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p-ADIC ORDINARY HECKE ALGEBRAS FOR GL(2)

by
Haruzo HIDA (*)

0.

In this paper, we first give a full proof of the control theorem
of the universal nearly ordinary Hecke algebra for G = Res^/QGL(2)
(Theorem 3.2) for an arbitrary number field F, which is announced in [H5]
without proof. As a result of this, we can define the space of ordinary
p-adic (cohomological) modular forms as the p-adic dual of the Hecke
algebra. The group G which controls the algebra is isogenous to T^p)/^
for the maximal F-split torus T of G and the integer ring r of F. Then
the subspace of the space of p-adic ordinary modular forms on which G
acts via an algebraic character K of T trivial on units is the space of
ordinary modular forms of weight K, for a given level N . By a motivic
and also an analytic reason, if F has at least one complex place, the
Hecke algebra is of torsion over the Iwasawa algebra A of the torsion
free part of G. In Section 4, we study the CM component of the Hecke
algebra and clarify the relation between the annihilator in A of the CM
component and the p-adic closure of the unit group of the corresponding
quadratic extension of F (Theorem 4.1 and Proposition 4.2). Then we
will make a conjecture which implies that the codimension of the image
of the spectrum of the Hecke algebra in Spec(A) is equal to the number
of complex places 7-2 of F (Conjecture 4.3). If one applies the conjecture
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to a CM component of the Hecke algebra, the conjecture implies the
Leopold! conjecture for the quadratic extension corresponding to the CM
component. Thus the conjecture may be viewed as a non-abelian analogue
of the Leopold! conjecture. In Sections 5 and 6, we study more closely
(than in [HI]) p-ordinary parabolic cohomology groups in the simplest case
where F has only one complex place. In this case, we will show that the
Pontryagin dual of the p-ordinary parabolic cohomology group of level p°°
is a torsion A-module of homological dimension 1 (Theorems 5.2 and 6.2).
This implies that the module has no non-trivial pseudo null submodules.
The characteristic power series in A of this cohomology group is divisible
by that of the nearly ordinary Hecke algebra, and we expect that these
two characteristic power series are very close to each other. In particular,
we determine the characteristic power series of CM irreducible components
when F has only one complex place (Theorem 5.3).

1.

In this section, we recall the definition of cohomological Hecke
operators. We use the same notation introduced in [HI] (see corrections
listed at the end of this paper). Thus -F denotes a number field. Let B
be a quaternion algebra over F. We consider the algebraic group G = B^
over Q. Thus G(A) = (B 0Q A)x for each Q-algebra A. We suppose that

(Spp) G(Qp)^GL2(Fp) for Fp=F^Qp.

Since the case where B is definite is already treated in [H2], we assume
that:

( B 0Q R is indefinite, that is, it has at least one simple
x 00/ ^component isomorphic to either M2(R) or M2(C).

We write r (resp. r^) for the number of simple components of B (g)Q M
isomorphic to M^(K) (resp. M2(C)). We fix a maximal order R of B and
an identification R[ ^ M^i) as t[-algebras for primes I of F whenever
possible. We put R = R 0z Z. For each open compact subgroup U of Rx,
we consider

Y(U) = Gr(Q)\G(A)/£/F^Coo+,

where Coo+ is the standard maximal compact subgroup of the connected
component C?-|-(M) of the identity of G(R). Then Y(U) is a Riemannian
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manifold of dimension 2r+3r2 if U is sufficiently small. Then we take a finite
extension K/Q)p with p-adic integer ring 0 such that R (g)z 0 C M^(OY,
where I is the set of embeddings of F into Q. We also fix embeddings
Q —> (QL and Q —^ C. We consider the -Rp-module L(n^ v; A) for each 0-
module A. Here 0 < n € Z[J] and v € Z[J], and -L(n, v, A) is the A-module of
polynomials in (Xo-, Yo-)o-e-r with coefficients in A homogeneous of degree Uy
for each a € J. We let I? act on it via

aP{{X^Y^=^ap)VP{(X^)ta^)

for a G jR, where o^ = ^(a)a~1 for the reduced norm map v : B —>• F. For
any .Rp-module M, we can think of the quotient space M given by

G(Q)\G(A) x M/UF^C^

via an action which is given by

a(g,m)u = (agu.u^m).

We then consider the sheaf of locally constant sections of M, which we
again write as M. When M = L(n, v\ A), we simply write C(n, v\ A) for the
sheaf M. Now we specify open compact subgroups of G(A^). We put,
writing VN = PI t^

l\N

^(A0={^><;^=(^ ^)=(; ^) mod NM^N)

for some n ^,

(1.1) U,(N)=[xeRX^N=^ ^-(S !) mod ^^(^
-a & -

for some u and v ?•,

Uo(N)= [ x e R X \ X N = ( a ^) withceA/r jvl .

We fix an open compact subgroup S of ^x such that S = SpS^ and
Sp = R^ where

S^ = {x G 5 | Xp = 1}.

We write N for the level of S (that is, the ideal N in r which is maximal
with respect to the property that x — 1 € NR =^ x ^ S). Then we put

s,(pQ)=snu^pa^ ^(p^^nyo^), ^(p^^nW),
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and we see that

^(P'VW) ̂  (t/p^ x (t/p^.

We define G0 = ̂ (p^/^)^. Then G" naturally acts on various
cohomology groups

^(r(W)),£(n^;A)),

^(m^)),^^)),

^(mp'))^^))
introduced in [HI] 1.8 and §5. We hereafter write H^ for any one of these
three types of cohomology groups. When Y(S) is compact (<^ B ̂  M^F)),
we regard all these cohomology groups are equal to the usual cohomology
groups. Throughout this paper, we assume the following condition:

(TF) Y(S) is smooth.

Then Y(U) is smooth for any open subgroup U of S. The condition (TF)
is satisfied by sufficiently small 5'.

Let e be a character of G01. For each s e ^oCp"), we write e{s) for
the value of e of the class of s in G^. Then we twist the action of So (p")
on L(n,v;A) by e, and the resulting module we write as L(n,v,£;A). We
put

G=Gs =1^0°.
Q

Then we see:

(1.2) Ga = S^pa)vx/S(pa)tx = So^)/^^) n S^)^).

By definition, we see that 5'o(p°) 1-1 S^p0)^ = (fi'nF^)^^). Thus writing
5' n J^ as £'5, via (a, d) i->. (o-1^ a), we have

(1.3) G" ^ ((r/p^ x (r/p^t)")/^ ^ (r^Qr)x x {W^/Es}.
This shows that

Gs = (t; x r; ) / E s = r; x (^x / E s ) ,

where ^5 is the closure of £'5. in r^. We write Zs for ( t ^ / E s ) . We may
regard 65 as a quotient of T(Zp) for the tp-split standard torus T, that is,
the algebraic subgroup of G given by:

(1.4) ^)={(; S)'"'̂ ^4)'}-
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Anyway, the character group of T is given by X(T) ='Z[^] x Z[J].
We normalize the identification so that (n,v) C Z[J] x Z[I} gives rise to
the character: (a,d) i-> a^ad)"". Thus the group X(Gs) of algebraic
characters of Gs is^

(1.5) X(Gs) = {(n,v) G X(r);n+2z> is trivial on £^}.

Fo1' 3 - > 3 ' ^ 2^L we write:

(16} i ~ ?' ^ £J-J = ^ ^or a^ umts m a sufficiently
small subgroup of finite index in t^.

If S is sufficiently small, the condition that n + 2v is trivial on Es becomes
independent of S. It is equivalent to

n + 2v w 0.

We call a character /^ of the compact group Gs arithmetic if its restriction to
an open neighborhood of the identity coincides with an element of X(G^).
We write A(Gs) for the group of arithmetic characters. For each K € A(G^),
we write (n(^),v(/^)) for the character in X(Gs) it gives on a small
neighborhood of 1. Then we define e^, a finite order character of G^, by

^-^o^"^'^.
We simply write C{^A) for ^C(n(^),^(^),£^;A). As explained in [H3], §4
and [H4], §6, we have an integral operator (S{pot)xS{pa)) acting on
HS (Y (S (p^)), ̂ C(/^; A)) for each x in the following semi-group:

(1.7) D=D^pa)={6eG(AOO)\^=^ ^ )eM2(tp) ,

ap€t^, c€p%^.

