Annales de l'institut Fourier

David Wehlau

Constructive invariant theory for tori

Annales de l'institut Fourier, tome 43, no 4 (1993), p. 1055-1066
http://www.numdam.org/item?id=AIF_1993__43_4_1055_0

© Annales de l'institut Fourier, 1993, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

CONSTRUCTIVE INVARIANT THEORY FOR TORI

by David L. WEHLAU

Introduction.

Let $\rho: G \rightarrow G L(V)$ be a rational representation of a reductive algebraic group over the algebraically closed field \mathbf{k}. The action of G on V induces an action of G on $\mathbf{k}[V]$, the algebra of polynomial functions on V, via $(g \cdot f)(v)=f\left(\rho\left(g^{-1}\right) v\right)$ for $g \in G, f \in \mathbf{k}[V]$ and $v \in V$. The functions which are fixed by this action form a finitely generated subalgebra, $\mathbf{k}[V]^{G}$, the ring of invariants. The problem of constructive invariant theory is to give an algorithm which in a finite number of steps will explicitly construct a minimal set of homogeneous generators for the \mathbf{k}-algebra, $\mathbf{k}[V]^{G}$.

Now if $\left\{f_{1}, \ldots, f_{p}\right\}$ is such a set with $\operatorname{deg} f_{1} \geq \operatorname{deg} f_{2} \geq \ldots \geq \operatorname{deg} f_{p}$ then although the f_{i} are not uniquely determined the p-tuple of degrees ($\operatorname{deg} f_{1}, \ldots, \operatorname{deg} f_{p}$) is unique. The number $N_{V, G}=\operatorname{deg} f_{1}$ is of special interest. It is the minimal integer N such that $\mathbf{k}[V]^{G}$ is generated by the subspace $\bigoplus_{m=0}^{N} \mathbf{k}[V]_{m}^{G}$ of invariants of degree at most N. Clearly an algorithm which constructs $\left\{f_{1}, \ldots, f_{p}\right\}$ also produces $N_{V, G}=\max \left\{\operatorname{deg} f_{i} \mid\right.$ $1 \leq i \leq p\}$. For many groups, G, (e.g. if char $k=0$ and G is reductive) the converse is also true : given $N_{V, G}$ there is a finite algorithm which constructs $\left\{f_{1}, \ldots, f_{p}\right\}$ (cf. $[\mathrm{K}],[\mathrm{P}]$).

If G is a finite group and the characteristic of \mathbf{k} does not divide $|G|$, then by a celebrated theorem of Emmy Noether's, $N_{V, G} \leq|G|$ (see [N1]),

[^0][N2]). Recently Schmid has considered the question of whether this bound is sharp ([S]). She has shown that $N_{V, G}<|G|$ if G is not cyclic and has determined $N_{V, G}$ for various groups of small order including all abelian groups of order less than 30.

If G is semi-simple and the characteristic of \mathbf{k} is zero and the representation ρ is almost faithful, then Popov has given in $[\mathrm{P}]$ an upper bound for $N_{V, G}$. Following the methods of Popov, Kempf ([K]) derived an upper bound for $N_{V, G}$ in the case that G is a torus and the characteristic of \mathbf{k} is zero. Kempf also observed that these three bounds (for G finite, G semi-simple and G a torus) could be combined (by multiplying them) to obtain a bound for the general reductive group in characteristic zero.

The bounds for infinite groups are very large. In this paper we will consider the case $G=T$ is a torus and give better bounds for $N_{V, T}$. In addition we will construct certain distinguished elements of a minimal generating set for $\mathbf{k}[V]^{T}$.

I would like to thank John Harris for many helpful conversations.

Diagonalization.

Let \mathbf{k} be an algebraically closed field of any characteristic. Let T be a torus, i.e., T is an algebraic group which is (abstractly) isomorphic to $\left(\mathbf{k}^{*}\right)^{r}$ and suppose that $\rho: T \rightarrow G L(V)$ is a rational representation of V. Let $X^{*}(T)$ denote the lattice of characters of T. Then $X^{*}(T)$ is (abstractly) isomorphic to \mathbb{Z}^{r}. From now on we will assume that we have chosen a fixed basis of V consisting of eigenvectors, $\left\{v_{1}, \ldots, v_{n}\right\}$, and that $\left\{x_{1}, \ldots, x_{n}\right\}$, is the corresponding dual basis of V^{*}. Furthermore we will denote the weight of v_{i} by ω_{i}. Then ρ induces an action of T on $V^{*} \subset \mathbf{k}[V]$ which in terms of weights is given by $t \cdot x_{i}=-\omega_{i}(t) x_{i}$. The action on all of $\mathbf{k}[V] \cong \mathbf{k}\left[x_{1}, \ldots, x_{n}\right]$ is obtained from the action on V^{*} by the two requirements $t \cdot(f g)=(t \cdot f)(t \cdot g)$ and $t \cdot(f+g)=t \cdot f+t \cdot g$ for $t \in T$ and $f, g \in \mathbf{k}[V]$.

