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FURTHER REMARKS ON THE WINDING NUMBER
by Bruce L. REINHART (Baltimore) (1)

In our previous paper [2], we defined the winding number
for regular closed curves on two manifolds, and gave an alge-
braic method for finding the winding number of a regular
simple closed curve when i1ts homotopy class 1s known. In this
paper, we extend the definition to piecewise regular curves,
and thereby give a geometric method of computation which
also casts some light on the meaning of the winding number.
We also elucidate the algebraic technique somewhat, and
thereby find an alternate algebraic method of computation.
The definitions, notations, and numbering of propositions
of the previous paper will be retained.

1. A geometric interpretation of the winding number.

The winding number 1s defined axiomatically, and then
the existence is proved by means of the following integral
formula :

where C is a regular closed curve. Let us call a curve C piece-
wise regular if C 1s a continuous mapping of [0, 1] into M
such that there is a finite sequence of pointst, = 0, ¢,,...,t, =1
such that C is differentiable and has nonzero tangent vector
on each interval [t, t,,,], and satisfies one further condition
to be given later. Then the tangent vector is uniquely defined
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except possibly at the points ¢, where there are a left hand
and a right hand tangent. Let 0; be the angle measured from
the left hand tangent at ¢, to the right hand tangent at this
point, with sign defined by the orientation of M. The additional
condition required is that |0;] < w. Then we define

k—l
1 U d(C—F) + 8,4,! mod .

W(C) —21\7 i=0

Recall that for M a surface of genus g, we have supposed
(M) written in terms of generators A, 1=1, ..., 2g,
subject to the relation

g
];I‘ Ap Ay AL = 1L

Suppose further that ['; are pairwise disjoint regular Jordan
curves such that [, is homotopic to A, _;AyA;" A7, that
is, the [; are boundaries of the handles.

Prorosition 3. — If C is a piecewise regular Jordan curve,
not homologous to zero, which does not cut any I';, then w(C) = 0.

This generalizes a theorem proved earlier for regular curves
on the torus [1].

Proof. — Since the singularity of the vector field F may
be moved about at will without changing the winding number,
we may suppose that some ['; separates C from the singularity.
Cut the surface along each I, and consider the handle H
which contains C. Embed H in the torus, and extend F to a
nonsingular field F; on the torus. Since

w(Agi—y) = w(Ag) = 0,

this field may be used to define the winding number on the
torus. Hence, w(C) = 0, by a slight modification of the proof
given in [1].

Now let C be any regular Jordan curve on the surface. By
suitably deformong the [, we may assume that at each point
where C meets [, they actually cross. Since both C and [}
are Jordan curves, each crossing point corresponds to exactly
one parameter value on each curve. The minimum number
of points of intersection of C with ['; under these 'conditions 1s
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well defined, and may be found by the methods of [4]. More
precisely, if we know the homotopy class of C in terms of the
generators A;, we can find a cyclically ordered set of points
P, ..., Py, on C such that:

1. The cyclic ordering is consistent with the parametriza-
tion of C.

2. §{P;} is a set of all intersections of C with the union of
the [';, minimal under the assumptions.

3. For each [, it is known which P; lie on [, and what
their cyclic order on ['; is. Notice that each time C enters and
leaves a given handle, the corresponding points of intersection
are adjacent in the cyclic ordering on C. Hence, we may cons-
truct a family of piecewise regular curves as follows :

A. Begin at a point where C enters the i-th handle, follow
C until it leaves, then turn left along [, and return to the
initial point. Thus we construct curves G, ..., C..

B. All other points of C lie on no handle. Begin at any one,
follow C until it meets I[';, turn left and follow ['; until you
reach the corresponding exit point, turn left again, etc. Thus
we construct a single curve C, which contains all the P, plus
all those points of C not on any C,. (In fact, we get C, from
C by taking a short cut each time we come to a handle boun-
dary.) Notice that C, lies on the sphere with g holes, hence
may be considered as a plane curve.