Here we let D^ = {61- = n(6)6~1', 6 e D} act on L(/^; A) by

^P(x,,y,)=P((x,,y,)^).
The action of (U6U) for U = S{pa) is given as follows: we define

[6] : L(^; A)/Y{W) —^ L(^ A)/Y{w8)

by {g, P) h-> (g6, 6pP) for W = Un6U6-1 and W6 = 6-^6. Then for each
section £ in /;(/t; A)/V(^), [^](^)(^) = 6p£(g), and we have a morphism

[^] :^(y(w),£(/.;A)) ^^(y(^),r(^;A)).
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Now we define

(1.8) (U6U) = ^^Y{W6)/Y(U) °[6] ° ̂ Y(W)/Y{U) •

We write, for z € F^ D Vppf,

T(,)-^(; ».

Let v : B —> F be the reduced norm map. For each ideal n outside TVp, we
decompose the subset of R made of x with v(x)x = nr and XpN e ?7p^v into
a disjoint union U [/W with SN? = 1, and we put

6

W = ̂ (£/w).
6

This operator only depends on the ideal n. Instead of using [<$], we could
have used ̂  ( n ) • The operator obtained will be written as T(z). This
operator is integral only when v > 0 and T(z) = z^p^T^).

We now interpret our operator introduced in terms of classical Hecke
operators. Choose a representative set T = T(U) for G(Q)\G(A)/[/G+(R).
We assume that tp commutes with 6p and too == 1 for all t e T. Then
for t e T,

(^,P)=(7^4u,^P)

(n e U,g^,g^ e G+(R) and 7 e G(Q)) implies that t^oo = 7^o^.
Thus 7 = tg^ u-^g'^t-^s and 7 € I\ = WG+(R)^-1 H G(Q). Moreover
7p = tpUp1^1 and 700 = ̂ oo^1, and we get

(^^^p1)^) = (^oc, P).

Since the center has to act trivially on L(/^;A) to get non-trivial
cohomology, we have (700^ (7p'1)'^) = (7oo^,7p^p-P)- Thus writing Z
for the symmetric space G+(R)/F^Goo+, we see that, via (tgoo.P) i-̂
(pcx)(^o)^p-P),

L(/,;A)/y^)^ [J rt\(ZxtpL(^A)),
t€T{U)

where ri acts on the product Z x L(/^;A) by 7(2?,?) = (7oo(^),7pP) and
ZQ is the fixed point in Z of Goo+. Now suppose 6 e D and

G(Q)^G+(R)^ = G(Q)^G+(M).
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Then tg^S = 7^<o. Thus g^ = 700^, 6^ = ̂ °°hut-1 and

SptpU^tp1 = tp6ptpltpUpltpl = 7p.

That is, v(6)x = ̂ (7)1 and ^~~16 e I\. We then see that:

(U6U)= (9 (r^r,).
t^D{U}

Here (r^Ft) is defined as follows. The map: ( z ^ P ) ̂  (7(^)57^?) induces
a morphism:

[7] : ̂ \(Z x L(/,;A)) ——7-1^7\(^ x ^(^;A).

We apply this construction to <I> == 7rt7~1 H Ff. Then we have a morphism

[7] :H^YW^{^A)) —.^(y(^),/:(^;A)),

where Y(r) == T\Z. Now we define:

(1.9) (^n^t) = Try(^)/y(r<) °M ° resy^/y^).

If r is sufficiently small, the fundamental group of Y(T) is given by

r^r/rnF^
Abusing the notation, we write HS(T,L(^A)) for HS\Y(T), £(^; A)) in
this paper.

2.

We now lift the control theorem in [HI] for SL(2)/^ to GL(2)/^. We
choose r^j/^)) as follows: first we fix a decomposition

h
G(A)=[JG(Q)^G+(R)

i=l

so that (^)poo = 1. Since z/(5') = ^{SQ^)) for all a, we have from the
strong approximation theorem that

h

(2.1) G(A) = [J ̂ (Q)^^^)^^).
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Now we see

GW\GWtiSo(pa)G+W/S(pa)G+(R')

^ t^G^ti n ̂ (^(^(RA^o^G+ORV^p^G^R) (via tiS ̂  s)

^ {(5(pQ)G+(R)\5(pa)G+(R)(^-lG(Q)(, n5o(p"))G+(R)}
\So(pa)G+(R)/S(pa)G+(R).

Put:

(2.2) ^ = { ( ̂  ^) € 5o(p°) | ad = £ for some totally

positive unit e of t ^.

Then again by the strong approximation theorem, the finite group X/S(p01)
coincides with {^(p^S^^GWti n ̂ (p0))}, and we have

(2.3) ^(QAGW^oh^G^RV^^G'̂ R)
^ X^o^/S^) (viatiS ̂  s).

We choose a complete representative set Sa of X\So(pa)/S(pa). We may
assume that Sa is made of diagonal matrices at p. Then

T(S{pa))={tiS•,seS^}.

In particular, t,s commutes with ( „ ) for z € -FX. Note that

tisSip^s-1^1 = tiS^0')^1. Thus writing F^p") for ?(. for U = S(p0'),
we have

(2.4) H^Y{S{pQ))^^A)) - {^^(y^^)),/;^;^)}5"
^=1 >

^{©^(^(P^^^A))}^
^=1 ;

where F = r/F H F x . Note that

E" = iwyr^) ̂  X5(pa)tx/5(pa)tx c G",
where

Poh") = t^o(pa)^-lG+W n G(Q), r^p") = r^^)/^^) n Fx.
We put

E == lim E°
Cf

as a subgroup of G.
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Thus we can rewrite (2.4) as:

(2.5) ^ (V(W)), £(^; A)) - Ind :̂ {(I) ̂  (rW, L(^; A))}

as G^-modules.

We now put

(2.6) H^Y(S{p°°))^{^A)) -Inn ̂ ^{^^(r1^),^;^)}
01 z=l J

-Ind^inn ^^(r^p^^^A))}
a z=l

-Ind^^Jf^r^p00),^;^)},
%=1

where for each right E-module M, Ind^ M is the space of locally constant
functions on G satisfying f(ge) = f(g)e. We let G act on Ind^M by
/ I 9W = f(gx).

Let r be one of T^) and r1^). We put A = (tx^) D G^Q),
where G1 is the algebraic subgroup of G made of norm 1 elements. We have
a natural injection: A —> F whose cokernel is finite and of exponent 2. Thus
i f p > 2 , w e have by using Trp/A and resp/A that

^(r,L(^A))-^°(r:A,^(A,L(/.;A))),

and in general, we have a natural morphism

HS (r, L(^ A)) —. H° (r/A, HS (A, L(/.; A)))

with finite kernel and cokernel of exponent at most 2. The group F/A is
isomorphic to (^^(r)/^)2 - ^(F)/^(r) n (i^)2. Since the left-hand
side is a subgroup of ^/(t^)2, which is a finite group of exponent 2,
it stabilizes as a grows. Here £4- is the group of all totally positive
units in t^ As is well known, ^(G(Q)) is made of elements in Fx

which are positive at all real places where B ramifies. Then for any
e € ^(£/G+(R)) n F", we can find an element (3 e G(Q) with z/(/3) = e.
By the strong approximation theorem, for u € ?7G+(R) with v(u) = e, we
can find 7 e G^Q) such that uf3~1^-1 = v e G^A) H E7. In other words,
we find (3'j e Fu = UG^-(R) H G(Q) such that ^(^7) = e. This shows
that ^(r^/) = ^(£/G+(M)) n Fx. Thus ^(F) is independent of z. We write
this stabilized group (r^2^]")/^)2 for large a as 6.
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For each linear operator T on an 0-module M of finite type, we
can define a projector CT in Endo(M) so that T is invertible on erM
and topologically nilpotent on (1 - er)M (see [HI], §1.11). This definition
of CT extends to 0-modules of co-finite type by the Pontryagin duality.
Since ̂  j for z C F^ commutes with ^5, the operator T(p) coincides

with the operator T{p) introduced in [HI], §1.10 on ^(A,L(^;A)) under
the above morphisms. Thus we can think of the nearly ordinary part

^,n.ord(^(P°)),^;A)) = ®^,ord(rV),^;A))

1=1

(that is the image of e^p)) and compare it with the ordinary part

^,ord(AW^;A))

(that is, the image ofer(p)) studied in [HI], where A^p0) = r^p^nG^Q).
We now put:

(2-7) ff^.^(^('?(p°°)),/:((^;A)) = lunff^.^y^0)),/^;^).
a.