We will consider monomials $X^{A}=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdot \ldots \cdot x_{n}^{a_{n}}$ where $A=$ $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{N}^{n}$. Clearly T acts on X^{A} by $t \cdot X^{A}=\chi(t) X^{A}$ where χ is the character $\chi=-\left(a_{1} \omega_{1}+\ldots+a_{n} \omega_{n}\right)$. We will denote χ by $\mathrm{wt}\left(X^{A}\right)$. The invariant monomials are in one-to-one correspondence with the semigroup, $S:=\left\{A \in \mathbb{N}^{n} \mid X^{A} \in \mathbf{k}[V]^{T}\right\}=\left\{A \in \mathbb{N}^{n} \mid a_{1} \omega_{1}+\ldots+a_{n} \omega_{n}=\mathbf{o}\right\}$ where \mathbf{o} is the trivial character in $X^{*}(T)$. This semi-group was first studied
by Gordan. He used it to show that $\mathbf{k}[V]^{T}$ is a finitely generated algebra by showing that S is finitely generated as a semi-group (see [Go]).

Recall that a representation $\rho: G \rightarrow G L(V)$ is called stable if the union of the closed G-orbits in V contains an open dense subset of V. It is sufficient to consider only faithful stable torus representations, (cf. [W], Lemma 2). From now on we will suppose that ρ is both faithful and stable.

Kempf's bound.

Choosing an explicit isomorphism $\psi: T \longrightarrow\left(k^{*}\right)^{r}$ induces an explicit isomorphism $\psi^{*}: X^{*}(T) \longrightarrow \mathbb{Z}^{r}$. The isomorphism ψ is determined only up to $\operatorname{Aut}(T) \cong G L(r, \mathbb{Z})$. Having fixed a choice for ψ we may write out the weights of V as r-tuples: $\omega_{i}=\left(\omega_{i, 1}, \ldots, \omega_{i, r}\right) \in \mathbb{Z}^{r}$ for $1 \leq i \leq n$. Then we may define $w:=\max \left\{\left|\omega_{i, j}\right|: 1 \leq i \leq n, 1 \leq j \leq r\right\}$. Kempf showed in $[\mathrm{K}]$ that $N_{V, T} \leq n C\left(n r!w^{r}\right)$ where $C(m)$ is the least common multiple of the integers $1,2, \ldots, m$. This bound has the disadvantage of being dependent on w which depends on the choice of ψ.

Example 1. - Let $T \cong\left(\mathbf{k}^{*}\right)^{2}$ and let V be the 4 dimensional representation of T with weights $(2,2),(-1,0),(0,-5)$ and $(2,-1)$. It is fairly simple, for example using the iterative method of the next section, to compute a homogeneous minimal system of generators for $\mathbf{k}[V]^{T}$. We find that $\mathbf{k}[V]^{T}=\mathbf{k}\left[X^{R_{1}}, X^{R_{2}}, X^{A}\right]$ where $R_{1}=(5,10,2,0), R_{2}=(1,6,0,2)$ and $A=(3,8,1,1)$. Therefore $N_{V, T}=\operatorname{deg} R_{1}=17$. Here $r=2, n=4$ and $w=5$. Hence for this example Kempf's bound gives $N_{V, T} \leq 4 C\left(4 \cdot 2!\cdot 5^{2}\right)=$ $4 C(200)>4\left(3 \times 10^{89}\right)>10^{90}$.

An iterative method.

Consider first the case $r=1$. Here the isomorphism of T with \mathbf{k}^{*} is determined up to $G L(1, \mathbb{Z}) \cong\{ \pm 1\}$ and thus w is completely determined in this case. Fixing one of the two choices $\psi: T \longrightarrow k^{*}$ we may write the weights of V as integers : $\omega_{1}, \omega_{2}, \ldots, \omega_{n} \in \mathbb{Z}$. Set $w_{-}:=\min \left\{\omega_{i} \mid 1 \leq i \leq n\right\}$ and $w_{+}:=\max \left\{\omega_{i} \mid 1 \leq i \leq n\right\}$. Our assumptions that ρ is stable and faithful together imply that $w_{-}<0$ and $w_{+}>0$.

Theorem 1. - Let V be a representation of \mathbf{k}^{*} with weights $\omega_{1} \geq \omega_{2} \geq \ldots \geq \omega_{n}$ and set $B:=\omega_{1}-\omega_{n}$. Then $N_{V, \mathbf{k}^{*}} \leq B$.

Proof. - Suppose $X^{A} \in \mathbf{k}[V]^{T}$ has degree d. We will construct a sequence of d monomials: $h_{1}, h_{2}, \ldots, h_{d}$ with $\omega_{n} \leq \operatorname{wt}\left(h_{i}\right) \leq \omega_{1}-1$ for all $1 \leq i \leq d$ as follows. Choose j such that $\omega_{j}<0$ and define $h_{1}:=x_{j}$. If $\mathrm{wt}\left(h_{m}\right) \geq 0$ then we choose j such that x_{j} divides X^{A} / h_{m} and $\omega_{j} \leq 0$. Similarly if $\mathrm{wt}\left(h_{m}\right)<0$ then we choose j such that x_{j} divides X^{A} / h_{m} and $\omega_{j}>0$. In either case we define $h_{m+1}:=x_{j} h_{m}$. If $d>B$ then by the pigeon hole principle, two of the monomials have the same weight : $\mathrm{wt}\left(h_{i}\right)=\mathrm{wt}\left(h_{j}\right)$ where we may assume $i<j$. But then $h:=h_{j} / h_{i} \in k[V]^{T}$ divides X^{A} and so we see that X^{A} is not irreducible.

Remark 1. - If $\operatorname{gcd}\left(\omega_{1}, \omega_{n}\right)=1$ then the invariant $x_{1}^{-\omega_{n}} x_{n}^{\omega_{1}}$ is irreducible and has degree $B=N_{V, \mathbf{k}^{*}}$.

