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HARMONIC ANALYSIS OF SPHERICAL FUNCTIONS
ON SU(1,1)

by Y. BENYAMINI (*) and Y. WEIT

Introduction.

Harmonic functions in R'1 can be defined in two ways. They are
the solutions of the differential equation A/ = 0, where A is the
Laplacian, and they are the functions that satisfy the mean value
property, i.e. the functions that satisfy the convolution equation
/ * p, == / for every radial probability measure on R".

The first definition extends from R" to general Riemannian manifolds
where the Laplacian is replaced by the Laplace-Beltrami operator.

We shall be more interested in this article with the extensions of
the second definition. If H is a topological group, or more generally a
homogeneous space of a topological group, we can consider solutions
of convolution equations of the form / * ^ == / for certain families of
measures \JL on H .

This point of view was taken by Choquet and Deny [CD], who
studied bounded solutions of the equation / * |LI = / when ^ is a
probability measure on a locally compact abelian group. They gave
necessary and sufficient conditions on p. so that the only bounded
solution to the equation will be the constant functions.

In his work on Poisson boundaries for semi-simple Lie groups,
Furstenberg [Ful], [Fu2] studied similar equations on these groups and
on their homogeneous spaces G / K (where K is a maximal compact
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subgroup). Given a probability measure a on G, Furstenberg called a
bounded function / on G, u-harmonic if it satisfies the convolution
equation / * u = /.

The case where / and n actually «live» on G / K is of special
interest. If u also happens to be spherical, i.e. invariant under the left
as well as the right action of K, and absolutely continuous, Furstenberg
proved [Fu2], Theorem 5, that the only bounded functions / on G / K
satisfying the equation / * |LI = /, are the harmonic functions, i.e. those
functions that are annihilated by the Laplace-Beltrami operator on
G / K .

Furstenberg's methods (and interests) are probabilistic, and his main
tool is the theory of martingales. Thus his methods do not extend to
the study of the equation / * n = / when p, is not a probability
measure.

In this article we propose to study such equations using methods
of Harmonic Analysis, i.e. by using the ideal theory of the group
algebra.

Although our results should hold for more general Lie groups we
limit ourselves to the very concrete case where G = 5'£/(1.1), where
G / K is the usual unit disk in the complex plane. There are two reasons
for doing this. First, it allows us to give direct and complete proofs,
without using the general theory of Lie groups. As this special case is
important in a variety of areas of analysis, we hope that this detailed
exposition will be helpful to the non-specialist in representation theory,
who might find it difficult to find his way in the literature. Secondly,
this concrete setup allows us to treat some classical problems in function
theory, and to obtain characterizations of harmonic and holomorphic
functions in the unit disk.

We now describe the content of the article in more detail.

After we introduce the necessary notation and terminology, the
preliminaries section is used to give reasonably complete and direct
proofs of the basic properties of the spherical functions and of the
Fourier transform that we need. This is possible because we restrict
ourselves to 5T/(1, 1), where things are very explicit and concrete.

In the first section we study ideals in Z/(^\G7X), which in our
special case is just the algebra of radial functions on the unit disk,
integrable with respect to the conformally invariant measure, and with
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the convolution induced from SU(1,1). This is a commutative semi-
simple algebra, and thus its ideals can be studied in terms of the
Fourier (Gelfand) transform. The main problem here is to find an
analogue of Wiener's general Tauberian theorem, that is to find
conditions on the Fourier transforms of the elements of an ideal / that
will ensure that it is all of L^A^GVAQ. This problem was considered
by Ehrenpreis and Mautner [EM I], [EM2], who have noted that it is
not enough that the Fourier transforms of the elements of I will not
have a common zero. We formulate a conjecture in this direction, but
can prove only special cases. Other cases have been proved in [EM I],
and our proofs borrow heavily from the ideas and methods of [EM1].

In sections 2-4 we apply the results of section 1 to various concrete
problems. In section 2, we give conditions that ensure that a given
radial measure [i is mixing, i.e. u" * / -> 0 for every / e ^ ( ^ G / K )
with zero integral. In particular we prove that every radial probability
measure u ^ 5o is mixing.

In section 3, we prove the result of Furstenberg mentioned above,
that when u 7^ 5o is a radial probability measure then the only bounded
solutions to the equation / * u == / on the unit disk are the harmonic
functions. The Fourier analysis approach indicates that this result should
be true not only for probability measures, but for every measure n
whose Fourier transform takes the value 1 only for s = 0 or 1, and
we conjecture that this is indeed the case. Our results on the ideal
theory of L^A^G/AO, however, are not good enough to prove this
in general and we prove it only when u has a compact support.

In the final section, 4, we characterize holomorphic functions in the
unit disk. For example we give a «two circles theorem » for most pairs
y\, y-2 (the precise condition is given in section 4): If / is a measurable
function on the unit disk satisfying |/(z)| ^ c(\—\z\2)~l there, and if

f(z) dz = 0 for all g = SU(1,1), where y; is the central circle of
Jg(7i)

radius r,, then / is holomorphic.

This result was announced in [A], but the proof there is not
complete. The intricate ideal theory in L^A^G/AQ was not noticed,
and the author assumed that the non-vanishing of the Fourier transforms
suffices to imply that the ideal is all of L\K\G/K).
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0. Preliminaries.

We shall use standard notation and terminology. For more details,
see [EM I], [L] and [S].

We denote by 5T/(1,1) the group G of 2 x 2 complex matrices

g = ( a p ) where |a|2 - |p|2 = 1. Each such g is identified with the

conformal automorphism g(z) = (az + P) / ((3z + a) of the unit disk D.

