Annales de l'institut Fourier

Gang Xiao

Galois covers between $K 3$ surfaces

Annales de l'institut Fourier, tome 46, n 1 (1996), p. 73-88
http://www.numdam.org/item?id=AIF_1996__46_1_73_0

© Annales de l'institut Fourier, 1996, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

GALOIS COVERS BETWEEN K3 SURFACES
 by Gang XIAO

The aim of this note is to classify the actions of finite groups G on Kähler $K 3$ surfaces X, i.e., simply connected surfaces over \mathbb{C} with trivial canonical sheaf. Such an action is called symplectic, if the (resolution of the) quotient X / G is also a $K 3$ surface, or equivalently, if the induced action of G on $H^{0}\left(\omega_{X}\right)$ is trivial. We will only consider symplectic actions.

This classification is done by Nikulin for the case when G is abelian [N]. Then Mukai [M] gives a complete classification of finite groups G admitting a sympletic action on a $K 3$ surface, showing that they are exactly subgroups of 11 maximal groups.

We will give a classification of combinatorial types of the actions, i.e., the numbers of fixed points of each type. Our method is similar to that in $[\mathrm{N}]$, that is, we consider the singularities of the quotient X / G, and the sublattice generated by the components of their resolutions. In $\S 1$, we generalize Nikulin's argument to non-abelian groups, to formulate a set of criteria on this sublattice. Then an easy computer sieve program using these criteria leads almost directly to the final list of good cases.

Note that we do not use the argument of Mukai (except his examples which are used to prove the existence), therefore providing an independent proof of Mukai's classification.

This combinatorial classification contains much information about the geometry of the symplectic actions. For example, one observes from the list (Table 2) that the moduli space of the action of each of the 11 maximal groups is of dimension 1 , due to $[\mathrm{N}]$ (see the proof of Lemma 5).

[^0]In particular, there are only a finite number of $K 3$ quartics in projective space who admit linearly the symplectic action of a maximal group. It will be interesting to construct the exhaustive list of these quartics.

1. Necessary conditions.

Let X be a smooth minimal Kähler $K 3$ surface, with a finite group G acting symplectically on it (i.e., the quotient is also a $K 3$ surface). It is well-known that the quotient X / G has at worst rational double points, and the projection $f: X \longrightarrow X / G$ is unramified outside these singular points.

Let Y be the minimal resolution of singularities of X / G. For each singular point $p_{i}(i=1, \ldots, k)$ on X / G, its inverse image on Y is a negative definite configuration Σ_{i} of (-2)-curves, of type $A_{n}, D_{n}, E_{6}, E_{7}$, or E_{8}.

Let Y^{\prime} be the complement of the points p_{i} in $Y, X^{\prime}=f^{-1}\left(Y^{\prime}\right)$, $f^{\prime}: X^{\prime} \longrightarrow Y^{\prime}$ the induced étale cover. Then $\pi_{1}\left(X^{\prime}\right)=\pi_{1}(X)=\{1\}$ as X^{\prime} is the complement of a set of smooth points, hence

$$
G=\pi_{1}\left(Y^{\prime}\right)
$$

A similar situation holds locally : let G_{i} be the stabiliser of a point in $f^{-1}\left(p_{i}\right), U_{i}$ a small topologic neighborhood of p_{i}. Then

$$
G_{i} \cong \pi_{1}\left(U_{i} \backslash p_{i}\right)
$$

It is well-known that G_{i} is the cyclic group C_{n+1} for $\Sigma_{i}=A_{n}$; binary dihedral group $Q_{4 n-8}$ for $\Sigma_{i}=D_{n}(n \geqslant 4)$; binary tetrahedral group T_{24} for $\Sigma_{i}=E_{6}$; binary octahedral group O_{48} for $\Sigma_{i}=E_{7}$; and binary icosahedral group I_{120} for $\Sigma_{i}=E_{8}$. By [N], the order of an element of G (hence of G_{i}) is at most 8 , therefore the possible types for Σ_{i} are:

$$
A_{1}, \ldots, A_{7}, D_{4}, D_{5}, D_{6}, E_{6}, E_{7}
$$

Let also c_{i} be the number of components of $\Sigma_{i}, e_{i}=\chi_{\text {top }}\left(\Sigma_{i}\right)=c_{i}+1$, and $N_{i}=\left|G_{i}\right|, N=|G|$.

Lemma 1. - 1. $N_{i} \mid N$ for every i.
2. $\sum_{i=1}^{k}\left(e_{i}-1 / N_{i}\right)=24(N-1) / N$.

Proof. - 1 is clear as G_{i} is a subgroup of G, and 2 follows directly from the following computation of topological characters:

$$
\begin{gathered}
24-\sum_{i=1}^{k} N / N_{i}=\chi_{\mathrm{top}}(X)-\sum_{i=1}^{k} N / N_{i}=\chi_{\mathrm{top}}\left(X^{\prime}\right) \\
=N \chi_{\mathrm{top}}\left(Y^{\prime}\right)=N\left(24-\sum_{i=1}^{k} e_{i}\right)
\end{gathered}
$$

On the other hand, the classes of the (-2)-curves generate a negative definite sublattice L^{\prime} of rank $c=\sum_{i=1}^{k} c_{i}$ in $H^{2}(Y, \mathbb{Z})$ which is an even unimodular lattice of index $(19,3)$. In particular

$$
\begin{equation*}
c \leqslant 19 \tag{1}
\end{equation*}
$$

Let L be the smallest primitive sublattice of $H^{2}(Y, \mathbb{Z})$ containing L^{\prime}, L^{*} (resp. $L^{\prime *}$) the dual lattice of L (resp. of L^{\prime}). We have natural inclusions

$$
L^{\prime} \subseteq L \subseteq L^{*} \subseteq L^{\prime *}
$$

For a finite abelian group H, let $l(H)$ be the minimal number of generators. Then as L is primitive in $H^{2}(Y, \mathbb{Z})$, we must have

$$
l\left(L^{*} / L\right) \leqslant \operatorname{rank}\left(H^{2}(Y, \mathbb{Z})-\operatorname{rank}(L)=22-c\right.
$$