Then we have, i fp>2

H^{Y(S(p°°))^^A))
h

= Ind^{(9 H^ (r^p00), L(K; A))}
i=l

-Ind^ff^e^ff^^A1^00),^^;^))}.
z==l

I f p = = 2 , w e have a natural morphism

^n.orc^^00))^^))

-^ Indj{ff°(e, ̂  H^(^(p00), L(K; A)))}
1=1

whose kernel and cokernel are killed by 2. As shown in [HI], Thm I and
Prop. 2.2, we have a canonical isomorphism

i : H^A^p^L^K/O)) - ̂ ^W°°),A70),
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which is an isomorphism of Hecke modules and satisfies K(e)i o e = e o i
for e € E. By induction, we got, i f p > 2

^'^n^Wp^C^K/O))

- Ind^JJ0 (6, ̂  H^ (A^), L^ K/0)))}
1=1 '

- Ind^° (6,9 ̂ (AW, K/0))}
i=l

^H^(Y{S{poo)\K/0}^

which satisfies ^(g)I o g = g o I for g e G. When p = 2, the above argument
only supplies us with a morphism

I '' H^(Y{S(p°°)\C^K/0)) -^ H^{Y{S(p°°)\K/0)^

whose kernel and cokernel are killed by 2. However, we can check that I is
actually an isomorphism by the same argument in [H2]. Thus we have:

PROPOSITION 2.1. — We have an isomorphism of 0-modules for every
prime p

1 •• H^n.^YWp^C^K/O)) - ff^(mP°°)WO),

which satisfies, for g € G,

I o T(n) = T(n) o J, Jo T{z) = T(z) o J, ^{g)I o g = g o J.

Now we fix an arithmetic character K : G —> Q^. Suppose that e^
factors through G0. We assume that q == r + r^. Hereafter we assume
HS = ̂  or H^. It is shown in [HI], Thm II and Thm 5.1 that there is a
natural morphism:

h
Q^,ord(^(Pa)^(^;^/0))

-. ̂ (E.^^^A^p00),^,^/^)))
i=l

whose kernel and cokernel are finite. Note that

res : ̂ ,n.o^d(y(^o(Pa))^(^;^/0))

-^ {^(e.^^^A^p^.L^^/O)))}
1=1
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has finite kernel and cokernel. Now for any G-module or E-module M,
let M[^] denotes the subspace on which G or E acts via the character \.
By the definition of the induced module, we have:

h
{ind^ (ff°(9,0) H^^p00), L(K; K/0))) }[id]

1=1 h

= H° (E«, ff°(e, (D ̂ ^(A^p00), £(«; J^/O))).
Z==l

On the other hand, from [HI], Thms II and 5.1, we see that the natural
morphism

h
H° (e, ([) ̂ ^(A^), L^ K/0)))

i=l h

—— H0 (E,, H0 (9,0) ̂ ^(A^00), L(^; J^/O)))
i=l

has finite kernel and cokernel. Thus the induced morphism

^n.or^WP")),̂ ;̂ ))

-^ H° (e, ̂  ̂ ^(A^P"), L(KK/O))))
i=l

-.{ind^H^e^H^^ip^L^K/O)))]^}
i=l

^ ̂ ,n.ord(^h00)), C(K; K/0)) [id]

has finite kernel and cokernel. Then we conclude

H^.^YWp^C^K/O))
is isogenous to

H^(Y(S(p°°)),C^K/0))[id}
and hence is isogenous to

^n.ord(^(^(P°°))^/0)M.

Thus we have:

THEOREM 2.2. — Suppose that q = r + r^ and K, € A(Gs)
with n{K,) >_ 0. We denote by HS either the usual cohomology or parabolic
cohomology. Then we have a natural homomorphism of 0-modules

^ '' H^^S^p^C^K/O)) -. ^.^(y(5(p°°)),^/0)M
whose kernel and cokernel are finite and which is equivariant under Hecke
operators T(n) for all n prime to pN and T(z) for all e € tp^ D F^.



p-ADIC ORDINARY HECKE ALGEBRAS FOR GL(2) 1301

3.

We define the Hecke algebras h^S(poi)',0) and ^'^(^(p0); 0) by
the 0-subalgebras of

EndoWY (W)), /;(/.; W))),

Endo(^.^(y(5(pQ)),/;(K;^/0)))

generated by Hecke operators T(n), T(z) and the action of G. Then we take
projective limits:

h^S(p°°^0) =hmh,(5(^);0),
a

^r"1^00); 0) = Imi /ir"1^); 0).
Q!

We have the following fact by Proposition 2.1:

THEOREM 3.1. — Suppose that K is arithmetic and n(/t) > 0.
Then we have an isomorphism of compact 0-algebras: ^'^(^'(p00); 0) ̂
h^^S^p00)^) taking T(n) to T(n) and T(z) toJ(z).

We identify the nearly ordinary part of the Hecke algebra by the
above isomorphism for all K and write it as h^0^ = ̂ n'o^d(6'). Hereafter
until the end of this section, we assume that B = M^{F). Let

M = Homo(^^(y(5(p°°))^/0)^/0),

that is, the Pontryagin dual module of ^n.orc^^5^00)^ K / 0 ) ' For each

0 [[G]] -module X, we write X* for its Pontryagin dual, which is again
an 0[[G]]-module. Then M is an 0[[G]]-module. Let ^ : G -^ Q^ be an
arithmetic character. We use the same symbol K, : 0[[G]] —> Qp for the
algebra homomorphism induced. Then we write P^ == Ker(/^). We suppose
that n(/^) > 0. Then by Theorem 2.2, we have a natural map

J: : M/P^M —— H^^(Y(S^pa))^^K/0))\

which has finite kernel and cokernel. Thus by localizing at P = 7^, we have:

J; : Mr/P.Mr ^ H^^YWp^C^K/O))^ ̂  K.

It is known (see [H3], §§8.2a-b) that Hqp^^(Y(So(pa)),C(^K)) is free
of rank 27'1 over h^'^ (SQ(pa)',K)^ where r\ is the number of real places
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of F and a is given by the integer such that e^ factors through G". Let
Coo be the standard maximal compact subgroup of G(R) containing Coo+.
As shown in [H3], §4 and [H4], p. 307 and §7, there is a natural action of
Coo/Coo+ ^ {±1}EW on M which commutes with the Hecke operators,
where S(R) is the set of real places of F. For each character L of {±1}^),
taking the i-eigenspace M[i} of M, we see

Mr=^Mp[t].

It is also known that

J; : Mp[L\/P^[i} ̂  h^^S^p^K)

as Hecke modules for all L (see [H3], §§8.2a-b). Let ̂ •ord be the localization
of h71'01' at P. Fixing one L and choose an element m G Mpr,i such that
h-(rn) mod PMp = 1, we get a morphism h"?0^ into Mp[i}:

i : h^ —— Mp[i] given by h ̂  hm.

This i induces a homomorphism:

i mod P : h^/Ph^ —— Mp[6]/P,Mp[,].

Since ̂ •ord /Ph^ projects down surjectively to ̂ '^(^(p0); K),
i mod P is surjective. As shown in [HI], Thm 2.3, M is of finite type
over 0[[G]]. Then by Nakayama's lemma, we know that i is surjective.
Thus Mp^] ^ h^/a, for an ideal a, C 'P as /i^-modules. By definition,
h^0^ acts faithfully on M and hence Q a, = {0}. Anyway, for all /^,

t
h^/Ph^ ^ Mr[i]/PMr[i] ̂  h^ (So^ K).

