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STOKES PHENOMENON, MULTISUMMABILITY AND
DIFFERENTIAL GALOIS GROUPS

by Michele LODAY-RICHAUD

INTRODUCTION

This paper deals with the local study of linear differential systems of
order one and dimension n

[A, ^-AX

with coefficients meromorphic in a neighbourhood of a given point,
say XQ = 0, in C. The variable x is the local coordinate around 0 in C, the
unknown X is a n x 1 column vector and the matrix A of coefficients is
a n x n matrix with meromorphic entries at x == 0.

A normal form [Ao] being fixed, the classifying set H1 (S1', A(Ao)) of
Malgrange and Sibuya provides a non-Abelian cohomological description
of the classes of formal transformations of [Ao] up to the convergent
ones. By transformations, we mean here linear changes of unknowns
Y = FX, with formal meromorphic coefficients F e GL(n,C[[a;]][l/a;])
acting inside systems with (convergent) meromorphic coefficients. In terms
of connections, these classes correspond to the so-called meromorphic
marked pairs (see [BV89]), and all results below could be rephrased in
terms of connections. But we attempt here to be as constructive and
algorithmic as possible; therefore, it will be more efficient in the following
to speak in terms of systems.

In this paper, we first give a procedure to reduce any cocycle in
^(^^(Ao)) to a normalized unique form called a Stokes cocycle. This
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procedure is natural in the sense that it commutes with isomorphisms; and
it endows the classifying set with a natural structure of a finite dimensional
Lie group. Unlike the abstract approach given independently by Babbitt
and Varadarajan in [BV89], the present approach is constructive and
provides an explicit algorithm for reducing any cocycle to its Stokes form.

Other methods have been developed to describe meromorphic classes
with a uniquely well-defined family of «invariants »: the method by Balser,
Jurkat and Lutz (see [BJL79]) with a connection system (Stokes matrices),
the method by Malgrange and Deligne using J-filtered systems (see [Mal83]),
the geometric method of the wild TTI by Ramis (see [MR91]), and the « bridge
equation » by Ecalle (see [Ec85]). The methods used by Balser, Jurkat, Lutz
and also by Malgrange, Deligne are somewhat similar to ours. The main
difference between the present work and both [BJL79] and [Mal83] is
that we start with an arbitrary 1-cocycle while Balser, Jurkat and Lutz
start with a fundamental solution and Malgrange and Deligne with a 0-
cochain made of fundamental solutions. Of course, the Malgrange-Sibuya
isomorphism gives a correspondence between 1-cocycles and fundamental
solutions or 0-cochains; but, whereas this correspondence is constructive
from fundamental solutions or 0-cochains to 1-cocycles, it is transcendental
and nonconstructive the other way.

We then show in section III how our procedure applies to the
multisummability of solutions of systems and to differential Galois theory.

Specifically, Ramis proved in [Ra85-l], [Ra85-3] that a multi-leveled
transformation F can be written essentially uniquely as a product of single-
leveled Fj (say A^-summable Fj for the different levels kj of the system).
His proof depends on the Ramis-Sibuya isomorphism theorem, a delicate
analogue of the Malgrange-Sibuya theorem with Gevrey estimates. We
give here a new proof of this result, which is mainly algebraic and much
shorter; both proofs are nonconstructive. Furthermore, using a result of
Martinet and Ramis (see [MR91], thm 14 i), we show that the natural sums
associated to our Stokes cocycles coincide with those defined by Ecalle
using Borel-Laplace and acceleration integrals and with those defined by
Ramis using asymptotics of Gevrey type. We also relate these sums to those
defined by Malgrange and Ramis in [MalR92],

We also prove in section III that the Stokes automorphisms associated
to our Stokes cocycles are Galoisian, i.e., that they belong to a faithful
representation of the differential Galois group of the system. The proof we
give of this result follows an idea of Deligne for using the Tannakian theory^
we also include the discussion of an example of an usual Stokes matrix
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which is not Galoisian. Finally, we give a Tannakian proof of a theorem of
Ramis (see [Ra85-2]) on the generation of the differential Galois group by
the formal monodromy, the exponential torus and Stokes automorphisms.
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I. PRELIMINARIES

I.I. Formal and meromorphic classifications.

All over this paper, by system we mean a linear ordinary differential
system of a given dimension n € N* and order 1 with complex meromorphic
coefficients of a complex variable at the origin in C. We denote

w ^=^
where x is the complex variable, X is the unknown vector of size n and A
is the n x n matrix of coefficients in End(n, C{a;}[l/a:]).

By transformation (or meromorphic transformation) of a system [A]
we mean a linear change of unknown X i—^ F~1X (i.e. Y = FX) where -F
is an n x n invertible matrix with (convergent) meromorphic entries. We
denote by [^4] the transformed system and F € G :== GL(n,C{x} [1/x]).

For F having formal meromorphic entries — we then usually
denote it by F — the transformed system [^4] may or may not have
convergent meromorphic coefficients. And when it has, we call F a formal
transformation of [A], thus restricting us to those changes of unknown which
act inside the set of systems here considered. We denote this set by G(A). An
element F of G(A) in then an element of G := GL(n, C[[x}} [1/x}) satisfying
a relation FA= B, for a convergent B (i.e. B € End(n,C{a;}[l/a;])). This
relation is equivalent to the linear differential system

dF - -
[A,^] d.'^-^

One ha3 G C G(A) C G.

Given [A] and [B] two systems, the relations «there exists a
formal transformation or a transformation taking [A] into [B]» are
equivalence relations on the set of systems. They are respectively called
formal equivalence and meromorphic equivalence and the associated
classifications are called formal classification of systems and meromorphic
classification of systems.

The formal classification initiated by Poincare and Fabry has been
solved by Balser, Jurkat and Lutz in [BJL79]. They proved there, that one
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can characterize each formal class by making the choice in this class of a
particular (non unique) system

[Ao] ^=AoX
called a normal form and satisfying the following properties: there exists a
fundamental solution XQ of [Ao], i.e., a n x n matrix the columns of which
are n C-linearly independent solutions of [Ao], of the form XQ = x1' e^^/^
where L is a constant matrix called the matrix of exponents of formal
monodromy and Q(l/x) = diag(gi(l/rc),..., qn(l/x)) is a diagonal matrix,
the qj(l/x) being polynomials in a root 1/t = a;"1/23, p € N*, of the
variable x without constant term. Such a solution will be called a normal
solution. As usually x1' means e^^.

Normal forms in a given formal class are generally not unique but
they all belong to the same meromorphic class. Often one calls normal form
any element in this class a fundamental solution of which takes the form
F(x)xL e^1/2^ with F{x) convergent meromorphic. Without restricting our
purpose we shall assume that our normal forms [Ao] admit a fundamental
solution XQ = x1-e^/^.

We shall refer to the unramified case when the smallest possible p
equals 1; otherwise we shall refer to the ramified case. The unramified
case is essentially the case when Poincare and Fabry achieved the formal
classification. The ramified case appears as being technically much more
difficult. Thus, for instance, in the ramified case, the matrices L and Q
don't commute anymore and then Ao 7^ L / x + d{Q(l/x))/dx. Actually, the
matrix Ao is a polynomial in x and x~1. It is identifiable by inspection of
an arbitrary system [A] in its formal class, since Q and L are identifiable.
The identification includes the resolution of algebraic equations and offers
at least as many choices as the Jordan form of a matrix. One of the normal
forms [Ao] will be provided by the solver DESIR2 made in the IMAG of
Grenoble after a preliminary version DESIR. Such a program needs a large
computer. Examples in dimension n = 2 or 3 can be found in [LR90-1] or
in [LR91].

An isotropy of [Ao] is a transformation F which leaves [Ao] invariant:
^o = Ao. Thus, the isotropies are precisely the solutions of the system

[End Ao] = [Ao, Ao] dp = AoF - FAo.
They are, a priori, formal transformations. Actually (see [BJL79]), the set
of isotropies of a fixed normal form [Ao] is a subgroup of GL(n, C[l/a;, x}).
We denote it by Go(Ao).
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Two transformations F\ and F^, take [Ao] into the same system
^Ao = ^Ao iff there exists /o € Go(Ao) such that Fi =^2/0. Thus the ̂
of meromorphic classes of systems can be identified to the left and right
quotient G \ G(Ao)/Go(Ao) of G(Ao) whereas the left quotient G \ G(Ao)
represents the set of meromorphic classes of transformations of [Ao]. The
group Go(Ao) is easy to compute and is often trivial (cf. examples in
[LR91] and [LR90-1]). Thus the structure of the set G \ G(Ao)/Go(Ao)
of meromorphic classes of systems is easily deduced from the structure of
G\G(Ao). But this one is not so easy to understand. The Malgrange-Sibuya
isomorphism theorem which we recall below, describes this set G\G(Ao) as
a non-Abelian cohomological set. The first aim of this paper is to endow this
cohomological set with a natural and constructive structure of a unipotent
Lie group.

1.2. The Malgrange-Sibuya isomorphism theorem.

Malgrange and Sibuya (see [Si76], [Mal79], [Si90]) have made a
cohomological analysis of the set of meromorphic classes of transformations.
In order to state their theorem we need a few notations and definitions.

Let uj : C = S1 x [0, +oo[-^ C, (0, p) ̂  x = pe'10, be the real blow up
of 0 in C. One has S1 = ̂ (O) and ^ : Slx]0, +oo[-^ C* is a bijection.
To each OQ € S1 one considers the basis of open neigbourhoods in C of the
form:

u(0o, £,£')= {(0, p) e c; \e - eo\ < ^e, \p\<e'}

or their projections on C* via a):

U(eo,e,£/)={xeC^,\mgx-0o\ < ̂ e, \x\ <e1},

The intersection S'1 n U(OQ, e, e ' ) is the arc }OQ - j e, OQ + j e[ in 51. As
generally the value of e' does not matter, we shall simply speak of an arc U
on S1 in place of a sector U{OQ^ e^ e1) or U(OQ^ e, e ' ) for a convenient e 1 ' . We
shall also denote U(OQ^ e) or }0o — js, OQ + ^e[.

The sheaf A(Ao) of flat isotropies over S1 is defined as follows:
a germ / at OQ € S'1 is an invertible matrix / e GL(n, (?(£/)) with
holomorphic entries on an arc U = U(0o,e^e/) for suitable e ^ e ' and
satisfying the following conditions:
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(i) Flatness (/ is asymptotic to the identity on U at O):

lim f(x) = I and f~J ;
x—>0 Uxeu

(ii) Isotropy of [Ao]: -^Ao = Ao.

855

U{0^e^')

U{e^e,e')

Figure 1.1

We denote / G r(£/; A(Ao)).

The map exp^ in the Malgrange-Sibuya theorem below is defined as
follows.

Let F e G(Ao). From the main asymptotic existence theorem, to a
small open arc U on S'1 (actually a sector with vertex 0 in C*) there exists
at least one realization F of F. This means F ^ F and F satisfies the
same system [Ao,A] as F. To a finite covering U = {Uj,j € J} of 5'1 by
open arcs of small size there can be then associated a family {Fj,j G J}
of realizations of F on the different Uj. The 1-cochain (Fj^ = F^F^) is
a 1-cocycle with values in A(Ao). The different choices of a covering U
and realizations Fj induce cohomologous 1-cocycles. On the other hand,
the 1-cochain (Fj^) depends only on the (left) meromorphic class of.F. This
defines a map, denoted exp^ below, from G \ G(Ao) to the non-Abelian
cohomological set Jif1^1; A(Ao)). It is easily seen that exp is injective.
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THEOREM 1.2.1 (Malgrange-Sibuya). — The map

exp^ : G \ G(Ao) —^ H1 (S1; A(Ao))
is bijective.

Malgrange (see [Mal79], [Mal83]) and Sibuya (see [Si76], [Si90]) gave
different proofs of this theorem. See also [MR82] for a variant of Malgrange's
proof.

Remark 1.2.2. — To another normal form Ai = % (we recall that $
is a meromorphic transformation) there correspond cochains which are
conjugated via $. We get the following commutative diagram:

G-\G(Ai) ——————————. G'\G(Ao)

H^S1;^,)) ————————. ^(.^(Ao))

F F<^

^P^F) '——————> ^P^F^) = ̂ ~1 exp^(F)<S>

1.3. The Stokes phenomenon.

Given a formal^solution FXo of a system [A] in the formal class
of [Ao], (where F e G'(Ao)) there always exists, by the main asymptotic
existence theorem, a realization FXo of FXo over a small sector U with
vertex 0 in C*, and by the Cauchy-Lipschitz theorem, thisjolution can be
indefinitely continued around 0 on the Riemann surface C* of log a;. But
generally, this continuation can't be done by preserving asymptoticity of F
to F: big jumps of exponential type appear. This is the Stokes phenomenon.