(e.g. [D]), in particular for every prime number p,

$$
l\left(\left(L^{*} / L\right)_{p}\right) \leqslant 22-c
$$

where we note by H_{p} the subgroup of H consisting of elements of order p.
On the other hand, we have $L / L^{\prime} \cong L^{\prime *} / L^{*}$, hence

$$
\begin{equation*}
22-c \geqslant l\left(\left(L^{*} / L\right)_{p}\right) \geqslant l\left(\left(L^{\prime *} / L^{\prime}\right)_{p}\right)-2 l\left(\left(L / L^{\prime}\right)_{p}\right) \tag{2}
\end{equation*}
$$

From a simple computation of the corresponding lattices, it is easy to see that the number $l\left(\left(L^{\prime *} / L^{\prime}\right)_{p}\right)$, for $p=2$ or 3 , is determined by the configuration of (-2)-curves in the following way:

A configuration of type $A_{n}(n$ odd $), D_{5}$ or E_{7} adds 1 to $l\left(\left(L^{\prime *} / L^{\prime}\right)_{2}\right)$, that of type D_{4} or D_{6} adds 2 to $l\left(\left(L^{\prime *} / L^{\prime}\right)_{2}\right)$, and that of type A_{2}, A_{5} or E_{6} adds 1 to $l\left(\left(L^{\prime *} / L^{\prime}\right)_{3}\right)$.

And we can use the following lemma to bound the term $l\left(\left(L / L^{\prime}\right)_{p}\right)$.
Lemma 2. - $L / L^{\prime} \cong(G /[G, G])^{*}$.
Proof. - The inclusion of Y^{\prime} into Y induces a surjective map

$$
\alpha: H^{2}(Y, \mathbb{Z}) \cap H^{1,1}(Y)=\operatorname{Pic}(Y) \longrightarrow \operatorname{Pic}\left(Y^{\prime}\right)
$$

with $\operatorname{Ker}(\alpha)=L^{\prime}$. The image by α of L is the torsion subgroup of $\operatorname{Pic}\left(Y^{\prime}\right)$, which is naturally dual to the abelianisation of $\pi_{1}\left(Y^{\prime}\right)$. But $\pi_{1}\left(Y^{\prime}\right)=G$, because $\pi_{1}\left(X^{\prime}\right)=\pi_{1}(X)$ is trivial.

Corollary. - If $l\left(\left(L^{*} / L^{\prime}\right)_{p}\right)+c>22$, there exists a $K 3$ surface W with a generically Galois rational map $\psi: W \longrightarrow Y$ which is étale outside the Σ_{i} 's, with a Galois group C_{p}^{r} where

$$
r=\left[\left(l\left(\left(L^{\prime *} / L^{\prime}\right)_{p}\right)+c-21\right) / 2\right]
$$

Lemma 3. - Let $Q \cong C_{2}^{r}$ be a group acting symplectically on a $K 3$ surface W. Then $r \leqslant 4$, and the quotient W / Q has exactly $16-2^{4-r}$ singular points of type A_{1}, forming $2^{r}-1$ blocks of 2^{4-r} points each. Two points p_{1}, p_{2} belong to the same block if and only if they are dependent, i.e., the corresponding stabiliser subgroups in Q are the same.

Similarly, if $Q \cong C_{3}^{r}$, then $r \leqslant 2$, and W / Q has $9-3^{2-r}$ singular points of type A_{2}, composed of $3 r-2$ blocks of $2 \cdot 3^{2-r}$ dependent points each.

Proof. - This result can be found in [N], but we give a proof here, because it provides an illustration of our method.

Let $Q \cong C_{2}^{r}$. Then the only possible non-trivial stabiliser of a point on W is C_{2}, in other words W / Q has only singularities of type A_{1}. In terms of Lemma 1, we have $e_{i}-1 / N_{i}=3 / 2$, hence $k=16(N-1) / N$ for $N=|Q|$, so $r \leqslant 4$ and $k=16-2^{4-r}$. Applying the formula to the case $r=1$, we see that an automorphism of order 2 has 8 fixed points. Because Q is abelian, it permutes these 8 points, giving rise to the number of blocks of dependent points.

The case of C_{3}^{r} is similar.
To apply Lemma 3, consider a normal subgroup H in G such that $Q=G / H \cong C_{p}^{r}$, for $p=2$ or 3 and $r>0$. Let W be the desingularization
of X / H, with the induced rational map $\psi: W \rightarrow Y$. Obviously the (-2)-configurations mentioned in Lemma 3 must be subconfigurations of the set $\left\{\Sigma_{i}\right\}$ for the map ψ. Moreover, if a configuration Σ_{i} contains a nonempty subconfiguration for ψ, then G_{i} must have a quotient isomorphic to $C_{p}^{r^{\prime}}$, for $0<r^{\prime} \leqslant r$.

