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MULTIPARAMETER SINGULAR INTEGRALS
AND MAXIMAL FUNCTIONS

by F. RICCI and E.M. STEIN

0. Introduction.

The purpose of this paper is to study singular integrals and maximal
functions in R" which reflect a fe-parameter homogeneity. Before stating
our main results, we wish to describe briefly some of the earlier
developments relevant to our work.

Background

There is first the well-known case corresponding to one-parameter
dilations. Here we are considering the mappings

(xi, . . . , x^) ̂  (S^Xi, . . . , 8^) = 8 • x

for 8 > 0, where X, are fixed positive exponents.

In the standard Calderon-Zygmund theory for this setting we consider
operators of the form T f = f * K , where, to begin with, K is
homogeneous of the critical degree, i.e. K ( 6 ' x ) = 6~^K(x), with
^ = ^-i + • • • 4- ^ ; K satisfies some smoothness condition and an
appropriate cancellation condition.

This theory can be recast in the more general setting where K is
not necessarily homogeneous but can be written in the form

(0.1) K(x)= ^ ^(x),

Key words : Singular integrals - Maximal functions - Calderon-Zygmund kernels - Product
domains.
A.M.S. Classification: 42B20 - 42B25.
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where the functions ^i) arise as ^(x) = 2 -^^ ( I )(2 - l•x); the ^i) satisfy
a uniform Z/-Dini condition and the cancellation condition

(0.2) ^(0)=0.

A second development of this one-parameter theory deals with singular
integrals carried on orbits of the dilations. When the orbits are « curved »
(i.e. if ^ + \j for some i and 7), then certain decay estimates of the
Fourier transform come into play. In the present context these take
the place of the previous regularity assumptions on the j^0, and are of
the form

(0.3) |̂ )| ^ ^ ( l + l ^ l ) - 8 .

An additional interpolation argument using the standard theory then
gives the 27-results. For this see [9], [18].

Consider next the n-parameter theory in R" (sometimes called the
"product theory"). Here we deal with dilations

(xi, .. . ,x^)^(§iXi, ...,6^)

where § = (§1, . . . ,§„) e R". = (R+)". Again we consider K decomposed
analogously to (0.1),

(0.4) K(x)= ^ ^(x),
IeZn

where / = (i\, .. .,^), ^(x) == 2-ly7)(2-IlXl, .. .^-^xj and the can-
cellation conditions are

(0.5) H^(^) = 0, whenever ^ = 0 for some 7.

There are two levels of generality here depending on the regularity
required of the n^. The initial case, treated in [II], allows one to treat
the situation when the p,^ satisfy uniform Holder estimates. A more
refined approach, developed in [12] (see also [2], [10], [15]) makes it
possible to require less regularity of the ^ ( I ) .

Results of this paper.

Turning now to the subject proper of this paper, we consider a
general family of fe-parameter dilations, with 1 ̂  k ^ n. The theory in
this setting was initiated in [14]; some other works which have a
bearing on our paper are [6], [8], [19], [21].
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To describe these dilations we assume we are given fixed exponents
{kij}, with 1 3$ i ^ n, 1 ^ j ^ k . The dilations are then

(0.6) (xi,..., x,) ̂  (8^ ... 8 ,̂ ..., 8^i ... 8^xJ,

where 8 e R^ . We associate to the exponents {^y} the matrix A = {Xy}
and write 8^ for the action given by (0.6). We also set 2^ = 8A when
8 = ( 2 ^ . . . , 2 ^ ) and 1= 0 \ , . . . , f , ) .

The kernels we shall be considering are of the form

(0.7) K(x)= ^ ^(x),
7eZ^

where i^ are appropriate distributions and

^(x) == det(2-AVJ^)(2-AJx).

From our point of view the two main issues are :

What are the natural cancellation conditions to be required of
the ̂  ?

What are the appropriate regularity conditions to be imposed on
the n^?

To answer the first question we consider the orbits of the dilations
in the ^-space. Generically, the maximum dimension of an orbit is k.
The cancellation condition then becomes the requirement that
^(i;) = 0, whenever ^ belongs to a subspace which is the union of
lower-dimensional orbits.

Appropriate regularity properties are, first, the uniform decay of the
Fourier transforms,

(0.8) |̂ )| ̂ (l+l^l)-6 .

The second regularity condition is of a new type. It is not required in
the usual one-parameter theory, nor did it appear explicitely in the
product theory.

It is that there is a finite measure CT so that
(0.9) i H ^ l ^ o , V/.

Under these cancellation and regularity conditions on the p.̂  our main
result is that when K is given by (0.7), the operator f\—>f^K is
bounded from L^R") to itself, if 1 < p < oo.
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As a consequence we can deal with kernels K which are homogeneous
of the critical degree under our dilations 8A; as a special case the
kernels may be carried by single orbits of these dilations.