The unique case when no jump occurs is when [A] is meromorphically
equivalent to a normal form i.e. when F is convergent. Thus, one can say
that a system is a normal form when it has no Stokes phenomenon.
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The Stokes phenomenon is strongly related to the matrix Q in the
normal solution XQ = x11 e^. Notice that this matrix is well-defined up to
a permutation on its diagonal terms. Jumps occur only when crossing the
finitely many Stokes directions (Definition 1.4.5.1). The Malgrange-Sibuya
isomorphism theorem shows that these jumps characterize the meromorphic
classes of transformations but in many somewhat intricate combinatoric
ways. Our theorem 11.2.1 below gives a unique rigid choice to characterize
each class. Such other choices have been already made by Balser, Jurkat
and Lutz (see [BJL79]) and by Malgrange and Deligne (see [Mal83]).
But, whereas Balser, Jurkat and Lutz start with one fundamental solution
asymptotic to FXo somewhere and Malgrange and Deligne with a 0-cochain,
that is, a family of fundamental solutions asymptotic to FXo, we start
with an arbitrary 1-cocycle and we constructively change it into a rigid
natural form called a Stokes cocycle (Definition 11.1.8). Obviously, the
correspondence between 0-cochains and 1-cocycles given by the Malgrange-
Sibuya isomorphism theorem enables one to commute in between the
different points of view. But, this commutation is transcendental and
nonconstructive since the inverse map in the Malgrange-Sibuya theorem
is transcendental and nonconstructive. Moreover, in our presentation, the
phenomenon is described via anti-Stokes and not via Stokes directions
(Definition 1.4.5 h).

In order to do this construction we need a precise analysis of the
sheaf A(Ao).

1.4. Some notations and definitions.

NOTATIONS 1.4.1. — We set

^'^©'•••'^Q)}
and

S[EndAo] -{(^-^y;^^^ Q[Ao]}-

The set Q[AQ\ ls ^ne se^ °f diagonal elements in a matrix Q associated
to [Ao]. But, the set Q[EndAo] ls tne set °^ non-zero diagonal elements in a
matrix Q associated to [EndAo].

For Qj - Qe € Q[EndAo] we set

(•"-"'©-''^-GO' -<..'"'»•
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DEFINITION 1.4.2. — The leading exponent k is called the degree
deg(gj — q^) of (c[j — q^) and a level of [Ao] (or of any system in the formal
class of [Ao]).

Levels are rational numbers. The unramified case is the case when all
levels are integers.

NOTATION 1.4.3. — The set /C = {k\ < " • < kr} denotes the set of
all levels of [Ao].

For elements qj 7^ qn in Q[Ao] we define the two families of partial
order relations -<; and -< as follows.

0 0, max

DEFINITION 1.4.4.

^ ^ q^ 4=^ Q^j-Q^^/x) ^g fl^ at 0 in a neighbourhood
n ~

of the direction 6
^ Re(a^) e-̂ ') < 0;

q^ -^ q^ <===> ^j-QeK1/^ ig of maximal decay in the direction 0
0, max

^===> CL(J^\ e~^ke is a real negative number.

In this latter case, we say that eqj~qi is led by 0.

In the unramified case these relations do not depend on the
determination 6 and thus we can write -< and -< .

e 0, max

DEFINITION 1.4.5.

(i) 0 is an anti-Stokes direction when for some, hence all, determination 0
there is at least one pair (^, q^) in Q\AQ\ which satisfies q. ^ qn.

0, max

(ii) 0 is a Stokes direction when, for some, hence all, determination 0
there is at least one pair (qj^q^) C Q[Ao] which satisfies neither qj -< qn

o
nor qi -< qj.

o

Thus, with our convention, anti-Stokes directions are directions of
maximal decay for the exponentials eq3~q£,qj — qi € Q[EndAo] ^d Stokes
directions are «oscillating» directions transitory from flat to exploding
asymptoticity. Unfortunately, one can find the converse convention too.
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NOTATION 1.4.6. — A = {ai , . . . ,o^} (o^ == c^-) denotes the set
of anti-Stokes directions in a clockwise ordering and § = {o-i < • • • < an}
(oj+^ = <7j) the set of Stokes directions.

With the choice of a determination 0 of 0 entries of Q(l/x) become
actual functions near the direction 0 in C. With the choice of the
function e^1/!3^1 ) as realization of the formal exponential e^1730

the normal solution XQ becomes an actual solution X^Q near the
direction 0 in C. By definition, a germ of isotropy (pe e A^Ao) takes the
fundamental solution XQ ̂  into another fundamental solution say XQ ^Cg Q
with CQ^ C GL(n,C). It is easily seen that an entry G(^) in CQ Q equals
zero unless qj -< q^.

e

DEFINITION 1.4.7. — The representation of a germ (pe e A<9(Ao)
relative to XQ j is the unique matrix

c^ = J + ]L ^^o^)
0'^) \qj^qe

e

such that (pe{x) = Xo^x)Cx^Xo^(x)~1 near 6. The C(^) are complex
numbers and the E^^ denote the elementary matrices filled with zeroes
except the (j,£) entry equal to 1.

CONSEQUENCE 1.4.8. — The sheaf A(Ao) is a sheaf of non-Abelian
unipotent groups.

Proof. — For the qj ordered monotonically with respect to -< the
matrices Cx^ ^ are triangular with a diagonal equal to the identity. ° D

Remarks 1.4.9.

1) In a change of determination 6 ^ 0 + 27r, representations of a
germ (pe satisfy the relation

^o.^-^^M

where M € GL(n, C) is the so-called matrix of formal monodromy for XQ.
This matrix M is defined by X^^^x) = XQ ff{x)M independently of the
choice of 6 (see Definition III.3.2).

2) A determination 6 of 0 being fixed, the natural possible realizations
of e^ are given by e^/l^l^r where T = diag(^i,... ,^) in GL(n,C)
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belongs to the exponential torus T of [Ao] (see Definition III.3.3).
The representation Cx^ § of ^Q relative to XQ Q and T == I becomes
then T-^Cx^ ^T. We shall generally assume T = I .

3) A change of normal solution of the form X-^(x) = Xo(x)r
(r € GL(n,C) and satisfying convenient commutation relations with Q
and L) or of the form X\(x} = FQ(x)Xo{x)P (where FQ e Go(Ao) and P is
a permutation) implies

c^o,e :=rc^l,e^~^

^e{x)=F^x)X^(x)(PCx^P-l)X^(xrlF^xr^

Thus CXQ Q and Cjq ^ are mainly conjugated via a permutation.

With these remarks one can check that the definitions given in terms
of representations are intrinsic.

NOTATION 1.4.10. — The set

}C{(pe) = \ d^te — <^) 5 C(j^) 7^ 0 in some representation

^Z^a^c^)0^}
denotes the set of levels of the germ (pe-

DEFINITION 1.4.11. — A germ ^pe is a k-germ when /C(^) = {k}
or /C(^) = 0.

DEFINITION 1.4.12. — A germ (pe is a Stokes germ when it satisfies
one of the two equivalent conditions:

(i) it is of maximal decay along Q\

(ii) for some, hence all, determination 0, it has a representation Cxp ^ of
the form

CXo,e = J + ]L '̂̂ C^)'
U^\Qj ^ ^

6, max

In particular, if (pe 7^ I then 0 = a € A is an anti-Stokes direction.

Remark 1.4.13. — Definition 1.4.12 (i) makes sense even when [Ao] is
not a normal form.
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DEFINITION 1.4.14. — For a e A, the Stokes group Sto^(Ao) is the
group of Stokes germs at a.

NOTATION 1.4.15. — For k € JC and a € A, we set:

A^Ao) := the subsheaf of A(Ao) generated by fc-germs;

A^^Ao) := the subsheaf of A(Ao) generated by A/-germs for all
k1 <k',

A<A;(Ao) := the subsheaf of A(Ao) generated by A;'-germs for all
k' <k',

Sto^(Ao) := StOa(Ao) H A^(Ao) the subgroup of StOa(Ao) of Stokes
A;-germs at a;

Sto^(Ao) := StOc,(Ao)nAjA;(Ao) the subgroup of Sto^(Ao) of Stokes
germs of level < k at a,

Sto^(Ao) := StOa(Ao)nA;^(Ao) the subgroup of StOc,(Ao) of Stokes
germs of level < k at a;

A^ := {a € A | Sto^(Ao) ^ {I}} the set of anti-Stokes directions
bearing the level A;;

A^ := \J A^ (resp. A<^ = \J A^);
k'<k k'<k

)Ca '-= {k G 1C I Sto^(Ao) 7^ {I}} the set of levels beared by a € A.

One can also define in a similar way A^^Ao^A^^Ao),... with
similar properties. However, there is no real need to introduce them as
long as [Ao] is a normal form. The situation is quite different when [Ao] is
nolonger a normal form (cf. III.2.2).

1.5. Filtration ofA(Ao) and of the Stokes groups StOa(Ao)
by the levels.

It is easy to prove (see [LR91]) the following properties which are
fundamental in the proof of the main theorem (Theorem 11.2.1).

PROPOSITION 1.5.1. — For any level k 6 /C one has:

(i) the sheaves A^Ao), A^Ao), A^Ao) are sheaves of subgroups
ofA(Ao);
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(ii) the sheaf Ak(Ao) is normal in A<k(Ao)',

(iii) the exact sequence of sheaves

1 -. Ak(Ao) -^ A^(Ao) -^ A< fe(Ao) -^ 1

splits. (Here i denotes the canonical inclusion and p the truncation to terms
of level < k.)

COROLLARY 1.5.2.

(i) For any level k G JC the sheaf A<k(Ao) can be identified to a
semi-direct product in the two following ways:

A<k(Ao)^A<k(Ao)xAk(Ao)

^Ak(Ao) xA^Ao)

i.e. any germ /<fc € A<k(Ao) can be uniquely factored in
f<k ^ ^<kgk ^ ^<k ^ ^k^<k

where ./̂  6 A<fc(Ao), fk and gk € A^Ao).

(ii) A factorization algorithm can be: the factor /<k common to
both factorizations is the truncation of /<fc to terms of level k (in any
representation I + Sco^)-E'(j^) of/< f c iceep only terms (j,£) such that
deg(q,-qe) < k). TAen^ =(f<k)-lf<k and f1^ = f<k(f<k)-l.

(iii) The decomposition in semi-direct product and the algorithm can be
extended to all levels:

A(Ao) ^ K Ak(Ao)
ke)c

the semi-direct product being taken in an ascending or a descending order
of levels k.

In order to get semi-direct products in an arbitrary order of levels one
can extend Proposition 1.5.1 and Corollary 1.5.2 in:

PROPOSITION 1.5.3. — Let k, k ' € /C, k1 < k be levels of [Ao]. Then
one has:

(i) the sheaf A^ (Ao) H A<k(Ao) is normal in A^(Ao);

(ii) the exact sequence of sheaves

1 _ A^Ao) n A^(Ao) —> A^(Ao) -^ A^Ao) -^ 1

splits. (Here i still denotes the canonical inclusion and p the truncature to
terms of levels < k1.)
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COROLLARY 1.5.4. — Let fC = {A;i < k^ < ' ' • < kr}. be the set of
levels.

(i) The filtration

A^Ao) == A^Ao) C A^-^Ao) C • . • C A^Ao) = A(Ao)

is normal.

(ii) The decomposition in iterated semi-direct products

A(Ao) ^ X A^Ao)
fce/c

and the algorithm in Corollary 1.5.2 can be extended to an arbitrary order
of levels k e J C .

PROPOSITION 1.5.5. — The previous results can be restricted to the
Stokes groups', in particular, for a C A, one has

Sto,(Ao) ^ K Sto^(Ao)
keJCc,

the semi-direct product being taken in an arbitrary order.

1.6. Leading directions of fe-germs and rules
of commutations (unramified case).

This section contains technical rules for the explicitation of the
algorithm in Section 11.3.4. It can be skipped by readers interested only in
the main theorem.

