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GALOIS COVERS BETWEEN K3 SURFACES

by Gang XIAO

The aim of this note is to classify the actions of finite groups G on
Kahler K3 surfaces X, i.e., simply connected surfaces over C with trivial
canonical sheaf. Such an action is called symplectic, if the (resolution of
the) quotient X/G is also a K3 surface, or equivalently, if the induced
action of G on H°((^^) is trivial. We will only consider symplectic actions.

This classification is done by Nikulin for the case when G is abelian
[N]. Then Mukai [M] gives a complete classification of finite groups G
admitting a sympletic action on a K3 surface, showing that they are exactly
subgroups of 11 maximal groups.

We will give a classification of combinatorial types of the actions,
i.e., the numbers of fixed points of each type. Our method is similar to
that in [N], that is, we consider the singularities of the quotient X/G, and
the sublattice generated by the components of their resolutions. In §1, we
generalize Nikulin's argument to non-abelian groups, to formulate a set
of criteria on this sublattice. Then an easy computer sieve program using
these criteria leads almost directly to the final list of good cases.

Note that we do not use the argument of Mukai (except his examples
which are used to prove the existence), therefore providing an independent
proof of Mukai's classification.

This combinatorial classification contains much information about
the geometry of the symplectic actions. For example, one observes from
the list (Table 2) that the moduli space of the action of each of the 11
maximal groups is of dimension 1, due to [N] (see the proof of Lemma 5).

Key words: K3 surfaces - Automorphism.
Math. classification: 14J28.



74 GANG XIAO

In particular, there are only a finite number of K3 quartics in projective
space who admit linearly the symplectic action of a maximal group. It will
be interesting to construct the exhaustive list of these quartics.

1. Necessary conditions.

Let X be a smooth minimal Kahler K3 surface, with a finite group
G acting symplectically on it (i.e., the quotient is also a K3 surface). It is
well-known that the quotient X/G has at worst rational double points, and
the projection /: X —> X/G is unramified outside these singular points.

Let Y be the minimal resolution of singularities of X/G. For each
singular point pi (i = 1,..., k) on X/G^ its inverse image on Y is a negative
definite configuration E^ of (—2)-curves, of type An, Dn, EQ^ £'7, or £'8-

Let Y / be the complement of the points pi in V, X' = /^(V),
/': X' —> V the induced etale cover. Then ^(X7) = TV^X) = {1} as X'
is the complement of a set of smooth points, hence

G = ̂ (V).

A similar situation holds locally : let Gi be the stabiliser of a point
in V""1^), Ui a small topologic neighborhood of pi. Then

G, ̂  7T,(Ui\pi).

It is well-known that Gi is the cyclic group Cn+i for S^ = An; binary
dihedral group Q^n-s fo1' ^i = Dn (n ^ 4); binary tetrahedral group
Ts4 for E^ = EG ; binary octahedral group ©48 for S^ = E-j; and binary
icosahedral group I^o ^T ^z = Es. By [N], the order of an element of G
(hence of Gi) is at most 8, therefore the possible types for S^ are:

Ai , . . . , Ay, D^ D^D^E^ £7 •

Let also Ci be the number of components of S^, Cz = ^top(S^) = ci +1,
andA^= |G,| ,A^=|G|.

LEMMA 1. — 1. Ni\N for every i.
k

2. ̂  (e, - 1/M) = 24(7V - 1)/7V.
i==i
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Proof. — 1 is clear as Gi is a subgroup of G, and 2 follows directly
from the following computation of topological characters:

k k

24 - ̂  N/N, - ^op(X) - ̂ N/N, = Xtop(XQ
1=1 1=1

/ k \

=Nxtop{Yf) =N 24-^e, . D
\ z=l /

On the other hand, the classes of the (—2)-curves generate a negative
k

definite sublattice L' of rank c = Y c ^ in H^^Y.'Z) which is an even
z=l

unimodular lattice of index (19,3). In particular

(1) c ^ 19.