The relevance of the cancellation conditions in this theory can be
seen from the following example in R 3 . The operator

(Tf)(x,y,z) = p.v. {f(x-s,y-t,z-\st\)dscu

J s t

is bounded on every Z^R3), 1 < p < oo [8], [14], [21], whereas the
operator

Wf)(x,y,z) = p.v. \f(x-s,y-t,z-st)-s--t-
J s t

is not even bounded on Z/^R3).

Another interesting situation arises if we consider R2 with the one-
parameter dilations (x,y) \-> (Sx.S'Y). It is important to note that one
of the exponents is negative, and so what follows is not deducible from
the previously described one-parameter theory. A basic singular integral
here is the Hilbert transform along the hyperbola

/4"4-,,,-i)^u.r(/(,-,,,4)-/^,^-))-.
J-oo \ V t s^oj, \ \ t } \ t } } t

The cancellation conditions are 1^(0,0) = = 0 , and so we can envisage
other variants of this Hilbert transform, e.g.

/^lim ̂ (f^-at^y-1-) -/^+^+ 1))^,
^ Je \ \ V \ t ) ) t

where a and b are arbitrary non-zero real numbers. Other variants,
involving stronger cancellations, have been treated previously and the
results were limited to 8/5 < p < 8/3 [19].

We describe now the maximal functions which can be treated by
our methods. Experience shows that there are two ways one can build
up maximal functions from simpler elements. The first is by majorization,
and is illustrated in R1 by the fact that if (M/)(x) = supK/^q)5)^)!,'

5>0

where (p5^) = 6~l^(x/6), we have the usual results for M if (p is
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majorized by an integrable symmetric decreasing function. The second
is by the «method of rotations », which allows one to obtain results
in R" from maximal functions associated to lower-dimensional varieties.
Our general theorem subsumes both, and is suggested by the uniformity
condition (0.9).

Suppose H is a finite positive measure on R". With 5A denoting our
fe-dimensional dilations, we write ^5 for the measure given by

Define
f/^6= [/(S^)^).
/ J

(M/)(x)= sup |/*^(x)|.
6eRi

The condition we impose on ^ is that there is another positive measure
v so that

(0.10) sup Ha ^ v.
1^6,<2

Under these assumptions, the maximal function M is bounded on
Z/W, 1 < p ^ oo .

Note that in one dimension, if d^ == (p(x)dx and cp has a non-
decreasing symmetric majorant in L1, then \i satisfies (0.10). Conversely,
if (0.10) holds in one dimension, then ^ is of the above kind. Observe
also that a measure [t supported on a compact portion of an orbit,
with bounded density, automatically satisfies (0.10). Previous results for
related maximal functions can be found in [3], [4], [6], [8].

We now indicate the main features of the proof of our principal
result (Theorem 5.1). The argument, which is somewhat complicated,
proceeds in three steps.

First, in the setting of the n-parameter dilations, a variant of the
conclusion is proved as a consequence of the Journe's theory. Here a
modification of the uniformity condition (0.9) already enters.

Next, the decay estimates of the Fourier transform are incorporated
by interpolating an L2 with the previously proved L^-estimates. This
gives our desired conclusion in the context of the full n-parameter
dilations (Theorem 2.4).

Finally, the fe-parameter result is deduced from the n-parameter case.
This cannot be done directly, because the cancellation conditions required
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in the former case are not as restrictive as those required in the latter
case. So a further decomposition of the elements ^(/) appearing in (0.7)
is needed. This is carried out in Section 5.

Once our general result has been established, the theorem for
homogeneous kernels is deduced from it in Section 6. The maximal
theorem is proved in Section 7, and is based on an ^-parameter maximal
theorem proved in Section 3.

1. Singular kernels adapted to the w-parameter dilations on R".

On R" we consider the n-parameter dilations

(xi, ...,^)^(8pci, .. .,8^n)

with §1, . . . , 8^ > 0. We will often consider only dyadic dilations,
defined by multi-indices I = (fi, . . . , in) e Z" and corresponding to taking
Sj = T J . To abbreviate, we write ^x for (2llXl, .. . .l^Xn).

If / is a function on R\ we write fi(x) = 2-l7l/(2-/x), where
[/[ == fi + • • • + in; consistent with this, if [i is a distribution on R", we
define ^j by the identity

^D-^f^19^,
for every C°°-function / with compact support.

PROPOSITION 1.1. — For every I e Z" let [i^be a distribution supported
on the unit cube in R71, and assume that

(i) ^(0 = 0 if some coordinate of ^ is zero;

(ii) |^(yi < CCl+l^ i r 8 for some C, £ > 0.

