , H Q Lk) defines an iso-
morphism between [H C GkV\ dimH^\Lj = 1 for 1 < j < k} and
PLi x • • • x PLfc, which has dimension ^(dirnL^- - 1) = m. Here, PLj is

j
the projective space of one dimensional subspaces of Lj. D

We relate this to intersections of Schubert varieties in the flag
manifold.

r[k,m]
LEMMA 15. — Suppose that w ——> v and v == wta^bi ' " t a ^ b m

with di < k <bi and £{wta^ b ^ ' ' • to, b,) = ^(w) + i for 1 < i < m. Let F.
and F. be opposite flags in V and let (e^ = Fn+i-z [}F[. Define

Lj = {ej.e^i) \o'i = j}
M = (^(p) I k < p and w(p) = v(p)).

Then

1. dim L,.= 1 + #{z | a, = j} and V = M © Li © • . • ® Lk.
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2. IfE. e X^F.^X^F., then dimEk D^ = 1 for 1 < j ̂  k.

3. Let TT be the map induced by E. \—> Ek. Then

TT'.X^F.^X^F.' -^{HeGkV\dimH^\Lj=l for 1 < j < k\

is surjective and of degree 1.

Proof. — Part (1) is immediate.

For (2) and (3), note that both [H e GkV \ dim H Q Lj = 1 for 1 <
j ^ k} and X^F.^X^ovF. are irreducible and have dimension m. We
exhibit an m dimensional subset of each over which TT is an isomorphism.

Let a = (ai,...,o^) G (C^771 be an m-tuple of nonzero complex
numbers. We define a basis /i,. . . , fn of V depending upon a as follows.

^(j) + S ^w^) if J < A;
I : <2i =J

j. ̂  ^ ^w{j} if 3 > k and j ^ { & i , . . . , bm}
S ^^(bz) if J =bq> k.

i:a^=aq
, ^(^)>w(j)

Let zi < • • • < is be those integers ii with a^ = j. Since ta, &, lengthens the
permutation wta^ bi " • ta,_i b,_i, we see that

w{j) < w(bi^ < ' " < w{bi,)

v(bi,) < v(bi,) < ... < ^(j).

Thus the first term in fj is proportional to ew(j). Hence fj e Fn^-w(j) -
^n-w(j), and so /i, . . . , fn is a basis of V and the flag E.{a) = ( A , . . . , /n)
is in X^F».

Note that / { , . . . , f^ is also a basis for £'•(0), where /' is given by

(fj it .7^
f',=\ fj it ^ > A : and j^{b^..^bm}

[ fa, - fj it J = bq > k.

Here, the last term in each f^ is proportional to e^-), so /' e F... =
^+i-^^(^), showing that E.(a) C X^^F.'.

Since /^ G L -̂ for 1 < j < k, we have dimE.{a)^}Lj = 1 for 1 <
j ^ k. As {E.(a) | a € (C^771} is a subset of X^F. ?] X^F. of dimension
m, it is dense. Thus if E. <E X^F.f^X^F.\ then dim^n^j = 1 fo1'
1 < J < k.
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The set {(E.(a))k | a € (C^} is a dense subset of

{H e GkV | dim^Fl^ =1 for 1 < j < k} ̂  PLi x ... x PLfc.

Since TT is an isomorphism of this set with {E.{a) [a e (C^}, the map

7r:X^F.(^X^F. -^ ^H eGkV\ dmH^Lj=l for 1 ̂  j <^ k\

is surjective of degree 1, proving the lemma. D

We note finally that Lemma 11 is an immediate consequence of
Lemmas 14 and 15(3).
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