We restrict ourselves to the unramified case and we fix a level k C /C
(here k € N). For any 6 € 6'1, we set

A^ := A^ H U{0^/k) = {a,{0) < a^0) < • • . < a^W}^

where (cf. 1.2) U{0,7r/k) denotes an open arc on S1 bisected by 0 with
opening n / k . The set A^ is piecewise constant with respect to 0
and discontinuities occur only at Stokes directions bearing the level k.
For a e A^, the Stokes germs in Sto^(Ao) can be analytically continued
up to 6. Thus the Stokes groups Sto^(Ao), a e A^, can be regarded as
subgroups of A6?(Ao). Moreover one has:
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PROPOSITION 1.6.1. — The Stokes groups Sto^(Ao), for a e A^,
generate the group A^(Ao) of all k-germs at 0.

We set A^(Ao)=: V Sto^(Ao).
aCA^

Let ^6> e A^(Ao) be a A;-germ at 0 with representation

^o,^7 + 1^ C(^)JE;(^)•

O'^)|g,-<9€0

DEFINITION 1.6.2. — The set

^(w) •'= {^ e A^; ̂  -< ^ and C(, ̂  ^ 0}
Q, max \J^ ) ' )

is the set of leading directions of the A;-germ y^.

Obviously (pe is an element of

V ^(A)),
QeAfc(^)

(^^ is a Stokes A:-germ iff (JA^^) = 1 and when ^pe is an element of

V^W^)
then one has •?e•7

A*(^) c [an>in0)(^),a^ax0)(^].
J J

Besides the filtration by levels on the group of all germs A^(Ao),
one has a normal filtration by leading directions on the groups of
/c-germs A^(Ao). Precisely, one has:

PROPOSITION 1.6.3. — Let P^ = {ai(0) < • • . < a^{0)}.
s

(i) The group \/ Sto^(Ao) is a normal subgroup ofA^(Ao).
J=2

(ii) The exact sequence of groups

1 - V ̂ -W^o) ̂  A^(Ao) = V S<.^(Ao)

-^S<^(Ao)-l

splits. (Here i means the canonical injection and p the truncation to entries
led by ai(0) in any representation.)



STOKES PHENOMENON 865

COROLLARY 1.6.4.

(i) The group

A^(Ao) = V ̂ (^o)
can be identified to a semi-direct product

A^(Ao) ^ Sto^(Ao) K V Sto^(Ao).
.7=2

(ii) As a consequence any k-germ (pe can be uniquely factored in the
form

^e = ̂ a^e^e

where (^(0) C Sto^^(Ao) is a Stokes k-germ led by a^(0) and ^e is a
k-germ led by anti-Stokes directions in

Ake\{a,(0)}={a2W<•" <a,(0)}.

A factorization algorithm can be the following: ^a^(e) ls deduced from (pe
by keeping the terms led by a^(0) in a representation of (^9; then ^e is
given by^e = ̂ ^e'

(hi) The previous decomposition and the algorithm can be extended to
all anti-Stokes directions in A^:

A^(Ao)^Sto^(Ao) x (Sto^(Ao) x (• • . x Sto^Ao)) • • •).

COROLLARY 1.6.5. — The filtration

WcSto^(Ao)c V ^WAo)
J=s-l

s s

C • • • C V Sto^(Ao) C V Sto^.(,)(Ao) = A^(Ao)
3=2 j=l

is normal.

Given y?, -0 e A^Ao) two germs at 0 we denote by

[( ]̂ =(p~l^~l(p'^l}

the commutator of (p with ̂ . Then we have y?'0 = ^y[(p, ̂ ] = [^-1, <^-l]/0(^.

The following proposition gives the commutation rules of Stokes
A-germs. Notice that, in this commutation, new leading directions may
appear but they all appear in between the previous ones.
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PROPOSITION 1.6.6. — Let (pe and ̂  be germs at (9. Let us assume
that ^pe e Sto^(Ao), ^ € Sto^,(Ao), k ' <k anda^- a', say a < a' in
U ( e ^ / k ' ) (cf.I.2).

(i) If A/ < k then [(pe, ̂ ] is an element ofSto^(Ao).

(ii) Ifk' = k then [pe, ̂ ] is an element of \^ Sto^(Ao) for allj satis-
fying Oj(e) c A^ and a < Oj(0) < a' in A^.

II. THE MAIN THEOREM

From now on, [Ao] is assumed to be a normal form.

11.1. Basic topics in Cech cohomology for ff1^1; A(Ao)).

We orient S1 clockwise. This orientation is chosen because we want
our computations to be compatible with most of the classical computations
made around infinity with a counterclockwise orientation. We use the
terminology left-right with the following meaning: we go to the left when
moving counterclockwise and to the right when moving clockwise.

The non-Abelian cohomological set H1 (S1; A{Ao)) is defined as
the inductive limit, over coverings U filtered with inclusion, of Cech
cohomological sets H^U; A(Ao)) (see [Fr56]). Without loss of generality we
restrict the limit to the particular coverings which we call cyclic coverings.

DEFINITION 11.1.1. — A covering U = [U^j e J} of 5'1 is a cyclic
covering when:

(i) the set J is finite and cyclic J = Z/;/Z;

(ii) the Uj and, except when # J = 2, the Uj H L^+i are connected arcs
on S1 (cf. 1.2);

(iii) the bisecting directions of the Uj are in ascending order with respect
to the clockwise orientation of S'1;

(iv) the Uj are not encased: the arcs Uj \ Ue are connected arcs (when U(,
is included in Uj then U(, and Uj coincide at one end).

DEFINITION 11.1.2. — The nerve of a cyclic covering U = {Uj'J G J}
is the family U = {Uj; j e J} of connected arcs defined by:



STOKES PHENOMENON 867

• Uj = Uj H Uj^ when jjJ > 2,

• £/i and 1/2 the two connected components of U\ H L^ when (1J"=2.

There is a one-to-one correspondence between cyclic coverings and
their nerve: when U = {Uj'.j G J} is a nerve then it is the nerve of a unique
cyclic covering U = {Uj'.j € J } and L^- is the connected clockwise hull
arc from Uj-\ to Uj. Coverings of thickness 2 often used by many authors
(Malgrange, Ramis, Sibuya,...) are cyclic.

By definition, a covering V refines a covering U when each open Vn
in V is included in at least one open Uj in U.

PROPOSITION 11.1.3. — Let Li = {Uj'J 6 J} and V = {V^i e L} be
nerves of cyclic coverings U and V. Then V refines U when each Uj contains
at least one Vn.

In particular V refines U when V results from U by the narrowing of
one arc in U or by the addition of a new arc.

PROPOSITION 11.1.4. — LetU == {Uj'.j € J} be a cyclic covering. One
can identify the set of 1-cocycles on U to the set RJ r(£7j; A(Ao)) of partial
1-cochains on U without any condition. 3eJ

In the following, cocycle or cochain means 1-cocycle or 1-cochain
given in this partial form.

As the sheaf A(Ao) is piecewise constant with finitely many
discontinuities, the inductive limit in the definition of -^(^^(Ao)) is
stationary.

DEFINITION 11.1.5. — A covering U beyond which the inductive limit
is stationary is said to be adequate to describe H1 (S1; A(AQ)) , briefly,
adequate to A(Ao). Similarly, one defines coverings adequate to A^Ao),
A<k(Ao)oTA<k{Ao).

DEFINITION 11.1.6. — Let a € A be an anti-Stokes direction and
k 6 JCa be a level beared by a (notation 1.4.15). An arc U(a^7r/k) (cf. 1.2)
bisected by a with opening n / k is called a Stokes arc of level k at a.

PROPOSITION 11.1.7. — Let U = {Uj e J} be a cyclic covering. If
each Stokes arc of level A;, of level <: k or of any level contains at least one
arc Uj from the nerve U ofU^ then U is adequate to A^Ao), to A^^Ao) or
toA(Ao).
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DEFINITION 11.1.8. — A cocycle (p = ((pj)j^j on a cyclic covering
U = {Uj\j G J} is said to be a Stokes cocycle when the components ^j,
if non trivial, represent Stokes germs (pj,aj e StOc^.(Ao) at anti-Stokes
directions aj in a cyclic ascending ordering.

If we add or remove trivial components to a Stokes cocycle we get a
Stokes cocycle and we preserve its cohomology class. In this way, we can
also reduce the set J to be the set A of anti-Stokes directions.

From now on, for Stokes cocycles, we assume the set J = A (possibly
a subset of A in special cases when some components are a priori known to
be trivial).

The map h. — To any finite family (p == {(^e^jeJ of germs .̂
in A^ (Ao), one can associate a cohomology class in the following way: let (pj
be the function representing the germ ̂  on its maximal arc of definition flj
around Oj (later we shall keep the same notation (pj = ̂ ); when a cyclic
covering U = {Uj'^j € J} satisfies the conditions Uj C ^j for all j € J
one can define the 1-cocycle {^j\Uj)j^J on ̂  Q'n(^to different U correspond
cohomologous 1-cocycles. Thus the following definition makes sense.

DEFINITION 11.1.9. — The map

h: JJSto^Ao^^^^Ao))
Q<EA

is the map which canonically takes a family (p = (^a)aeA of Stokes germs
into the cohomology class of the cocycle induced by (^ = (^a)aeA over any
cyclic covering U the nerve U = {Ua\ 01. € A} of which satisfies Ua C f^a for
all a C A (f^a is the natural arc of definition of (pa).

Since germs in the family (p are Stokes germs, then the induced
cocycles are Stokes cocycles.

11.2. The main theorem.

THEOREM 11.2.1. — The map

h: {] Sto<,(Ao) -. ̂ (^^(Ao))
aeA

is bijective and natural.
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Natural means here that h commutes to isomorphisms and construc-
tions (cf. Section III.3.3) over systems or connections they represent.

As we shall see in Section III.l, this isomorphism endows the
classifying set H1 (S1; A(Ao)) with a natural structure of a finite dimensional
linear variety and, although it is transcendental, it provides a nice
description of systems by the arbitrary family of their Stokes matrices.

The map h is easily seen to be injective. To prove the theorem we
then have to prove that to each cohomology class belongs a Stokes cocycle.
Our proof separates the unramified and the ramified case. In the unramified
case, the proof proceeds by descending induction on levels. The ramified
case is deduced from the unramified one by blowing up and descent. This
proof is constructive and provides an algorithm for putting any cocycle in
its cohomologous Stokes form.

11.3. Proof in the unramified case.

The description of the cohomology at the different levels requires the
coverings to be adequate to the sheaves A^Ao), A^^Ao) and A'^Ao). In
order to make this description as simple as possible we look for coverings
with as few 0-cochains as possible. But in order to carry out inductions,
we need to compare the cohomological sets at different levels and then
we need comparable coverings. These last two conditions mainly tend in
opposite directions. The cyclic coverings ^fe, U^ and U^ below offer a
good compromise. We define them by their nerve.

11.3.1. Adequate coverings.
Let k be an element of /C.

The cyclic covering l^ = {^; a C A^}. — The family

{U^=U(a^/k))^

of Stokes arcs bisected by a with opening n / k when the level k is fixed and
a runs through the set A^ of anti-Stokes directions bearing the level k is
the nerve of a cyclic covering. We define

^ .^{L^aeA^}

as being the nerve oiU1^.
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In general, when extended to several levels the previous family is no
longer a nerve. Neither is a nerve the family of Stokes arcs of level k1 < k
after the selection of the smallest arc in each anti-Stokes direction:

V^ = U{a, T T / K ) for a e A^ and K == max{A/; k ' € ICa H [0, k}}.

The integer K is the k-maximal level at a € A^ and we denote by
{K-t < • ' ' < Ks = k} the set of all /^-maximum levels.

Let us now construct the nerve U^ of the required covering U^ by
descending induction on /^-maximum levels.

The cyclic covering U^ = [U^-.a G A^}. — For all a € A^
(recall that in this case a has Kg = k as fc-maximum level) we set

?7^:=^=£/(a,7r/^).

This family is a nerve, the nerve l^ of level k = Kg.

Now, let us assume that the U^ are defined for all a € A^ with
^-maximum level greater than Ki in such a way that their complete family
be a nerve and let a € A^ be an anti-Stokes direction with /^-maximum
level Ki. This direction is located in between a~, the nearest on the left,
and o^, the nearest on the right, anti-Stokes directions with ^-maximum
level > K,. If U^ = }0-,E-[ and U^ = ]0+,E+[ (S1 is clockwise
oriented) then we set

U^k'=U{a^/Ki)^}0-^E+[.