Then the series ^ [i^ converges in the sense of distributions to a
ZeZ"

distribution K and the convolution operator with kernel K is bounded on
L^R") mth a norm that depends only on the constants C and s in (ii).

Proof. — It is sufficient to prove that the series

'(1.1) S 1^(2^)1
ZeZ"

converges almost everywhere to a bounded function. Let (p(x) be a
Schwartz function on R" that equals one on a neighborhood of supp ̂
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for every /. Then

^(^ = (n^ * (p)(^) and 9^/8^ == p^ * (^(p/^01).

So for every a

(1.2) 1( /̂̂ )0;) | ^CJl+l^l)- .

Since jr^ vanishes on each coordinate subspace, (1.2) implies that for
each choice of the coordinates 71, . . . , jj, we have

1^(^)1 ^ci^.j ... i^Ki+i^i)-8.

Take now ^ = (^i, . . . ,^) with ^ ^ 0 for every 7. By simply relabeling
the terms in (1.1), we can assume that |^| ^ 1 for all;. Let/e Z" and
assume that i^, . . . , i^ ^ 0 and all the other components of / are
positive. Then

|^(2^)| ^ C2V•••^(l+|27i;|)-e

^c2^ Q.E.D.

Remark. — In Proposition 1.1 we assume that the measures u^ are
supported on the unit cube. This is only a normalization introduced in
order to simplify its statement. If one asssumes that the supports of
the u^ are all contained in a fixed cube, the size of the cube will
simply affect the norm of the resulting operator. Similarly, the integer
lattice Z" can be replaced by any co-compact lattice in R".

These remarks apply to most results in this paper, and will be used
without further comment.

2. Zy-boundedness in the ^-parameter case.

Following [12] and [15], we define the Calderon-Zygmund norms for
kernels on R" by the following inductive procedure.

(i) Given 5 > 0, the CZ§-norm of a kernel K(x) on the real line is
given by

r
(2.1) ||7C||cz,(R) = ||^||2,2 + supy8 \K(x+h)-K(x)\dxIICZ§(R)

7>2 J|^|>y|/i|
h^O

\\p^p denotes the operator norm on If).
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(ii) For a kernel K(x^ . . .,x^) on R" (n^2),

(2.2) || ̂ ||cZ5(Rn)= IW12.2
n /•

+ ^SUpy 8 | |A:(-,X,+/I,-)-A:(-,Xy,-)| |c^(Rn-l)^.
7=1 Y > 2 J|x,|>y|/i|

ri^O

We will also use the following result [12], [15].

PROPOSITION 2.1. - Assume that \\K\\cz^) < + oo for some 8 > 0.
Then the operator Tf= K * f is bounded on Z/^R"), for 1 < p < oo,
with a norm that depends only on p and on II^HczgcR").

Dealing with kernels defined as sums of dyadically scaled terms, the
following remark is particularly useful.

LEMMA 2.2J. — For each j e Z let ̂ (j) be a function supported on the
interval [—1,1] taking values in a normed space 2?, and assume that for
some positive constants C, § and every h e R

(2.3) [^(x^^-^W^dx ^ C\h\\

LetK(x) == ^ 2-Jv|/o)(2-7x). Then, i f y > 2 a n d h ^ 0 ,
JeZ

[ \\K(x+h)-K(x)\\Bdx ^ ^Cy-5.
J\x\>y\h\

Proof. — Without loss of generality, we can assume that \h\ ^ 1
(this may require relabeling the ^(j)). Then

K(x+h)-K(x)\\Bdx
J|^l>7

^ ^ f \\l-j^\2-\x+h))-l-jW-jx)\\Bdx
2^'+1>Y J|x|>y

^ C ^ 2-76

^+ l>y

=^C7-5.
Q.E.D.
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We prove now our basic lemma.

We set
A^y=/(Xi, • . . ,XA+/I, ...,^) -/(Xi, . . . , X ^ , . . . , X ^ ) .

For A = (hi,... A) we also set A, == A^ ... A^.

LEMMA 2.3. - For each JeZ", let (p^ ^ a function supported on
the unit cube in R71. Assume that

(i) (p^(^) = 0 if 5ow^ coordinate of ^ is z^ro;

(ii) /or ^uery permutation (fci, . . . , / € „ ) o/ (1, . . . , n) ̂  quantity

(2.4) sup |^|-8 f f . . . f sup l^r6

'fel^ J \ \ ifc^Z
0<|/iL,|<2 0<|/ife |<2•'1 "n

(\A^'\x)\dx,Y..}dx^
v / /

is bounded by a constant C for some 8 > 0. Then, if K(x) =
S ^M' ^ norm \\K\\ cz^) is bounded by a constant that depends

leZn

only on C and 8.

Proof. — We proceed by induction on the dimension n. For n = 1,
the functions q/0 are uniformly in Z/'^R) and have mean value zero.
The conclusion then follows from Proposition 1.1 and from Lemma 2.2.