Remark 2. - Note that $w=\max \left\{\omega_{1},-\omega_{n}\right\}$ and therefore $N_{V, \mathbf{k}^{*}} \leq$ $2 w$.

Theorem 2. - $N_{V, T} \leq(2 w)^{2^{r}-1}$
Proof. - We proceed by induction on r. The theorem is true for the case $r=1$ by Remark 2. For higher values of r we consider the coordinate decomposition of T induced by the isomorphism ψ, i.e., $T \cong T_{1} \times \ldots \times T_{r}$ where $T_{j} \cong \mathbf{k}^{*}$ and the weight of x_{i} with respect to T_{j} is $\omega_{i, j}$. Set $T^{\prime}=T_{2} \times \ldots \times T_{r}$ so that $T=T_{1} \times T^{\prime}$. By induction, there exist monomial generators h_{1}, \ldots, h_{p} of $\mathbf{k}[V]^{T^{\prime}}$ with $\operatorname{deg} h_{i} \leq(2 w)^{\left(2^{r-1}-1\right)}$ for all $1 \leq i \leq p$. Write $h_{i}=X^{A}$ and set $\nu_{i}:=\operatorname{wt}\left(h_{i}\right) \in X^{*}\left(T_{1}\right) \cong \mathbb{Z}$. Then $\nu_{i}=a_{1} \omega_{1,1}+\ldots+a_{n} \omega_{n, 1}$. Hence $\left|\nu_{i}\right| \leq a_{1} w+\ldots+a_{n} w=\left(\operatorname{deg} h_{i}\right) w \leq$ $(2 w)^{\left(2^{r-1}-1\right)} w$.

Let V_{1} be a p dimensional \mathbf{k}-vector space and suppose that T_{1} acts on V_{1} by the weights $-\nu_{1}, \ldots,-\nu_{p}$. Then we have a T_{1}-equivariant surjection $\mathbf{k}\left[V_{1}\right] \rightarrow \mathbf{k}[V]^{T^{\prime}}=\mathbf{k}\left[h_{1}, \ldots, h_{p}\right]$. In particular we have the surjection $\mathbf{k}\left[V_{1}\right]^{T_{1}} \rightarrow\left(\mathbf{k}[V]^{T^{\prime}}\right)^{T_{1}}=\mathbf{k}[V]^{T}$. Hence $N_{V, T} \leq N_{V, T^{\prime}} \cdot N_{V_{1}, T_{1}} \leq$ $(2 w)^{\left(2^{r-1}-1\right)} \cdot 2(2 w)^{\left(2^{r-1}-1\right)} w=(2 w)^{2^{r}-1}$.

For the representation described in Example 1 (for which $N_{V, T}=17$) this theorem gives the bound $N_{V, T} \leq 1000$. This is a better bound than Kempf's for this example but this is only because r is so small in the example. As a function of r the bound given in Theorem 2 grows much much faster than Kempf's bound. This new bound is, however, distinguished by the fact that it is independent of $n=\operatorname{dim} V$.

Geometric bounds.

In this section we will construct a set of distinguished monomials which is a subset of a minimal generating set for $\mathbf{k}[V]^{T}$. We begin with some notation and definitions. We will use \mathbf{o} to denote the origin in $X^{*}(T) \otimes \mathbb{Q} \cong \mathbb{Q}^{n}$. If $Z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{Q}^{n}$ define $\operatorname{deg} Z:=z_{1}+\ldots+z_{n}$. We also define $\operatorname{supp}(Z):=\left\{i \mid 1 \leq i \leq n, z_{i} \neq 0\right\}$ and the length of $Z, \ell(Z):=\# \operatorname{supp}(Z)-1$. If $\left\{Z_{1}, \ldots, Z_{d}\right\} \subset \mathbb{Q}^{n}$ then $\mathcal{H}\left(Z_{1}, \ldots, Z_{d}\right)$ denotes the convex hull of the points Z_{1}, \ldots, Z_{d} and $\mathcal{P}\left(Z_{1}, \ldots, Z_{d}\right)$ denotes the convex set $\left\{\sum_{i=1}^{d} \alpha_{i} Z_{i} \mid \alpha_{i} \in[0,1]\right.$ for $\left.i=1, \ldots, d\right\}$. Notice that if $\left\{Z_{1}, \ldots, Z_{d}\right\}$ is linearly independent then $\mathcal{P}\left(Z_{1}, \ldots, Z_{d}\right)$ is a d-dimensional parallelepiped.

By a polytope we will mean a compact convex set having finitely many vertices. The vertices of a polytope P are characterized by the property that Y is a vertex of P if and only if the set $P \backslash\{Y\}$ is a convex set. A d dimensional polytope having $d+1$ vertices is a simplex. We will often consider the case of a d dimensional polytope $P \subset \mathbb{Q}^{m}$ with $m \geq d$. In this case when we refer to the volume of P we mean the (positive) d dimensional volume of P obtained by considering P as a subset of the d dimensional affine space, \mathbb{A}^{d}, spanned by P. If we wish to consider the m dimensional volume of P (which is zero if $d<m$) we will write $\operatorname{vol}_{m}(P)$. Similarly the relative interior of P refers to the interior of P defined by the subspace topology induced by $P \subset \mathbb{A}^{d}$.