Let L be the smallest primitive sublattice of H^^Y.K) containing L', L*
(resp. L'*) the dual lattice of L (resp. of L'). We have natural inclusions

L' C L C L* C I/*.

For a finite abelian group ft, let l(H) be the minimal number of
generators. Then as L is primitive in ^(Y^Z), we must have

Z(L*/L) ^ ranH^y^-ranHL) = 22 - c

(e.g. [D]), in particular for every prime number p,

^((L*/L)^) ^ 2 2 - c ,

where we note by Hp the subgroup of H consisting of elements of order p.

On the other hand, we have LjL' ^ Z/*/L*, hence

(2) 22 - c > I ((L7L)p) ^ ; ((^*/L%) - 2Z ((L/LQp).

From a simple computation of the corresponding lattices, it is easy to
see that the number I ((L'*/L')p), for p = 2 or 3, is determined by the
configuration of (—2)-curves in the following way:

A configuration of type An {n odd), Dr, or £7 adds 1 to I ((I/*/L')2),
that of type D^ or DQ adds 2 to / ((I/*/!/) 2), and that of type As, As or
EG adds 1 to ^((L'YLQs).
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And we can use the following lemma to bound the term I ((L/L%).

LEMMA 2. — L / L ' ^ (G/[G,G\Y.

Proof. — The inclusion of V into Y induces a surjective map

a: H\Y^)nHl-l(Y)=P[c(Y) ——P^V),

with Ker(a) = L ' . The image by a of L is the torsion subgroup of Pic (V),
which is naturally dual to the abelianisation of ^\(Y'). But ^\{Y') = G,
because ^\{X') = 7Ti(X) is trivial. D

COROLLARY. — I f l { { L ^ / L ' ) p ) + c > 22, there exists a K3 surface
W with a genetically Galois rational map ^: W ---> Y which is etale
outside the S^ 's, with a Gaiois group CJp where

r = ^((L'VL'V+C^I)^].

LEMMA 3. — Let Q ^ C^ be a group acting symplectically on a
K3 surface W. Then r ^ 4, and the quotient W/Q has exactly 16 - 24-7'
singular points of type Ai, forming T - 1 blocks of^4^ points each. Two
points pi,p2 belong to the same block if and only if they are dependent,
i.e., the corresponding stabiliser subgroups in Q are the same.

Similarly, if Q ^ C^, then r ^ 2, and W/Q has 9 - 32-7' singular
points of type A^, composed of3r-2 blocks of 2 • 32-r dependent points
each.

Proof. — This result can be found in [N], but we give a proof here,
because it provides an illustration of our method.

Let Q ^ C^. Then the only possible non-trivial stabiliser of a point
on W is C-2, in other words W/Q has only singularities of type Ai. In terms
of Lemma 1, we have e, - 1/N, = 3/2, hence k = 16(7v- 1)/N for N = |Q|,
so r ^ 4 and k = 16 - 24-r. Applying the formula to the case r = 1, we see
that an automorphism of order 2 has 8 fixed points. Because Q is abelian,
it permutes these 8 points, giving rise to the number of blocks of dependent
points.

The case of C^ is similar. D

To apply Lemma 3, consider a normal subgroup H in G such that
Q = G/H ^ C^ for p == 2 or 3 and r > 0. Let W be the desingularization



GALOIS COVERS BETWEEN K3 SURFACES 77

of X/JEf, with the induced rational map '0: W — — — > Y. Obviously the
(—2)-configurations mentioned in Lemma 3 must be subconfigurations of
the set {S^} for the map '0. Moreover, if a configuration S^ contains a non-
empty subconfiguration for ^, then Gi must have a quotient isomorphic to/
C^ , for 0 < r' ^ r.