Assume that the statement is true in n — 1 dimensions. Since (2.4)
implies that the (p^ are uniformly in Z/'^R"), the boundedness of
11^112,2 follows from Proposition (1.1). We then estimate

||J^(xi + hi,')—^^!,-)!!^^"-!)^! by means of Lemma 2.2.
J l ^ i l > y l ^ i l

Observe that
^G,-)- Z Z cp^A^,-),

i-^eZ Z'eZ"~1

so that we can take as our function ^^(xi) with values in the space
of CZg-kernels the function

Wx,)= ^ CP^OC,,.).
Z'eZ"-1
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The integral in (2.3) is

f||^('l)(Xl+/lO-<^/<•l)(xO||cz8(Rn-l)dx,

= f Z A,y^>(x,,.) dx,.
J Z'eZ^"1 CZ§(R"~1)

By the inductive hypothesis, this integral is smaller than a constant
times the sum of the integrals

[Y sup 1 ^ 1 - ^ f . . . sup l/i.J-5 flA^i^x)!^...^^
J \ '^eZ J ikne'L J /

0<|^ |<2 0<|^ |<2

over all permutations (k^, . . . ,^n) of (2, . . . ,n). By (2.4), this expression
is bounded by a constant times |/ii|5. Q.E.D.

By Proposition 2.1, the kernel K in the statement of Lemma 2.3
defines a bounded convolution operator on Z/^R") for 1 < p < oo. We
next prove that the same conclusion holds under less restrictive
hypotheses.

We will use the following notation: if v is a measure on the
coordinate subspace of R" with coordinates (x^, . . . ,x^), we denote
by p^(v) the push-forward of v onto the subspace with coordinates
(x^, . ..,x^), i.e.

f /(^, .. .,x^)^(v) = f /(x,,, .. .,x^v.
w~1 M

In particular, if f = 1, ^(v) = J ^ Y - We also note that if {VoJaeA ls a
set of positive measures, bounded from above by a measure ^, then
sup^Va is a well-defined positive measure.

THEOREM 2.4. — For each I e Z", let ^(I) be a measure supported on
the unit sube, such that

(i) ^(S;) = 0 if some coordinate of ^ is zero;

(ii) |^(^)| < Ca+l^l) - 8 for some C, e > 0;
(iii) for every permutation (/Ci, . . . ,kn) of (1, . . . ,n) w^ /iaye

(2.5) sup ^(sup p^( . . . sup ^(1^1) . . . ) ) ^ C.
ii. eZ 11. eZ ii. eZ''•1 ""2 "ra
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Then the convolution operator defined by the kernel K = ^ a^ is
ZeZ"

bounded on Z/^R^) for 1 < p < oo, m'̂ i a norm that only depends on
p, C, £.

In order to understand condition (iii), consider the case of absolutely
continuous measures rfu0^ = /^(x^y) dx dy in the plane. For each
i'o e Z, we take all the functions f^, i.e. those that will be dilated
above the interval where x ^ 210, and we require that the functions
gW^x) = J \f(io'j\x,y)\ dy are majorized for j e Z by a common
function g^^x) with H^Hi ^ C. A similar condition is imposed on
f^o^x^y), for fixed 70, when the roles of the two coordinates are
interchanged.

Proof. - Let(p(Q be a C ""-function with compact support on the
line such that J (p(Q dt == 1. For ^ ^ 1 define

r|-,(0=2WO-2^- l(p(^-10,

00

so that the series (po + ^ TI_^ converges to §o in c9^(R).
£=\

Similarly on R"

/ 00 \ / 00 \

§o = <po(^i)+ E n-^^i) • • • (po(^n)+ Z n-<f(^n)
\ < f = l / \ ^=1 /

= E ^(x).
L e N "

If L = (<fi, . . . , ̂ n), then J x^OO 7̂ == 0 for every X i , . . . , Xj-1,
x^+1, . . . , Xn if and only if ^ > 0.

We then write
^= ^ ^*v|/,

LeN71

and for each L e N" we define

K,= E (^(7)*^)^.
JeZ"

Like in [5], [16] the proof reduces to showing that
(a) 11^||2.2 ^ C2-alLl for some a > 0;
(b) if 1 < p < oo, then \\K^, ̂  C,^ for every 8 > 0.
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To prove (a) we use Proposition 1.1. The support of n^ * v|/z, is
contained in a fixed cube independently of / and L, and its Fourier
transform vanishes at each point with some zero coordinate. We also
have

1(^*^)^)1 = 1^)1 1^)1

^ ca+i^irn |(p(2-^)-(p(2-^+ly|
7=1

where the factor \^(l~^j)-^(2~^+lQ\ must be replaced by <p(^)| if
the corresponding ^ is zero. By the smoothness of (p, we have

|<p(2-^,)-(p(2-^4-ly| ^ C2-^?;

therefore

1(^*^)^)1 ^ c(l+|^|)-£2-^ ILI^ ( i+i^i)^
7=1

_ _ S _ | r |

^ C(l+|^|)-e/22 -2" l ' .