THEOREM 3.2. — Suppose that B = M^(F). Let K : G —^ Q^ be an
arithmetic character with n(i^) > 0. We have an isomorphism

h^(S)/P^\S) - far^o^);^),

where a is the integer such that e^ factors through G". In other words, the
natural algebra homomorphism

^n.ord^p^n.ord^ ̂  ̂ •ord (^(p0); 0)

has finite kernel and cokerneL Ifri = 0, M-p^ is free of rank 1 over ̂ 'o^d(Sf).
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When F is totally real and B = M^(F)^ we have the notion ofp-adic
modular forms. Here we briefly recall its definition. For each weight ^, we
consider the automorphic factor

J^z^^deW-^cz+d)^ !org=^ ^) e G+(R),

where t == ^ a, and z is a variable on the product of copies indexed by I of
aei

the upper half complex plane. Then for S == U-i(N)^ we consider the space
S^S^p^C) of holomorphic cusp forms / : G(Q)\G(A) -> C such that,
for u C S^F^C^

f(xu) = e^(up)f(x)J^(u^,i)

for i = V^T,..., v^l (see [H4], §2 for a more detailed definition). Then as
shown in [H7], §1, if / has algebraic Fourier expansion, we can associate /
a ^-expansion

f{q) =^ a^d;/)^GQ^]],
0<^€^

which is actually a function on F^ with values in the ring of ^-expansions.
Thus we have a well defined function: y \-^ 8ip(y',f). Then S^(S^(pa)',0)
is defined to be the p-adic completion of the space of algebraic /
with 8ip{y,f) € 0 for all y C F^. Then the following facts are known
(see [H7], §3):

(i) The p-adic completion <S(5; 0) of U5^6!^);^) is independent
of/^;

(ii) The space <S(5'; 0) is canonically isomorphic to Hom<?(/i, 0) as Hecke
modules, where h is the algebra in End(<S(5; 0)) generated topologically
by Hecke operators. Since there is no natural g-expansion for cohomological
automorphic forms over non-real field F, it would be natural to define
the space (S71'01^,?;^)) of p-adic nearly ordinary cusp forms on G by
S^'ord^ 0) ^ Homo^71'0^), 0). This at lea^t gives an analogue of the
space of nearly ordinary p-adic modular forms defined for totally real -F.
Anyway by duality, the above theorem implies

^n.ord^ 0)^ ^ ̂  ^ <?n•ord(^ 0); / | Z = K{z)f for all Z G G}

^Homo^r^^o^);^)^).

Although we do not have ^-expansions for non-real F, if B = M^(F)^
we can define even for non-real F, using the Fourier expansion relative



1304 HARUZO HIDA

to the standard Whittaker function, the space ̂ (^(p0); A) of A-integral
cusp forms for SQ^) and K for any valuation ring A in C containing all
conjugates of r (see [H3], §6). Then we just put

S^So(p^O) = <?,(5o(^);A) 0A 0

for A = 0 H Q. It is known (see [H3], Thm 6.4) that

^omo(h^So(pa^O),0)^S^So(pa^O)

canonically as Hecke modules.

Each linear form ( j ) : h^So^)', 0) —^ 0 gives a modular form whose
Fourier coefficient at n is given by (l>(T(n)) (see [H3]). Here we note that
the above duality is not known for S^(p0'). Anyway we have:

COROLLARY 3.3. — Suppose that B = M^(F). Then for all arithmetic
character K with n(^) > 0, we have Sn•ord(S',0)[K] ^ S^ord(So(pa)•,0)
canonically as Hecke modules.

4.

Let us now construct some irreducible components of ^'^(S') by
means of Hecke characters of quadratic extensions of F. For the moment, we
assume that B = M^ (F). We now take S = £/i (N) for an ideal N prime to p.
In this case, we write h71'0^^) in place of ̂ '^(S) and h^^Np^; 0) in
place of h^^So^p^O). Similarly we write Yo^Np^ for Y^SQ^NP^).
Let L be a quadratic extension of F. We assume that L contains a CM field.
Let LCM be the maximal CM subfield of L. Let y? be a Hecke character
of L^/LX whose infinity type is -j. That is, y?oo(^) = x~3. Then as is
well known, there is a rank 1 motive M(y?) defined over L with coefficients
in Q((^) whose ^function is given by L(s,(p) (e.g. [H3], §1). Here Q((^)
is the subfield of Q generated by (p(n) for all ideals n. Then the Hodge type
of M((p) at a e IL is given by (jajac) for complex conjugation c. Now
we consider the base change of M(y?) from L to F. We write the resulted
motive as Mp((p) which is a rank 2 motive with coefficients in Q(y?). Then
the Hodge type of Mp^) at a e I is given by (jpjpc) and (jrjrc) for p
and T whose restrictions to F are a e J. We write w for the weight of M((p).
Thus jp + jpc == w = jV + jrc' We assume that Mp(<p) is regular, that is,

(R) UpJpc) ̂  Urjrc)-
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We write per = max(jp,jV), Vac = w - pa and Va- = mm^jajr)' Then
the Hodge type of Mp((p) is rewritten as (pa^Vac) and (va^pac) for each
a G I . Since pa > Vay we can write Ua + 1 = p<r — ^(T with n^ > 0. Since
Po- + Vac = ̂  == Va + P<rc5 we have:

ria-\-l=Pa-Va=Pac- Vac = riac + 1.

Thus n = nc for n = ^ Uo-a. Let D be the relative discriminant of L / F
aei

and C be the conductor of y?. Then it is well known by Langlands5 theory
that there exists 0((p) C ^sp(yo(JD7vrL/F(Cf))^(^o;C)) such that

^)|T(n)={^(b)}^),

where b runs over integral ideals in L whose norm are equal to n,
n(^°) = n, v{K°) = v and {/t°}(^) = (p(z)N{z)~1 (with z C Zs) for
the norm character TV : Zs -^ Z^. In other words, we have an algebra
homomorphism \°^ : /^(DA^/j^C); 0) —> Qp(<^) such that:

^A^o^n))^)-5^^).
n

Let JV be the prime-to-p part of ON^/F^C). To have p-adic unit eigen-
value Ay,(r(p)), we need to assume several conditions. The first one is

(Sp) all the prime factors o fp inF are split in L.

We now fix an embedding ip : Q —>• Qp and loo : Q —)> C. Then writing

S= {o- GIL ha ='y<r},

we have that IL = S Y[ Sc. This set can be rewritten as:

S={aelL | j<T<J<rc}.

Thus S has to be a CM type in the sense of [H3], (1.9). Let J^p be the set
of p-adic places of L, and regard Sp = ip o S as a subset of IL ' We now
need to modify 0((p) to get 6((^) which is nearly ordinary. For that, we need
to assume that

l{n^-^}^(^)
o-es
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where w is an element in F^ such that wtp is the intersection of all the
maximal ideals of Vp = r (g)^ Zp. This is in turn equivalent to the following
condition, for the generator p of Gal(L/F):

Wp) ^ = ̂ p U Spc = Sp u Spp.
It is certainly possible that a e IL and ac € JL induce the same p-adic
valuation on F. Thus if o- e S, the above condition tells us that the
prime p in F corresponding to ip o a is split in L into P and Pp so that P
corresponds to a- and pac and Pp corresponds to ac and pa. Let 7Z be the
integer ring of L. By (Ordp),

^p == ̂  x TZ^c,

where T^Sp is the Sp-adic completion of 7Z. Let (p be the p-adic avatar
of (p. We write <^Ep for the restriction of (p to 7Z^ . Since we can identify
tp = r (g)z Zp naturally with TZ^p, we regard <^p as^ character of t^. Let K
be such that n(^) = n, z>(/^) = v and /t(a,2;) = ^Ep(a){^°}(z). As seen in
[HT], §6, we can modify 0((p) in the representation space spanned by 0{(p)
under G(A(°°)), and find 9(^) in ^usp(^o(^^/^(G)p), £(/,;€)) whose
eigenvalue for T(w) is given by

A^(T(ZZ7)) = ̂ -^(^7) = W-^W) = { U ZZ7-^}^(^).

creE

Thus 9(^) is an element of ^.ord(yo(D^L/^(Cr)J?)^(^;C)).