Quotients of this kind for different types of Gi are given in the
following table:

type

A2n-l

D^

D^

D^

De

A)

DQ

E,

Asn-l

EG

Gi

C^n

Qs
Qs
<9l2

Ol6

Ql6

Ql6

048

Can

T24

quotient

C-i

€2
r1'1<^2

C-i
C-i
C2

cl
C-i
C3

Ca

subconfigurations for quotient

n dependent Ai's

2 dependent Ai's

3 independent Ai's

2 dependent Ai's

2 dependent Ai's

3 dependent Ai's

4 Ai's in 3 blocks (1,1,2)

3 dependent Ai's

n dependent A^s

2 dependent A^s

kernel

An-l

A3

Ai

A5

AT

£>4

A3

EG
An-l

£>4

Table 1

Notation. — We note by [Si,...,S^] a block of dependent Ai's
contained in the configuration Si + • • • + S^. The choice of the curves
will be clear from the context.

2. The list.

THEOREM 3. — The action of G falls into one of the following 81
types, where HI is the number of cyclic subgroups of order i, Q == G/[G, G},
and we follow [M] for notations of groups.
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#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

N

2

3

4

4

5

6

6

7

8

8

8

8

8

8

9

10

12

12

12

12

16

16

16

16

16

16

16

c

8

12

12

14

16

14

16

18

14

15

16

17

17

18

16

16

16

16

18

18

15

16

17

17

18

18

18

configuration

8Ai

6A2

12Ai

4As + 2Ai

4A4

3A2 4- 8Ai

2As + 2A2 + 2Ai

3Ae

14Ai

2As + 9Ai

4As + 4Ai

2Ai + 3As

4^4 4- Ai

2Ay + AS + AI

8A2

2A4 + 8Ai

6A2 + 4Ai

As + A2 + 9Ai

3A5 + 3Ai

2^5 + 2Aa + A2

15Ai

2As + 10Ai

4As + 5Ai

2^4 + As + 6Ai

6As

D^ + AT + As + 4Ai

41)4 + 2Ai

^25 . . . ,^8

— 5 5 5 5 5 5

5 — 5 5 5 5 5

° 5 5 5 5 5 5

— 5 5 • l - 5 5 5 5

5 5 5 - L 5 5 5

° 5 l 5 5 5 5 5

-5- ' -555-*-55

5 5 5 5 5 - l - 5

7
' 5 5 5 5 5 5

° 5 5 l 5 5 5 5

°5525555

l55°5555

1,,3,,,,

1»1,,,,1

,4,,,»
K 1
" 5 5 5 - l - 5 5 5

3,4,,,,,

' 5 - L 5 5 5 — 5 5

°5l555°55

1,1,3,,1,,

- ^ 5 5 5 5 5 5

1 1 0
- l-- l-55- '5555

' 55 - I :5555

7.4,,,

^556,,,,

555°5555l

3,,6,,,,

[G,G]