Quotients of this kind for different types of G_{i} are given in the following table:

type	G_{i}	quotient	subconfigurations for quotient	kernel
$A_{2 n-1}$	$C_{2 n}$	C_{2}	n dependent A_{1} 's	A_{n-1}
D_{4}	Q_{8}	C_{2}	2 dependent A_{1} 's	A_{3}
D_{4}	Q_{8}	C_{2}^{2}	3 independent A_{1} 's	A_{1}
D_{5}	Q_{12}	C_{2}	2 dependent A_{1} 's	A_{5}
D_{6}	Q_{16}	C_{2}	2 dependent A_{1} 's	A_{7}
D_{6}	Q_{16}	C_{2}	3 dependent A_{1} 's	D_{4}
D_{6}	Q_{16}	C_{2}^{2}	$4 A_{1}$'s in 3 blocks $(1,1,2)$	A_{3}
E_{7}	O_{48}	C_{2}	3 dependent A_{1} 's	E_{6}
$A_{3 n-1}$	$C_{3 n}$	C_{3}	n dependent $A_{2} ' s$	A_{n-1}
E_{6}	T_{24}	C_{3}	2 dependent $A_{2} ' s$	D_{4}

Table 1

Notation. - We note by $\left[\Sigma_{1}, \ldots, \Sigma_{m}\right]$ a block of dependent A_{1} 's contained in the configuration $\Sigma_{1}+\cdots+\Sigma_{m}$. The choice of the curves will be clear from the context.

2. The list.

Theorem 3. - The action of G falls into one of the following 81 types, where n_{i} is the number of cyclic subgroups of order $i, Q=G /[G, G]$, and we follow [M] for notations of groups.

$\#$	N	c	configuration	n_{2}, \ldots, n_{8}	$[G, G]$	Q	G
1	2	8	$8 A_{1}$	$1,,,,$,	0	G	C_{2}
2	3	12	$6 A_{2}$	$, 1,,,$,	0	G	C_{3}
3	4	12	$12 A_{1}$	$3,,,,$,	0	G	C_{2}^{2}
4	4	14	$4 A_{3}+2 A_{1}$	$1,, 1,,$,	0	G	C_{4}
5	5	16	$4 A_{4}$	$,, 1,,$,	0	G	C_{5}
6	6	14	$3 A_{2}+8 A_{1}$	$3,1,,,$,	$\# 2$	$\# 1$	D_{6}
7	6	16	$2 A_{5}+2 A_{2}+2 A_{1}$	$1,1,, 1,$,	0	G	C_{6}
8	7	18	$3 A_{6}$,,,, 1,	0	G	C_{7}
9	8	14	$14 A_{1}$	$7,,,,$,	0	G	C_{2}^{3}
10	8	15	$2 A_{3}+9 A_{1}$	$5,, 1,,,$,	$\# 1$	$\# 3$	D_{8}
11	8	16	$4 A_{3}+4 A_{1}$	$3,, 2,,,$,	0	G	$C_{2} \times C_{4}$
12	8	17	$2 D_{4}+3 A_{3}$	$1,, 3,,,$,	$\# 1$	$\# 3$	Q_{8}
13	8	17	$4 D_{4}+A_{1}$	$1,, 3,,,$,	$\# 1$	$\# 3$	Q_{8}
14	8	18	$2 A_{7}+A_{3}+A_{1}$	$1,, 1,,, 1$	0	G	C_{8}
15	9	16	$8 A_{2}$	$, 4,,,,$,	0	G	C_{3}^{2}
16	10	16	$2 A_{4}+8 A_{1}$	$5,,,,,$,	$\# 5$	$\# 1$	D_{10}
17	12	16	$6 A_{2}+4 A_{1}$	$3,4,,,$,	$\# 3$	$\# 2$	\mathfrak{A}_{4}
18	12	16	$A_{5}+A_{2}+9 A_{1}$	$7,1,,,,$,	$\# 2$	$\# 3$	D_{12}
19	12	18	$3 A_{5}+3 A_{1}$	$3,1,,,,,$,	0	G	$C_{2} \times C_{6}$
20	12	18	$2 D_{5}+2 A_{3}+A_{2}$	$1,1,3,,,,$,	$\# 2$	$\# 4$	Q_{12}
21	16	15	$15 A_{1}$	$15,,,,,$,	0	G	C_{2}^{4}
22	16	16	$2 A_{3}+10 A_{1}$	$11,,,,,$,	$\# 1$	$\# 9$	$C_{2} \times D_{8}$
23	16	17	$4 A_{3}+5 A_{1}$	$7,, 4,,,$,	$\# 1$	$\# 11$	$\Gamma_{2} c_{1}$
24	16	17	$2 D_{4}+A_{3}+6 A_{1}$	$7,, 4,,,$,	$\# 1$	$\# 9$	$Q_{8} * C_{4}$
25	16	18	$6 A_{3}$	$3,, 6,,,$,	0	G	C_{4}^{2}
26	16	18	$D_{4}+A_{7}+A_{3}+4 A_{1}$	$5,, 3,,, 1$	$\# 4$	$\# 3$	$S D_{16}$
27	16	18	$4 D_{4}+2 A_{1}$	$3,, 6,,,$,	$\# 1$	$\# 9$	$C_{2} \times Q_{8}$