This complete family of U^ for all a with /^-maximum level > Ki is a
nerve. This achieves the induction and defines the nerve U^ of the required
covering U^.

Notice that when a has a ^-maximum level equal to k then U^ is the
Stokes arc U(a^ 7 r / k ) and then no 0-cochain with level k or > k can exist
on the covering ^/<fe.

The cyclic covering U<k = {U^; a € A^}. — We set U^ := U^
where k ' = max^" 6 /C; k" < k}.

The following proposition is easily deduced from the definitions and
Proposition 11.1.7.
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PROPOSITION 11.3.1. — For all k e /C,

(i) the coverings ^fc, ^/<fc, U^ do not depend on [Ao] itself or XQ but
only on the set Q[EndAo] (cf- L4);

(ii) the covering U^ refines^ andU^',

(iii) the coverings U^\ U^, U^ are adequate to Ak(Ao), A^Ao),
A'^Ao) respectively'^

(iv) on the covering 1^ there exists no 0-cochain in A^Ao). On the
covering U^ there exists no 0-cochain in A^^Ao) with a level equal to k:
0-cochains all belong to A<fe(Ao).

We need to compare cochains when both coverings and sheaves are
different. Thus, to be precise, we need to introduce some notations.

For simplicity's sake we denote the product ]~I I^L^A^Ao)) by
r(^; A^Ao)) and so on. aeAk

Inclusions. — The maps we use between sets of indices are only the
canonical inclusions

A^A^ and A<k^A<k.

To compare cocycles we use the following injective maps (with ke /C):

^ fr^A^Ao)) -r^A^Ao)),
1 / = C/a)a€A^ ^ ̂ (/) = (^a)aGA<^

where

. _ ( fa restricted to U^ and seen as being in A^^Ao) when a 6 A^
I I (the identity) when a ^ A^;

and

a^ :^(^<fe;A<A;(Ao)) —^(Z^A^Ao))

defined in a similar way.

By means of the maps o•k and a^ we can multiply 1-cocycles in
r(Z^; AA;(Ao)) with 1-cocycles in r^^; A<fc(Ao)) by making them become
1-cochains in ^(^<A;;A<fc(Ao)).

While we have A(Ao) = A<fcT'(Ao) (recall that kr G /C is the largest
level) we also denote by U the covering U^.
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We introduce also the injective map

^f^(^ ;A f c (Ao)) -^(^A(Ao)) ,
[f=(fa)^^rk(f)=(F^^

where

F.,= fa restricted to Ua and seen as being in A(Ao) when a € A^,
I (the identity) when a ^ A^.

The maps T^ are deduced from the previous ones by composition.

11.3.2. The case of a unique level.
By « unique level» we mean both the case where the sheaf A(Ao) itself

has only one level (see [Mal83]) and the case where we restrict ourselves
to a given level k: we replace the sheaf A(Ao) by A^Ao) and the groups
Sto^Ao)bySto^(Ao).

LEMMA 11.3.2. — Let k e /C. The canonical injective map ̂  and the
canonical surjective map s^

n Sto^(Ao) -^ r^A^Ao)) -^ J^A^Ao))
Q<EA

are bijective.

Proof. — The map ^ is the canonical extension of germs to
their natural arc of definition. It is a group isomorphism. The map ^
is the quotient map. It is surjective while U1^ is adequate to A^Ao)
(cf. Definition 11.1.5 and Proposition 11.3.1 (hi)) and it is injective while,
on l^, there exists no 0-cochain in A^Ao) (Proposition 11.3.1 (iv)). D

This lemma proves Theorem 11.2.1 in the case when the sheaf A(Ao)
itself has only one level.

11.3.3. The case of several levels.

LEMMA 11.3.3. — Let k G /C.

(i) The product-map of cocycles

©<fc : F^^A^Ao)) x F(^ ; A^Ao)) -. r(^ ; A^Ao))
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defined by

6^(/>ff)=(^Ga)a6A-

where we denote

(^LeA^-^Cn and (GJ,̂  = ak(g)

is injective.

(ii) If the cocycles 6^k(f,g) and G^^^g') are cohomologous in
n^ ; A^Ao)) then f and f are cohomologous in T^U^ ; A^Ao)).

(iii) Any cocycle in F^^; A^Ao)) is cohomologous to a cocycle in the
range ofG^.

Proof.

(i) The proof is obvious as injectivity for germs implies injectivity for
sections (Proposition 1.5.1).

(ii) Let us denote by o^ the nearest anti-Stokes direction in A^ on the
right of a. The cocycles G^^f.g) and G^^f.g') are cohomologous when
there exists a 0-cochain c = (ca)^A<^ ^ F^^; A<A;(Ao)) such that the
relations

F^=c^\F^c^, aeA^

hold. Actually, we know (Proposition 11.3.1 (iv)) that c is with values
in A^Ao) (i.e. c € F^^; A^Ao))). The sheaf A^Ao) being normal
in A^^Ao) we can give these relations the form

F^={c^F^)G^ aeA^

where G^ = c^G^c^ is an element of ^(U^k,Ak(Ao)). And by the
identification ofA^Ao) to the semi-direct product A^Ao) ix A^Ao) we
get for all a e ^<k

Fa=c^F^+ and Go = G"^

The former relation means that (F^) and (F^) are cohomologous as cocycles
with values in A<fc(Ao) on ^fc; they also are cohomologous on U^
while U^ is already adequate to A<A;(Ao).

(iii) Let (MaeA<fc ^ F^^^; A<A;(Ao)). Using again the identification
ofA^ to the semi-direct product A<fc(Ao) K A/!;(Ao) we can write

ha = FaGa
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where

F, e r(^; A^(Ao)), ^ e r(^; A^Ao)).

The covering ^<A; is adequate to A<fc(Ao) and U^ refines L{<k

by Proposition 11.3.1. Then the cocycle (Fa)a^<k ls cohomologous to
a cocycle (F^)^^<k which comes from an (/^) in F^^; A<A;(Ao)): there
is a 0-cochain (coJaeA^ € r^^; A'^Ao)) with values in A<fc(Ao) such
that

c^F^=F^ and F, = a<k(f^.

Then c^haCa+ = F^G^ where, from the normality ofA^Ao) in A<A;(Ao),
the cocycle (G^ = C^GaC^+)Q^A<fe ls with values in A^Ao). But the
covering U1^ is adequate to A^Ao) and U^ refines U^. Then the
cocycle (G'^^p^k is cohomologous to a cocycle cr^^) which comes
from a (g^) in ^(l/A;;AA;). And they necessarily are cohomologous through
a 0-cochain with values in A<;i;(Ao) (Proposition 11.3.1 (iv)). Then this
0-cochain is trivial: (G^) = ^(g^) and the cocycle {c^lhaCa+)Q^<k
answers the question. D

From Lemmas 11.3.2 and 11.3.3 we deduce:

PROPOSITION 11.3.4.

(i) The product map of single-leveled cocycles

rnr^A^Ao))-^ r(^;A(Ao)),
r : { ke)c[ (/')^c— n^^)

fceA:

following an ascending ordering of levels is injective.

(ii) It induces on the cohomology a bijective and natural map

T : n F(^; A^Ao)) ^ n H1^1; A^Ao))
fce/c fceA:

-̂  H1 (U; A(Ao)) ^ H1 (S1; A(Ao)).

Proof. — It is an immediate consequence of Lemmas 11.3.2 and 11.3.3.
Naturality must be understood in the same sense as in the main Theo-
rem 11.2.1 and is obvious. D
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Remark 11.3.5. — As it was done in Corollary 1.5.4, we can extend
Proposition 11.3.4 to an arbitrary order of levels.

Proof of the main theorem 11.2.1. — Let

I : ]̂ [ Sto,(Ao) —. n r^ A^Ao))
a€A k^JC

be the bijection composed as follows:

n sto,(Ao) - n n ̂ ^o)= n n sto^A^
' aCA aCAfcC/C fc€/CaeA

—.^r^A^Ao)),
keJC

where ia '' StOc^Ao) —> Y[ Sto^(Ao) gives the factors in the factorization
fce/c

of Stokes germs in ascending levels (Corollary 1.5.2, Proposition 1.5.5) and
^ : n Sto^(Ao) -> r^; Afc(Ao)) is the canonical map (Lemma 11.3.2).

QCA

The bijection T ol : ]"[ StOa(Ao) -> H1^1', A(Ao)) is the map h
aCA

in Theorem 11.2.1. Naturality is obvious. D

In order for this proof to provide an algorithm for reducing any
cocycle (p into its cohomologous Stokes form /i"1^), one must detail the
cohomological relation {c^lhaCa+) in Lemma 11.3.3 (hi). This is done by
using Section 1.6.

11.3.4. An algorithm for the reduction of 1-cocycles to their
cohomologous Stokes form.

We assume that jjA > 2, leaving to the reader the quite simple case
when (A = 2.

• Input: a cocycle g = (gj) over a cyclic covering V with nerve
v={VrJ^J}'

• Output: the Stokes cocycle (/cOaeA cohomologous to g.

• Algorithm:

1) Choose a first element a\ among the set of cyclically ordered
anti-Stokes directions

A = {ai < 02 < • • • < as}.
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As previously, U(a^ 7 T / k ) denotes an arc on S'1 bisected by a with opening
7 r / k (Section 1.2) and /C = {k^ < " ' < kr} denotes the set of levels
(Notation 1.4.3).

2) Forget the j^s such that gj = I .

3) Factorize the remaining g^s by levels ̂ , following the algorithm in
Corollary 1.5.2

9, = g^g]2 • • .^r, where ̂  C Y(V^ A^Ao)).

4) For all (j, A:), list the set of possible leading directions of level k for
sections over Vj

A^. := {a C A^. C £7(a,7T/fc)} = {a^ < • . . < a^^}

and factorize the g^ by leading directions following the algorithm in
Corollary 1.6.4:

3 ^otk^^ ^^(j.fc)'

5) List the Stokes A;-germs ^^ into a cyclic list preserving the
lexicographic order on (j, k^ a).

6) Using the commutation rules in Proposition 1.6.6 change this list
into a list of Stokes A;-germs ordered according to their leading anti-Stokes
directions a. (As commutators are not trivial, the previous germs g^^ must
of course be changed.)

One can proceed by induction on anti-Stokes directions as follows:

first step: using the commutation rules in proposition 1.6.6 collect
together germs led by ai.

j-th step: suppose the list is now arranged such that, according to
the clockwise orientation, it contains all germs led by ai, all germs led by
o;2,..., all germs led by Oj-i and then germs led by the others anti-Stokes
directions.

Using the commutation rules in Proposition 1.6.6 collect all germs led
by aj and write them to the right of germs led by Oj-i. New germs led by
ai, . . . , Oj-i may appear out of order. Using again the commutation rules
in Proposition 1.6.6 rearrange them from oy-i to QI.

7) In the final list, for all a G A, denote by fa the product (according
to the final order) of all germs led by a. The cocycle (/a)o-eA is the required
Stokes cocycle cohomologous to the given cocycle g.
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Remark 11.3.6. — A normal solution being given (for instance using
the solver DESIR and the forthcoming DESIR2), one can compute germs
using their representations, i.e., Stokes matrices, as it is done in [BJL79].
But one must notice that, as one turns all around 51, one cannot avoid a
jump of determination. This jump is controlled by the formal monodromy M
(cf. Remarks 1.4.9) and implies the closure relation in [BJL79]. We avoid this
problem when considering germs and cocycles instead of Stokes matrices.

11.4. Proof in the ramified case.

We denote by Cx and C^ copies of the complex line C whose coordi-
nates are x and t and by 5^, S^ the corresponding real blow-up of 0.

Let p € N, p -^ 0. The map Cf -^ Cx such that 11-^ x = ip defines a
p- foiled ramified covering of Ca; and takes a system [A] : dX/dx = AX into
the system [A*^] : dY/dt = A^Y where A^(t} = pt^A^). Obviously,
when the matrix A is meromorphic with respect to x, the matrix A*^ is
meromorphic with respect to t. The system [A*23] is called the lifting of [A]
by the ramification x = ip.

We consider also the following liftings:

• [A^] is the lifting of the normal form [Ao]. It is a normal form and
has X^^t) = XQ^) as a normal solution when Xo(x) is a normal solution
of[Ao].