We denote by K the subgroup of rotations in G, and by A the
, p ,1 „ . p ., p /cos hC sin/it-\ ^subgroup of all matrices of the form ^= . ,. ,. . Every j?6' \sm h^ cos h^j " 5

in G, g 7^ 1, has a unique representation as a product g = /CM/, where
k, I e K and u e ^4. A function / on G is called spherical if /(g) = /(^)
in the above representation, or, equivalently, f{g) = f(kgl) for all g e G
and k, I e K. When we identify G'/^ with the unit disk, functions on
D are identified with functions on G satisfying f(g) = f(gk) for all
g e G and k e K, and the spherical functions are identified with the
radial functions on D.

More generally we shall consider (m,n)-spherical functions on G.
These are the functions that satisfy f(kgl) = k^f^g) for all g e G and
fe, I e K. Every function (or measure) on G has a formal representation
/ = ^fn,m, where fn,m^ (m,n)-spherical. (m,0)- or (0,n)-spherical function
will be called left m-radial, or right n-radial functions respectively.

We denote by dg the Haar measure on G, normalized so that
it induces the conformally invariant measure d'k = (1— Iz l 2 ) " 2 dx dy
on D.

Denote by T the unit circle with the normalized Lebesgue measure.
By abuse of notation we shall sometimes write 9 instead of e^ for
points of T. For each fixed g € G and each complex number s we
define an operator U(g,s) on L^T) by the formula

Wg,s)a)(Q)=\g\6)\sa(gQ) for a 6 ̂ (T)

and this defines, for each 5, a representation of G by bounded operators
on L^T). This representation is unitary when Re (s) = 1/2.
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The zonal spherical functions are the functions

(p(^,s) = <;7te,s)u> = 1^(6)1^9= p^+ai-^e = fig'(e)i^9= f

where, =(^).

L^G) is a noncommutative Banach algebra under convolution. We
shall be interested in its subalgebra L\K\G/K) of spherical functions.
L^^K^I K) is a commutative algebra (see [L], p. 21). It is a semi-simple
Banach algebra, and its maximal space is the strip ̂  = {s : O^Re (s)^ 1}.
The Fourier (or Gelfand) transform of / e L\K\G/K) is given by

F(s) == /(5) = /fe)(p(g,s) dg for 5 G ,̂ (compare with [L], Thm. 7,

page 60). For each fixed s e ^ this formula indeed gives a multiplicative
functional because U is a representation. (The integral is finite because
(p is bounded on G when s e ̂ , see below).

The following two lemmas summarize the basic properties of the
zonal spherical functions and the Fourier transform. For proofs of these
well known facts, see e.g. [S].

LEMMA 0.1. — 1) Each zonal spherical function (p(- ,s) is a spherical
function on G.

2) The relations ^>(g,s) = (p(^,l-s) = (p(^,s) hold for all g e G and
all s .

3) For each fixed g e G, cp(^,s) is an entire function of the complex
variable s, and it is of exponential type 2£,, }vhen g = kul, and u = g r .

4) If s € ^ then |(p(^,s)| ^ 1 for all g e G, rn'r/i equality iff g is in
K , or s = 0 or 1. (For s ^ e ,̂ (p(-,5) fs unbounded.)

5) For each fixed g , and every strip T = { s : a ^ ReQO^b},
(p(^,s) ->• 0 uniformly as \s\ -> oo fn T.

LEMMA 0.2. - 1) For each f e L\K\G/K), its Fourier transform
f(s) is continuous and bounded in the strip ^ and is analytic in the
interior of ^. If f has compact support, or more generally if [i is a
radial measure on G of compact support, then f (respectively fi) is an
entire function of exponential type.
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2) I /(s)| ^ 11/11 for all s e ^ and fe L\K\G / K ) .

3) f(s) = /(I -5) for all s e ̂ .

4) /(s) -^ 0 \vhen \s\ -> co, s e ̂ . In fact fi(s) -> 0 /or aH spherical
measures [i \vith no atom at 1 e G.

More generally we shall consider the other components of the matrix
of U(g,s), namely (p^fe,5) = (t/fe^y9, e1119). These, too, are entire
functions of exponential type for each fixed g . We shall also consider

r
the operator valued Fourier transform ^(n,5) = U(g,s) d[i(g) for
measures n of compact support. For each such (i, this is an operator
valued entire function of exponential type.

The L2 theory of the Fourier transform is completely analogous to
the theory on the real line: There is a measure 85 on the line
L = 1/2 + I'R (the Plancherel measure) so that the Fourier transform

is an isometry of L\K\G / K ) onto L\L,Ss) i.e. \ \f(g)\2 dg =

r l/ts)!^.
JL

To define the Schwartz class, ^, on G', we consider the Laplace-
Beltrami operator A on G (restricted to spherical functions). Identifying
spherical functions with functions on R4^ by writing /(£,) for /(^), A
is given by the formula A == d / d y ( y ( l +y)) d / d y , where y = smh%.

One checks directly that (A/)1[s) == s(l-s) f(s).

The space y is then the space of all infinitely differentiable functions
/(O so that for all n and m the semi-norms sup ̂  smh2^^mf(Q\ and
sup A^/K) are finite.

The Fourier transform is an isomorphism of y onto the space y
of all functions F(s), infinitely differentiable on the strip ^, analytic
in its interior and satisfying F(s) = F(l—s) there, for which the semi-
norms sup \dm/dsm(sn(l-s)nF(s))\ are finite.

It follows from the formula (A/)(s) = s(l—s)/(s), that if / is a
smooth function with compact support, then snf (s) -> 0 uniformly in
every strip, {a ̂  Re (s) ̂  b}, as | s | -> oo .