0

0

0

0

0

#2

0

0

0

#1
0

#1
#1
0

0

#5

#3

#2

0

#2

0

#1

#1

#1
0

#4

#1

Q
G

G

G

G

G

#1
G

G

G

#3

G

#3

#3

G

G

#1
#2

#3

G

#4

G

#9

#11

#9

G

#3

#9

G
C2

€3

cl
€4

C,

De
Co

CT

cj
Ds

C^XC4

Qs

Qs
C&

cl
•DIO
2t4

•Dl2

C'2XC'6

Ql2

<-24

C'2 X£»8

F2C1

Q8*C4

C42

5£»i6

C'2X<38
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#

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

N

16

16

18

18

20

21

24

24

24

24

24

32

32

32

32

32

32

32

36

36

36

48

48

48

48

48

48

c

19

19

16

18

18

18

17

18

18

19

19

17

17

18

18

19

19

19

18

18

18

17

18

18

19

19

19

configuration

2Ar + As + 2Ai

2A) + ^4 + AS

4A2 + 8Ai

2A5 + 3A2 + 2Ai

A4 + 4As + 2Ai

AQ + 6A2

2As + 3A2 + 5Ai

2A5 + 2A2 + 4Ai

DQ + A5 + As + 5Ai

EQ + i^4 + AS + 2A2

2Ee + As + 2A2

3As + 8Ai

2^4 + 9Ai

5As + 3Ai

2^4 + 2Aa + 4Ai

2Ay + 5Ai

D^ + AT + 2As + 2Ai

2D6 + D^ + 3Ai

4As + 2A2 + 2Ai

A5 + 6A2 + Ai

2A5 + A2 + 6Ai

6A2 + 5Ai

2As + 6A2

A5 + 2As + A2 + 5Ai

3A5 + 4Ai

21)5 + 2As + A2 + Ai

EQ + AT + A2 + 4Ai

"2, • • •,"8

3,,2,,,,2

I??0??;?!

o 4
- 5 - 5 5 5 5 5

3,4,,,3,,

5555,1555

5 * 5 5 5 5 - 5

9,4,3,,,,

7 4 4• 5 ^ 5 5 5 ^ 5 5

95153.3,

1,4,3,,4,,

1,4,3,,4,,

19,,6,,,,

19,,6,,,,

11,,10,,,,

11,,10,,,,

11,,2,,,,4

75585,,,2

7,,8,,,,2
0 4 0
l : /5• I5 l 75,55

°51°, 55°55

15,4,,,6,,

15,16,,,,

3,16,6,,,,

19,4,6,,4,,

15,4,,,12,,

7,4,12,,4,,

13,4,3,,4,,3

[G,G]
#1
#4

#15

#2

#5

#8

#17

#3

#7

#13

#12

#3

#1

#3

#3

#3

#4

#4

#15

#3

#15

#21

#25

#17

#3

#17

#38

Q
#11
#3

#1

#7

#4

#2

#1

#7

#3

#2

#2

#9

#21

#11
#9

#11

#11

#9

#4

#15

#3

#2

#2

#3

#19

#4

#1

G
r^d
Ql6

2t3,3

€3 X DQ

Hol(C'5)

C 7 X C 3

©4

C2 X2l4

€3 ^DS

T24

724

24C2

Qs^Qs
Fyai

F4C2

F702

Fse

^602

32C'4

C3X2l4

©3,3

24C'3

42C'3

C'2 X ©4

22(072 x Co)

220l2

T48
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#
55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

7V

60

64

64

64

64

64

72

72

72

80

96

96

96

96

96

120

128

144

160

168

192

192

192

288

360

384

960

c

18

18

18

19

19

19

18

19

19

19

18

19

19

19

19

19

19

19

19

19

18

19

19

19

19

19

19

configuration

2A4 + 3A2 + 4Ai

D^ + 3As + 5Ai

3D4 + 6Ai

Ay + 3As + 3Ai

D^ + 5As

2£>6 + As + 4Ai

DQ + As + 3A2 + 4Ai

2As + 2As + 3Ai

21)4 + 3As + A2

4A4 + 3Ai

3As + 3A2 + 3Ai

2As + As + 2A2 + 2Ai

D^ + Ay + 3A2 + 2Ai

Ds 4- As + 2As + 3Ai

2Ee + 2A2 + 3Ai

As + A4 + 2As + A2 + 2Ai

DQ + 2)4 + 2As + 3Ai

2As + 4A2 + Ai

2A4 + 3As + 2Ai

Ae + 2As + 3A2 + Ai

D^ + 6A2 + 2Ai

£>4 + As 4- 2As + A2 + 2Ai

EQ + 3As + A2 + 2Ai

21)5 + As + 2A2 + 2Ai

2A4 + 2As + 2A2 + Ai

A) + 2Aa + 3A2 + Ai

At + 2A4 + 3A2 + Ai

^2,. . . ,7l8

15,10,,6,,,

27,,18,,,,

27,,18,,,,

19,,14,,,,4

11»26,,,,

19,,14,,,,4

21,13,9,,3,,

21,4,9,,12,,

9,4,27,,,,

15,,,16,,,

27,16,18,,,,

19,16,6,,16,,

15,16,12,,,,6

27,4,18,,12,,

19,16,6,,16,,

25,10,15,6,10,,

35,,38,,,,4

15,40,,,24,,

35,,30,16,,,

21,28,21,,,8,

27,64,18,,,,

43,16,42,,16,,

43,16,42,,16,,

51,40,54,,24,,

45,40,45,36,,,

51,64,78,,,,12

75,160,90,96,,,

[G,G]