The monomial generators of $\mathbf{k}[V]^{T}$ correspond to generators of the semi-group S. Gordan showed how to find the generators of S (see for example [O], Proposition 1.1 (ii)). Consider the pointed (half) cone $\Gamma \subset$ $\left(\mathbb{Q}^{+}\right)^{n}$ generated by $S: \Gamma:=\left(\mathbb{Q}^{+} \cdot S\right)$ where $\mathbb{Q}^{+}=\{q \in \mathbb{Q} \mid q \geq 0\}$. This cone, Γ, is just the set of solutions $\left(z_{1}, \ldots, z_{n}\right) \in\left(\mathbb{Q}^{+}\right)^{n}$ of the system of equations:

$$
\begin{equation*}
z_{1} \omega_{1}+\ldots+z_{n} \omega_{n}=\mathbf{o} \tag{*}
\end{equation*}
$$

If \mathcal{L} is an extremal ray of Γ then $\mathcal{L} \cap S$ is a semigroup isomorphic to \mathbb{N}. Let $R_{\mathcal{L}}$ denote the unique generator of this semigroup. Write $\left\{R_{1}, \ldots, R_{s}\right\}=$ $\left\{R_{\mathcal{L}} \mid \mathcal{L}\right.$ an extremal ray of $\left.C\right\}$. The intersection $\mathcal{P}\left(R_{1}, \ldots, R_{s}\right) \cap S$ is a finite generating set for S. Following Stanley ([St]), we call these R_{j} completely fundamental generators of S. These are characterized by the fact that if $m R_{j}=A+B$ for some $m \in \mathbb{N}$ and some $A, B \in S$ then $A=k R_{j}$ and $B=(m-k) R_{j}$ for some integer $k \leq m$ ([St], p. 36). The elements
$X^{R_{1}}, \ldots, X^{R_{s}}$ are the distinguished monomial generators we referred to earlier.

Now we are ready to begin our construction of the completely fundamental generators.

Lemma 1. - There exists $A \in S$ with $\operatorname{supp}(A)=\Omega$ if and only if o lies in the relative interior of $\mathcal{H}\left(\omega_{i} \mid i \in \Omega\right)$.

Proof. - Suppose $0 \neq A \in S$ and $\operatorname{supp}(A)=\Omega$. Then we have $\mathbf{o}=\sum_{i=1}^{n} a_{i} \omega_{i}=\sum_{i \in \Omega} a_{i} \omega_{i}=\sum_{i \in \Omega}\left(a_{i} / \operatorname{deg} A\right) \omega_{i}$. Since $a_{i} \geq 0$ for all i and $\sum_{i \in \Omega} a_{i}=\operatorname{deg} A$ we see that $\mathbf{o} \in \mathcal{H}\left(\omega_{i} \mid i \in \Omega\right)$. Furthermore, since the coefficient $a_{i} / \operatorname{deg} A$ is non-zero for each $i \in \Omega, \mathbf{o}$ is an interior point of $\mathcal{H}\left(\omega_{i} \mid i \in \Omega\right)$.

Conversely, suppose that o lies in the relative interior of $\mathcal{H}\left(\omega_{i} \mid i \in \Omega\right)$. Then there exist rational numbers p_{i} / q where $p_{i}, q \in \mathbb{N}$ with $1 \leq p_{i} \leq q$ such that $\sum_{i \in \Omega}\left(p_{i} / q\right) \omega_{i}=\mathbf{o}$ and $\sum_{i \in \Omega} p_{i} / q=1$. Hence if we define $p_{i}=0$ if $i \notin \Omega$ we have $\sum_{i=1}^{n} p_{i} \omega_{i}=\mathbf{o}$ and $A:=\left(p_{1}, \ldots, p_{n}\right) \in S$ with $\operatorname{supp}(A)=\Omega$.

Define a partial order on $\Gamma \backslash\{\mathbf{o}\}$ by inclusion of supports, i.e., if $Y_{1}, Y_{2} \in \Gamma \backslash\{\mathbf{o}\}$ with $\operatorname{supp}\left(Y_{1}\right) \subseteq \operatorname{supp}\left(Y_{2}\right)$ then $Y_{1} \preceq Y_{2}$. Also given $Y \in \Gamma$, define $\sigma(Y):=\mathcal{H}\left(\omega_{i} \mid i \in \operatorname{supp}(Y)\right)$.

Proposition 1. - Let o $\neq Y \in S$ with $Y / m \notin S$ for all $m \geq 2$. Then the following are all equivalent :
(1) Y is minimal in Γ.
(2) $\sigma(Y)$ is an $\ell(Y)$ dimensional simplex with \mathbf{o} in its relative interior.
(3) Y is a completely fundamental generator of S.

Proof. - The proof that (1) $\Longrightarrow(2)$ follows from Lemma 1. Let Y be an element of S which is minimal with respect to the partial order. Then by Lemma 1 , o lies in the relative interior of $\sigma(Y)$. Therefore $\sigma(Y)$ is an $\ell(Y)$ dimensional simplex with \mathbf{o} in its relative interior. For if this were not true, by Carathéodory's theorem (see for example [B], Corollary 2.4 or [O], Theorem A.3), we could find a proper subset $\Omega \subsetneq \operatorname{supp}(Y)$ such that $\mathbf{o} \in \mathcal{H}\left(\omega_{i} \mid i \in \Omega\right)$. But this would contradict the minimality of Y.

In particular, this implies that any proper subset of $\left\{\omega_{i} \mid i \in \operatorname{supp}(Y)\right\}$ is linearly independent.