We finish this section with the following crucial lemma. It shows
that radial measures behave in a very special way under convolution.
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LEMMA 0.3. - Let [i and v be t^o finite measures on the unit disk
D, mth no atom at 0. Then n * v is absolutely continuous.

Proof. - Denote by T^ the normalized Lebesgue measure on the
central circle of radius r, and we start with an explicit computation of
T, * T, .

Let Bt be the central disk of radius t. Then

T,*T,(^) == JT^-^^OC).

When x runs through the circle of radius 5, so does x~ 1 , and thus
T,(x~1^) depends only on s, and not on x, and is just the normalized
arc length measure of the intersection of the central circle of radius r
with the disk x~1^.

In computing this length, there are ^ i , ^ depending on r and 5, so
that if t < t^ the circle and the disk B^ do not intersect at all, and
Tr*T,(^) = 0. If t > t^ the disk contains the whole circle of radius r ,
and T, * T,(^) = 1. If ^ < t ^ ^ then the cosine law shows that
T^ * T,(2?() is given by

2 arcos {[s2 -12-}-r\l -tV^rs (1 -^(l -A2)]-1}.

Thus T^ * Ts(T^) is a differentiable function of t (except at t^ and ^)
which ends the proof in this case.

The general case follows from this special case. Indeed there

are finite measures a and p on (0,1) so that n = T,da(r) and

v = T, d^(s). But then ^ * v = T, * T, da(r) d^(s), and the result follows
from the previous discussion.

1. Ideals in L\K\GIK).

Our goal in this section will be to find conditions on an ideal / in
L\K\G/K) so that it is either equal to all of L\K\G/K), or to
L^^G/K), its maximal ideal of all functions whose integral is zero.
(By ideal we shall mean a closed ideal, unless stated otherwise.) A
necessary condition is that the Fourier transforms of the elements of /
have no common zeros (or that the only common zeros are s = 0,1
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respectively). Indeed, otherwise / is contained in the ideal of all functions
whose Fourier transform vanishes in this set of common zeros. It was,
however, already discovered by Ehernpreis and Mautner that this is
not enough, and that some restriction on the rate of decay of the
Fourier transforms at infinity is also necessary.

Motivated by the results of Ehrenpreis and Mautner, we conjecture
that the correct condition is the following :

CONJECTURE. — Let I be an ideal in L1(K\G / K ) so that the following
conditions hold :

1) For every s e ̂ , there is an f e /, so that f(s) 7^ 0.
2) There is an f E I whose Fourier transform does not decay too fast

on the line 1/2 + fR, in the sense that

lim sup |/(l/2+f0 exp (^i)| > 0 for every 'k > 0.
|(|-.oo

Then I = L\K\G/K).

If instead of (1) I satisfies :
1') For every s e ̂ , s ^- 0,1, there is an f e I so that f{s) 1=- 0 and

every g e l satisfies g(l) = g(0) = 0.

Then I = Ll(K\G/K).

Unfortunately we cannot prove this conjecture, and in this section
we prove it only with some additional conditions on the ideal I .

Denote by ^(8) the strip - 8 ^ Re (s) ^ 1 + 8. Let Ao(b) denote
the space of all functions continuous in ^(8) and analytic in its interior
which satisfy lim /(s) == 0, and f(s) = /(1-s) for all s in ^(8), with

|s|-^oo

the supremum norm.

The main result of this section is then the following :

THEOREM 1.1. — Let I be an ideal in L1(K\G/K), which has a set
of generators whose Fourier transforms belong to A 0(8) for some 8 > 0.
Assume that I contains a function whose Fourier transform extends
analytically to ^(8), and does not decay too fast on the line 1/2 + fR,
i.e. lim sup |/(l/2+fr) exp (^')| > 0 for every ^ > 0.
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If I satisfies

(1) For every 5e^(5), there is an f e /, 50 r/ia^ /(s) 7^ 0. TTi^n
7 = L\K\G/K).

If instead of (1), / satisfies
(1') jFbr ^i^ry se^(8), s 7^ 0,1, r/i^r^ fs an fel so that

f(s) ^ 0 and every g e l satisfies g(l) = g(ft) = 0.

Then I = L^(K\G/K).

To prove the theorem we first study ideals in A 0(6). Let \|/5 be the
confbrmal mapping of the strip ^(8) onto the unit disk D, which
satisfies the relations \|/5(1-5) = - v|/§(5), and takes the line 1/2 + iR
onto the segment between i and — i. More specifically we have

and
z = ^(s) == f(l-^<^- l)/<2 + 4 §))/(l+^<2 s- l ) /<2 + 4 8>)

-*.-(.)-.^•^.o^.

Let A(D) denote the algebra of all functions analytic in D ,
and continuous in its closure. Composition with \|/§ identifies Ao(8)
with Ao(D), the subspace of A(D) of all functions satisfying
/(O = / (-0 = 0, and /(z) = f(-z) for all z e D .

The ideal theory of A(D) is known completely. Indeed by the
theorem of Beurling and Rudin (see [Ho] pp. 82-89), every such ideal
is of the form {gF: g e A ( D ) and ^1^=0} for some closed set K of
measure zero in the unit circle and some inner function F.

This also gives a complete description of the ideals of ^o(D) as the
following simple lemma shows. (See also Theorem 3.1 in [H].)

LEMMA 1.2. — For every ideal I in Ao(D), there is an ideal J in
A (D), so that I = J n Ao(D).

Proof. - The functions ^(z) = (z'+ l)/^^ 1 + 1/n) belong to Ao(D),
|^(z)| ^ 2 on D, and |^n(z)| -> 1 uniformly on compact subsets of
D disjoint from ± i.