_ _ e _ ^ ,
By Proposition 1.1, ||KJ|2.2 ^ 2 2n and this proves (a).

To prove (b) we apply Lemma 2.3. We have

A.(^^)=^*(A^).

Since \|/^ is a tensor product of functions in one variable,

A^(x) = A<^ ... A^(x) = (A^-^(xO) ... (A^n_^(x,))

where r|_^. has to be replaced by (p if ^ = 0. For each 8 > 0,

A,,n-,,(x,)| ^ C2^- ^l^t-s.s]^)

if we assume \hj\ < 2. The same estimate holds for (p(x,) when ^ = 0.

Therefore

(2.6) sup \h,... ̂ I-^A^MI ^ C28lLlx^(x)
0<|^-|<2

where the cube Qn = [-3,3]".
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We can then majorize the expression in (2.4) by bringing all the
sup's with respect to the various hj inside the inner integral and then
use (2.6). So, by Lemma 2.3 and Proposition 2.1, the norm ||^||pp is
controlled by the supremum, taken over all permutations ( fe i , . . . , ^ )
of (1, . . . ,n), of the quantities

2^1 sup f f . . . fsup f(|^|*X^)(x) dx,}. ..) ̂ .
^i^J \ v^J / /^i^J \ v^i62

Now

(1^ *X^)M dx^ =6^(1^1) * x^_,

^6(sup^(|^|))*x^.
^ez

Iterating this argument n times, we conclude that

II^II^C^i

for each 8 > 0, when 1 < p < oo . This concludes the proof.

3. Two maximal theorems in the w-parameter case.

Q.E.D.

As before, we let {v^jgz" be measures supported on the unit cube,
but this time we do not impose any cancellation condition on them.
We consider the maximal operator

(3.1) (M/)(x)= sup|(/*v^)(x)|.
JeZ"

In order to prove an ZAboundedness theorem for M in the same spirit
as Theorem 2.4, it seems necessary to impose more restrictive conditions
on the v^ than just (ii) and (iii) in the statement of Theorem 2.4.

We prove two results along these lines. In the first theorem, (ii) is
replaced by the stronger assumptions that the v^ are uniformly in
Z/'^R") for some e > 0. In the second theorem, we assume that
v^ = v > 0 independent of I .

THEOREM 3.1. — Let {v^jgz^ be functions supported on the unit cube,
such that

(i) HV^HLI^R") ^ C for some £ > 0;
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(ii) for each permutation (fei, . . . , k^) of (1, . . . , n),
(3.2)

K r ( r
sup sup . . . sup I v^
^ ^eZ J \ ^eZ J
sup ( sup . . . ( sup Iv^Qci, . . . ,x,)| dx^) . . . dx.} dx. ^ C.

TTî n for every p, 1 < p < oo, ̂  maximal operator M in (3.1) is
bounded on ^/(R"), mT/i a norm that only depends on p, C, e.

Proof. — Letcp, r|-^, \|/^ be as in the proof of Theorem 2.4, and
write

v<7) = ^ v^ * \|/^
£ e N ^

with corresponding maximal operators

(M,f)(x) = sup ICW^vl^Kx)!.
ZeZ"

It follows from (i) that Hv^vMi ^ C2-elz 'l, so that

1 1 M 1 1 < r^"611'1II ^'''Llloo.oo ^ ^ z'

It is then sufficient to prove that, for 1 < p < oo and § > 0 arbitrarily
small,

II A/f II <" /^ l̂
II^LlIp,^ ^ ^p,6

The conclusion will then follow by the Marcinkiewicz interpolation
theorem.

If all the components < f i , . . . , ̂  of L are positive, then [i^ = v^ * v|/^
satisfies assumption (i) in Theorem 2.4. We also have

l^^)! = |v<^)| |i)/̂ )|
^cuv^n^^o+i^i)-6

^ C(l+ ^l) - 6 .

It is also clear, using (3.2), that (2.5) holds independently of L. So
when no component of L is zero, we can conclude that for every choice
of =b signs, the kernel

K= ^ ^(v^*^),
IeZn

satisfies I I^H^ < Cp for 1 < p < oo . From this, using the standard
square-function argument, we conclude that || ML \\p,p ^ Cp for 1 < p < oo .
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Considering now L = 0 = (0, . . . ,0), we observe that

Kv^vl/o)^)! < ̂ M.

where Qn = [—2,2]", so that Mof is controlled by the n-parameter
Hardy-Littlewood maximal function of/.