Now to see that (2) $\Longrightarrow(3)$, suppose (2) holds and that there exists $n \in \mathbb{N}$ and $A, B \in S$ with $n Y=A+B$. Since $\sigma(Y)$ is a simplex, o can be expressed uniquely as a convex linear combination of $\left\{\omega_{i} \mid i \in \operatorname{supp}(Y)\right\}$: $\sum_{i \in \operatorname{supp}(Y)} \alpha_{i} \omega_{i}=\mathbf{o}$ where $\alpha_{i} \in[0,1]$ and $\sum_{i \in \operatorname{supp}(Y)} \alpha_{i}=1$. Now $\sum_{i} a_{i} \omega_{i}=\mathbf{o}$ and $a_{i}=0$ if $i \notin \operatorname{supp}(Y)$. Hence, by the uniqueness, we have $a_{i} / \operatorname{deg}(A)=$ $\alpha_{i}=y_{i} / \operatorname{deg}(Y)$. Therefore $A=(\operatorname{deg} A / \operatorname{deg} Y) Y$ from which it follows that Y is completely fundamental.

Finally, we prove that $(3) \Longrightarrow(1)$. Suppose Y is a completely fundamental generator of S and $Z \in \Gamma$ with $Z \preceq Y$. Clearly, clearing denominators, we may suppose that $Z \in S$. Since $Z \preceq Y$, for $m \in \mathbb{N}$ sufficiently large we have $m y_{i} \geq z_{i}$ for all $1 \leq i \leq n$. Hence $m Y$ decomposes within S as $m Y=Z+(m Y-Z)$. Since Y is completely fundamental, this implies that $Z=k Y$ for some $k \leq m$. Hence $\operatorname{supp}(Y)=\operatorname{supp}(Z)$ and $Y \preceq Z$.

Thus to each minimal element Y of Γ we have an associated $\ell(Y)$ dimensional simplex, $\sigma(Y):=\mathcal{H}\left(\omega_{i} \mid i \in \operatorname{supp}(Y)\right)$. Given $\operatorname{supp}(Y)$ we can recover Y since every point in a simplex can be written uniquely as a convex linear combination of the vertices of the simplex. Therefore the $\operatorname{map} Y \mapsto \operatorname{supp}(Y)$ is one-to-one. Moreover, if $Y \in \Gamma$ is minimal then $\left\{\omega_{i} \mid i \in \operatorname{supp}(Y)\right\}$ is a minimal linearly dependent subset of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$.

Note that the map $Y \mapsto \sigma(Y)$ is not necessarily one-to-one. More precisely, $\operatorname{supp}(Y) \mapsto \sigma(Y)$ is one-to-one if and only if the weights of V are distinct. If V_{1} and V_{2} are two representations of T having the same weights (except for multiplicities) then clearly, $N_{V_{1}, T}=N_{V_{2}, T}$ and thus it would suffice to consider only representations whose weights were distinct.

Theorem 3. - If the R_{j} are ordered so that $\operatorname{deg} R_{1} \geq \operatorname{deg} R_{2} \geq$ $\ldots \geq \operatorname{deg} R_{s}$ then $N_{V, T} \leq \sum_{j=1}^{n-r} \operatorname{deg} R_{j} \leq(n-r) \operatorname{deg} R_{1}$.

Proof. - Suppose o $\neq A \in S$. By Carathéodory's theorem we may write

$$
A=\alpha_{1} R_{j_{1}}+\ldots+\alpha_{n-r} R_{j_{n-r}}
$$

where each $\alpha_{j} \geq 0$. If $\alpha_{j}>1$ then we may decompose A within S as $A=\left(A-R_{j_{i}}\right)+R_{j_{i}}$. Hence if A is a generator of S then each $\alpha_{i} \leq 1$. But
then $\operatorname{deg} A=\alpha_{1} \operatorname{deg} R_{j_{1}}+\ldots+\alpha_{n-r} \operatorname{deg} R_{j_{n-r}} \leq \operatorname{deg} R_{j_{1}}+\ldots+\operatorname{deg} R_{j_{n-r}} \leq$ $\operatorname{deg} R_{1}+\ldots+\operatorname{deg} R_{n-r}$.

Remark 3. - Applying these two bounds to the representation of Example 1 we get $N_{V, T} \leq 17+9=26$ and $N_{V, T} \leq 2 \cdot 17=34$.

A theorem of Ewald and Wessels ([EW], Theorem 2) allows us to improve the preceding theorem. Specifically, (using the notation of Theorem 3) they show that if $\alpha_{1}+\ldots+\alpha_{n-r}>n-r-1 \geq 1$ then A is decomposable within S. Thus we have the following corollary.

Corollary 1. - If $n-r \geq 2$ then $N_{V, T} \leq(n-r-1) \operatorname{deg} R_{1}$.
Remark 4. - If we apply this result to Example 1 we find that $N_{V, T} \leq(4-2-1) \cdot 17=17$.

The following proposition shows how the completely fundamental solutions are distinguished among the elements of a monomial minimal generating set.

Proposition 2 (Stanley [St], Theorem 3.7). - Suppose $\left\{X^{A_{1}}, \ldots, X^{A_{q}}\right\}$ is any minimal set of monomials such that $\mathbf{k}[V]^{T}$ is integral over $\mathbf{k}\left[X^{A_{1}}, \ldots, X^{A_{q}}\right]$. Then $q=s$ and there exists a permutation π of $\{1, \ldots, s\}$ such that $\operatorname{supp}\left(R_{j}\right)=\operatorname{supp}\left(A_{\pi(j)}\right)$. In fact, there exist positive integers m_{1}, \ldots, m_{s} such that $A_{\pi(j)}=m_{j} \cdot R_{j}$.