\#	N	c	configuration	n_{2}, \ldots, n_{8}	[G, G]	Q	G
28	16	19	$2 A_{7}+A_{3}+2 A_{1}$	$3,, 2, \ldots, 2$	\#1	\#11	$\Gamma_{2} d$
29	16	19	$2 D_{6}+D_{4}+A_{3}$	$1,, 5, \ldots, 1$	\#4	\#3	Q_{16}
30	18	16	$4 A_{2}+8 A_{1}$	9,4,,,",	\#15	\#1	$\mathfrak{A}_{3,3}$
31	18	18	$2 A_{5}+3 A_{2}+2 A_{1}$	3,4,,3,	\#2	\#7	$C_{3} \times D_{6}$
32	20	18	$A_{4}+4 A_{3}+2 A_{1}$	5,,5,1,,,	\#5	\#4	$\operatorname{Hol}\left(C_{5}\right)$
33	21	18	$A_{6}+6 A_{2}$,7,,,1,	\#8	\#2	$C_{7} \rtimes C_{3}$
34	24	17	$2 A_{3}+3 A_{2}+5 A_{1}$	9,4,3,,",	\#17	\#1	\mathfrak{S}_{4}
35	24	18	$2 A_{5}+2 A_{2}+4 A_{1}$	7,4,,4,	\#3	\#7	$C_{2} \times \mathfrak{A}_{4}$
36	24	18	$D_{5}+A_{5}+A_{3}+5 A_{1}$	9,1,3,3,	\#7	\#3	$C_{3} \rtimes D_{8}$
37	24	19	$E_{6}+D_{4}+A_{5}+2 A_{2}$	1,4,3,,4,	\#13	\#2	T_{24}
38	24	19	$2 E_{6}+A_{3}+2 A_{2}$	1,4,3,,4,	\#12	\#2	T_{24}
39	32	17	$3 A_{3}+8 A_{1}$	19,,6,,",	\#3	\#9	$2^{4} C_{2}$
40	32	17	$2 D_{4}+9 A_{1}$	19,,6,,",	\#1	\#21	$Q_{8} * Q_{8}$
41	32	18	$5 A_{3}+3 A_{1}$	11, $10, \ldots$,	\#3	\#11	$\Gamma_{7} a_{1}$
42	32	18	$2 D_{4}+2 A_{3}+4 A_{1}$	11, $10, \ldots$,	\#3	\#9	$\Gamma_{4} c_{2}$
43	32	19	$2 A_{7}+5 A_{1}$	11,,2,,,,4	\#3	\#11	$\Gamma_{7} a_{2}$
44	32	19	$D_{4}+A_{7}+2 A_{3}+2 A_{1}$	$7,, 8, \ldots, 2$	\#4	\#11	$\Gamma_{3} e$
45	32	19	$2 D 6+D_{4}+3 A_{1}$	$7,, 8, \ldots, 2$	\#4	\#	$\Gamma_{6} a_{2}$
46	36	18	$4 A_{3}+2 A_{2}+2 A_{1}$	9,4,9,,",	\#15	\#4	$3^{2} C_{4}$
47	36	18	$A_{5}+6 A_{2}+A_{1}$	3,13,,,3,	\#3	\#15	$C_{3} \times \mathfrak{A}_{4}$
48	36	18	$2 A_{5}+A_{2}+6 A_{1}$	15,4,,,6,	\#15	\#3	$\mathfrak{S}_{3,3}$
49	48	17	$6 A_{2}+5 A_{1}$	15,16,,,",	\#21	\#2	$2^{4} C_{3}$
50	48	18	$2 A_{3}+6 A_{2}$	3,16,6,,",	\#25	\#2	$4^{2} C_{3}$
51	48	18	$A_{5}+2 A_{3}+A_{2}+5 A_{1}$	19,4,6, , 4 ,	\#17	\#3	$C_{2} \times \mathfrak{S}_{4}$
52	48	19	$3 A_{5}+4 A_{1}$	15,4,,12,	\#3	\#19	$2^{2}\left(C_{2} \times C_{6}\right)$
53	48	19	$2 D_{5}+2 A_{3}+A_{2}+A_{1}$	7,4,12,4,,	\#17	\#4	$2^{2} Q_{12}$
54	48	19	$E_{6}+A_{7}+A_{2}+4 A_{1}$	13,4,3,4,3	\#38	\#1	T_{48}