It remains to consider those L + 0 having some components equal
to zero. We first observe that we have already completed the proof in
dimension n = 1. We then proceed by induction, assuming that the
theorem has been proved in dimensions strictly less than n.

Assume for simplicity that L = (/i, . . . , ̂ , 0, . . . , 0), with ^i, . . . , ̂
different from zero. We then define, for (i'i, . . . ,4)eZ\

C^r •••^(X,, . . . ,X , )= SUp [ . . . (SUP fiv^x)!^)...^.!.
i k + l e z J in(='zl J

By (ii), lla0'!'--"^!!! ^ C. We have

KV^^XX)!
^ CCCT^-'-^^ITI^J® ... (X)|TI-,J])(XI, ... ,x,)x^_,(x^, ... ,x^),

so that ML is dominated by the composition of the (n — ^-dimensional
Hardy-Littlewood maximal operator with a fe-dimensional maximal
operator whose norm is estimated by means of the inductive hypothesis.

In fact, for 8 > 0 and small,

Ha^-'-^^lri^J® ...®|Ti-,j]||^,5^
^ l|CTal••••• i f c )|| l|||T1-,J® . . . ®|T1-^||Ll,§^

^ C25lLl

and (3.2) follows from the definition of a01' " " i k ) and from the
boundedness of the L^norms of the various T|-^.

Therefore for these indices L, \\M^\\p,p ^ Cp,s2511'1, and this concludes
the proof. Q.E.D.

We want to point out here that some uniformity of the type (3.2)
is actually needed when n ^ 2.

In fact, take n = 2 and define v^ = v01'^ = (p^OOvK.v)? when
1 ^ la ^ N , v^ = 0 otherwise. Here (p^^x) = N if
(i'2-l)/W ^ x < i ^ / N , (p^^x) = 0 otherwise.
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We take v|/ to be the characteristic function of the interval [0,1] and
set f(x,y) = f,(x)f,(y), where f,(x) = 1 when 0 ^ x ^ I/TV, f,(x) = 0
otherwise; we also set f^(y) = v|/(^). Then

(Mf)(x,y)= sup (/*v^)(x,^)
ZeZ 2

^ sup (/Wo0^)^)
1^(2^N

4
on the unit square O ^ x ^ l , O ^ ^ ^ l . So ||^f/1|p ^ 12. Also
11/llp = AT^. Because llv^ll^i,^ ^ cN~\ taking A^ large, this shows
that the L^-inequality cannot hold when p < 1/e.

THEOREM 3.2. - Let v be a positive measure supported on the unit
cube, such that [v(^)| ^ C(l+ l^ l ) " 6 for some e > 0. Then the maximal
operator M in (3.1) (with v^ = v) 15 bounded on 77 (R") ,for 1 < p ^ oo ,
wf^/i a norm ^h^ on<^ depends on p, C, 8.

Proof. — The statement is trivial for j? = oo, so we will assume
1 < p < oo .

Let 5' = {fei, . . . , ke} ^ {1, . . . , n} and define ps(y) = p^
(• • • PA/V) . . ) , p0(v) = v. For ^ e R", let ^5 e K" be the element obtained
by replacing the coordinates ^, ke S , by zero. Let

^ = z (-ly^Mn^^).
Sc{ i , . . . , n} A e S

where (p is a non-negative smooth function supported on [—1,1] with
integral equal to one. Observing that

(ps(y))\Q-v^s),
on easily sees that

(i) p(^) = 0 if some coordinate of ^ is zero ;
(ii) |A(^| ^ C O + I ^ I ) " 8 .

Since (iii) in Theorem 2.4 is trivially verified, the kernels K =
^ ± |Lij satisfy \\K\\p^p ^ C independently of the choice of the signs.

ZeZ"

Applying again a square-function argument, we conclude that

||sup|/*^(x)|||^ ^ C 11/H,,.
ZeZ"
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It remains to prove that if S i- 0, then
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(3.3) sup
l e Z "

f * [ p s ( y ) n ^(^ ^ c n/iip.

As in the proof of Theorem 3.1, this follows from an inductive
argument, observing that the maximal function in (3.3) is dominated
by the superposition of an | S \ -dimensional one and an (n-|5|)-
dimensional one, the first being a Hardy-Littlewood maximal function.

Q.E.D.

4. Dilations on R71 depending on k parameters.

The formal setting for fe-parameter dilations on R" is the following :
we assume that R^ acts on R" continuously by diagonalizable linear
transformations. Then, writing this action in an appropriate coordinate
system, the element t = (t^ . . . , 4) e R^ acts on (xi, . . . , x^) e R" by

(4.1) (x,, . . . . x,) ̂  (2?^, . . . . 2?"^).