Let X be a number field, and for an ideal a of X, we write Cljc(a) for
the (strict) ray class group modulo a. Abusing the notation, we also write

Cl^ap^^lmiCb^ap0).
a

We regard the class group C\x (a) as a quotient group of the idele group of X
so that an idele outside a corresponds to the class of the ideal associated.
The inclusion r C 7Z induces two isomorphisms:

tp^TZsp and tp ^ TZspc.

Regarding (TZ/C^TZ)x as a subgroup of d^Cp^, we have a natural
morphism:

^ x t; = TZE, x 7Zs,c = 7Z; -^ Cb{Cp00).
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The kernel of this map contains Es and thus induces a morphism
Gs —> ClL(C^°). There is another description of this morphism. We have a
morphism

C\F(Np°°) -^ C\L(CP°°)

induced by the inclusion F C L. This map induces a homomorphism
Zs —^ C\L(Cp°°). Under the identification (a,d) i-> (a-^a) in (1.3), the
morphism

Gs=^ xZs—WCp00)

given by identifying r^ = 7^ coincides with the map already constructed.
Then the correspondence of characters: y? \—r K is induced by the twist by N
of the morphism: Gs —^ d^Cp00), and 9 induces an 0[[G5]]-algebra
homomorphism

Q ^ ^'^(N) -^ 0[[C\L(Cp°°)]].

Let p, be the maximal finite subgroup of Cli^C'p00), and put:

W=Cb(Cp00)/^

Then W ^ Z^ for a suitable m. Applying to the present situation the
argument given for totally real base field in [HT], §6 to prove Prop. 6.3
there, we conclude that Coker(Q) is a torsion 0[[W]]-module. Actually
writing

G=C\L(Cp°°) and H = {^-p | n C 7Z^},

we know from the proof of [HT], Prop. 6.3 that Coker(9) is a surjective
image of 0[G/EI]. Since dim<^ E 0z Q > 0, 0[G/H], is a torsion 0[[W]]-
module. Thus 6 is generically surjective. Each character '0 : fi —> Ox

induces a surjective algebra homomorphism

^ : 0[[Ch{Cp°°)]\ —^0[[W}}

such that ^(^) = ^(/^) for / A C / A . We can regard ^ as a character
of C\L(Cp°°) having values in ^[[W]]^ Then pulling it back to L\, we
have a decomposition

^=n^
c
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over places C of L. Now we consider the case of a general quaternion
algebra B / p - We write S for the set of primes I of F for which B ̂ p F{ is a
division algebra. We assume the following two conditions:

(Ci) For every { € 5, the prime I either ramifies or remains prime in L;

(€2) For every [ <E 2, ^i o p ̂  ̂ ,

where p is the non-trivial automorphism of L/F. Since 2 is outside p, Y^
for I e 2 induces a finite order character on the inertia group at L Thus
^f[ o p ^ ^( mod P for any prime ideal P in 0[[W]] with characteristic 0
residue field. Then by the Jacquet-Langlands correspondence (see, for
example, [H6], 7.1.2-3), for all arithmetic characters ip which is a
specialization of ^, the 0(y?) and 6(y?) exist as a cohomological modular
form on G. Then we have (cf. [HT], §6):

THEOREM 4.1. — Let the notation be as above. Suppose that (Ci),
(€2), (Ordp) and that L contains a CM field. Then there exists a suitable
open compact subgroup S ofR^ such that S D R p , S[ = U^(NL/F(C)D)[
ifl ^ 5, and we have an 0[[Gs}} -algebra homomorphism Q^ : ̂ n'o^d(5') —^
0[[W}} given by

e^(r(n)) = ^ ^([b])
b:NL/FW=n

for the Artin symbol [b] in C\L(Cp°°). Here we agree to assume [b] = 0 i f b
has a non-trivial common divisor with C. The morphism 0^ is generically
surjective.

We now study the homomorphism L : Gs —^ Cl^Cp00). As already
described, we identify T^Sp and TZspc with Vp via natural inclusion.
Then i{x, y) for x, y e r^ is the class of (x, y) e 7Z^ in Ch^Cp00). Write:

Ec={£enx |£=lmodC}.

Note that Q(x, y) = i{x, y)N(x)-1 in 0[[Ch(Cp00)}}. Note that for e € 7^,
Q{e) = ̂ )£E, where e^ = ]"[ £(T- Thus © ̂ Is EC. By definition, the image

o-es
of Gs is the image of 7Z^ in Cl^Cp00). Thus we see that

the image ofG^in d^Cp00) = Up/EC = (7Z^ x n^)/Ec,

where the closure of EC is taken in 7^. Assuming the Leopold! conjecture,
we conclude, for g = [F : Q],

dim^, Ch(Cp°°) 0zp Qp = ^ + 1.
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On the other hand, we have:

dimQ^ C\F(Np°°) ̂  Qp = r^ + 1.

Thus the reasonable number of independent variables of CM factors
of h^0^ (S) should be:

g + 1 - (r2 + 1) = ri + 7*2 = # of infinite places of F.

Identifying 7^Ep ^ tp ^ ^Epc, we get an exact sequence

^ / E s — (7^ x n^)/Ec —— 7Z;/(2^ -. 1,

where

E ^ = { £ e E c ^ N L / F { e ) = l } .

The last map is given by (a, d) i-̂  ac?~1, and the first map is the diagonal
map. Thus as already mentioned, the map Gs —^ Cl^Cp00) is realized
by sending Gs = (t^ x V ^ ) / E S onto (7Z^ x K^ ^ ) / E C componentwisely
identifying T^Sp ^ tp ^ ^Epc. Since £'c is isogenous with E^ x Es, via
(a,d) h-^ (ad"1, ad),

the image of G^ is isogenous to r^/^E^)2 x Z^.

Thus we have:

PROPOSITION 4.2. — Let the assumption and notation be as above
and as in Theorem 4.1. Then the image of/i71'01'^) under 0^ is torsion-
free over 0[[W]]. In particular its relative dimension over 0 is equal
to [F : Q] +1 + SL, where SL is the defect for the Leopold! conjecture for L.

Thus it is reasonable to speculate:

CONJECTURE 4.3. — Ifh^oTd(So{pQ)', K) ̂  0 for some K and a, then

dimo^-^S^^Qj+l.

Of course this conjecture implies the Leopold! conjecture for L as
in Theorem 4.1. Note that

dimo A = [F : Q] + 7-2 + 1 + 6p > [F : Q] + r^ + 1.

Thus the image of Spec^'01^)) in Spec(A) is conjectured to be of
codimension 7*2.
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Let p denote the non-trivial automorphism of L over F. Then for
a e S which induces a real place of F, the Hodge type of M^(y?) at a is
given by UaJpa) and (jpaja)' For cr € S inducing a complex place of F,
the Hodge type is given by {jajac) and (jp.ajpac)' This tells us that if
a e S is complex, then pac e S inducing crc on F. In particular, E|,,=J.
Write S(R) (resp. (S(C)) for the set of elements in S which induces a real
(resp. complex) place of F. Then anyway (p restricted to the subgroup

G-^a.a-1);^^}

is given on a small neighborhood of 1 by

a i—> TT a"0'0*7"7^ x TT a~(T^<7~3p^a~ac(<jp<TC~j<TC}

(7€E(R) <7eE(C)

= TT a^71^1) x TT a^^+^a^71^1) = a^-^.
(7es(R) o-eE(C)

Here we have lifted n to Z[Z^] by inflation. We still use the same symbol for
the inflated image, and we put:

n(E)=^r^.
o-es

We write

$ ~ 0 (resp. $ w 0)

for $ e Z[J^] if ^m = 1 for all ^ € E^ (resp. £ € TZ^ for a sufficiently
large integer m. Restricting y? to the cyclotomic line