Let J be the ideal generated by I in A(D). Fixing any / in
/ n ^ o W , we need to show that f e l . Find functions fn,i^I and
g^i e A(D), so that the sequence fn = ^Lifn,ign,i converges to /. Averaging,
we can assume that gn,;(z) = ^ , (—z) . Given any e > 0, fix n so that
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11/-/JI < £, a neigborhood U of ± i so that |/| < e in U, and an
m so that |l-^(z)| < e on D\U. One sees then easily that
ll/'/^mll < Cs, where C is a constant that depends only on /. But
/^ e /, because each gn^m belongs to Ao(D). As s was arbitrary, the
result follows.

It follows from Lemma 1.2 and the Beurling-Rudin Theorem (see
the last corollary on page 88 of [Ho]) that if the functions of an ideal
/ in Ao(D) have no common zero other then ± i, and if I contains a
function whose decay at ± i is less than exponential, then / = Ao(D).

We can now explain the necessity of the decay condition (2) above
(see [EM2], Lemma 7.3). The inner function F(z) = exp [(z2- ^/(z'-h 1)],
satisfies F(z) = F ( - z ) , and decays to zero exponentially fast as z -> ± i
along the imaginary axis. The principal ideal in Ao(D) generated by
(z^l^z) has the form / = {gF: g e A o ( D ) } , and its elements have
no common zeros other then ± i. As all the functions in / decay very
fast along the imaginary axis, I ^ Ao(D). Indeed / does not contain
z2 + 1 for example.

Composing (z2^-!)/^) and the ideal it generates with the conformal
mapping \|/o of ^ onto D, (i.e. we take 5 = 0 ) the image of / is an
ideal J in Ao(0) which is generated by a function (7(5) which never
vanishes in the strip ^. Yet it is not all of Ao(0), and it does not
contain, for example, the image H(s) of z2 + 1 under composition with
v|/o. Direct computations shown that both G and H belong to y, hence
to (L\K\G/K))^. Writing H = h, and G = g , the principal ideal in
L\K\G/K) generated by g cannot contain h, because convergence in
1^(^01K) implies uniform convergence of the Fourier transforms.

The rate of decay of G above at infinity is indeed too fast, and
one verifies easily that it does not satisfy condition (2) of the conjecture.
Indeed, condition (2) is the translation of the Beurling-Rudin condition
to Ao(0), as one sees by composition with \|/o, and is thus necessary.

Let 8 > 0. We shall say that a function F decays double exponentially
in ^(8), if there is a \ > 0 so that F(s) exp [-MS- 1/2)2] e ^0(8).

LEMMA 1.3. - Fix o > 0. The set of all functions f in y (resp.
with zero integral) whose Fourier transform extends analytically to ^(8)
and decays double exponentially there is dense in ^(A^G/AT) (resp. in
L^K\GIK)}.
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Proof. - We shall show that, in fact, these functions are dense
even in y (resp. in the space of functions in y whose integral is zero)
in the c^-topology.

As the smooth functions with compact support are dense in ^, we
need to show that if g is a smooth function with compact support and
if G = g , then G can be approximated in y by Fourier transforms of
functions that decay double exponentially in ^(8). As g has compact
support, G is an entire function of exponential type, thus the functions
^m(s) = G'(s)exp [(s-l/lY/m] belong to Ao(S) for every m. They decay
double exponentially in ^ (8), and are the Fourier transforms of smooth
functions. Fix now n, and write

| s^F^s) - G (s)) | = | G (5)5" I 1 - exp [(s - ly^/m |.
The first factor converges to zero as |s| -> oo in ^(8), because g

is smooth, and the second is bounded and converges uniformly to zero
(as m -> oo) on compact subsets of ^(8). Thus sn{F^(s)-G(s)) converges
uniformly to zero in all of ^(8) (as m -> oo). As these are analytic
functions, Cauchy's formula shows that the same is true for all their
derivatives in the smaller strip ^. Thus F^ converge to G in ^.

If the integral of g is zero, then G(0) = 0, and the same will also
hold for the F^'s.

The next lemma is the key to transferring results on closure in the
Ao(S) topology to the y topology, hence also to the L\K\G / K )
topology.

LEMMA 1.4. - Let 8 > 0. Fix functions /„ and f whose Fourier
transforms Fn and F, respectively, belong to A 0(8). If there is a ^ > 0
so that F(s) exp[-^(5-l/2)2] e^o(8), and so that the sequence F^
converges to F(s) exp [-MS- 1/2)2] in the ^0(8) topology, then
F^(s) expP. (5-1/2)2] converge to F in the y topology.

Proof. - Using Cauchy's formula again, it is enough to show that
for each fixed m, the sequence ^(7^(5) exp [k(s-1/2)2] - F(s)) converges
uniformly to zero in the larger strip ^(8) as n -> oo . But this is just
the product of the bounded function s"" exp [k(s-1/2)2] and the sequence
Fn(s) - F(s) exp [-^(s-1/2)2] that converges uniformly to zero by the
hypothesis.

Proof of theorem 1.1. - Let (^) be a set of generators for /, so
that their Fourier transforms, G,, belong to A 0(8). Assume also that
go satisfies lim sup \go(l/2-^-it) exp (X^i)! > 0 for every 'k > 0. By the

|(|-»oo
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Beurling-Rudin Theorem, the algebraic ideal generated by the G'/s is
dense in Ao(S). Fix any function / whose Fourier transform F decays
double exponentially in ^(8), say, F(s) exp [-'k(s-1/2)2] e^o(§). In
particular there are functions (7^) in the algebraic ideal generated by
the G/s, so that ^ ^ F(s) exp [-HS- 1/2)2] in ^o(S). By Lemma 1.4,
the functions F^(s) exp [^(s-1/2)2] converge to .F in the y topology,
and they all belong to /! As / was arbitrary, Lemma 1.3 proves the
Theorem under hypothesis (1). The proof under hypothesis (1') is similar.