Prorosition 4. — Let w,(C,) be the winding number of

g—1
C, considered as a plane curve, and let 3, c;T'; be the homology

class of C, on the sphere with g holes. Thlejz1
g—1
w(C) = —r 4+ w,(C,) —2 Y ¢ mody
i=1

This proposition is a modification of one previously conjec-
tured by us [3].

Proof. — The sum w(C,) + Xw(C;) is equal to w(C) plus
half the number of points of intersection, that is, to w(C) + r.
In fact, the sum of the jumps in angle at each P; is «, and
there are 2 r points P,. By proposition 3, w(C,) = 0. Hence
w(C) = —r + w(C,). Suppose now that the singular point
of F is on the g-th handle. Span I, ..., I';_, with discs D.
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and extend F to a field F, on the resulting disc such that F,_
has on each D,; exactly one singular point, necessarily of
degree 4 2. Then w(C,) 1s equal to w,(C,) plus the variation
along C, of the angle between F, and a field of parallel vectors
in the plane, that is, ‘

W(C*) = WP(C*) - 220?'

2. Algebraic computation of the winding number.

We have previously given an algorithm for finding the
winding number of a regular simple closed curve when a
representation of its homotopy class in terms of the generators
A, 1s given. This algorithm is based on the study of a diagram
representing a neighborhood of the base point Q of the funda-
mental group, which diagram occurs originally in connection
with the definition of regular generating system [2;, p. 273].
The diagram consists of a pair of concentric circles, D, inside
D,, having Q for center. A segment of radius going out from
D, to D, serves as beginning and end for a linear ordering of
the points of each circle, and none of the curves to be construc-
ted is allowed to cross this segment. Each A; crosses each
circle once in leaving Q and once in returning to Q. The
point where A, enters is denoted by v/i, and the point where
it leaves by v/o. These points are arranged on D, and D,
according to the following principles :

I. For each v, the linear order of the four points A,, /i,
A,,ft, Ayy_1/o, Ayyfo should be the same on the two circles.

II. All entering arrows should be grouped on one semi-
circle of D;, and all leaving arrows on the other.

II1. The order on D, is that required by the structure of
the fundamental polygon bounded by the A, and Aj!. In
or previous paper, one arrangement of points was given which
satisfies these conditions. We now give another, which seems
to be more convenient, since the resulting algorithm is more
symmetric :

On D,
1)o, 2[i, 1/i, 2/o, ..., 2g—1)o, 2g[i, 2g — 1[i, 2g]o.
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On D,

1/o, 3o, ..., 2g—1]o, 2f1, 41, ..., 2g[t, /i, 3/i, ...,
2g — 1/, 2/o, 4fo, ..., 2g]o.

As before, we introduce the figure 8 curve inside D, to
handle the curves A;!. There are two essentially different
ways to do this. Let us choose the one opposite to what we
used before. Then, by following methods analogous to those
used before, we prove the following proposition :

Prorosition 5. — Replace the schema of the theorem by
the one indicated immediately above. Also redefine the integer
t by the rule

t = 1 for the sequences

A2j-—1 sy 1> .7.

Ay AT, ) ]
A AR 1>
t = — 1 for the sequences which consist of the same symbols

in the inverse order, and t = 0 otherwise. Define the unteger
s by means of the revised schema. Then the winding number
is equal to s + t as before.

We remark that one may construct other algorithms accor-
ding to his taste, provided the rules I, II, and III are followed.

In conclusion, we would like to pose the following problems
about the winding number:

1. The winding number is not invariant under self-homeo-
morphisms of the surface, but it is invariant under isotopies.
Let G be the group of self-homeomorphisms modulo isotopies.
What can we say about the subgroup of G consisting of ele-
ments which leave the winding number unchanged?

2. Given a set of singular points and their indices, a homo-
topy class of vector fields under homotopies leaving the
singular points fixed, and a set of free homotopy classes of
curves supposed to contain periodic solutions of the vector
field, what information can we draw from the winding number
about the existence or non-existence of a vector field consistent
with these data. Certain obvious cases of non-existence are
known [3], but the general problem seems difficult.
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