G4-={(a,a);ae^},

we get:

a i—?- TT a"0'0^-7^ x TT cr^^^^ar^3^^^^
(T(EE(R) <reE(C)

= TT a"0'^-^1-^2^) x TT a'^^'^^a"0'^71^^2^)
^es(R) o-es(C)

^ ^-(n+2u+t)^

From these arguments, we conclude that the allowable weights (n, v) are
given by

SE = {(^,^) € Z[J] [ n + 2z; w 0 and n(E) + S ~ 0}.
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If F is totally real, then E^ is trivial (because L is a CM field in this case),
and hence the condition: n(S) + E ~ 0 does not impose any restriction.
However, if F is not totally real, this condition impose a strong restriction,
although we always have 2s 7^ 0. Actually (mt, £t) € 5s for all integer m
and £. Let LCM be the maximal CM subfield of L. Then S = Inf^/^^ So
for a CM type So of LCM. If LCM C F, then a € S implies pac € S,
which is impossible because p(JC\p = o-c. Thus in this case, there are no
CM-types S which give rise to cohomological modular forms. This shows
that we have actually assumed

(NCM) LCM t F.
Thus we write FQ = LCM H F which is a proper subfield of L. To determine
the condition $ ~ 0 explicitly, we look at the torus TI^A) = (A 0Q L)x

over Q and the connected component Ti of the Zariski closure of E^ in TL.
The character group of T1 = TL/TI is given by

x{Tl)={^eZ[IL}^^o}.
The group X(T1) is spanned by all the CM-types and 1 + p, because
the 1 + p is only the relation we imposed. CM-types span a rank g + 1
submodule if 2g = [LCM '' Q], and if g > 1, 1 + p is not in the linear span of
CM-types. Thus we have rankzX(T1) = g + 2. Then it is clear that

Ss = {(n,v) eZ[J]2;7^+2^^0andn(S)+S ~ 0}

= {{n,v) CZ^neZ^andn-^^O}
if g > 1 and F is not totally real. Now suppose that F is an imaginary
quadratic field. In this case, LCM = L by (NCM). Since L contains a
real quadratic field L+, L is a biquadratic extension. Thus S = {a, pac}
and hence E|^ = {i,p}, where we identified Gal(L/F) with Gal(L+/Q)
by restriction. Then it is obvious that

n(S) - 0 <=^> n(S;) € ZS <=^ n^ = n^

Now we assume that F has only one complex place and [F : Q] > 2.
Then L = F^-^d) for a positive integer d € Z. In this case, E^ is rank 1
over Z. We write J" for the Galois group of M/Q for M •= Q(v^5). Then
naturally IL ^ L x J via a ̂  (o-|^, cr\^). We write p for the generator of J .
Then E^ = Ker(l + p) in EC. To have non-trivial S satisfying (Ordp), we
need to assume that p splits in M. We have two choices of E. One is that
S = I in IL , and the other is p i . Anyway in this case, i f j = mE +^pS, then

n = (£ — m — l)t and v = mt (t = ̂  a).
aeJ

This shows that 5s == Zt x Zt.
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5.

We study more closely the ordinary cohomology group in [HI] when
7-2=1 and B ramifies at all real places. We have

G\A) = [x € {B ̂  A)^ y{x) = 1}

for each Q-algebra A, where v : B —>• F is the reduced norm map.
Let r be a torsion-free congruence subgroup of G^Q) (that is, F = F).
Then Y(Y) = Y\Z is a 3 (real) dimensional Riemannian manifold. We
have fixed a maximal order R of B and an isomorphism ip : Rp = M^(rp).
For an integral ideal N prime to p, we consider a torsion-free subgroup F
in Rx n G^Q) containing RX(N) = {7 e Rx | 7 - 1 € NR, ^(7) = l}.
Then we put:

D = Do(^) = {7 € .Rp | z?(7) = Q 2) with c e ̂ }5

(5.1) < Fob") = {7 € r I z?(7) = Q ^) withe C p^p}

^ l ( p a ) = { 7 e ^ | ^ , ( 7 ) = ( ^ ^)wi thcep%
and d- 1 ep^tp}.

Then we consider the space X of column vectors t{x,y) with x € r^
and ?/ € pip. We let the semi-group DQ^P^)? act on X by x^ = 7^. We
consider the space C = C{K/0) of continuous functions on X having values
in the discrete module K / 0 . Then C is naturally a left £)o(p)p-module
by ^(/)(x) = (^(^7). Similarly, we consider the measure space M. = M.(0)
ofp-adic bounded measures on X having values in 0. We let DQ(pa)p act
on M. by ^^{x} = ^(^x). Then M. is the Pontryagin dual module of C.
Naturally r^ acts on X by scalar multiplication. This action commutes
with the action of -Do(p)p- We identify X with t^ x pip by t{x^ y) i—^ (a;, n)
for u = ^//a;. Then we see that

7 * p,{x, u) = ̂ ((a + (m):c, 7M) ^

where 7(n) = (c + du)/{a + ^n). Thus writing A = ©[[r^]], M. is an
A-torsion-free module. Actually M. = A(8)<9(9[[ptp]] as A-modules. The
pairing [ , ] : M. x C —> K / 0 induces by cup product the perfect Pontryagin
duality pairing:

< , ) : ̂ (r(r),M) x H^^Y^C) —^ K/O.
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We have the ordinary idempotent e acting on these cohomology groups
(see [HI], §1.11). We write H^ ̂  for eH^ where HS is any one of H^ H^
and H^, defined in [HI]. As shown in [HI], Prop. 2.1 and §3, we have a
canonical isomorphism

^,ord(m(p))^) ^ ̂ Lrd(m(p°°)) /̂0)
=\\mH^(Y(T,(p))^K/0).

a

Thus the study of the right-hand side is reduced to the study of cohomology
groups with coefficients in C. We know from [H4], Lemma 9.2 that
H^(Y{^),M) = 0 and H^(YW,M) = 0 for any ^-submodule M
of C, where M is the locally constant sheaf associated with M. Let W be
the torsion-free part of t^. We write A == 0[[^]]. Then A is a regular local
ring of dimension d + 1 for d = [F : Q]. Actually A ^ 0[[Xi,.... Xd}} for
a suitable choice of Xi. Let (T,T') be a regular sequence in the maximal
ideal of A. We have a long exact sequence for M = C or C[T'}:

H^Y^M^—.H^YW^M)

-T^ H^(Y{^M} —— H^^Y^M^})

—— H^^YW^M) -T^ H^iYW^M).

This implies that the following sequence is exact:

(5.2) 0 -. H^(YW^M^ A/T-A) —. H^^YW^M^})

-.^l(y(^),M)[^7l]^o.
Applying (5.2) to q = 0, we get the control theorem:

f H^(YW^C[T}) ̂  H^(YW^C)[T^
(5.3) {

[ HUYW^r}) - H^(Y(^C)[T^

We suppose hereafter in this section that

(D) B is a division algebra.

Then V(<I>) is compact. We then know from [HI], Thm 5.2 that, for
arithmetic points P of Spec(A) corresponding to characters r^ —^OX of
the form x ̂  x71 with n € Z[J], the groups H^(Y(^),C)[P] (for q = 1,2)
are finite if n -^ nc. This shows that H^(Y(^>)^ C)* is of A-torsion.
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LEMMA 5.1. — The cohomology group H^(YW,C) is A-divisible.
Similarly, H^{Y^\C[T^... ,7^]) is A/ (Ti,... ,Tr)A-dirisible for any
regular sequence (Fi,...,^) in the maximal ideal m of A. In other
words, for any non-zero-divisor T ' e A/(Ti,... ,^)A, the multiplication
by T ' is surjective on H^(Y(^),C[T^... ,Tr}). In particular, we have
the vanishing: H^Y^.C) = 0 and H^(Y(<S>),C[T^... ,T,]) = 0 if
(Ti,... ,r,) i Supp(^(y(^),c)*).