• U*P == {U^'^j € J, 0 <i <p — 1} is the lifting of a cyclic covering
U = {Uj'J e J } of S1. The ^J, for i = 0 , . . . ,p - 1, denote the p liftings
of Uj. The covering U^ is cyclic. Its nerve U^ = {U^; j € J, 0 < i ̂  p-1}
is the lifting of the nerve U = [Uj\j G J } of U. It is adequate to A(A^)
(cf. figure 11.1).

• ̂  = (c^)jej,o<^p-i is the lifting of a 0-cochain c = {cj) in
F(^; A(Ao)) defined by c^(t) = c^(^). It is a 0-cochain in r(^*P; A(A^)).

. ^P = (^)jej,o<^p-i is the lifting of a cocycle (p = (ipj) in
r(^; A(Ao)) defined by ̂ {t) = ̂ -(^). It is a cocycle in F^; A(A^)).

. A*^ = {a^ < a^ < . . . < a^ < a^ < .. • < a^_,} is the
lifting of the set A = {ai < • • • < Or} of anti-Stokes directions of [Ao].
The a^, for i = 0,1,.. . ,p — 1, denote the p liftings of aj. As the set Q[AQ\
is invariant under the substitution x \-> rre2^, the set A*^ is the set of
anti-Stokes directions of [A^].
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J T r + ^ T T

=0

Figure 11.1

These liftings are Z/pZ-invariant, that is, invariant under the rotation
of angle 27r/p.

Proof of the main theorem 11.2.1. — Let [Ao] belong to the p-ramified
case. Let g = (^)^j C r(^; A(Ao)) be a cocycle on a cyclic covering
U = { U ^ j e J } o { S ^ .

The system [A^] belongs to the unramified case and the lifting g^
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of g is a Z/pZ-invariant cocycle in F^T^^A^)). The theorem in the
unramified case shows that g^ is cohomologous to a Stokes cocycle in

n sto^(A^).
jeJ

0<i<p-l

The algorithm applied in a Z/pZ-symmetric way shows that this Stokes
cocycle is Z/pZ-invariant and then it is the lifting f^ of a Stokes cocycle
/ in Y[ StOQ^.(Ao). Moreover the 0-cochain achieving the reduction of g^

.jej

to f^ is Z/pZ-invariant and then it « descends » in an 0-cochain achieving
the reduction of g to /: the cocycle g and the Stokes cocycle / belong to
the same cohomology class in H1 (S1; A(Ao)). This ends the proof of the
surjectivity of h.

Injectivity of h is obvious. In particular, notice that Z/pZ-inva-
riant cohomologous cocycles are cohomologous through a Z/pZ-invariant
0-cochain: a relation of cohomology that would not be Z/pZ-invariant can
be symmetrized. D

Remark 11.4.1. — When [Ao] belongs to the ramified case the
lifting X^ of a normal solution XQ is not Z/pZ-invariant. Then, while lifted
cocycles are Z/pZ-invariant, their representations by usual Stokes matrices
are not. This is the reason why Stokes matrices are much more difficult to
handle than cocycles.

Let us summarize the above results.

PROPOSITION 11.4.2. — The following diagram commutes:

Gt\G(Ay)) ^^ ^(^(A^))^. I] Sto^(A^) -^ ]"[ Sto^(A^)
Q^eA^ a^GA^

pp Rp Rp

G^\G(Ao) exp^ ^(^;A(Ao)) ^——. nSto,(Ao)
oeA

The notation A^ means the restriction of A*^ to the first sheat:
A^ = {a*^;j C J}; the map rest denotes the projection on the restricted
family'^ vertical arrows are injective liftings^ the map r? := rest o R' and
horizontal arrows except rest are bijective.
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III. APPLICATIONS

As previously, [Ao] denotes a normal form and XQ = a^ e^/^ a
normal solution.

III.l. H1 as a linear affine variety.

The Stokes groups Sto^(Ao) are unipotent Lie groups with finite
dimension

dime Sto^(Ao) = ^ deg(%- - ̂ )
Qj -< qe

<5, max

the summation being taken over couples (j, £), 1 < j, £ < n such that e^~^
is led by a given determination 5 of a. (cf. Definition 1.4.4).

The natural isomorphism h endows the classifying set H1 (S1', A(Ao))
with the product structure of a unipotent Lie group with finite dimension

N = ̂  deg(q, - ̂ ).
l<j,£<n

This number N is known to be the irregularity of [End Ao] (see [Mal74],
[De77] and [BV89], Prop. 2.6.3, Thm 3.4.1).

The Lie algebra stOa(Ao) of StOo,(Ao) is nilpotent and the exponential
map induces an homeomorphism

exp : sto^(Ao) —> StOc,(Ao).

We denote by In = exp-1 the inverse map. Then the tangent linear structure
is defined all over StOa(Ao) by the following laws:

• addition F^Ga = exp(lnF^ + InGy;

• multiplication by a scalar A € C

A*F^ ==exp(AlnF^).

The natural isomorphism h endows the classifying set H1 (S1; A(Ao)) with
the tangent product structure of a linear affine variety of dimension N.
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It can be convenient especially for numerical calculations (see [LR91])
to use another linear structure induced from sto^(Ao) by the homeomor-
phism

sto^(Ao) -[±-^ Sto^(Ao),

/a ——— I + f a ^
The laws are:

. the addition (J + /„) -L (I + g^) = I + (/„ + ^a);

• the multiplication by a scalar A C C

A. ( J+ / , )=J+A/ , .
Except in dimension 2 this structure differs from the previous one and
the product endows H1^1'^ A(Ao)) with a new structure of a linear
affine variety of dimension N . The relation between the two structure
is summarized in

PROPOSITION III. 1.1. — The map

((J + •) o ln)^ : n Sto,(Ao) -^ n Sto,(Ao)
QiGA a€A

is polynomial and a homomorphism of the two previous linear structures.
More precisely, the diagram

T](Sto,(Ao),T,*) ((J+')oln)aeA . r^0^)'^-)
aGA aGA

ex? \ /.,

]~J(stOa(Ao),+,-)
0'eA

commutes.

III.2. Summability.

Let F e G'(Ao) be a transformation of [Ao], i.e., a solution of the
system

dF
[Ao,A] ^=AF-FAo

where A = ^Ao denotes the transformed system.
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111.2.1. Sums of F.
Let ^p = ((pj)j^j G r(V; A(Ao)) be a 1-cocycle in the cohomology class

exp^(F) (cf. Theorem 1.2.1).

It is easy to prove (see [LR91], [Mal83]):

PROPOSITION III.2.1. — There exists a unique family of realizations
(Fj)j^j of F over V such that (pj = Fj-\F-1^ where j e J .

By realizations we mean analytic matrices Fj on Vj which satisfy
[Ao, A] and are asymptotic to F on Vj.

When V is the cyclic covering U = U^ = [U^'.a € A} (cf.
Section 11.3.1) and (p is in its Stokes form (cf. Section 11.2), we call sums
of F^ the corresponding realizations -Fa. Denoting by a^ the nearest anti-
Stokes direction on the right of a, one has Ua = Ua H Ua+ the intersection
of Ua «on the left)) of a and Ua+ «on the right)) of a. It is then natural
to set:

DEFINITION III.2.2.

S^(F) := FQ, is the sum of F on the left of a,

S^(F) := F^+ is the sum of F on the right of a.

Sums have been defined by different authors in many ways: by
Martinet and Ramis [MR91], by Ecalle [Ec92], [Br91-l], [Br91-2], by
Malgrange and Ramis [MalR92], by Balser, Braaksma, Ramis and Sibuya
[BBRS91], by Balser [Ba91],...

In all these definitions sums on the left and sums on the right of a
are identic to ours sums S^{F) and S^{F). We sketch the comparison of
our sums to those defined by Martinet and Ramis and to those defined
by Ecalle in Section III.2.4 (Theorem III.2.8) and we give in more details
the comparison to those defined by Malgrange and Ramis in Section III.2.5
(Theorems III.2.13 and III.2.14).

111.2.2. fe-summability.
In this section we introduce a few definitions which we use in the next

section.

Let FQ G G(Ao) and Ai = ^Ao.
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When they do not require [Ao] to be a normal form, definitions
in Chapter I make sense on [Ai] without any change. This is namely the
case for:

• G(Ai), the set of transformations of [Ai];

• A(Ai), the sheaf of flat isotropies of [Ai];

• exp^ : G \ G(Ai) -^ H1^1; A(Ai)), the Malgrange-Sibuya iso-
morphism.

This is also the case for Stokes germs in A(Ai) (Remark 1.4.13),

The definition of the subsheaf A^^Ai) of A(Ai) of germs of level > k
needs a few additional justifications: let 0 G 6'1; the sets G(Ao) and G(Ai)
are related by

G(Ai) = G(Ao)Fo~1 '= {F e GL(n; C[[x}} [l/^]);FFo e G(Ao)}.

Then, to a realization FQ of jFo at ^, there is an isomorphism
A<9(Ao) —^ A<9(Ai) given by ^ i—^ Fo^Fo"1- Since the possible realizations
of FQ are the Fo/o's for /o ^ Go(Ao) an isotropy of [Ao], there is also
the family of isomorphisms y ^ Fo/o^/o"1^)"1- ^na smce conjugacy
by /o preserves A^A;(Ao) (Proposition 1.5.3 (i)), one can speak of germs of
level >_ k in A(Ai). Notice however that we cannot this way define A;-germs
as conjugacy by /o does not preserve A^(Ao).

DEFINITION III.2.3.

(i) A 1-cocycle ip = (^pj)j^j e r(V;A(Ai)) is a k-summable cocycle
when, for all j G J, it satisfies the two conditions

^ is of level > k (^- e r(^-; A^^Ai))),

the opening of Vj is 7 r / k .

(ii) A series F G G(Ai) is a k-summable series when exp (F) contains
a A:-summable cocycle.

A ^-summable cocycle in a cohomology class, if any, is unique up to
extra trivial components. Realizations of such a fc-summable cocycle defines
then the k-sums of F in an essentially unique way (Proposition III.2.1).
When [Ai] is a normal form (i.e. when [Ai] is meromorphically equivalent
to [Ao]) then F is /c-summable if and only if its Stokes cocycle (p = (^cOaeA
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belongs to Y{Uk\ A^), precisely, to the range of the natural injective
map rk : r(^; A^) c-^ T{U\ A) (cf. Section 11.3.1). This occurs when the
Stokes cocycle ^ of F bears the unique level k.

This definition of A;-summability obviously agrees with the cohomolo-
gical definition given by Malgrange and Ramis in the very general context
of asymptotic series (see [MalR92], Def. 2.2 applied to k = k\ = • • • = kr^
and Definition III.2.10 below). Let us mention that it also agrees with the
asymptotic definition given by Ramis in [Ra80] (see [MalR92], thm 1.6)
and with the generalization to the level k of the Borel-summability given
by Leroy (see [LeOO], [MR89], Chap. 2).

The Turrittin's problem, that is, the question to know if a series
solution of a linear differential equation is fc-summable for a suitable k
has received a negative answer in [RS89] (cf. also [LR90-2]). The different
generalizations of A;-sums quoted at the end of Section III.2.1 enables to
give a precise answer to this question.

DEFINITION III.2.4. — Let F € G(Ai) be a A;-summable series and

(^)^enr(^;A(Ai))
jeJ

a A;-summable cocycle in exp^(F). The bisecting directions of the V^s
corresponding to nontrivial (pj are called singular directions for F.

III.2.3. Factorization.
The factorization theorem below (Theorem III.2.5) was first proved

by Ramis (see [Ra85-l], [Ra85-3]) in a quite technical way using Gevrey
estimates. The definition of A;-summability used there was also the one
based on a^ymptotics (see [Ra80], [LR90-2], [MalR92], Def. 1.5).

Our aim now is to show how to deduce this factorization theorem
from our Stokes cocycle without any use of Gevrey estimates. Of course,
we refer here to A:-summability as defined in Definition III.2.3.

Both proofs are not constructive.

THEOREM III.2.5 (Factorization theorem). — Let F G G(Ao) be a
transformation of the normal form [Ao] and 1C = {k^ < k^ < " • < kr} be
the set of levels of[Ao]. Then F can be factored in

F ^ F r F r - r ' - F ^ F ,
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where, forj = 1,..., r, F,; is kj-summable with singular directions belonging
to the set A^ of anti-Stokes directions of[Ao] bearing the level kj.

This factorization is essentially unique (cf. Proposition III.2.6 (iv)).