All of our applications of Theorem 1.1 will be to ideals that contain
functions of compact support, in fact they will be generated by these
functions. In this case the condition on the decay of the Fourier
transform is automatic, and we obtain

COROLLARY 1.5. - Let I be an ideal in L\K\G/K), which has a
set of generators whose Fourier transforms belong to Ao(S) for some
5 > 0. Assume that I contains a nonzero function with compact support.

If I satisfies

(1) For every s e ^(8), there is an f e I , so that f(s) ^ 0.
Then I = L\K\G / K).

If instead of (1), / satisfies
(V) For every 5eJ?(8), 5 ^ 0 , 1 , there is an fel so that

f(s) ^ 0 and every g e l satisfies g(l) = g(0) == 0.
Then I = L^K\G / K ) .

Proof. - This follows from Theorem 1.1, and the fact that the
Fourier transform of a function with compact support is an entire
function of exponential type. By a theorem of Carlson (see section 5.8,
page 185 in [T]), such a function cannot even decay exponentially fast
on any line.

Remarks. - 1) The main ideas in the proof of Theorem 1.1 follow
ideas from [EM1]. Our main new idea is the use of the ideal theory
of A(D).

The strongest result in [EM1] in the direction of the conjecture is
their Theorem 7 :

Assume that f has a bounded second derivative in the closed strip ^
and that it does not vanish there. If both f(s)~1 exp(-s4") and its second
derivative are bounded in ^, for some integer n > 0, then the principal
ideal generated by f is all of L\K\G/K).
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See also their Proposition 5.1.

2) The algebra L\K\G/K), seems to be related to the weighted
convolution algebra L^R,^^2). The maximal space of this algebra is
also a strip of unit width in the complex plane. The principal ideals
in L^R,^^2) generated by functions whose Fourier transform does not
vanish in the strip are completely determined by the rate of decay of
the Fourier transform at infinity. (See [K], [G] and [H]). Although there
does not seem to be a formal relation between the algebras (and in
particular one can check that there are functions in L^R,^'^2) whose
Fourier transform is not a Fourier transform of a L\K\G / K ) function),
we conjecture that a similar result should be true in L\K\G / K ) .

2. Mixing.

Recall that a measure on a locally compact abelian group H is
called mixing, if u" * / -^ 0 for every / e L^H). If e is the identity
in H then 8^ is certainly not mixing, but usually there are other non-
mixing probability measures.

Similarly, if a is a radial measure on the disk D, we shall say that
it is mixing if u" * / -> 0 for every / e L^(K\G I K). It turns out that
radial measures behave in a different way than general measures. In
this section we use the ideal theory of L\K\G/K) and ideas from
[Fo], [RW] and [KT], to show that radial measures are usually mixing.

THEOREM 2.1. — Let [i be a radial probability measure on D, so that
a + §o. Then u 15 mixing.

Proof. - Let J = [f e Ll(K\G/K): ^*/^0}. J is a closed ideal
in L\K\G/K), contained in L^K\G/K), and we need to show that,
in fact J = L^K\G/K).

Without loss of generality, we can assume that u is absolutely
continuous. Indeed, by Lemma 0.3 v = u * u is, and it suffices to show
that v is mixing, because it then follows that u2" * / -^ 0 for every /
in L^K\G/K), hence also ^"+1*/ = u * (n2"*/) -^ 0, i.e. u is mixing
too.

Given a compact radial set A c= D, we denote by ^the normalized
restriction of u to A, i.e. [i^(B) = ̂ (A^^AnE). The same proof
as that of Lemma 1 of [Fo] (which uses Lemma 2.1 of [FW]), shows
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that Oi - HA) * / e J for every f e L^K\G / K), hence also
/A,B == (|̂ A - ̂ a) * / e «^ for all compact radial sets A and ^, and all
fEL^K\GIK}.

Let I c 7 be the ideal generated by those /A.Z/S where the function
feL^(K\G/K) has a compact support.

We claim that the Fourier transforms of functions in / have no
common zero other than s = 0 and s = 1.

To see this fix such an s. The function (p(« ,s ) , considered as
a function on the disk is a real analytic function. (This follows from
the explicit formula for (p, or, alternatively, from the fact that it is
an eigenfunction of the Laplace-Beltrami operator, an elliptic operator
with real analytic coefficients.) As a real analytic function (p(*,5)
cannot be constant on a set of positive measure. Thus there are r^ 7^ r^
in the support of ^ so that (p(ri,s) + (p(r2,s). As (p(-,s) is a
continuous radial function this implies that there are compact
radial sets A and B, containing y-i and r^ respectively, so that

^)~1 (Pte,s) d[i ^ ̂ )-1 (p(g,s) d[i, i.e. Ms) ^ Ms).
JA JB

But this means that (PA"^)^) ¥- 0 hence also /A,B(S) ^ 0 for any
f eL\(K\GIK) with compact support, with f(s) ^ 0.

Corollary 1.5 now applies to the ideal /, and shows that it is all
of L^(K\GIK). As / is contained in J, the theorem follows.

Remark 1. — The theorem was formulated in the more difficult case
when [i is a probability measure, but it certainly holds for every measure
1̂ + 5o with |||Li|| = 1. Indeed, we can assume again that \\. is absolutely

continuous, hence if n does not have a constant sign, its spectral radius
as an element of L\K\G/K), given by r = sup {||l(s)[ : s e ^} is
strictly less then one. (Indeed, (1 is a continuous function on ^?, which,
by (4) and (5) of Lemma 0.1 takes its values in the open unit disk,
and whose limit as | s | -> oo is 0.)