G

#9
#3

#9

#11

#11
#47

#30

#30

#21

#49

#21

#50

#35

#40

#55

#22

#21

#64

G

#57

#49

#69

#72

G

#75

G

Q
0

#9

#21

#11

#11

#9

#1

#3

#3

#5

#1

#7

#1

#3

#2

#1

#9

#15

#1
0

#2

#3

#1

#1
0

#1
0

G

215

r25ai

risGi
r22ai
r2302

^2602

2k3
N72
MQ

24C5

^DQ

24C6

42P6

2^12

(08*08)>3C3

65

-̂ 128

^

24Dio

^2(7)

42914
-HI 92

^192

2l4,4

2t6

-^384

^20

Table 2
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Proof. — We implement the following criteria into a mechanical check
of all the combinations of (—2)-configurations {Sz}^i ^ :

1. c^ 19.

2. There is no configuration of type An for n > 7, Dn for n > 6, or
Es.

3. There exists an integer N such that Lemma 1 is satisfied.

4. Elements of different orders add up to T V — 1 . The number of
elements of order n can be recovered from the number of fixed points on
X with a stabiliser containing Cn [N]:

fixed

n

points of aCn

2

8

3

6

4

4

5

4

6

2

7

3

8

2

Table 3

5. By Lemmas 2 and 3, if r = [(I {{L^/L^) + c - 21) /2] > 0, {S,}
contains a subconfiguration of 16 — 24-r disjoint A]/S in conformity with
Table 1, partitioned into T — 1 independent blocks of 24-r curves each.

6. Similarly, if r = [(I ((L^/LQa) + c - 21) /2] > 0, {EJ contains
a subconfiguration of 9 — 32-r disjoint A^s in conformity with Table 1,
partitioned into 3r — 2 independent blocks of 2 • 32-r A^s each.

The result of the check is the cases in Table 2 together with the
following list:
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#

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115
116

117

118

119

120

121

122

N
8

16

24

24

24

24

32

40

48

64

72

72

120

144

144
192

240

288

288

288

720

720

c
16

18

18

19

19

19

19

19

19

19

18

18

18

19

19
19

19

19

19

19

19

19

configuration

2^4 + As + 5Ai

2^4 + 3As + Ai

4As + 3A2

DQ + As + 3As
2D^ + As + 2A2

3^5 -h As + Ai

4^4 + As
3A4 + 2As + Ai

A5 + 4As + A2

3^4 + 2As + Ai

4As + A2 + 4Ai

A5 + 5A2 + 3Ai

A4 + 6A2 4- 2Ai

A5 + 4As + 2Ai

DQ + A5 + As + 2A2 + 2Ai

AT + A5 + A2 + 5Ai

3A4 + 3A2 + Ai

A5 + 3As + 2A2 + Ai

^5 + 4As + 2Ai
DQ + A5 + 4A2 + Ai

A4 + 4As + A2 + Ai

D^ + A4 + As + 3A2 + Ai

Non-existence
Too many C-i 's (3) for Qs

No quotient for Qs (#12 or #13)

D)
A)
E)

A)
B) 0=C2,E=#102

C)

A)

F)
B) Q = Ca

B) Q = Cs, E = 3Aa + 10Ai

B) Q = Cs, E = 3A4 + 6Ai

B) Q=C' | ,E=2A2+12Ai

B)Q=C'2,E=#112

B) Q = C-i, E = 2Ay + 3A2

C)
B) Q = C-i, E = 2As + 5A2 + 2Ai

B) Q=C' | ,E=2A5+8Ai

B) Q=C'3,E=3£»5+4Ai

A)