Remark 5. - $\operatorname{Kempf}([\mathrm{K}])$ also constructed the elements R_{1}, \ldots, R_{s}. His method of construction is somewhat less direct than that which we will give in the next section and consequently the bound he gave for $\operatorname{deg} R_{j}$ is larger than the one we will give.

Computing the completely fundamental generators.

In this section we will give an algorithm for finding the completely fundamental generators. Suppose Ω is a minimal linearly dependent subset of $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ with $\mathbf{o} \in \mathcal{H}(\omega \in \Omega)$. Then $\Omega=\left\{\omega_{i} \mid i \in \operatorname{supp}\left(R_{j}\right)\right\}$ for some j. We want to compute R_{j}. Set $d:=\ell\left(R_{j}\right) \leq r$. Then without loss of generality we may suppose that $\operatorname{supp}\left(R_{j}\right)=\{1,2, \ldots, d+1\}$. Consider the system of r linear equations in d unknowns :

$$
y_{1} \omega_{1}+\ldots+y_{d} \omega_{d}=-\omega_{d+1}
$$

These r equations impose only d conditions and so in order to solve this system we take the $r \times d$ matrix of rank $d, M:=\left(\omega_{1} \omega_{2} \ldots \omega_{d}\right)$ and choose a $d \times d$ non-singular submatrix M^{\prime}. If M^{\prime} consists of the rows j_{1}, \ldots, j_{d} of M then the i th column of M^{\prime} is $\omega_{i}^{\prime}:=\left(\omega_{i, j_{1}}, \ldots, \omega_{i, j_{d}}\right)$ for $1 \leq i \leq d$. Also define $\omega_{d+1}^{\prime}:=\left(\omega_{d+1, j_{1}}, \ldots, \omega_{d+1, j_{d}}\right)$. Then solving (\dagger) is equivalent to solving

$$
y_{1} \omega_{1}^{\prime}+\ldots+y_{d} \omega_{d}^{\prime}=-\omega_{d+1}^{\prime}
$$

But we may solve ($\dagger \dagger$) by Cramer's rule :

$$
y_{1}=\frac{\left|\omega_{d+1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{d}^{\prime}\right|}{\left|\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{d}^{\prime}\right|}, \ldots, y_{d}=\frac{\left|\omega_{1}^{\prime}, \ldots, \omega_{d-1}^{\prime}, \omega_{d+1}^{\prime}\right|}{\left|\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{d}^{\prime}\right|}
$$

Then if we define

$$
\begin{aligned}
& \qquad \begin{aligned}
q_{i} & =y_{i}\left|\omega_{1}^{\prime}, \ldots, \omega_{d}^{\prime}\right| \\
& =\left|\omega_{1}^{\prime}, \ldots, \omega_{i-1}^{\prime}, \omega_{d+1}^{\prime}, \omega_{i+1}^{\prime}, \ldots, \omega_{d}^{\prime}\right| \text { for } 1 \leq i \leq d \\
\text { and } q_{d+1} & =-\left|\omega_{1}^{\prime}, \omega_{2}^{\prime}, \ldots, \omega_{d}^{\prime}\right|
\end{aligned}
\end{aligned}
$$

we have

$$
q_{1} \omega_{1}+\ldots+q_{d+1} \omega_{d+1}=\mathbf{o}
$$

where each $q_{i} \in \mathbb{Z}$. This solution is unique up to scalar multiplication by an element of \mathbb{Q}. Since $\boldsymbol{o} \in \mathcal{H}\left(\omega_{1}, \ldots, \omega_{d+1}\right)$ all the q_{i} must have the same sign and, multiplying by -1 if necessary, we get each $q_{i} \in \mathbb{N}$. If we define $q_{i}=0$ for all $i \notin\{1, \ldots, d+1\}\left(=\operatorname{supp}\left(R_{j}\right)\right)$ and $Q_{j}:=\left(q_{1}, \ldots, q_{n}\right)$ then $R_{j}=Q_{j} / m$ where m is the greatest common divisor of the integers q_{1}, \ldots, q_{d+1}.

Thus to construct $\left\{R_{1}, \ldots, R_{s}\right\}$ we consider each minimal linearly dependent subset, Ω, of the weights $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. For each such Ω we compute the determinants q_{1}, \ldots, q_{d+1}. If any two of these determinants have opposite signs then Ω does not correspond to any invariant. If however, all the q_{i} have the same sign then $\left(q_{1} / m, \ldots, q_{n} / m\right)$ is one of the completely fundamental generators.

Degrees as volumes.

In this section we will continue to study the fixed R_{j} of the previous section. We will obtain bounds on $\operatorname{deg} R_{j}$ and thus on $N_{V, T}$ in terms of volumes of certain polytopes.

Theorem 4. - Let σ_{j} be the simplex $\sigma_{j}=\mathcal{H}\left(\omega_{i} \mid i \in \operatorname{supp}\left(R_{j}\right)\right)$. Then $\operatorname{deg} R_{j} \leq d!\operatorname{vol}\left(\sigma_{j}\right)$.