As r = l im l l ^ l l ^ i t follows from r < 1 that H H " | | - ^ O , which is
stronger than just mixing.

We shall say that a radial measure ^ is power bounded if |||LI"|| is
a bounded sequence. By the uniform boundeness principle this is
certainly a necessary condition for a measure to be mixing. Another
necessary condition is that \{i (s)| 7^ 1 for every se^ , with s + 0,1.
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Otherwise, if \{i(s)\ = 1 for some s, then taking an f eL^(K\GIK)
with /(s) 7^ 0, we see that (H"*/KS) = (1(5)"/(5) does not converge to
zero. We conjecture that these two conditions are also sufficient, but
can prove it only with some additional conditions on n.

We first formulate as a separate lemma the basic ingredient from
the ideal theory that we shall need.

LEMMA 2.2. — Let [i be a radial measure of compact support on the
unit disk D, and assume there is a 8 > 0, so that p(s) + 1 for every
5e^(8), \vith s ^0,1. Let J be the closed ideal in L^(K\GIK),
generated by {(|i-8o)*/i: h e L\K\G/K)}. Then J ==> L^K\G/K).

Proof. — Restricting ourselves to functions h of compact support
only, the functions (^i-8o)*/i also have compact supports and their
Fourier transforms have no common zero in ^(S) other than & = OJ
(because (l(s) ^ 1 for all se^(8), s + 0,1). By Corollary 1.5, there
are two possibilities : If »i(D) = 1 then p(0) = (1(1) == 1, and the Fourier
transforms of all these functions vanish at s == 0,1, hence the ideal
they generate is L\{K\GIK). If (i(D) + 1, the Fourier transforms have
no common zero in all of ^, hence the ideal they generate is all of
L\K\G/K).

Remark 2. - If the Conjecture of section 1 holds, we do not have
to assume in Lemma 2.2 that [i has compact support, and it is enough
to take 8 = 0 , i.e. to assume that (l(s) + 1 in ^. We only have to
make sure that ((l(s)-l) does not decay too fast on the line 1/2 + fR.
This last condition can be roughly interpreted as saying that \i is
« different enough » from 80.

Before we formulate our next result, note that radial measures on
D can be considered as operators on L^(K\G I K), acting by convolution.
This identification gives an algebraic and isometric isomorphism of the
algebra of radial measures on D into the algebra of bounded linear
operator on L^^G/K).

THEOREM 2.3. - Let H be a po\ver bounded radial measure of compact
support on the unit disk D, and assume there is a 8 > 0, so that
\{i(s)\ i- 1 for every s e^?(8), mth s + 0,1. Then u is mixing.

Proof. — Multiplying by a number of unit modulus, we can assume
that (1(0)^0. We also continue to assume that u is absolutely
continuous.
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By Lemma 2.2 the closed ideal generated by { ( ^ - §o) * h:
h(=L\K\G/K)}, contains L^^G/K). It follows that it is enough
to show that n" * (n-8o) * h -^ 0 for every h e L\K\G/K).

By a theorem of Katznelson and Tzafriri ([KT], Theorem 1, and the
remark after the proof of Theorem 2), this will follow once we check
that the spectrum of n, when considered as an operator on ^(A^G/AT),
intersects the unit circle at most at the single point 1. (Note that we
not only obtain that [i is mixing, but the stronger result that
|lH"*fri-80) ||->()).

Let ^ be the algebra generated by adding 5o to L\K\G/K). ^
is a commutative Banach algebra with a unit, and its maximal ideal
space c^(j^), is the one point compactification of ^, the maximal
ideal space of L\K\G/K).

Fix ^ 7^ 1 on the unit circle. To show that n — X§o is invertible as
an operator on L^A^GVAQ, we show that it is invertible in ^ . But
this follows from the fact that its Gelfand transform never vanishes on
Ji(^), indeed, as fi(s) -> 0 when |s| -> oo in ^?, and as (1 7^ X, there,
there is an E > 0, so that |Qi—^8o)1[s)| ^ 8 for every s e ^ . But ^ is
dense in J^(e0.

Remark 3. — By Remark 2, the same proof shows that if the
Conjecture of section 1 holds, the theorem remains true without the
assumption that ^ has compact support, and it is enough to assume
that \{i(s)\ 7^ 1 in ^. As we can always assume that [i is absolutely
continuous, we do not need to worry about the rate of decay of
(j l (s)—l). As jl converges to 0, (p(s)—l) does not decay at all.

3. Characterization of harmonic functions*

Let / be an harmonic function on the unit disk D. For any g e G,
/ o g is also harmonic. It follows that its value at zero is the average
of its values on any circle centered at zero. It follows that if ^ is a
radial measure on D with |i(D) = 1 then

(*) f fW d^h) = f(g) for all g G G
JG

whenever / is a bounded harmonic function on D, (i.e.
f e L ^ ( D ) = L ^ G / K ) ) .
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We shall be interested in the converse question. Given a radial
measure u as above, under what additional conditions on ^ the only
functions f e L^(D) satisfying (*) are harmonic?

This question was treated by Furstenberg in a more general context.
In [Ful],[Fu2] Furstenberg considered measures and functions on G / K
where G is a semisimple Lie group with finite center, and K a maximal
compact subgroup. He showed ([Fu2] Theorem 5, p. 370), that when u
is an absolutely continuous radial probability measure on G / K every
/ e L^(G I K) satisfying (*), is necessarily harmonic.

As Furstenberg uses probabilistic methods, the assumption that u is
a probability measure, is essential to his method. (In our context where
G = SU(1,1), the absolute continuity of the radial measure u on D is
not essential, as follows from Lemma 0.3.)

The results of the previous section allow us to give some easy
answers to these converse problems.