\#	N	c	configuration	n_{2}, \ldots, n_{8}	$[G, G]$	Q	G
55	60	18	$2 A_{4}+3 A_{2}+4 A_{1}$	15,10, ,6,",	G	0	\mathfrak{A}_{5}
56	64	18	$D_{4}+3 A_{3}+5 A_{1}$	27, $18, \ldots$,	\#9	\#9	$\Gamma_{25} a_{1}$
57	64	18	$3 D_{4}+6 A_{1}$	$27, \ldots 18, \ldots$,	\#3	\#21	$\Gamma_{13} a_{1}$
58	64	19	$A_{7}+3 A_{3}+3 A_{1}$	19,,14,,,4	\#9	\#11	$\Gamma_{22} a_{1}$
59	64	19	$D_{4}+5 A_{3}$	11,,26,,",	\#11	\#11	$\Gamma_{23} a_{2}$
60	64	19	$2 D_{6}+A_{3}+4 A_{1}$	19,,14,,,,4	\#11	\#9	$\Gamma_{26} a_{2}$
61	72	18	$D_{5}+A_{3}+3 A_{2}+4 A_{1}$	21,13,9, 3,	\#47	\#1	$\mathfrak{A}_{4,3}$
62	72	19	$2 A_{5}+2 A_{3}+3 A_{1}$	21,4,9, 12,	\#30	\#3	N_{72}
63	72	19	$2 D_{4}+3 A_{3}+A_{2}$	9,4,27,,",	\#30	\#3	M_{9}
64	80	19	$4 A_{4}+3 A_{1}$	$15, \ldots 16, \ldots$	\#21	\#5	$2^{4} C_{5}$
65	96	18	$3 A_{3}+3 A_{2}+3 A_{1}$	27,16,18,,",	\#49	\#1	$2^{4} D_{6}$
66	96	19	$2 A_{5}+A_{3}+2 A_{2}+2 A_{1}$	19,16,6,,16,	\#21	\#7	$2^{4} C_{6}$
67	96	19	$D_{4}+A_{7}+3 A_{2}+2 A_{1}$	15,16,12,,,6	\#50	\#1	$4^{2} D_{6}$
68	96	19	$D_{5}+A_{5}+2 A_{3}+3 A_{1}$	27,4,18, 12,	\#35	\#3	$2^{3} D_{12}$
69	96	19	$2 E_{6}+2 A_{2}+3 A_{1}$	19,16,6,,16,	\#40	\#2	$\left(Q_{8} * Q_{8}\right) \rtimes C_{3}$
70	120	19	$A_{5}+A_{4}+2 A_{3}+A_{2}+2 A_{1}$	25,10,15,6,10,	\#55	\#1	\mathfrak{S}_{5}
71	128	19	$D_{6}+D_{4}+2 A_{3}+3 A_{1}$	$35,, 38, \ldots, 4$	\#22	\#9	F_{128}
72	144	19	$2 A_{5}+4 A_{2}+A_{1}$	15,40,,,24,	\#21	\#15	\mathfrak{A}_{4}^{2}
73	160	19	$2 A_{4}+3 A_{3}+2 A_{1}$	35,,30,16,,"	\#64	\#1	$2^{4} D_{10}$
74	168	19	$A_{6}+2 A_{3}+3 A_{2}+A_{1}$	21,28,21,,,8,	G	0	$L_{2}(7)$
75	192	18	$D_{4}+6 A_{2}+2 A_{1}$	27,64,18,,",	\#57	\#2	$4^{2} \mathfrak{A}_{4}$
76	192	19	$D_{4}+A_{5}+2 A_{3}+A_{2}+2 A_{1}$	43,16,42,16,,	\#49	\#3	H_{192}
77	192	19	$E_{6}+3 A_{3}+A_{2}+2 A_{1}$	43,16,42,,16,,	\#69	\#1	T_{192}
78	288	19	$2 D_{5}+A_{3}+2 A_{2}+2 A_{1}$	51,40,54,,24,	\#72	\#1	$\mathfrak{A}_{4,4}$
79	360	19	$2 A_{4}+2 A_{3}+2 A_{2}+A_{1}$	45,40,45,36,,",	G	0	\mathfrak{A}_{6}
80	384	19	$D_{6}+2 A_{3}+3 A_{2}+A_{1}$	51,64,78,,,12	\#75	\#1	F_{384}
81	960	19	$D_{4}+2 A_{4}+3 A_{2}+A_{1}$	75,160,90,96,,,	G	0	M_{20}

Table 2

Proof. - We implement the following criteria into a mechanical check of all the combinations of (-2)-configurations $\left\{\Sigma_{i}\right\}_{i=1, \ldots, k}$:

1. $c \leqslant 19$.
2. There is no configuration of type A_{n} for $n>7, D_{n}$ for $n>6$, or E_{8}.
3. There exists an integer N such that Lemma 1 is satisfied.
4. Elements of different orders add up to $N-1$. The number of elements of order n can be recovered from the number of fixed points on X with a stabiliser containing $C_{n}[\mathrm{~N}]$:

n	2	3	4	5	6	7	8
fixed points of a C_{n}	8	6	4	4	2	3	2

Table 3
5. By Lemmas 2 and 3, if $r=\left[\left(l\left(\left(L^{\prime *} / L^{\prime}\right)_{2}\right)+c-21\right) / 2\right]>0,\left\{\Sigma_{i}\right\}$ contains a subconfiguration of $16-2^{4-r}$ disjoint A_{1} 's in conformity with Table 1, partitioned into $2^{r}-1$ independent blocks of 2^{4-r} curves each.
6. Similarly, if $r=\left[\left(l\left(\left(L^{*} / L^{\prime}\right)_{3}\right)+c-21\right) / 2\right]>0,\left\{\Sigma_{i}\right\}$ contains a subconfiguration of $9-3^{2-r}$ disjoint A_{2} 's in conformity with Table 1, partitioned into $3 r-2$ independent blocks of $2 \cdot 3^{2-r} A_{2}$'s each.

The result of the check is the cases in Table 2 together with the following list:

$\#$	N	c	configuration	Non-existence
101	8	16	$2 D_{4}+A_{3}+5 A_{1}$	Too many $C_{2}{ }^{\prime}$ s (3) for Q_{8}
102	16	18	$2 D_{4}+3 A_{3}+A_{1}$	No quotient for $Q_{8}(\# 12$ or \#13)
103	24	18	$4 A_{3}+3 A_{2}$	D)
104	24	19	$D_{5}+A_{5}+3 A_{3}$	A)
105	24	19	$2 D_{5}+A_{5}+2 A_{2}$	E)
106	24	19	$3 D_{5}+A_{3}+A_{1}$	A)
107	32	19	$4 D_{4}+A_{3}$	B) $Q=C_{2}, \Sigma=\# 102$
108	40	19	$3 A_{4}+2 A_{3}+A_{1}$	C)
109	48	19	$A_{5}+4 A_{3}+A_{2}$	A)
110	64	19	$3 D_{4}+2 A_{3}+A_{1}$	F)
111	72	18	$4 A_{3}+A_{2}+4 A_{1}$	B) $Q=C_{2}$
112	72	18	$A_{5}+5 A_{2}+3 A_{1}$	B) $Q=C_{3}, \Sigma=3 A_{2}+10 A_{1}$
113	120	18	$A_{4}+6 A_{2}+2 A_{1}$	B) $Q=C_{3}, \Sigma=3 A_{4}+6 A_{1}$
114	144	19	$A_{5}+4 A_{3}+2 A_{1}$	B) $Q=C_{2}^{2}, \Sigma=2 A_{2}+12 A_{1}$
115	144	19	$D_{5}+A_{5}+A_{3}+2 A_{2}+2 A_{1}$	B) $Q=C_{2}, \Sigma=\# 112$
116	192	19	$A_{7}+A_{5}+A_{2}+5 A_{1}$	B) $Q=C_{2}, \Sigma=2 A_{7}+3 A_{2}$
117	240	19	$3 A_{4}+3 A_{2}+A_{1}$	C)
118	288	19	$A_{5}+3 A_{3}+2 A_{2}+A_{1}$	B) $Q=C_{2}, \Sigma=2 A_{3}+5 A_{2}+2 A_{1}$
119	288	19	$D_{5}+4 A_{3}+2 A_{1}$	B) $Q=C_{2}^{2}, \Sigma=2 A_{5}+8 A_{1}$
120	288	19	$D_{5}+A_{5}+4 A_{2}+A_{1}$	B) $Q=C_{3}, \Sigma=3 D_{5}+4 A_{1}$
121	720	19	$A_{4}+4 A_{3}+A_{2}+A_{1}$	A)
122	720	19	$D_{5}+A_{4}+A_{3}+3 A_{2}+A_{1}$	G)