In the more usual multiplicative notation, setting 8^ = 2^, we have

(4.2) (xi, . . . , x,) ̂  (8^11 . . . 8 ,̂ . . . . 8^1 . .. 8^x,).

We call
/^-n •" ^iAAn • • • ^

A = •: • - . •:
V-nl • • • ^nk>

(4.3) A = : • • . ;

the dilation matrix. We say that two dilation matrices A and A' of the
same dimensions are equivalent if A' = AP, for some non-singular
k x k matrix P . In particular A ^ cA for every c -^ 0. It is quite clear
that two equivalent matrices induce the same set of dilations.

Since part of the existing literature assumes that the exponents ^y
are non-negative, it is worth pointing out that this assumption is not
invariant under the just described notion of equivalence. However, a
necessary and sufficient condition for a matrix A to be equivalent to
one with non-negative entries is obviously that the range of the
associated linear map from R^ to R" contains k independent vectors
with non-negative entries. This shows that dilations with non-negative
exponents form a proper subclass.
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We will often refer to the following two examples of dilations.

Example (a) : (x,,x,) \-> (5xi, 6- ̂ 2) on R2 , corresponding to

-(-;).
Example (b) : (x,,x,,Xs)^ (S,x,,S,x,,S^Xs) on R 3 , corresponding

to

/I 0\
A = 0 1 .

\1 I/

We will consider convolution kernels adapted to the dilations (4.2) and
constructed starting from a family {[i^^zk of uniformly bounded
measures supported on a fixed cube. If we define the dilated 4^ of u^
by

f fd^ = f /(2^v^, . . . , 2^^) d^\x^ . . . , x,),
JR" JR^

we want to define
K= E ^7).

To begin with, we determine what cancellations it is natural to impose
on the measures u^ in order to make (4.4) meaningful. More precisely,
we want the series

I ̂ )
IeZk

to converge to a bounded function. It is natural to consider the simpler
case where u^ = c(7)a, with {c(I)}r^k a bounded sequence and ^ a
fixed measure with compact support.

If S = {fe i , . . . ,fe^} c { l , . . . ^ n } , we denote by As the <f x k matrix
whose 7-th row is the fe,-th row of A, and by Vs the coordinate
subspace of R" spanned by the elements e^, . . . , e^ of the canonical
basis.

We also set 2^x == (2^1^, ... ,2^^), for 7e Z\
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PROPOSITION 4.1. — Let [i be a measure with compact support. If

(4.5) ^ 0(7)^(2^) ^Csup |c( / ) |
I^k IeZ^

for every bounded sequence {c(I)} and almost every ^eR" , then p,
vanishes on each subspace Vs for which rank (As) < k. In particular if
rank (A) < k and (4.5) holds, then (i = 0.

Proof. — Since jl is continuous, (4.5) is equivalent to

^ 1(1(2^)1 ^ C
ZeZ^

uniformly in ^.

Assume that rank (Ag) < k, and let ̂ e Vs. Then the matrix
diag (^i, . . . ,^)A has rank smaller thank, so there is T e R^O} such
that

(^ \ (^\' - ' n : r0-\ ^7 w
This means that

((S ̂ ,T,)̂ ,. . . , (Z ̂ ,,T,)̂ ) = (0, . . . , 0) ,

so that for every s e R

(2^i^,..., 2^^) =(^,...,^).

If we had ^) ^ 0, we would have IAO ^ a > 0 for ^ in a
neighborhood of ^. On the other hand, infinitely many points I e Z^
are arbitrarily close in R^ to the line generated by T . We would then
have 1(1(2^)1 ^ a for infinitely many indices/, which contradicts the
hypothesis. Q.E.D.

It follows that in order to have a non-vacuous theory, we must
assume that k ^ n and rank (A) = k. Also, if k = n, then A ^ /, and
we are in the n-parameter theory discussed in the previous sections.

If we assume, as we will do in the sequel, that rank (A) = k, then
the generic orbit in R" under the action of R* is a k-dimensional
manifold. The lower-dimensional orbits are precisely the orbits contained
in some subspace Vs corresponding to rank (As) < k. We can then
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restate Proposition 4.1 by saying that p, must vanish on the lower-
dimensional orbits.

Observe that in Example (a) the required cancellation is (1(0) = 0.
In Example (b) (1 must vanish on the three coordinate axes.

5. Zy-boundedness in the A-parameter case.

We consider a set of dilations on R" induced by an n x k matrix
A of rankfe. For S c {1, . . . ,n}, we keep the notation Vg and As
introduced in the previous section.

THEOREM 5.1. — Let {^i^jez^ be a family of measures supported on
the unit cube in R", such that

(i) ^(^ = 0 if ̂  e Vs and rank (As) < k;

(ii) Ip^)! ^ C O + I ^ I ) - 6 for some C, £ > 0;
(hi) [a^ ^ aeM(R").