Proof. — Theorem III.2.5 follows immediately from Proposition III.2.6
below by descending induction on levels. Q

Let / e T(U\ A(Ao)) be the Stokes cocycle associated to F in exp^ (F)
and k be the maximal level beared by /. From Corollary 1.5.2 one can write
in a unique way

/=/<^ and /^.T^

where f^^ e F^; A^Ao)) and ̂  e F^; A^Ao)).

The cohomology class of the Stokes cocycle /<k belongs to
^(^^(Ao)). Then, from the Malgrange-Sibuya isomorphism theorem
(Theorem 1.2.1) there exists a transformation F^ e G(Ao) such that /<k

belongs to exp^F^)', moreover F^ is uniquely determined up to a left
meromorphic factor.

Let^[Ai = ^Ao] denote the system transformed from [Ao] by F^
and let ̂  be denned by P^ = ̂ (P^)-1.

PROPOSITION III.2.6. — One has:

(i) F = F k F < k .

(ii) Fk is k-summable with singular directions belonging to A^.

(iii) The levels in the Stokes cocycle ofF^ are < k.

(iv) The decomposition (i) with properties (ii) and (iii) is essentially
unique^ that is, unique up to an intermediate meromorphic factor. Let
F = HkH<k be another decomposition of F; then there is a matrix
h € GL(?z; C{x} [1/x}) with meromorphic entries such that H^ = hF^
and^ =Fkh-l.

Proof. — Properties (i) and (iii) are obvious. In order to prove (ii) we
have to prove that exp^^F^) contains a A;-summable cocycle and this is
the case of the twisted cocycle

V=(S^F<k)^S^F<k)-l)^

={S^F<k)fk,S^F<k)-l)^^.
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Indeed, for the first equality, consider the Stokes cocycle

(/a)a€A<^ = (/Q^L€A<^

associated to the product F = FkF<k:

f^Q^ = (F^r^F^F^) (Proposition ffl.2.1)
= ^{F^r^F^F^F^
=^<fc(^<-fe)-l^^.

Using the previous notation F^ = S^F^) this gives the first equality.
In order to get the second equality, use the formula fa = f^f^''•

From these formulae, we see that (^ being conjugated to a Stokes
cocycle of pure level k is of level > k. Moreover, it is a cocycle on U^
whose arcs U^ have an opening greater than TT/A:. Hence (p is fc-summable
with nontrivial components only when U^ has an opening equal to TT/A:,
i.e., when a € A^.

Property (iv) results from the fact that we must have

exp^J^^exp^F^). D

Writing also the twisted cocycle ^p € exp (-F^) in terms of sums
ofF^ overZ^:

^=S,(Fk)-lS^Fk), aeA^

we get the following corollary:

COROLLARY III.2.7. — The factors

^=(^L€A<^ ^d fk=(f^aeA^

in the decompositions f = f^^ and f = /^ /< k introduced above satisfy

^ = ̂ (F^)-1 S^F^-1 S^F^ ̂ (i?^),

^ = S^^)-1 S^F1-)-1 S^F^ S^^).

III.2.4. Sums in the sense of Martinet and Ramis and sums
in the sense of Ecalle.

A series is said to be multisummable by means of the levels k\,..., kr
in the sense of Martinet and Ramis (see [MR91]) when it belongs to the
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differential algebra generated by the differential algebras of A^-summable
series for j = 1,. . . , r (see [Ra80], [LR90-2]).

Accelerosums in the sense of Ecalle are defined in a very general
context by iterated integral formulae including kernels of acceleration.
These kernels generalize the Laplace and inverse Laplace kernels in the
classical Borel summation integrals (see [Ec92], [Br91-2], cf. [LR92] for
formulae useful in the linear case).

THEOREM III.2.8. — The sums S^(F) and S^(F) coincide with the
multisums in the sense of Martinet and Ramis and with the accelerosums
of Ecalle.

Proof. — The factorization theorem of Ramis (see [Ra85-l], [Ra85-3],
Theorem III.2.5 above) proves that F is multisummable in the sense of
Martinet and Ramis by means of the levels A ; i , . . . , kr of [Ao]. The multisums
of F are the products of the A^-sums of the factors. Theorem 14 (i) of [MR91]
states that, when F = Fr ... -Fi, the Fj being A^-summable, the 1-cocycle
built with the A^-sums of the F/s is a Stokes cocycle. From the unicity of the
Stokes cocycle (main Theorem 11.2.1) and the unicity of the sums associated
to a given cocycle (Proposition III.2.1) this proves that multisums in the
sense of Martinet and Ramis coincide with our sums S ^ ( F ) and S^(F)
(Definition III.2.2).

Theorem 9 (i) in [MR91] proves that the multisummmability of F in
the sense of Martinet and Ramis is a particular case of accelerosummability
in the sense of Ecalle. Q

III.2.5. Sums in the sense ofMalgrange and Ramis.
Our aim, in this section, is to compare the sums S ^ ( F ) and S^(F) of

a given transformation F e G(Ao) to its ( A ; i , . . . , /^)-sums in the sense of
Malgrange and Ramis using the Stokes cocycle of F.

Let us first recall and summarize the definition of a ( A ; i , . . . , A^)-sum
of a series / (one assumes 0 < A-i < k^ < ' • • < kr) and its wild analytic
interpretation following Malgrange and Ramis [MalR92].)

Let A denote the sheaf over S'1 of holomorphic germs with an
asymptotic expansion at 0 in directions 6 € S1 and A^"^ denote the
subsheaf of germs in A with an exponential decay of order k.

DEFINITION III.2.9. — A k-quasi-function is a global section over S1

of the quotient sheaf Aj A<~k. Hence, it can be represented by a 0-cochain
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(fj) e im^; -4) on a cyclic covering V = {^;j e J} such that the
successive differences ^-+1 - ̂  are exponentially small of order k (that is,
3C,a > 0 such that \f^i(x) - fj(x)\ < Cexp(-a/|af) on Y,+i n V,).

Due to a theorem of Ramis (see [MalR92], cor. 1.8 to thm 1.6) a
series / of A;-Gevrey type (/ e C[[a;]]i/fc) is the asymptotic expansion of a
unique A;-quasi-function /.

DEFINITION III.2.10.

(i) Let I be a closed arc with opening |J| = 7 r / k . A series / of A;-Gevrey
type is said to be k-summable on I if its A;-quasi-function has no jump
on I: precisely, one can represent / as a 0-cochain (fj) e nU^; ^) with
exponentially small ^-+1 - fj of order k such that at least one Vj, say V^,
contain I .

(ii) / is said to be k-summable when it is A:-summable on all arcs I but
a finite number.

When / is A;-summable on J, its A;-sum f^\i is uniquely defined
whatever is the choice of the 0-cochain (^-). As already mentioned in
Section III.2.2, the A;-sums in this sense coincide with the A;-sums in the
sense of Leroy [LeOO] or in the sense of Ramis [Ra80]. The generalization to
the case of several levels given by Malgrange and Ramis is as follows.

DEFINITION III.2.11 (See [MalRQl], Def. 2.2.). — A (A:i, . . . ,^)-
sum of a series / e C[[.r]]i/^ is a sequence (/oji,...,/r) €
r^;^/^-^) x r(A;A/A<-^) x ... x r(J,_i;^/A<-^) x r(J,;A)
of quasi-functions on closed arcs S'1 D Ji D • • • D Jy. with opening
|7i| = TT/A;! , . . . , \Ir\ = T r / k r , which are compatible in the obvious pos-
sible sense: fj mod A^"^ = fj-i\i..

Given a normal form [Ao] bearing the levels k ^ < k ^ < " ' < kr,
Malgrange and Ramis proved (see [MalR92], thm 4.1) that a transformation
F e G(Ao) is (A;i,...,A^)-summable in the previous sense provided that
the bisecting directions of the J/s are not anti-Stokes directions bearing
the level kj. Before comparing these sums to our sums S^(F) and S^{F)
let us describe their wild analytic interpretation.

The geometrical background of the wild 71-1 is the following: in the
analytic manifold C, one introduces at 0 a wild neighbourhood of 0 made
of a closed disc A^ = [z = pe^; \z\ < R}, R> kr, and the wild analytic
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sheaf A whose fiber at a point z = p e10 € Ap is
( C[[x]} = Ae/Ae\ i f p < f c i ;

^ AA4^~\ if kj < p < ̂ -+1 for j = 1,... ,r (set A^+i := R)',
[ AQ if p = R.

Denote

• ij:={z=peie^p<k^^ 0 € J , } , f o r j = l , . . . , r ;

• ^;= {1^1 < A;i}UJi U - - - UJr;

• ^ the intersection of the bisecting line of Ij with Ij \Ij-i (Jo = 0);

• 7zi,...,zr tne P^h m ^J? which connects the rays z i , . . . , Zy. as shown
in figure III.l.

Figure IIL1

Now, Definition III. 2.11 can be stated:

DEFINITION III.2.12. — A ( A ; i , . . . , kr)-sum of a series / € C[[a;]]i/^
is a section of the wild analytic sheaf A on J or equivalently is the analytic
continuation of / along the path 7^,...,^ in the sense of A.



890 MICHELE LODAY-RICHAUD

Let us now achieve the comparison of the sums S^(F) and
S^(F) of a given transformation F 6 G{Ao) to its (A; i , . . . ,^)-sums
(0o, ̂ i, • • • ,0r) on arcs (Ji,72? • • • ^T-)) precisely to <^y. on Ty.- Of course,
k-i < • • • < A;r are no longer arbitrary positive numbers but the levels
of [Ao]. Viewing a (k i , . . . , A;y.)-sum of F as a wild analytic continuation of F
(Definition III. 2.12) the comparison is given by a wild Cauchy theorem
around singular anti-Stokes directions and it is mainly the geometric
translation of formulae in Corollary III.2.7.

THEOREM III.2.13. — When 7^,...,^ lies in between two successive
anti-Stokes directions a' and a", say a' on the left and a" on the right,
then^=^,(F)|^=%,(F)|^.

Proof. — Consider F in the factored form F = Fr ' ' • F\ as given in
Theorem III.2.5. For all j = 1,... ,r, the A;j-quasi-function of Fj can be
represented by a 0-cochain equal to S^/(Fj) = S^,(Fj) on Ij. The products
of these A^-quasi-functions in an obvious sense give the ( A ; i , . . . , A;^)-sum
of F along 7^,..^. Hence 0, = 5^(F,)|^ .. • 5^(Fi)|^ = ̂ ,(F)|^. D

Thus, ( A ; i , . . . , A;y.)-sums are preserved up to analytic continuation in
the usual sense when moving the path 7^,...,^ without crossing any anti-
Stokes direction. Under the conditions of Theorem III.2.13, one can change
7zi,...,^ into any ray in between a' and a".

The comparison in the general case results by path composition from
the two elementary following cases:

• Let a' < a < a" be three successive anti-Stokes directions
and 7^j, 7^ be two paths 7^,...,^ in between a' and a". The path 7^ • is
assumed to lie on the left of a but the part ij lying on the right of a and
the path 7^ is assumed to lie on the right of a but the part ij lying on the
left of a (cf.'Fig. IIL2).

• Let / == (/cOaeA be the Stokes cocycle of F and denote

f _ fkj r ^kj __ ^ ̂ kj . k j
Joe — Ja Ja ~ VQ Yd 5

. ^1y . ^L. .

where fa 3 and ga~ 3 do not contain the level kj.

THEOREM III.2.14.

(i) The (A : i , . . . , kr)-sum ofF along the path 7^ • satisfies:

^ = S^(F)f^^ = ̂ (W^"1!^.
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7a,,

kr+i = R kr+i = -R

Figure 111.2

(ii) The ( A ; i , . . . , kr)-sum ofF along the path 7 .̂ satisfies:

^ = S^F)^)-1^ = ̂ {F)g^^.

Proof. — Property (i): let F = Fr ... Fi be the decomposition of F in
the factorization theorem (Theorem III.2.5). One has

^=5,(F,...F,+i)^(F,)^(F,_i...Fi)|^

and from Corollary III.2.7 applied to the transformation F^(F,_i • • • Fi) of
maximal level kj,

S^F,)S^F,.^^F,)=S^F,)S^F^^^^^^^

{fa3 is not affected by the commutation with factors of greater levels).

Property (ii) can be proved similarly. D

III.3. Differential Galois theory.

III.3.1. Definitions.