Proof. — Let M be an A-module of finite type. Suppose that for a
regular sequence (Ti,.. . , r^+i) of A in m, (Ti, . . . , T^i) is regular for M.
Then M is A-free. This follows from the fact

hdA(M) + depth^ (M) = dim(A) == d + 1

and hdA(M) = 0 ^ M is A-free, where hdA(M) is the homological
dimension of M. The Pontryagin dual version is that M* is A-injective if
and only if

(5.4) ^^*[^...^-i]-M*[ri,...,r,_i]
[is surjective for all i = 1,2,. . . , d 4-1.

By assumption, (5.4) is satisfied by C. Thus we have an exact sequence

o ̂  cpi,..., r,] -^ c[Ti,..., r,-i] -^ cpi,..., r,-i] ̂  o.

Then we have the long exact sequence

^(m,C[7i,... ,T,_i]) -r^ ff^(y($),C[Ti,... ,T,_i])

—^d(y(<i>),c[Ti,...,r,]).
The vanishing H^(Y(<S>\M) = ff^(r($),M) = 0 then shows the
divisibility. We have an exact sequence:

0 ̂  H^ (YW, C[Ti,..., T,_i]) ^A A/T,A

-^^(y($),c[Ti,...,r,])
-^ ̂ d(yw,c[Ti,... ,r,_i])[r,j - o.

Since H^(Y(^),C) is A-divisible and of A-co-torsion at the same time,
H^(Y(<S>),C) = 0. Thus for any T,

H^(YW,C[T]) = H^(YW,C) ®A A/TA.
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Thus:

SMpp(H^(YW,c[T]r) c supp(7^(m,c)*).
By the assumption, taking T = Ti, the group H^(Y (^), C[T}) is of
A/TA-co-torsion. Thus the A/TA-divisibility of H^{Y{^),C[T}) shows
the vanishing ̂ (V(^), C[T}) = 0. If the ideal (T, T') (T' = T2) is outside
the support of H^(Y(^),CY, we may assume that (T) is outside the
support. Then we have from the above exact sequence,

H^(YW,C[T}) ^A A/T'A - ̂ (m^r.r]).
Thus

Supp(^(y(^),c[T,r'])*) c supp(^(y(^),c[r])*)
cSupp(J^(m^)*).

Since (T.T') is outside the support of ̂ (V(^),C)*, H^(Y{^),C[T,T'}Y
is of A/(r,r')-torsion. However at the same time, it is A/(T,T" ̂ torsion-
free and hence is trivial. We continue this type of argument to reach the
vanishing of H^{Y(^),C[T^... ,Tr}) if (Ti,... ,Tr) is not an element of
Supp(^(r(^),C)*).

Suppose that (Ti , . . . , Ty, T") is a regular sequence. Let:

V=Supp(H^(Y(^Cr).

If (TI, . . . , Tr) i V, we get for any choice of T '

(5.5a) H^ (YW,C) [T,,..., Tr} 0 A/T'A
^^(y(^),c[^l,...,^„^/]).

By taking the dual, let H = H^(YW,C)\ If (Ti,...,^) is not an
element of V, then we have,

(5.5b) [ H / ( T ^ . . . ,Tr)H}[T'} ̂  H^(YW,C[T^... ,T,,r'])*

for any choice of T ' . If H has a pseudo-null submodule, we can find T '
such that H\T'} is non-zero but of A/T'A-torsion (i.e. killed by a non-
zero-divisor of A/T'A). Then it will be contained in H^{Y(^),C[T'}Y,
which is A/r'A-torsion-free. This is impossible. Thus H has no-pseudo-
null submodules. Similarly, ff/(Ti,... ,Tr)H does not have pseudo-null
(A/(Ti,..., r^)A)-submodules, if (Ti,.... Tr) i V. Now we pick a regular
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sequence {Ti , . . . , 7^ T ' } so that (Ti,..., Tr) for r = 1,..., d outside V
but T' kills i:f. Then we know that

H / ( T ^ . . . ^ ) H = { H / { T ^ . . . ^ ) H } [ T / }

is isomorphic to the group H^(YW,C[T^, • • . ,^,7"])*, and hence it is
A/(Ti,. . . , Tr, r')-torsion-free. Thus in particular, the multiplication by

T^+i : H / ( T ^ . . . , Tr)H —— Jf/(Ti,..., r^Jf

is injective as long as r < d - 1. Thus {Ti , . . . ,7^} is a regular sequence
in m for H. Furthermore, H / ( T ^ . . . . Td)H is finite. Thus we know that:

hdA(^/(ri,...,r^)=d+i,
MA(H) + d = hdA (^/(Ti,.... Td)H} = d + 1,

hdAW = 1.

Therefore there exists an exact sequence:

0 -. A7' ̂  A7' ̂ ^ H -> 0.

THEOREM 5.2. — Let r be a torsion-free congruence subgroup
ofG^Q) and ̂  = ^(Y(^),C)*. Then for ̂  = Fo^), the A-moduJe 17
is killed by a non-zero element in A and has homological dimension 1
over A. In other words, there is a regular sequence of length d for H in A.

For a while, we return to the situation in §3. We study the relation of
the characteristic power series of

M = Homo (H^ (Y(S(p°°)), K/0), K / 0 )

and that of the Hecke algebra. Let W be the torsion free part of Gs- By
Theorem 5.2, M is of 0[[W]]-torsion and has homological dimension 1
if p > 2 by the argument of §2. If p = 2, M may not be of homological
dimension 1 but is of 0[[W]]-torsion. Thus it is meaningful to study
the characteristic power series of M and ^'^(S). Since /i71'01'̂ ) acts
faithfully on M, we can embed î71'01'̂ ) into M. Since M is an ^7l•ord(5f)-
module of finite type, M is a surjective image ofh71'01'^,?)771 for the minimum
number m of generators of M over ^'^(S'). Thus, writing ch(X) for the
characteristic power series of a 0[[W]]-module X, we have

(5.6) ch^-01^)) | ch(M) | ch^71-01-^))771 in 0[[W]].
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We now consider the component induced from Hecke characters of a
quadratic extension F of F. When [F : Q] > 2 (hence F is not a CM field),
we have L = F(^/—D) for a positive rational integer D. This description
of L holds even if F is imaginary quadratic, as will be seen in the following
section. Ordinary CM types exist if

(Sp) all prime factors of p in F split in L.

Supposing the above condition, we fix an ordinary CM-type S. We use here
the notation introduced in Theorem 4.1. In our situation, 7-1 = d — 2 and
7-2 = 1. Thus

dimq(Es^Q) =d-2, dimq(Ec 0z Q) = d- 1,

and E^ is of rank 1. Then the characteristic ideal of the component
associated to Q^, in §4 is basically given by the kernel of the natural map

0[[^ x ^)/Es]] = 0[[U^ x n^)/Es]] - 0[[^/Ec]}

which is generated by (e — 1) for a generator e of the free part of E^ . This
fact follows from the following two facts:

(i) the twist (i.e. Q(x,y) = i(x,y)N{x)~1) by the norm character to
get 0 from i does not affect the characteristic ideal because the norm
character N is trivial on EC, and

(ii) Coker(Q) is of torsion over 0[[W]] and hence is pseudo-null
over 0[[W]]. We have a commutative diagram defining 6 : W —^ W

(^x^)/Es ——— n^/Ec

W

where p and TT are the two projections. Since <^[[W]] is isomorphic
to (^(W)]]^^)] as 0[[W]]-module, the characteristic power series
in 0[[W]] of the irreducible component of Spec^71"01^ (S)) associated
with 0\s/ is given by (p(^) — l)^^^! for a generator e of the free
part of E ^ ) . Thus we have:
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THEOREM 5.3. — Let the notation be as above and the assumption
be as in Theorem 4.1. We assume that r^ = 1 and that B ramifies at all
real places of F. Let S be the open subgroup as specified in Theorem 4.1.
Then the irreducible component of 0^ isomorphic to Spec((9[[W]]) lifts
to a unique irreducible component of Spec^h^0^ («?)). Moreover the
characteristic power series in 0[[W]] of the irreducible component is
(p(e) - l)^^)! for a generator E of the free part ofE^\

6.