G)

Table 4

A) For #104,#106,^109 and #121, Z/*/Z/ contains C\ where / >
22 — c (note that a configuration D^ adds 1 to /), hence by Lemma 2,
G has a quotient isomorphic to £4. From the main list, one sees that a
cover of group £4 must correspond to a configuration of type 4As + 2Ai.
Remarking that only the stabilisers of As, Ay and D^ allow £4 quotient
(with corresponding subconfiguration As, 2As and As + A\ respectively),
it is impossible to get a subconfiguration 4As + 2Ai in these cases.
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B) For #107,#111-#116 and #118-#120, Lemma 2 imposes a quo-
tient Q of G, for which the kernel corresponds to a configuration S which
is not in the list. (The 12 Ai's in #111 have two ways to decompose into 3
blocks: 2 [2A3]U[4Ai] or 2 [As, 2Ai]u[2A3]. The first leads to a 2A2+12Ai,
the second to 2Aa + 2A2 + 7Ai, both not in the list.)

C) #108 and #117 give bad number of 5-Sylow subgroups (6 and 36
respectively).

D) For #103, the action of G on the set of four 3-Sylow subgroups
implies a homomorphism (p: G —> ©4. Its image is clearly either ̂  or
©4. But the number of elements of each order in G doesn't make it a ©4,
while the configuration doesn't contain enough As to have a quotient 214
which can only be #17.

E) For #105, a group of order 24 always has a cyclic quotient C^ or
Cs. None is allowed by the configuration, due to Lemma 2 and Table 1.

F) #110 : there is only one possible way to decompose the 14 Ai's
into 7 blocks, as shown below.

^4 D^ D4 Ai As As

But this decomposition does not verify the following lemma, if we
take f3i and (3j to be the 2 blocks linking the first two D^

LEMMA 4. — Let ̂ : W ———)• Y be a generically Galois rational map
of group H ^ Cj, with { /? i , . . . ,/?y} the 7 blocks of dependent Ai ^ on Y.
For each pair (z,j), i -^ j, there are exactly two double covers (p: V —> Y
through which -0 factorises, who are ramified over the 4 (—2)-curves in /^
and (3j. For different pairs (z,^), the sets of 2 double covers are different.
There is also exactly one double cover ( p ' \ V —> Y not ramified over the
4 (—^-curves.

Proof. — Each (3i corresponds to an element 7^ € H. A double cover
(p corresponds to a quotient Q of index 2 of H, and (p is ramified over /3,
iff the kernel for Q dos not contain 7^. The rest is immediate. D
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We remark also for the following that two different double covers of
the quotient belonging to a group C^ have 4 (—2)-curves in common.

G) #122 : Consider a subgroup of order 3, (71), in the stabiliser of
a point in the inverse image of the DQ. Its normaliser N in G has order
divisible by 9 (a 3-Sylow subgroup of G must be #15), whose action has
a 1)5, therefore must be #61 according to the list. As #61 contains only
one €3 in its Oi2's, G has exactly 10 such subgroups of order 3, which are
easily seen to be mutually non-normalising.

The action of G on this set S of such subgroups gives '0: G —> ©10.
Let 72 be an element of order 5. 72 acts freely on S, decomposing it into
two orbits 5i, S^. Let 73 be an element of order 4 in the normaliser of (72)
which must be #32, and consider the actions of 73 and 73 on S. We have
7J727J = 72"1 and 5i, 62 are stable under the action of 73, therefore each
Si contains exactly one fixed point of 7J. Now if 73 interchanges Si and
5'2, its action on S is odd, so ^^(^lo) is a subgroup of index 2 in G, but
we must have [G, G} = G according to Lemma 2; otherwise 73 has a fixed
point in 5i, so if (71) is the corresponding subgroup, then 7J commutes
with 71. Considering the four orbits of the action of 71 on 5, one concludes
that 7J should have at least 4 fixed points in S, contradiction.