Let (K = C{x}[l/x}, 9 = d / d x ) be the differential field of mero-
morphic series at 0; it has C as subfield of constants, that is, of elements y
such that 9y = 0.
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Let SolA denote a n-dimensional C-vector space of solutions of a
system [A] which can be either the C-vector space SO\A(U) of analytic
solutions of [A] on a sector U with vertex 0 in C or the C-vector space
SolA of formal solutions of [A] at 0. In a given space SO\A of solutions,
Y = [ Y - i - ' • Yn] denotes a fundamental solution, i.e., a matrix, the columns
Y I , . . . , Y ^ of which are n linearly independent solutions of [A] in SolA.
According to whether SO\A = SO\A or SO\A = SO\A(U), the solution Y will
be denoted by Y or Y(U).

One calls differential Galois group Gal^(A) of a system [A] the
group of differential JC-automorphisms (i.e. field automorphisms leaving
the elements of K invariant and commuting with 0) of any Picard-Vessiot
extension of K relative to [A]. It is well-known (see [Ko73]) that, in
the case when the constant field of (K,9) is algebraically closed with
characteristic zero, the Picard-Vessiot extension is well-defined up to
isomorphism. In particular, one can choose the Picard-Vessiot extension to
be (K(Y),9) where K{Y) = K(y^^', 1 < j,£ < n) is the differential field
generated over K by the entries of a fixed fundamental solution Y = [y^^}
either in SolA = SolA or in SolA = SolA(^) for any U, and where 9 = d / d x
is the usual derivative with respect to x.

By defining the action of an automorphism a C Galj<(A) on vector-
matrices Y = t [y - i . . .yn} by (r(Y) = t[^J{y\) . . . cr(^)] one obviously defines
an action on SolA and then a representation

rGal^(A) ———— GLc(SolA)

[ a H— p(^):[yi...y,]^[a(yi)...a(y,)]
of the differential Galois group Galj<(A). If useful, p will be denoted by p
when SolA = SolA and by pu when SolA == SolA(^). These representations
are faithful but they are not surjective in general (Proposition III.3.5).

DEFINITION III.3.1. — A C-linear automorphism of SolA is said to be
Galoisian when it belongs to the range of p.

Let V = FXo be a formal fundamental solution of [A] in which
F C GL{n,C[[x]][l/x]) and XQ = a^e^1/^ is a fundamental solution of
the normal form [Ao].

The substitution x i—^ xe21^ defines a differential J^-automorphism
of the Picard-Vessiot extension K(Xo) as well as of the Picard-Vessiot
extension K{Y) (see [Mi91]).
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DEFINITION III.3.2. — The formal monodromy of [A] is the C-linear
isomorphism M. G GLc(SolA) induced by the substitution x \—^ xe21^ in
the space Sol^ of formal solutions. Its matrix, in the basis Y = FXo^ is

M = X , 1 X . _ =e-^l^e2i7^Le^l/xe2^^eGL(^C).
U,C7 U,C7+27T

(Here 6 denotes an arbitrary determination of the argument on U.)

Obviously M. is Galoisian (.M G p(Gal^(A))).

Let pi , . . . ,p^ be a Z-basis of the lattice generated in C[l/^] by the
polynomials q\,..., Qn of diag(Q) and set

11
^=^/^^

^=1

(Recall t = x^^ where p is the degree of a ramification of Q.)

The substitution e^ ^—> Aj e^ (where Aj C C*) defines a differential
K- automorphism r\. of the Picard-Vessiot extension K{Xo) as well as of
the Picard-Vessiot extension K(Y} (see [Mi91]).

DEFINITION III.3.3. — The exponential torus T is the subgroup
of p(Galj<(A)) C GLc(SolA) generated by the C-linear isomorphisms
TA, := p(n,), where Xj € C* and j == 1,.. . , rj.

The matrix r\i,...,A,, of the C-linear isomorphism r\^^..^ :=
r\^ o • ' ' o r\ in the basis Y is the diagonal matrix

7\ ^ — rliftoY\^1 '1 \^1'7? .K^71'1 \^^^-i\z,...,\r, — ̂ ^^i ^ ^ • • • ̂ i ^ ;•

Let V1 = ^l^o 0 an<^ ^2 = ^2^o 0 ^e two fealizations of a formal
fundamental solution Y == FXo on a sector ?7.

DEFINITION III.3.4.

(i) The C-linear isomorphism Y1 ̂  Y2 = Y1C in GLc(SolA(^)) is
called a Stokes automorphism. Its matrix C in the basis V1 is called a
Stokes matrix.

(ii) When associated to the Stokes cocycle (^a)aeA of F a Stokes
automorphism and a Stokes matrix are respectively called a Stokes-Ramis
automorphism and a Stokes-Ramis matrix. Precisely, setting

y^^Fpfo^ and Y2 = S^F)Xo^
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(we recall that (^ = ^(F)-1^^), cf. Definition III.2.2), the C-linear
isomorphism

^: y1 — y2 = y1^
in GLc(SolA(^a)) ls a Stokes-Ramis automorphism at a and its matrix Ca
in the basis V1, the Stokes-Ramis matrix at a. It is also the matrix of the
representation of (pa m the sheat a (cf. Definition 1.4.7).

In the next section, we prove that — unlike the formal monodromy
and automorphisms of the exponential torus — Stokes automorphisms are
not always Galoisian. We prove further that Stokes-Ramis automorphisms
are Galoisian.

III. 3.2. A non-Galoisian Stokes automorphism.

PROPOSITION III.3.5. — The representation p is not surjective in
general. Precisely^ there exist non-Galoisian Stokes automorphisms.

Proof. — Let us consider the companion system

[E] d^-=EY where E = \ ̂  ^ ij1 J da; [x~3 -(x~2 + a;"1) J

is associated to Euler's equation x^y' + y = x. We choose:

• a formal fundamental solution Y -==- FXo where

[e^ 01 _ [-1 f f 1
^l 0 l j ' ^[^ g ' \ -

g denoting the Euler series

^-E^1)^^1
n>0

and g ' its derivative;

• the sector U = {x e C; Rex > 0};

• and the realizations Y1 = F^XQ and Y2 = FcXo of Y where,
for c € C,

" -l+c^e-1/3' g '
F =

x~2 + cg'e-1^ g 1

g denoting a realization of g on U.
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The matrix C = \ . i s the Stokes matrix of the Stokes[c I j
automorphism Y1 ̂  Y2 in the basis Y1 and it is non-Galoisian as soon
as c ̂  0: indeed, assume that C is Galoisian. Denote Y1 by

yi^h1 ^1
[V2 ^\

and let a C Galj^(A) be the differential K- automorphism of the Picard-
Vessiot extension ^(2/1,2/2,^1,^2) represented by the matrix C in the
basis y1. The functions 2/1 = —e1 /^ and 2/2 = x^e1^ satisfy the
relation x2y]_ + 2 / 2 = 0 while cr(y\) = 2/1 + c^i and (7(2/2) = 2/2 + cz2
satisfy x2 a (2/1) + (7(2/2) 7^ 0 as soon as c -^ 0. Thus a is not a homomorphism
of algebras, a fortiori of differential fields. This gives the contradiction. D

Remark III. 3.6. — The anti-Stokes directions in the Euler system [E]
are a = 0 and a = TT and the corresponding Stokes-Ramis matrices are

^ . , ^ ["1 2%7r1Co = I and C^ = .

These Stokes- Ramis matrices are not of the previous non-Galoisian type.
Actually, they are Galoisian as it will be shown in the next section.

III.3.3. Stokes-Ramis automorphisms are Galoisian.
This section is devoted to the following theorem:

THEOREM III.3.7. — The Stokes-Ramis automorphisms u^ of a system
[A] are Galoisian^ i.e., UQ. € p(GaJj<(A)) for all a (E A.

The definition we use here of the Stokes-Ramis automorphisms UQ
(Definition III.3.4) is an obvious subproduct of our Stokes cocycle
(Theorem 11.2.1) and the proof we give, uses the Tannakian method
suggested by Deligne. Thus, unlike proofs previously done by Ramis
(see [Ra85-3], thm 4.2.v, [Ra85-2], thm l.v) using the factorization
theorem (see [Ra85-3], thm 2.1, [Ra85-l], thm 1.1) or by Martinet and Ramis
(see [MR90]) using their theory of multisums as injective homomorphisms
of differential algebras, there is no need in our proof for asymptotics with
Gevrey estimates or for a theory of multisummability.

Although Stokes matrices are transcendental invariants of the system,
our arguments are all algebraic but one. This nonalgebraic argument is the
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main asymptotic existence theorem used in the proofs of the Malgrange-
Sibuya isomorphism theorem. Notice however, that the main asymptotic
existence theorem requires only ordinary asymptotics in the sense of
Poincare and not asymptotics with Gevrey estimates. It is responsible
for the fact that the Stokes cocycles are nonconstructive from the system
itself but only from asymptotic solutions or from 1-cocycles.

In the Tannakian method, to each connection are associated its
infinitely many constructions and algebraic properties of a connection are
expressed as linear properties on the package of its constructions.

Let us recall that a construction is a connection of the form

w= e [(0^)^(0^*)]'
{m,p} finite K K

G(V)= ^ (v^^vT''),
{yn,p} finite

where (V*, V*) denotes the dual connection of (V, V). Constructions extend
canonically to the spaces of solutions (C(y)501 ̂  C^501)) (see [Be85] IV.2.a,
lemme fondamental) and to the automorphisms (C(u) € GLc^CfV801))).

For the proof of Theorem III.3.7, we will use the direct part of the
following theorem of Chevalley.

CHEVALLEY'S THEOREM (direct and converse part; see [Be85], IV.2
and [MR89],thm4.4).

Let (V, V) be a meromorphic connection. Let H be a subgroup of
GL(V801) and FH be the family, for all constructions {C(V), C(V)) of(V, V),
of the subspaces W ofC^V^) which are invariant under H.

The family FH characterizes the Zariski closure of H. In particular,
H = p(Galj<(V)) if and only if FH is the family of the subspaces
W801 of solutions of all subconnections (W,C(^)\w) of the constructions
(C(V),C(V)).

We will also use the two following lemmas:

LEMMA III.3.8. — Let [A] : dX/dx = AX be a system with a blocked
matrix

A-\^ ^1
0 A4 •
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Then [A] has a formal fundamental solution Fx1' eQ(<l/x>) the first columns
of which are made of a formal fundamental solution F-^x1'1 e^^/^ of
[Ai] : dX/dx == A\X extended by zeroes entries.

Proof. — We have to prove that [A] has a formal fundamental solution
F^L ̂ Q{i/x) ̂  ̂ ^

- [Fi F2t , , \L^ L2tF = n F \ and L =
[ U 2^4 J [ U 1^4 J

are blocked like A with a block of zeroes in the left lower corner.

We claim first that there exists a formal fundamental solution of the
form $ eQ where

$-[^ ^1
0 $4

is formal-logarithmic with a block of zeroes in the left lower corner: an
arbitrary formal fundamental solution in the form

X=\^ ̂  and O^ ° 1[.^3 ^\ L ° Q^\
satisfies the system

.̂«.)»..., ^tee0-)--,

d^e^)=A^eQ\ d(^4eQ4)=A4^4eQ^
da; dx

and one can assume that y?4 is invertible (permute the columns of X to
get a suitable Xa = (^o-)e0' Qa if necessary). Then (^e^ is a formal
fundamental solution of the system [A4] : dX/da; == A^X and, since (p^ e^1

also satisfies the system [A4], there exists a constant matrix C such
that ^p3eQl = (p4eQ4C. The equality (y^1^ = eQ4Ce~Ql in which the
left-hand side is purely formal-logarithmic and the right-hand side purely
exponential implies that both sides are constant. Thus, there exists a
constant matrix C" such that eQ4C = C' e^1 and the fundamental solution

' I 01 _ [^le^ -^e^C ^e^4 '
-C I\ ~[ 0 ^4.