Now we assume that F is an imaginary quadratic field and
B = M^{F). We look into the boundary exact sequence for <1> = Fo^)
and for any ^-submodule M of C:

0 -> H°(Y(<S>),M) -> H°(9Y(<!>),M) -> H^{Y^),M)

-^ H^YW.M) —^ H\QY(^M) -^ H^(Y(^M)

-^ H^(YW,M) -^ H2(aYW,M) -> 0.

By abusing the notation, here we have written 9Y(^) for the boundary of
the Borel-Serre compactification of Y(^). We know from [H4], Lemma 9.2,
H^(Y(<S>),M) = H^(YW,M) = 0 for any ^-submodule M ofC. We
thus have another exact sequence

0 ̂  Jf^m.M) - H^(YW,M) -^ H^(YW,M)

-. H^(9YW,M) -. H^(YW,M)

^ H^(YW,M) -^ H^(9YW,M) -. 0.

By [HI], Cor. 3.14, writing C'(r) for the set of equivalence classes of cusps
of r, we have

'H^(9YW,C)^ (3) C(^;K/0);
sec'(r)

f Q) {C^;K/0)(QC(v^,K/0))
(6.1) < HU9Y(W) ̂  ^ s^ ifp = pp- with p ̂  ̂

(, 0 otherwise;

H^{9Y(^C)^ ^ C(^;^/0);
sec{r)
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where C{t^; K / 0 ) is the space of continuous functions on r^ having values
in K / 0 . We have a long exact sequence for M = C or C[r']:

^,ord(m,M[T"]) -. H^(YW,M)

-^ H^(YW,M) -. ffj^(y($),M[r"])
-^ ̂ (m^M) -T^ H^{YW,M).

This implies that the following sequence is exact:

(6.2) 0 ̂  H^ (V((&), M) ®H R/^R

- H^Y^M^}) -. ff^(r($),M)[r"] - o.
Applying (6.2) to q = 0 we get the control theorem:

r H^(YW,C[T}) - H^(YW,C)[T},

{ H1^ (V($), C[T, r]) - H1^ {YW, C) [T, T'}.

Since H^(9Y(^),C) is A-injective, we have from the exact sequence

0 ̂  H^d{9YW,C) -^ H^(YW,C) -^ H^(YW,C) -^ 0

the splitting of A-module:

H^(YW^C) - H^(9YW^C) eJ^(m^)-

Then by (6.3), we get the control theorem for parabolic cohomology groups:

(6.4) H^(YW,C[P}) - H^{Y(^C)[P}

for any height 2 prime ideal P of A.

Let W be the torsion-free part of t^. We write A = 0[[W}}. Then A
is a regular local ring of dimension 3. Actually A ^ 0[[X,V]] for a
suitable choice of X and V. By (6.1), H^(9Y(^),CY is always of
A-torsion. Thus for (Zariski) densely populated arithmetic points P
of Spec(A) corresponding to characters t^ —> Ox of the form x ^ x71

with n e Z[J], the group H^(9YW,C)[P] is finite. We also know
from [HI], Thm 5.2, for densely populated such P, H^(9Y(^), C)[P]
and H^^(Y(^),C)[P} {q = 1,2) are both finite. This shows that
^rd^m.O*, H^YW^Cy and H^(YW^Y are of A-torsion.
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LEMMA 6.1. — Let T be a non-constant element in the maximal ideal
of A. Then H^(Y(<S>),C) and H^(Y(<S>),C) are A-divisible. Similarly,
^oTd^W.^T}) and^(y($),C[T]) are A/TA-divisible. In particular,

• H^(YW,C) = 0 and H^(Y(<S>),C[T}) = Q if (T) is not an
element of Supp(Hj,^(Y ($),€)•), and

• ^orc^W^P^D = 0 if (T,T') is not an element of
Supp(ff^(Y($),C)*) and (T,T') is a regular sequence.

Since the proof of this lemma is exactly the same as the one for
Lemma 5.1, we leave it to the reader. Since H^^(Y{^),C) is of A-co-
torsion and H^(9Y(^),C) is A-injective, we get:'

^ord^W.C) ®A A/TA ̂  H^^YW.C) ®A A/TA.

Suppose that (T^.T^.T') is a regular sequence. Let:

y=supp(ff^(m,cr).
We get:

f ,̂ord (YW, C) [Ti, Ts] ®A A/T'A

^ H^d(YW,C[Ti,T^,T']) if (Ti.ra) 1 V,

(6.5a)
Hkord^W^T^^A/T'A

^ H^{YW,C[T,,T']) if (Ti) i V,

H^d^W^C) ®A A/T'A

^ H^(Y(<S>),C[T']) for any choice of T'.

Here we have used the fact:

^',ord(m,C)[Ti] ®A A/T'A ^ ̂ d(^(^),C)[Ti] 0A A/T'A.

By taking the dual, let H = Hp^(Y(^),C)*. Then we have

{H/{T,,T,)H}[T'} ̂  H^(YW,C[T^T']y if (T,,T,) i V,

{H/T,H}[T'} ̂  H^(YW,C[T,,T'}y if (T,) i V,

H[T'}^H^(YW,C[T'}Y,

(6.5b)

for any choice of T ' . Then in exactly the same manner as in §5, we get:
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THEOREM 6.2. — Let r be a torsion-free congruence subgroup
ofSL2(F). Then for <S> = FoO^), the A-module H = H^^Y^.Cy
is killed by a non-zero element in A and has homological dimension 1
over A.

We now consider the CM component associated to a quadratic
extension L of F. Supposing that we have an ordinary CM-type S. We use
the notation introduced in §4. We write T^Sp for the Sp-adic completion
of K. Then 7^Ep ^ r?. We suppose the regularity condition:

(R) (ja, Jac) + Upa, Jpac) for all 0- € I .

Since ja = J a p if F is the maximal CM field, this eliminates the case
where L is not a CM field. Thus we assume that:

(CM) Lisa CM field.

Then the existence of ordinary CM-type is equivalent to the following two
conditions:

(Spi) all prime over p in the maximal real subfield of L split in L;

(Sp2) all prime over p in F split in L (44> Spp D Sp = 0).

The conditions (Spi)-(Sp2) are equivalent to:

(Spa)
fThe decomposition group at p in Gal(L/Q)
I does not contain either c nor p.

Under (Spi)-(Sp2) and (CM), we have the CM component induced by Q^
as discussed in §4. Let e be a generator of the torsion-free part of EC'
We may assume that N L / F ^ ) = 1- T][ms £ e E^ = t^. Defining p and 0
as in §5, we know similarly to Theorem 5.3 that (p(e) - l)^--^)] gives
the characteristic power series of the CM component attached to Q^. We
can naturally identify 7^Ep(= ^p) with the p-adic integer ring of the p-adic
completion of the maximal real subfield L+ ofL. Since c induces an automor-
phism on tp, ££° = 1,. Thus the annihilator in 0[[G.s]] of each CM irreducible
component is given by a prime ideal P^N associated to the norm character
if;N : Es —^ ^pW^ twisted by a finite order character ^, where Zp[^] is
the subring of Qp generated by the values of '0. We may conjecture that
the same fact might be true for all irreducible components of the nearly
ordinary Hecke algebra of GL(2) over an imaginary quadratic field.
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Corrections to [HI]

Page 262, line 3:
((^^(A^p00),!^, £;€))))) should be ^^(Ac^p^L^^O)) ».

Page 262, line 5:
((^^(A^p^.Hn.^/C/O)))) should be ((^^(Aotp^.Hn.^JC/O)))).

Page 311, line 8: delete the phrase
« and in this case dini(c;(Im(res)) = | dim^ Hq(9Y*, C(n, C)) ».

Page 311, line 4 from the bottom:
((^.^(A^p^Hn.^K/CO))) should be ^.^(Aotp^L^K/O))».

Page 312, line 18 from the bottom:
^H^^Y^p^^^e.K/O)))) should be ̂ .or^O^)'^^/0))^
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