Now we come to the existence of the cases shown in Table 2.

LEMMA 5. — Let G be a group acting symplectically on a K3 surface,
G' a subgroup of G. Let S, S' be their corresponding configurations, with
c^c' the numbers of configurations. Then c ^ c'.

Proof. — Let My, be the moduli space of marked K3 surfaces having
a (—2)-configuration of type E. By [N], Proposition 2.9, A^s is an analytic
space of dimension 20 — c. As G is the TTI of the complement of E and
Ti-i is a topological invariant, a union of connected components of My,
forms the moduli space of triplets (X,G,S), where X is a marked K3
surface on which G acts giving rise to a (—2)-configuration S on the
quotient. Now (X.G^E') being a sub-action of (X,G,S), we must have
dim ./ME' ^ dimA^s- D

LEMMA 6. — -For each of the cases in Table 2, the minimal primitive
sublattice L is uniquely determined by the configuration and the existence
of the group G of order N. In particular, [G, G] and Q are uniquely
determined as shown in the table.
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Proof. — For most of the cases, the criterion of §1 gives a unique Q. In
case when Q contains a part Gj, Cj or Cj, Lemma 4 and the requirement
that every subgroup of G of index 2 must correspond to a configuration
in the table give only one possibility of the decomposition of the Ai's for
the quotient, then a unique possibility for L. Also when N is small, the
numbers of elements of each order given by the configuration determines
G, then Q, and then L. So only the following cases need explanations.

#17 : G must be solvable, and the only cyclic quotient it can have is
C3.

#19 : There is a subgroup of index 2, which must be #7. Then the
subgroups of #7 gives quotients of G isomorphic to CQ and Cj. Therefore
[G,G] = {1}. Similar argument works for #31, 32, 35, 43, 46, 52, 53.

#20 : G contains (therefore equals) Q^ due to the existence of D^.
This explains the existence of a quotient €4.

#23 : G has a subgroup H of type #11, hence H ^ 62 x 64. The
action of G / H ^ 62 on H has a fixed subgroup K, which is either a 64, or
a 62 not in a (74. The first case is impossible as there is no configuration
for G / K ; in the second case, all the three C^ of H are normal in G, one of
them giving a quotient of type #11.

#24 : Q ̂  C^. Considering subgroups with quotient Gj, one sees that
the only possible decomposition of 14Ai is 3 [2D^} U 3 [2Ai] U [As]. Similarly,
the decomposition for #27 is 6 [2D^} U [2Ai].

#28 : The €2 in a Cg is easily seen to be normal in G, and the quotient
is #11. On the other hand, we use [N] to see that G is not abelian, therefore
Q=#ll.

#29 : G equals the stabiliser of a point of type DQ.

#39 : Q ̂  Cj. G has no subgroup of type #25 due to Lemma 5. This
gives a unique possibility for L.

#40 : Q ^ Cj. By Lemma 5, there is no double cover of Y involving
[8Ai]. Then it is easy to see that there is a unique way to get 15 double
covers of Y such that each pair of them has 4 common Ai's: let {Ci, C^, €3},
{64,65, C^} be the independent Ai's in the two D^. Each double cover
is ramified over either 2 or 4 curves Ci. For each %, there is a subset 5^
consisting of 3 of the 9 isolated Ai's, such that :

a) if a double cover is ramified over exactely 2 curves Q, Cj, then it
is ramified over curves in 5'z, Sj;
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b) S, n Sj = 0 if G^ and Gy belongs to a same D^ and |S', D Sj\ = 1
otherwise;

c) if a double cover is ramified over 4 curves Q, Cj, Ck, Q, then it
is also ramified over the four Ai's which belong to exactly one of the sets
0^, Oj, Ofc, 0^.