Table 4

A) For $\# 104, \# 106, \# 109$ and $\# 121, L^{*} / L^{\prime}$ contains C_{4}^{l} where $l>$ $22-c$ (note that a configuration D_{5} adds 1 to l), hence by Lemma 2, G has a quotient isomorphic to C_{4}. From the main list, one sees that a cover of group C_{4} must correspond to a configuration of type $4 A_{3}+2 A_{1}$. Remarking that only the stabilisers of A_{3}, A_{7} and D_{5} allow C_{4} quotient (with corresponding subconfiguration $A_{3}, 2 A_{3}$ and $A_{3}+A_{1}$ respectively), it is impossible to get a subconfiguration $4 A_{3}+2 A_{1}$ in these cases.
B) For \#107,\#111-\#116 and \#118-\#120, Lemma 2 imposes a quotient Q of G, for which the kernel corresponds to a configuration Σ which is not in the list. (The $12 A_{1}$'s in $\# 111$ have two ways to decompose into 3 blocks: $2\left[2 A_{3}\right] \cup\left[4 A_{1}\right]$ or $2\left[A_{3}, 2 A_{1}\right] \cup\left[2 A_{3}\right]$. The first leads to a $2 A_{2}+12 A_{1}$, the second to $2 A_{3}+2 A_{2}+7 A_{1}$, both not in the list.)
C) \#108 and \#117 give bad number of 5-Sylow subgroups (6 and 36 respectively).
D) For \#103, the action of G on the set of four 3-Sylow subgroups implies a homomorphism $\varphi: G \longrightarrow \mathfrak{S}_{4}$. Its image is clearly either \mathfrak{A}_{4} or \mathfrak{S}_{4}. But the number of elements of each order in G doesn't make it a \mathfrak{S}_{4}, while the configuration doesn't contain enough A_{2} to have a quotient \mathfrak{A}_{4} which can only be \#17.
E) For \#105, a group of order 24 always has a cyclic quotient C_{2} or C_{3}. None is allowed by the configuration, due to Lemma 2 and Table 1.
F) \#110 : there is only one possible way to decompose the $14 A_{1}$'s into 7 blocks, as shown below.

But this decomposition does not verify the following lemma, if we take β_{i} and β_{j} to be the 2 blocks linking the first two D_{4}.

Lemma 4. - Let $\psi: W \longrightarrow Y$ be a generically Galois rational map of group $H \cong C_{2}^{3}$, with $\left\{\beta_{1}, \ldots, \beta_{7}\right\}$ the 7 blocks of dependent A_{1} 's on Y. For each pair $(i, j), i \neq j$, there are exactly two double covers $\varphi: V \longrightarrow Y$ through which ψ factorises, who are ramified over the $4(-2)$-curves in β_{i} and β_{j}. For different pairs (i, j), the sets of 2 double covers are different. There is also exactly one double cover $\varphi^{\prime}: V^{\prime} \longrightarrow Y$ not ramified over the $4(-2)$-curves.

Proof. - Each β_{i} corresponds to an element $\gamma_{i} \in H$. A double cover φ corresponds to a quotient Q of index 2 of H, and φ is ramified over β_{i} iff the kernel for Q dos not contain γ_{i}. The rest is immediate.

We remark also for the following that two different double covers of the quotient belonging to a group C_{2}^{r} have $4(-2)$-curves in common.
G) \#122: Consider a subgroup of order $3,\left\langle\gamma_{1}\right\rangle$, in the stabiliser of a point in the inverse image of the D_{5}. Its normaliser N in G has order divisible by 9 (a 3-Sylow subgroup of G must be \#15), whose action has a D_{5}, therefore must be $\# 61$ according to the list. As $\# 61$ contains only one C_{3} in its Q_{12} 's, G has exactly 10 such subgroups of order 3 , which are easily seen to be mutually non-normalising.

The action of G on this set S of such subgroups gives $\psi: G \longrightarrow \mathfrak{S}_{10}$. Let γ_{2} be an element of order 5. γ_{2} acts freely on S, decomposing it into two orbits S_{1}, S_{2}. Let γ_{3} be an element of order 4 in the normaliser of $\left\langle\gamma_{2}\right\rangle$ which must be $\# 32$, and consider the actions of γ_{3} and γ_{3}^{2} on S. We have $\gamma_{3}^{2} \gamma_{2} \gamma_{3}^{2}=\gamma_{2}^{-1}$ and S_{1}, S_{2} are stable under the action of γ_{3}^{2}, therefore each S_{i} contains exactly one fixed point of γ_{3}^{2}. Now if γ_{3} interchanges S_{1} and S_{2}, its action on S is odd, so $\psi^{-1}\left(\mathfrak{A}_{10}\right)$ is a subgroup of index 2 in G, but we must have $[G, G]=G$ according to Lemma 2; otherwise γ_{3} has a fixed point in S_{1}, so if $\left\langle\gamma_{1}\right\rangle$ is the corresponding subgroup, then γ_{3}^{2} commutes with γ_{1}. Considering the four orbits of the action of γ_{1} on S, one concludes that γ_{3}^{2} should have at least 4 fixed points in S, contradiction.