Writing dv (g) = d[i(g~1) equation (*) becomes / * v == /, and we
are thus led to the study of convolution equations.

THEOREM 3.1. — Let u, ^ 80 be a radial measure on the unit disk D
with n(D) = 1, and let f e L^(D) satisfy the convolution equation
f * a = /. If a satisfies one of the following conditions, then f is
necessarily harmonic :

1) a is a probability measure.
2) u has compact support, and there is a 8 > 0 so that p,(s) i=- 1 for

every s e^(8), 5 + 0,1.

Proof. - We first claim that if the equation / * u = / has a non-
harmonic solution then it also has a radial non-constant solution. To
see this note that if / is a solution, so is fg(z) = f(gz) for every g e G,

and so is the radial average Fg = fg(kz) dk. But if / is non harmonic,
JK

there is a circle with respect to which it does not satisfy the mean
value property, i.e. there is a g e G so that Fg(z) =

fg(kz) dk ^ fg(G) = Fg(ft). It follows that Fg is a radial non constant
J K
solution of the equation.

We can thus assume that / is a radial solution of the equation
/ * u = /, and we need to show that / is constant.
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Assume first that (1) holds, i.e. n is a probability measure. (This is
the case covered by Furstenberg's Theorem.) For every
h E L\(K\G I K), and for every n, / also satisfies the convolution
equation A * u " * / = / i * / . B y Theorem 2.1 u is mixing, so h * u" -> 0,
and the left hand side converges to zero. It follows that h * / = 0 for
all h E L^(K\G I K), which means that / is constant.

If (2) holds, Lemma 2.2 implies that the closed ideal J generated
by { (u -8o )* fc : heL\K\GIK)} is all of L^K\G/K). But k * / = 0
for all f e e / , hence also for all k e L^K \ G / K ) , and / is constant.

The assumption in the Theorem that |[l(s) ^ 1 for all s e^? , with
s + 0,1, is clearly necessary. Indeed if |l(s) = 1 then u* (p ( - , s ) =
(p(-,s), and as se^ , ^(•,s) is a bounded radial function, and it is
non constant if s + 0,1. (Thus, hidden behind case (1) of the theorem
is the fact that when u ^ So is a probability measure, then (l(s) ^ 1 in
^ except for s = 0,1. This is indeed the case as (4) of Lemma 0.1
implies.) We conjecture that this is the only necessary assumption on [i.

More precisely we formulate :

CONJECTURE. — Let u, ^ §o be a radial measure on the unit disk D,
so that u(D) = 1 and p(s) + 1 for all s ^ 0,1 in ^. If f is a bounded
radial function on D satisfying f * u = / then f is constant.

This will follow if the conjecture in section 1 holds. Indeed, by
Remark 2 of section 2, if the conjecture of section 1 holds then the
closed ideal J in L},(K\G / K) generated by {(^-§o)*/i :
heL\K\G/K)} is all of L^K\G/K). (By considering ^1*^1 instead
of u, we can assume that ^ is absolutely continuous. Thus p-(s) - 1
does not even converge to zero, and the decay condition is trivially
satisfied.) The proof proceeds now as in case (2) above.

The use of ideal theory rather then the probabilistic methods of
[Ful], [Fu2] also allows us to characterize harmonic functions as those
satisfying a family of convolution equations. Thus the same arguments
as in the proof of Lemma 2.2 and Theorem 3.1 give

THEOREM 3.2. — Let M he a family of radial measures of compact
support on D, and assume there is a 5 > 0 so that for every s in ^(6),
s ^ 0,1, there is a \\.^M mth {i(s) ^ 1. If f is a bounded measurable
function on D, so that f * a = / for every u e M, then f is harmonic.



SPHERICAL FUNCTIONS ON SU(1,1) 689

Once again, if the conjecture of section 1 is true, then one can take
5 = 0 , and drop the assumption that the measures have compact
support. We can always assume that the decay condition on (1(5) - 1
is satisfied by replacing the measures by their powers if necessary.

4. Characterization of holomorphic functions.

In this section we characterize holomorphic functions in the unit
disk D. We use ideas from [A] to translate these problems to problems
of harmonic analysis on SU(1,1). We then use structure of the ideals
in L^^G/K) to improve some of the results of [A], and to fill a
gap in one of the proofs there.

Let M be a set of left A^-invariant measures on G of compact
support. For each /eZ/(D) (which we identify with the right
^-invariant functions in L\G)), and every ^e^, H * / is a spherical
function. Denote by I{M) the closed ideal in L\K\G/K) generated
by 4i*/: /GZ^D),^^}.

The ideal theory in L\K\G/K) will be used in the following
theorem on the uniqueness of the solution of a system of convolution
equations.

THEOREM 4.1. — Let M be a set of left K-invariant measures on G
of compact support, and assume that there is a 8 > 0 so that the operator
valued Fourier transforms ^{\JL,S), where \ x e J ^ , do not have a common
zero in ^(5). Let F be a bounded right K-invariant function on G. If F
satisfies the system of convolution equations

F * H = 0 for every p, e M
then F =0.

Proof. - It is enough to show that 7(e0 = L\K\G/K). Indeed,
if / is in Z/(D) and ^ie^, then F*(n*/) = (F*n)*/ = 0, hence
F* h == 0 for every h e/(^). If /(^) == L\K\G/K), this holds for
every h e L\K\G/K). But if F ^ 0, there is an h in L\K\G/K),
with F * h ^ 0. Just take a radial smooth approximation of the Dirac
measure at O e D .