#42 : Lemma 4 gives an exact sequence

K G — Q' = (7) ^ ̂

where ^f is of type #25, hence ^ G^. From the configurations, it is easy
to see that there is a generating set {a, b} of K, such that the action of Q'
on K is 7(0) = -a, 7(0 + 26) = -a + 26. This implies that the elements
of order 2 in K are fixed under this action, in other words [G, G] ^ Gj
is in the center of G. In particular there is an element a e [G, G] whose
eight fixed points are above an A^ of the configuration. Now G/ (a) is
of type #24, whose decomposition fixes the decomposition for #42 to be
3[2^4]U2[A3]U2[2Ai] .

#44 : G has a quotient isomorphic to Gj by Lemma 2, corresponding
to an overlattice L" of V ' . But I/'* ft" has at least 4 generators (3
corresponding to elements of order > 2 in I/*/!/, and one belonging to
D4, which is not touched by L11'/I/), therefore V is not primitive, and
L ̂  L". Thus Q can only be #11.

#45 : By Lemma 4, for each DQ there is a double cover of Y
with no ramification over it. The subgroup corresponds to a configuration
containing 2De, hence must be #29. This gives a unique possibility of
decomposition:

Do A) D. Ai Ai Ai

#57 : G contains a central C^. The quotient H is of type #40, and as
the two cases have the same abelianisation, it is easy to see that the set of
three Ai corresponding to the extra D^ of #57 must intersect each of the
set Sj in the proof of #40 by 1. This determines uniquely the overlattice
L for #57.
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#60 : There are 3 possible decompositions: 2 [De] U 2 [2De] U [As] U
2 [2Ai],2 [D6]u[2De]U2 [^e,Ai]u[A3]U[2Ai], 2 [D6]U4 [De,Ai]U[A3]. The
first (only one double cover containing 2 [2De]) and the last (no double cover
not containing the two [DQ, Ai] belonging to the same Do) are excluded by
Lemma 4.

#66 : The subgroup of index 2 contains 6As hence must be #49.
Therefore [G,G] corresponds to 15Ai.

#71 : In view of Lemma 4, the decomposition is

[De] U [DQ, D^} U [A), Ai] U 2 [D^ Ai] U 2 [As] . D

From this lemma, one sees that except for two cases (#12,13 for Qs,
#37,38 for T^), different cases in Table 2 correspond to different groups,
due to differences either in number of elements of different order, or in
[G, G] and Q. And each such characterization of group corresponds to a
subgroup of the 11 maximal groups whose existence is shown by examples
in [M] (refer also to [M] for the descriptions of these subgroups). We have
therefore only to show the existence for the two duplicate cases.

Among them, #12,13 are commutator subgroups of #38,37 respec-
tively, and #38 is the commutator subgoup of r4g (#54).

For #37, consider the stabiliser H of a point in the inverse image of
a EQ, in #77 (T^). We show that H cannot be of type #38, hence it is
#37.

Assume the contrary. Then H is of index 2 in its normaliser N in
G = Tigs, because the configuration of H has two EQ, while that of G
has only one. The only possibility for N given by the list is #54, which is
impossible because #54 has elements of order 8, but #77 hasn't. D

COROLLARY. — Let X be a K3 surface with a faithful action of a
finite group G. Then |G| ^ 5760.

Proof. — Let

1 -^ K —^ G -^ Q -^ 1

be the decomposition of G into a symplectic subgroup K and non-
symplectic quotient Q ^ Zyi.

Let V be minimal resolution of the intemediate quotient X / K , on
which we have a purely non-symplectic action of Q. Y is a minimal K3
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surface. It is well-known that the Euler number ^p(n) of n must divide the
rank of the transcendent lattice of V, which is 22 — p(Y). When K is non-
trivial, the (—2)-configurations resulting from the resolution of singularities
of X/K generates a negative-definite sublattice of NS{Y) of rank c, hence
p(Y) ^ c + 1, or (p{n) ^ 21 — c. Now one has only to check the inequality
for each case of the list in the theorem. D
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