Now we come to the existence of the cases shown in Table 2.
Lemma 5. - Let G be a group acting symplectically on a $K 3$ surface, G^{\prime} a subgroup of G. Let Σ, Σ^{\prime} be their corresponding configurations, with c, c^{\prime} the numbers of configurations. Then $c \geqslant c^{\prime}$.

Proof. - Let \mathcal{M}_{Σ} be the moduli space of marked $K 3$ surfaces having a (-2)-configuration of type Σ. By [N$]$, Proposition $2.9, \mathcal{M}_{\Sigma}$ is an analytic space of dimension $20-c$. As G is the π_{1} of the complement of Σ and π_{1} is a topological invariant, a union of connected components of \mathcal{M}_{Σ} forms the moduli space of triplets (X, G, Σ), where X is a marked $K 3$ surface on which G acts giving rise to a (-2)-configuration Σ on the quotient. Now $\left(X, G^{\prime}, \Sigma^{\prime}\right)$ being a sub-action of (X, G, Σ), we must have $\operatorname{dim} \mathcal{M}_{\Sigma^{\prime}} \geqslant \operatorname{dim} \mathcal{M}_{\Sigma}$.

Lemma 6. - For each of the cases in Table 2, the minimal primitive sublattice L is uniquely determined by the configuration and the existence of the group G of order N. In particular, $[G, G]$ and Q are uniquely determined as shown in the table.

Proof. - For most of the cases, the criterion of $\S 1$ gives a unique Q. In case when Q contains a part C_{2}^{2}, C_{2}^{3} or C_{2}^{4}, Lemma 4 and the requirement that every subgroup of G of index 2 must correspond to a configuration in the table give only one possibility of the decomposition of the A_{1} 's for the quotient, then a unique possibility for L. Also when N is small, the numbers of elements of each order given by the configuration determines G, then Q, and then L. So only the following cases need explanations.
\#17 : G must be solvable, and the only cyclic quotient it can have is C_{3}.
$\# 19$: There is a subgroup of index 2 , which must be \#7. Then the subgroups of \#7 gives quotients of G isomorphic to C_{6} and C_{2}^{2}. Therefore $[G, G]=\{1\}$. Similar argument works for $\# 31,32,35,43,46,52,53$.
$\# 20: G$ contains (therefore equals) Q_{12} due to the existence of D_{5}. This explains the existence of a quotient C_{4}.
$\# 23: G$ has a subgroup H of type $\# 11$, hence $H \cong C_{2} \times C_{4}$. The action of $G / H \cong C_{2}$ on H has a fixed subgroup K, which is either a C_{4}, or a C_{2} not in a C_{4}. The first case is impossible as there is no configuration for G / K; in the second case, all the three C_{2} of H are normal in G, one of them giving a quotient of type $\# 11$.
\#24: $Q \cong C_{2}^{3}$. Considering subgroups with quotient C_{2}^{2}, one sees that the only possible decomposition of $14 A_{1}$ is $3\left[2 D_{4}\right] \cup 3\left[2 A_{1}\right] \cup\left[A_{3}\right]$. Similarly, the decomposition for $\# 27$ is $6\left[2 D_{4}\right] \cup\left[2 A_{1}\right]$.
\#28 : The C_{2} in a C_{8} is easily seen to be normal in G, and the quotient is \#11. On the other hand, we use $[\mathrm{N}]$ to see that G is not abelian, therefore $Q=\# 11$.
\#29 : G equals the stabiliser of a point of type D_{6}.
$\# 39: Q \cong C_{2}^{3}$. G has no subgroup of type \#25 due to Lemma 5 . This gives a unique possibility for L.
$\# 40: Q \cong C_{2}^{4}$. By Lemma 5, there is no double cover of Y involving [$8 A_{1}$]. Then it is easy to see that there is a unique way to get 15 double covers of Y such that each pair of them has 4 common A_{1} 's: let $\left\{C_{1}, C_{2}, C_{3}\right\}$, $\left\{C_{4}, C_{5}, C_{6}\right\}$ be the independent A_{1} 's in the two D_{4}. Each double cover is ramified over either 2 or 4 curves C_{i}. For each i, there is a subset S_{i} consisting of 3 of the 9 isolated A_{1} 's, such that:
a) if a double cover is ramified over exactely 2 curves C_{i}, C_{j}, then it is ramified over curves in S_{i}, S_{j};
b) $S_{i} \cap S_{j}=\varnothing$ if C_{i} and C_{j} belongs to a same D_{4}, and $\left|S_{i} \cap S_{j}\right|=1$ otherwise;
c) if a double cover is ramified over 4 curves $C_{i}, C_{j}, C_{k}, C_{l}$, then it is also ramified over the four A_{1} 's which belong to exactly one of the sets $S_{i}, S_{j}, S_{k}, S_{l}$.
\#42: Lemma 4 gives an exact sequence

$$
1 \longrightarrow K \longrightarrow G \longrightarrow Q^{\prime}=\langle\gamma\rangle \cong C_{2} \longrightarrow 1,
$$