For each s e^(8), we can find \JLE^ and a function h eL^D), of
compact support so that (^*h)\s) ^ 0. Indeed, there is a ^ie^, so
that ^(^,5)^0. As ^ is left ^-invariant, there is an n so that
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J^(^,s) + 0, where ^ is the (0,n)-radial component of n . Take now
h to be any (n,0)-radial function of compact support so that ^(h,s) ^ 0.
Then OI^KS) == ^(^s)^(h,s) ^ 0.

The functions ^ * h, are then functions of compact support in /(^),
and their Fourier transforms do not have a common zero in ^(§). By
Corollary 1.5, /(^), which contains all these functions, is all of
^ ( ^ G / K ) . By the remarks at the beginning of the proof, this
completes the proof of the theorem.

We shall need some notation. Recall that d\ = p dx dy is the
conformally invariant measure on D, where p(z) = (1- |z|2)"2 . We
denote by 9z the differential operator p'^/^z.

Given g = ( a ^}eG, and z e D , put r(g,z) = -Bz+aF 2 .
\P a/

If (() is any smooth function of compact support on G, and / is a
measurable locally integrable function on D, put

C?V)(z) = f^rfcz)/^-^) dg.

(R^f)(z) is a smooth function in L^D), and if (|̂  is a smooth
approximate identity on G then (R^ f) -> f in the L1 norm on any
compact subset of D. If y is a smooth simple closed curve in D, then

a change of variables in the integral shows that /(z) dz =
r Jgw

/(^"^rC^z) d z . It follows that if / in L^D) satisfies
Jy

f(z) dz = 0, for almost all g e G,
Jgw

then the same is true for (R^f)(z).

The main ingredient we use from [A] is the following estimate :

LEMMA 4.2. — Let /eL^D) and let ^ be a smooth function of
compact support on G. Then \8/9z(R^f)(z)\ ^ (1 — Izl^'^z) for every

z eD , )vhere F(z) = \^(z)\f(g~lz)\dg and v|/ is a bounded non-negative
JG

function of compact support on G, that depends only on ()).

In particular, if f satisfies |/(z)| ^ c(l - Iz l 2 ) " 1 in D then
^)(R^f) is a bounded function on D.
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(Lemma 3.1 in [A] is formulated differently, but this is the main
estimate in its proof.)

We are now ready for the main result of this chapter. Let y; be a
family of smooth closed simple curves in D, and let A, be their interiors.
We denote by n, the left ^-invariant measure on (7, d^(g) = /ife"1) d g ,
where ^ is the indicator function of A,, considered as a function on
G. We denote by ^(1^,5) their (operator valued) Fourier transforms.

THEOREM 4.3. — With the notation as above, assume that there is a
8 > 0 so that ^'(n,,s) do not have a common zero in ^(8). Let f be
a measurable function on D satisfying |/(z)[ ^ c O — l z l 2 ) " 1 for every
Z G D . If

(*) f(z) dz == 0, for all i and almost all g e G,
J g ( Y i )

then f coincides almost everywhere in D with a holomorphic function.

Proof. — As f can be approximated by functions of the form R^f,
it suffices to prove that R^f is holomorphic for every smooth function
of compact support 4) on G.

Thus fix such a (|), and put h = R^f. By the remarks before
Lemma 4.2, h also satisfies (*). By Green's Theorem it then follows
that for each fixed i and each g e G

0 = h(z} dz = 8 h / 9 z dx dy
Jg(Vi) J Jg(^i)

= f f 8h(z) d^z) = [ f 8h(z)U8~^) d^z)
J J^(A() J JD

= f ^(x)^-^) dx = (^)*^te)
JG

where the last integral identifies integration of functions on D with
respect to X with integration of the lifted function on G with respect
to the Haar measure.

By Lemma 4.2 8h is a bounded function on D, and by Theorem 4.1
it follows that it must be identically zero. But by the definition of 8
it follows that 8 h / 8 z = 0, i.e. h is holomorphic as required.
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Remarks. - (1) The usefulness of the theorem is limited by the
necessity to find the zeros of ^(^.s). This is a very strong limitation
as the only curves for which we know how to compute the Fourier
transform are circles (see [A], p. 177):

If ^, 0 < r < 1, is the indicator function of the central disk of
radius r , then /r is a radial function, and its Fourier transform ^ is
2^(1-r)"-^!+^-^(5), where J,(s) = F(2 - is, 3/2,3, -4r(l -r)-2),
and F is the hypergeometric function.

In fact it is known that if y is not real analytic then ^([i,s) does
not have any zeros in the whole complex plane. Even for real analytic
curves it is an open problem if the only curve fo which ^([i,s) has
zeros is the circle. (For details on these matters and their relation to
the Pompeiu problem, see [BY], [BZ] and [Z].) It follows that for many
types of curves one does not need a family of curves, and one curve
suffices to characterize holomorphic functions.

(2) Theorem 4 (2) in [A], claims that if y,, i = 1,2 are circles of
radii r, so that J^ do not have a common zero in the strip 0 < Re (s) < 1
and / satisfies the growth condition and (*) as in Theorem 4.3, then
/ is holomorphic. The strict inequalities in the definition of the strip
seem to be a misprint, as the maximal ideal space of ^ ( ^ G / K ) is
the closed strip.

More seriously, the proof in [A] does not take into account the
intricate structure of the ideals in L^^G/K), and assumes that the
only condition necessary for an ideal to coincide with all of L\K\G/K)
is that the Fourier transforms of its elements have no common zero in
the maximal ideal space.

Our theorem requires that the Jr do not have a common zero in
^(8) for some 8 > 0. We do not know whether having no common
zeros in ^ suffices, but we conjecture that this is so. This will follow,
for example if the Conjecture in section 1 holds, or if Theorem 7 in
[EM I], quoted in Remark 1 at the end of section 1 holds for non-
principal ideals.
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