Proof. - Let Δ denote the perpendicular (coordinate) projection :
$\Delta: X^{*}(T) \otimes \mathbb{Q} \cong \mathbb{Q}^{r} \rightarrow \mathbb{Q}^{d}$ given by $\Delta\left(u_{1}, \ldots, u_{r}\right)=\left(u_{j_{1}}, \ldots, u_{j_{d}}\right)$.
Then $\Delta\left(\omega_{i}\right)=\omega_{i}^{\prime}$. Define $\sigma_{j}(i):=\mathcal{H}\left(\mathbf{o}, \omega_{1}, \ldots, \omega_{i-1}, \omega_{i+1}, \ldots, \omega_{d+1}\right), \sigma_{j}^{\prime}:=$ $\Delta\left(\sigma_{j}\right)$ and $\sigma_{j}^{\prime}(i):=\Delta\left(\sigma_{j}(i)\right)$. Notice that q_{i} is the d dimensional volume of the parallelepiped $\mathcal{P}\left(\omega_{1}^{\prime}, \ldots, \omega_{i-1}^{\prime}, \omega_{i+1}^{\prime}, \ldots, \omega_{d+1}^{\prime}\right)$. Hence $q_{i}=d!\operatorname{vol}\left(\sigma_{j}^{\prime}(i)\right)$.

Now $\sigma_{j}^{\prime}=\sigma_{j}^{\prime}(1) \cup \ldots \cup \sigma^{\prime}(d+1)$ is a triangulation of σ_{j}^{\prime} by d-simplices since \mathbf{o} lies in the relative interior of σ_{j}^{\prime}. Thus $\operatorname{deg} Q_{j}=q_{1}+\ldots+q_{d+1}=$ $d!\operatorname{vol}\left(\sigma_{j}^{\prime}\right)$. Therefore $\operatorname{deg} R_{j} \leq \operatorname{deg} Q_{j}=d!\operatorname{vol}\left(\sigma_{j}^{\prime}\right) \leq d!\operatorname{vol}\left(\sigma_{j}\right)$ where the last inequality follows for example from [Ga], (30) p. 253.

Let $\mathcal{W}:=\mathcal{H}\left(\omega_{1}, \ldots, \omega_{n}\right)$, the convex hull of the weights in $X^{*}(T) \otimes$ $\mathbb{Q} \cong \mathbb{Q}^{r}$.

Theorem 5. - $\operatorname{deg} R_{j} \leq r!\operatorname{vol}(\mathcal{W})$.
Proof. - It is not true in general that $d!\operatorname{vol}\left(\sigma_{j}^{\prime}\right) \leq r!\operatorname{vol}(\mathcal{W})$ when $d<r$. Hence to prove this theorem we consider a slightly different construction of R_{j} (when $d<r$). Recall that we have assumed that $\operatorname{supp}\left(R_{j}\right)=\{1, \ldots, d+1\}$. Without loss of generality we may assume that $\Sigma:=\mathcal{H}\left(\omega_{1}, \ldots, \omega_{d+1}, \ldots, \omega_{r+1}\right)$ is an r dimensional simplex. To construct R_{j} we solve the system of r linearly independent equations in r unknowns :

$$
y_{2} \omega_{2}+\ldots+y_{r+1} \omega_{r+1}=-\omega_{1} .
$$

As before we apply Cramer's rule to solve this system and so find $\left(a_{1}, \ldots, a_{r+1}\right) \in \mathbb{N}^{r+1}$ with

$$
\begin{aligned}
& \quad a_{1} \omega_{1}+\ldots+a_{r+1} \omega_{r+1}=\mathbf{o} \\
& \text { and } a_{i}=r!\operatorname{vol}_{r}\left(\mathcal{H}\left(\mathbf{o}, \omega_{1}, \ldots, \omega_{i-1}, \omega_{i+1}, \ldots, \omega_{r+1}\right)\right)
\end{aligned}
$$

Again we set $a_{r+2}=\ldots=a_{n}=0$ and $A=\left(a_{1}, \ldots, a_{n}\right)$. Notice that $a_{d+2}=\ldots=a_{r+1}=0$ and that A is a multiple of R_{j}. Hence $\operatorname{deg} R_{j} \leq \operatorname{deg} A=a_{1}+\ldots+a_{n}=r!\operatorname{vol}(\Sigma) \leq r!\operatorname{vol}(\mathcal{W})$.

Corollary 2. - If $n-r \geq 2$ then $N_{V, T} \leq(n-r-1) r!\operatorname{vol}(\mathcal{W})$. If $1 \leq n-r \leq 2$ then $N_{V, T} \leq r!\operatorname{vol}(\mathcal{W})$.

Remark 6. - This bound is invariant under the action of $\operatorname{Aut}(T) \cong$ $G L(r, \mathbb{Z})$ and thus is independent of the choice of ψ.

Remark 7. - For the representation of Example 1, \mathcal{W} is a quadrilateral of area $23 / 2$. Hence we get the bound $N_{V, T} \leq 2!\cdot(23 / 2)=23$.

It seems likely that the factor $n-r-1$ is unnecessary in the first statement of Corollary 2. I know of no examples of representations where $N_{V, T}>r!\operatorname{vol}(\mathcal{W})$. Conversely for all values of n and r there exist faithful stable n dimensional representations, V, of $T \cong\left(\mathbf{k}^{*}\right)^{r}$ such that $N_{V, T}=r!\operatorname{vol}(\mathcal{W})$ - for example this often occurs when \mathcal{W} is itself a simplex.

Conjecture. - There is a (small) constant $c \in \mathbb{R}$ such that $N_{V, T} \leq c r!\operatorname{vol}(\mathcal{W})$.

Bounds in terms of w.

Next we bound $\operatorname{deg} R_{j}$ in terms of $w:=\max \left\{\left|\omega_{i, m}\right|: 1 \leq i \leq n, 1 \leq\right.$ $m \leq r\}$.