\^i-^C1)^1 ^e^-

X

^[(^i-^Qe^ ^e^t
~[ 0 (^e^J

has the required form if we set <I>i :== <^i — ̂ C' ^ ^2 :== ^2? ^4 := (^4.
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To end the proof, it suffices to put this matrix <I> in the form $ = Fx1'
with blocks of zeroes both in the left lower corner of F and L: like X = ̂ ^,
the formal monodromy matrix M = X(x)~lX(xe2^7t) has such a block of
zeroes. Again, the equality

^{x^xe2^) = e^V^Me-^1/^)

implies ^(a-e2^) = ^{x)M' with M1 an invertible constant matrix with a
block of zeroes in the left lower corner. Choose a logarithm L of M' with
a block of zeroes of the same type (e2171'1' = M'). The matrix ^(a1)^"2'
being formal-logarithmic without formal monodromy has formal series
entries and, obviously, has the required block of zeroes in the left lower
corner. Henceforth the matrix F = ̂ {x)x~L answers the question. D

LEMME III.3.9. — Let Fx1' e^ be a formal fundamental solution of a
system [A] with block of zeroes in the left lower corner as in Lemma 111.3.8:

. [A F^ [Li L^l
^[o F4J5 ^ [o LJ-

Then, the sums S ^ ( F ) and S^(F) for every anti-Stokes direction a also
have the same block of zeroes in the left lower corner.

Proof. — Choose realizations of F with a block of zeroes like F.
The associated cocycle in exp ̂ (F) has then the same property which is
preserved by the algorithm of reduction to the Stokes cocycle (Theorem
II.2.1 and Section 11.3.4). In this reduction, initial realizations are changed
in the required sums with the same block of zeroes. D

Proof of theorem IH.3.7. — The system [A] being fixed, let (V,V)
be a connection represented in a suitable -ftr-basis of V by D = d/dx — A.
According to Chevalley's theorem, to prove that a Stokes-Ramis automor-
phism UQ is Galoisian, we only have to check that the subspaces IVs01 of
subconnections of constructions are all invariant under Ua.

Let (IV, ̂ 7w) De a subconnection of (V, V). In a J^-basis of V which
completes a J^-basis of W, the differential operator D writes

D=^-B where B = [^ ^] and D^ = ̂  - B,.

The invariance under u^ of the subspace VF801 of V801 is an immediate
consequence of Lemmas III.3.8 and III.3.9.

In the case of a subconnection of a construction (C(y),C(V)), the
invariance follows in the same way from the fact that C(ua) is also a
Stokes-Ramis automorphism. D
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Remark III.3.10. — One can apply the criterion of Chevalley to
Euler's system [E] to prove that the Stokes automorphisms considered in
Section III.3.2 are non-Galoisian: let (V, V) be a meromorphic connection
represented in a K-basis e = (61,62) of V by D^ = d/dx - E and let
^ = Kei be the J^-subspace of V generated by £1 = -e\ + x~<2e'2. As W is
invariant under V one can consider the subconnection (W, V|^) of (V, V).
In the J^-basis e = (£1,62) of V which completes a J-f-basis of W, the
connection (V, V) is represented by D^ = d/dx - E^ where

r -x~2 r^i
TT6 \E-=[ o .-j'

the subconnection [W, V|^) by D^ = d/dx + x~2 and the space W801 of
solutions of (W, V\w) is the subspace of Vs01 generated by

p n i r e v - 1
kj [ o J -

Thus, in the -^-basis e, the space W301 is the subspace of Vs01 generated by

W = [ -el/s 1L^J [x-2el/x\

and Vs01 is generated by the columns of

y . \ y . 9}
[y2 g ' \

Obviously, the Stokes automorphism with matrix C = \ in the

basis V1 of Vs01 sends the solution yl outside W^ as soon as c+ 0. And
L^J /

then, by Chevalley's theorem, such an automorphism is non-Galoisian. D

III.3.4. Differential Galois groups.
In Section III.3.1, we defined the formal monodromy and the

automorphisms belonging to the exponential torus as elements in
GLc(SolA), while Stokes-Ramis automorphisms Ua were defined as elements
in GLc(SolA(^)).

For a fixed choice of a determination a of the anti-Stokes direction a,
the C-linear isomorphism SoU -^ So\A(Ua) such that FXo ̂  S^(F)XQ^,
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where XQ^ has been denned in Section 1.4, conjugates the Stokes-Ramis
automorphism u^ to a C-linear isomorphism Ua in SoU.

When a runs through the set of all possible determinations of a, the
automorphism u^ runs through its orbit under the action of the formal
monodromy (cf. Remarks 1.4.9 (1) and Def. III.3.2). In this way, Stokes-
Ramis automorphisms are well-defined in GLc(SolA) up to conjugacy by
the powers of the formal monodromy. The definition of XQ^ in Section 1.4
has been given with a rigid choice eQ(l^x{e^a) of a realization of the
exponential matrix e^. One could have chosen as well e^/l^ ^^T for T
the matrix in the basis V of a nontrivial automorphism in the exponential
torus T (cf. Remarks 1.4.9 and Def. III.3.3). In this way, Stokes-Ramis
automorphisms are well-defined up to conjugacy by elements of the group
generated in GLc(SolA) by the formal monodromy and the exponential
torus. Any of these definitions can be used in what follows.

Let us now show how the Tannakian method, as indicated by Deligne,
can be used to prove the following theorem of Ramis (see [Ra85-3],
thm 4.2.v, [Ra85-2], thm l.v).

THEOREM III.3.11 (Ramis). — The representation p(Galj<(A)) of
the differential Galois group Galj<(A) of a system [A] in GLc(SolA) is the
Zariski closure of the group H generated by the formal monodromy M.^ the
exponential torus T and the Stokes-Ramis automorphisms ^a, a € A.

We already proved the inclusion H C p(Galj<(A)) in Theorem III.3.7
by checking the direct part of the criterion of Chevalley on the Stokes-Ramis
automorphisms.

We will now prove the converse inclusion p(Galj<(A)) C H by checking
the converse part of the criterion of Chevalley: briefly, we prove that an
invariant subspace W of the space of solutions C(yY°^ of a construction
(C(Y),C(V)) is the space of solutions of a subconnection of (C(Y),C(V))
by explicitely building this subconnection.

A geometric variant of this proof, in the case of a singular
regular connection on a compact Riemann surface, can be found in
[MR89], theorem 6.8, second proof. This latter proof is based on the
so-called Riemann-Hilbert correspondence which asserts the equivalence of
Tannakian categories between the category of singular regular meromorphic
connections on a compact Riemann surface X and the category of the
conjugacy classes of finite dimensional linear representations of 7i-i(X \ S)
(where S is the subset of singular points in X). With this equivalence, to an



STOKES PHENOMENON 901

invariant subspace in a representation of the TTI , corresponds automatically
a subconnection. Such a proof can be extended to the general case of an
irregular singular meromorphic connection by substituting the wild TTI to
the ordinary one.

To prove Theorem III.3.11 we will use the following lemma and, from

now on, without further mention, the notation for the block
[ C/3 G/4 J

decomposition of a n x n matrix U in which U\ is a 5-dimensional square
block.

LEMMA III.3.12. — Let XQ = ̂ L e^ be a normal solution of a normal
form [AQ\ and XQ = XQP where the matrix P € GL(n, C) has a blockr i oi — —decomposition of the form \ . Let Wo be the subspace of So\Ao

[P3 I ]
generated by the s first columns of XQ.

(i) If Wo is invariant under all automorphism in the exponential torus T
then P and eQ commute.

(ii) If, moreover, Wo is invariant under the formal monodromy M.
then e^^ Lp has a (n — s) x s block of zeroes in the left lower corner.

Proof. — Assertion (i). Let f € T.

Let T be the matrix of r in the C-basis XQ of SoUo and T ' == P~^TP

[ m n ~\
its matrix in the C-basis XQ. The matrix T = 1 is diagonal and0 T4J

[ m r\ ~j ^^

T" = . Thus f leaves Wo invariant if and only if—J^Ti +14^3 14J

-PsTi + T^Ps = 0. The matrix Q = \ ' 1 ^ is diagonal and|_ U Q^\
eQi(V^) 0 1

-PS e^1/^ + e^^/^Ps e^1/30 j '
p-i^Q(i/x)p ̂

If -Psri + r4P3 = 0 for all T € T then -PS e^1/^ + e^/^Ps = 0 for
all x -^ 0. Hence the identity P~1 e^P == eQ holds.

Assertion (ii). The formal monodromy M. has

jQ^ e-W/^) e2^^eQ(l/:re2^7^)

as matrix in the basis Xo. Since P and e^^/^ commute for all .r, its matrix
M' = P^MP in the basis XQ takes the form

J^ff ̂  Q-Q^/X} ^iTTP^LP ^Q{l/xe2^}^
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The hypothesis that M. leaves Wo invariant means that M7, and then
also e2171^ Lp, has a (n — s) x s block of zeroes in the left lower corner. D

Proof of theorem I I I . 3.11. — As already mentioned, the inclusion
"H C p(Galj<(A)) results from Theorem III.3.7. To prove the converse
inclusion /?(Galj<(A)) C 7^ we check that the converse part of the criterion
of Chevalley is satisfied: let (C(V),C(y)) be a meromorphic connection
represented in a J^-basis e of C(V) by V^ = d/dx — A and let W be a
5-dimensional C-subspace of SO\A which is invariant under 7-i. We only
have to prove that W is the space of formal solutions of a subconnection
of(C(V),C(V)).

We denote by:

• X = Fx1' e^ a formal fundamental solution of the system
[A] : dX/dx = AX;

• [Ao] : dX/dx = AoX the normal form of [A] with fundamental
solution XQ = x1' eQ (thus X is a C-basis of SoU, XQ a C-basis of SoUo);

• (C(V), Vo) the connection represented in the K -basis e of C(V) by
Vf = d / d x - Ao;

• T^o C GL(SolAo) the group generated by the formal monodromy
and the exponential torus of [Ao].

The map F. : SoLio —> SoU such that Y \-^ FY is a C-linear
isomorphism and we denote by Wo the inverse image of W. This map
induces a C-linear isomorphism GL(SolAo) ~~^ GL(SolA), {? ^ F(pF~1.
With this isomorphism, we can identify the formal monodromy and the
exponential torus of [Ao] in GL(SolAo) to the formal monodromy and
the exponential torus of [A] in GL(SolA) and we can thus identify T-CQ to a
subgroup of T~L. Obviously Wo is invariant under T^o-

We first claim that, with the invariance of Wo under T^o? there exists
a subconnection (^Vo|^) of the normal form (C(y),Vo), the space of
formal solutions of which is Wo:

a permutation a on the columns of XQ changes XQ in Xoa =
ax0 La e^ c>)cr. The same permutation ea on the JC-basis e of V changes
XQ(T in a~lXoo• = x^ La e^ <^a. Up to such permutations, we can thus
assume that Wo and the (n — s) last columns of XQ generate SoUo-

There exists then a matrix P = such that the s first columns of
^ L 3 J

XQ = XoP generate Wo.
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From Lemma IIL3.12, we know that XQ = Px^'^e^ and that
e227rp Lp t^s a block of zeroes in the left lower corner. Let 2^7^Lf be a
logarithm of ^P^LP ^^ ^ ̂ ^ ^ ^^g ^ ̂  ̂  ̂ ^ corner.
The matrix Px13 lLpx~Lf is both an analytic function on the Riemann
surface of loga; and a formal-logarithmic series without monodromy. It is
then a meromorphic function / and we get XQ = fx^ e^ where L' has
a block of zeroes in the left lower corner. In the J^-basis e' = ef, Xn
writes X'Q = x^ e^ and the new matrix Bo of the normal form, which
writes now Bo = (dX^/dx)Xffol, has the required block of zeroes:

B,'o =
2?o,i Bo,2

0 Bo.

Hence, the space W generated by the s first elements of the ^-basis e'
satisfies the claim.

Next, we claim that, if W is moreover invariant under the Stokes-
Ramis automorphisms Ua, then the restriction to W of the connection
(C(V), C(V)) itself makes sense and has W as space of formal solutions:

with the previous changes of basis, the C-basis X of SolA becomes
X' = F'X'Q and W is generated by the s first columns of X ' .

Let (^a)aeA be the Stokes cocycle ofX'. One has ̂  = X'Q^C&X"^
where C^ is the matrix of Ua in the basis X' (cf. definition III.3.4). Due to
the invariance of >V under the n^s, the matrix C& has a s x (n - s) block
of zeroes in the left lower corner. And since this property holds for X'Q it
holds also for <^. The block <^i in the left upper corner of ̂  is then
the Stokes cocycle relative to X[ = F[X'Q^ the block in the left upper
block of X ' . In other words, one can restrict the connection C(V) to the
space W generated by the s first elements of the K-bosis e'. Moreover,
this^connection Vi = C{V)\w has X[ as formal fundamental solution
i.e. W = Solvi. This ends the proof. Q
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