where K is of type $\# 25$, hence $\cong C_{4}^{2}$. From the configurations, it is easy to see that there is a generating set $\{a, b\}$ of K, such that the action of Q^{\prime} on K is $\gamma(a)=-a, \gamma(a+2 b)=-a+2 b$. This implies that the elements of order 2 in K are fixed under this action, in other words $[G, G] \cong C_{2}^{2}$ is in the center of G. In particular there is an element $\alpha \in[G, G]$ whose eight fixed points are above an A_{3} of the configuration. Now $G /\langle\alpha\rangle$ is of type $\# 24$, whose decomposition fixes the decomposition for $\# 42$ to be $3\left[2 D_{4}\right] \cup 2\left[A_{3}\right] \cup 2\left[2 A_{1}\right]$.
\#44: G has a quotient isomorphic to C_{2}^{2} by Lemma 2 , corresponding to an overlattice $L^{\prime \prime}$ of L^{\prime}. But $L^{\prime \prime *} / L^{\prime \prime}$ has at least 4 generators (3 corresponding to elements of order >2 in $L^{* *} / L^{\prime}$, and one belonging to D_{4}, which is not touched by $\left.L^{\prime \prime} / L^{\prime}\right)$, therefore $L^{\prime \prime}$ is not primitive, and $L \neq L^{\prime \prime}$. Thus Q can only be $\# 11$.
\#45 : By Lemma 4, for each D_{6} there is a double cover of Y with no ramification over it. The subgroup corresponds to a configuration containing $2 D_{6}$, hence must be $\# 29$. This gives a unique possibility of decomposition:

$\# 57$: G contains a central C_{2}. The quotient H is of type \#40, and as the two cases have the same abelianisation, it is easy to see that the set of three A_{1} corresponding to the extra D_{4} of $\# 57$ must intersect each of the set S_{j} in the proof of \#40 by 1 . This determines uniquely the overlattice L for \#57.
\#60 : There are 3 possible decompositions: $2\left[D_{6}\right] \cup 2\left[2 D_{6}\right] \cup\left[A_{3}\right] \cup$ $2\left[2 A_{1}\right], 2\left[D_{6}\right] \cup\left[2 D_{6}\right] \cup 2\left[D_{6}, A_{1}\right] \cup\left[A_{3}\right] \cup\left[2 A_{1}\right], 2\left[D_{6}\right] \cup 4\left[D_{6}, A_{1}\right] \cup\left[A_{3}\right]$. The first (only one double cover containing $2\left[2 D_{6}\right]$) and the last (no double cover not containing the two $\left[D_{6}, A_{1}\right]$ belonging to the same D_{6}) are excluded by Lemma 4.
\#66 : The subgroup of index 2 contains $6 A_{2}$ hence must be $\# 49$. Therefore $[G, G]$ corresponds to $15 A_{1}$.
\#71 : In view of Lemma 4, the decomposition is

$$
\left[D_{6}\right] \cup\left[D_{6}, D_{4}\right] \cup\left[D_{6}, A_{1}\right] \cup 2\left[D_{4}, A_{1}\right] \cup 2\left[A_{3}\right]
$$

From this lemma, one sees that except for two cases ($\# 12,13$ for Q_{8}, $\# 37,38$ for T_{24}), different cases in Table 2 correspond to different groups, due to differences either in number of elements of different order, or in $[G, G]$ and Q. And each such characterization of group corresponds to a subgroup of the 11 maximal groups whose existence is shown by examples in $[M]$ (refer also to $[M]$ for the descriptions of these subgroups). We have therefore only to show the existence for the two duplicate cases.

Among them, \#12,13 are commutator subgroups of $\# 38,37$ respectively, and \#38 is the commutator subgoup of T_{48} (\#54).

For \#37, consider the stabiliser H of a point in the inverse image of a E_{6}, in $\# 77\left(T_{192}\right)$. We show that H cannot be of type $\# 38$, hence it is \#37.

Assume the contrary. Then H is of index 2 in its normaliser N in $G=T_{192}$, because the configuration of H has two E_{6}, while that of G has only one. The only possibility for N given by the list is $\# 54$, which is impossible because \#54 has elements of order 8 , but \#77 hasn't.

Corollary. - Let X be a $K 3$ surface with a faithful action of a finite group G. Then $|G| \leqslant 5760$.

Proof. - Let

$$
1 \longrightarrow K \longrightarrow G \longrightarrow Q \longrightarrow 1
$$

be the decomposition of G into a symplectic subgroup K and nonsymplectic quotient $Q \cong \mathbb{Z}_{n}$.

Let Y be minimal resolution of the intemediate quotient X / K, on which we have a purely non-symplectic action of $Q . Y$ is a minimal $K 3$
surface. It is well-known that the Euler number $\varphi(n)$ of n must divide the rank of the transcendent lattice of Y, which is $22-\rho(Y)$. When K is nontrivial, the (-2)-configurations resulting from the resolution of singularities of X / K generates a negative-definite sublattice of $N S(Y)$ of rank c, hence $\rho(Y) \geqslant c+1$, or $\varphi(n) \leqslant 21-c$. Now one has only to check the inequality for each case of the list in the theorem.

BIBLIOGRAPHY

[D] I. DOLGACHEV, Integral quadratic forms: applications to algebraic geometry, Seminaire Bourbaki, 611 (1983).
[M] S. MUKAI, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221.
[N] V.V. NIKULIN, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137.

Manuscrit reçu le 6 juin 1995, accepté le 6 septembre 1995.

Gang XIAO,
Université de Nice
Département de Mathématiques
Parc Valrose
06108 Nice Cedex 2 (France).
xiao@aloa.unice.fr

[^0]: Key words: K3 surfaces - Automorphism.
 Math. classification: 14J28.