Theorem 6. - $\operatorname{deg} R_{j} \leq\left\lfloor w^{d}(d+1)^{(d+1) / 2}\right\rfloor$.
Proof. - We have $\operatorname{deg} R_{j} \leq d!\operatorname{vol}\left(\sigma_{j}^{\prime}\right)$ where $\sigma_{j}^{\prime}=\mathcal{H}\left(\omega_{1}^{\prime}, \ldots, \omega_{d+1}^{\prime}\right)$ $\subset[-w, w]^{d} \subset \mathbb{Q}^{d}$. Define $\widetilde{\sigma_{j}^{\prime}}:=\mathcal{H}\left(\omega_{1}^{\prime} / 2 w, \ldots, \omega_{d+1}^{\prime} / 2 w\right)+(1 / 2, \ldots, 1 / 2)$. Then $\widetilde{\sigma_{j}^{\prime}}$ is a d dimensional simplex contained in $[0,1]^{d}$ with $\operatorname{vol}\left(\sigma_{j}^{\prime}\right)=$ $(2 w)^{d} \operatorname{vol}\left(\widetilde{\sigma_{j}^{\prime}}\right)$.

Thus we now seek to bound the value $B:=\max \left\{\operatorname{vol}(\tau) \mid \tau \subset[0,1]^{d}\right.$ is a d dimensional simplex\}. By linear programming it is clear that the value B is attained by a simplex μ all of whose vertices are also vertices of the cube $[0,1]^{d}$. Without loss of generality we may assume that $(0, \ldots, 0)$ is one of the vertices of μ. Let ν_{1}, \ldots, ν_{d} be the other vertices of μ. Then $\operatorname{vol}(\mu)=|\operatorname{det}(M)| / d!$ where $M=\left(\nu_{1} \ldots \nu_{d}\right)$ is a $d \times d$ matrix all of whose entries are either 0 or 1 . But then by a theorem of Ryser (see [R], Equation (11)) we have

$$
|\operatorname{det}(M)| \leq 2\left(\frac{\sqrt{d+1}}{2}\right)^{d+1}
$$

Thus we get the bound $\operatorname{deg} R_{j} \leq w^{d}(d+1)^{(d+1) / 2} \leq w^{r}(r+1)^{(r+1) / 2}$.
Corollary 3. - If $n-r \geq 2$ then $N_{V, T} \leq(n-r-1)\left\lfloor w^{r}(r+1)^{(r+1) / 2}\right\rfloor$. If $1 \leq n-r \leq 2$ then $N_{V, T} \leq\left\lfloor w^{r}(r+1)^{(r+1) / 2}\right\rfloor$.

Remark 8. - In Example 1 we had $n=4, r=2$ and $w=5$. Thus Corollary 3 gives $N_{V, T} \leq\left\lfloor 5^{2} \cdot(2+1)^{(2+1) / 2}\right\rfloor=\left\lfloor 25 \cdot 3^{3 / 2}\right\rfloor=129$.

BIBLIOGRAPHY

[B] A. Brondsted, An Introduction to Convex Polytopes, Springer-Verlag, Berlin-Heidelberg-New York, 1983.
[EW] G. Ewald, U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Results in Math., (1991), 275-278.
[Ga] F.R. Gantmacher, The Theory of Matrices, Vol. 1, Chelsea Publishing Company, New York, 1959.
[Go] P. Gordan, Invariantentheorie, Chelsea Publishing Company, New York, 1987.
[K] G. Kempf, Computing Invariants, S. S. Koh (Ed.) Invariant Theory, Lect. Notes Math., 1278, 81-94, Springer-Verlag, Berlin-Heidelberg-New York, 1987.
[N1] E.Noether, Der endlichkeitssatz der Invarianten endlicher Gruppen, Math. Ann., 77 (1916), 89-92.
[N2] E. NOETHER, Der endlichkeitssatz der Invarianten endlicher linearer Gruppen der Charakteristik p., Nachr. v. d. Ges. Wiss. zu Göttingen, (1926), 485-491.
[O] T. Oda, Convex Bodies and Algebraic Geometry, Ergeb. Math. und Grenzgeb., Bd. 15 , Springer-Verlag, Berlin-Heidelberg-New York, 1988.
[P] V.L. Popov, Constructive Invariant Theory, Astérisque, 87/88 (1981), 303-334.
[R] H.J. RySER, Maximal Determinants in Combinatorial Investigations, Can. Jour. Math., 8 (1956), 245-249.
[S] B. Schmid, Finite Groups and Invariant Theory, M.-P. Malliavin(Ed.) Topics in Invariant Theory (Lect. Notes Math. 1478), 35-66, Springer-Verlag, Berlin-Heidelberg-New York, 1991.
[St] R.P. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41, Birkhäuser, Boston-Basel-Stuttgart, 1983.
[W] D. Wehlau, The Popov Conjecture for Tori, Proc. Amer. Math. Soc., 114 (1992), 839-845.

Note added in proof: The construction of the completely fundamental generators given here was also pointed out by B. Sturmfels in "Gröbner bases of toric varieties", Tôhoku Math. J., second series, vol. 43, no. 2 (1991).

Manuscrit reçu le 27 novembre 1992.

[^1]
[^0]: Research supported in part by NSERC Grant OGP0041784.
 Key words : Torus invariants - Invariant theory - Torus representations.
 A.M.S. Classification : 14D25-20M14.

[^1]: David L. WEHLAU, The Royal Military College of Canada Dept of Mathematics \& Computer Science Kingston K7K 5LO (Canada).