Then the series ^ \\i(I)(2AI^)\ converges to a bounded function and
If=Zk

the convolution operator defined by the kernel K = ^ u^ is bounded
ZeZ*

on Z/^R"), 1 < p < oo, with a norm that only depends on p, C, s and
ll^lli.

The proof consists in a reduction to the n-parameter dilations, and
assumes Theorem 2.4. Before going into the proof, we explain the main
ideas in the setting of Example (a), assuming all the u^ to be equal.

We are given a measure ^ on R2 , and the kernel K is constructed
by subjecting p, to the dilations (xi,^) i—>- (Tx^.fxy}. If it were not
for the extra cancellations required by the 2-parameter dilations, we
could simply say that we are dealing with a special double sequence
{^IJ)}, with ̂  = 0 if i + j + 0, and ^--I) = u. The problem is that
the 2-parameter theory requires (l(^i,0) == (1(0,^) = 0 and we only
assume that ^1(0,0) == 0.

Therefore we first decompose \\. as Ui + Uz , with (li(^i,0) = 0 and
^2(0^2) = 0- One way to do this consists in taking a bump function (p
on the line with integral one, and setting Ui == (p(xi) ® pa^)- This
gives Ai(^,^) = $(^)A(0,^) and ^1,^2) = A(^,^) - (p(^)A(O,^).

Correspondingly, we write K = K^ + K^.
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Since pi does not have the required cancellations, we expand it
telescopically as

oo

î,̂ ) = Z (2-^1,2-^) - 2-7-l^(Xl,2-J-lx,))
J=0

(with slight abuse of notation in treating (ii as if it were a function).
This identity can be checked on the Fourier transform side, using the
decay of (t at infinity.

If we call v(xi,%2) = ^1(^1,^2) - ^1(^1,^2), then v has the

required cancellations, and we have reduced matters to the assumptions
of Theorem 2.4 if we write

K,(x,,x,) = ^ u^-^A)
ieZ

= ^ 2-^(2- •xi,2'-^)
ie Z
J>0

= ^ 2-l-7v(2-lXl,2-^).
l+j^O

Observe that this argument also proves that K is a well-defined
distribution and that l |fl(2^i,2~^2)l is bounded.

The proof of Theorem 5.1 requires of course more technical details
and an induction argument. The reader can test his comprehension of
the proof on Example (b).

Proof of Theorem 5.1. — We argue by induction on n — k. The
case k = n is covered by Theorem 2.4. We assume therefore that k < n
and begin by introducing some notation.

For 1 ̂ 7 =$ n , let A0^ be the (n-1) x k matrix obtained from A
by removing its 7-th row. We can assume, without loss of generality,
that rank (A^) = k. Let

y = { S c { l , . . . ,n- 1}: S maximal w.r. to the property rank (A 5)= A:- 1}

y, = {5' e y : 11 s}
and y^{S^y\y,:ltS}

y^ = [Sey\(y,u . . . u^_^): n-1 i s}.
Then y is the disjoint union of e^i, . . . , ̂ -i.
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For ^eR" and S ^ {1, . . . ,n}, we denote by ^5 the projection of
^ on Vs, i.e. ^=(^ , . . . , ^ ) where ^ = ^ if 7 e 5 and ^ = 0
otherwise.

Finally let (p be a smooth function on the line, supported on [—1,1]
and with integral equal to one.

For each 7, 1 ^ 7 ^ n, we introduce the (fc+1 ̂ parameter set of
dilations on R" induced by the dilation matrix

(5.1) A O - ) = I ^i ;•• ^ 1

\^nl ' " ^nk ^/

We also decompose a^ as

^= iv\j=i
where, for 1 ̂  j < n — 1,

v7^)- s ^(^u^) n <P(^),
S e ̂ j k i Su[n}

and

"a(J) = ^(z) - ^ ^(I).

We take now j ^ n — 1. Since each summand in ^u,^ is obtained by
pushing forward a^ to some coordinate subspace and then tensoring
it with some copies of (p, it is clear thar supp (^p^) is contained in the

unit cube. It is also clear that ^u^ inherits a decay at infinity from the

decay of u^ and from that of (p . We check now that ^u^ satisfies
some of the cancellation conditions required by the (fe+l)-parameter
dilations induced byA(j').

A preliminary remark is necessary, since the correct induction
argument only works if rank (A(j)) = k + 1. If it happens that
rank (A (j)) < k + 1, then necessarily rank (A0^) < fe . Then the set ^
contains S = {1, . . . J— 1 J+ 1, .. . , n— 1} as its unique element, and

Asu{n} = A0^ has rank strictly smaller thanfe. Therefore ^(z)(^su{n^ = 0
for every £, e R" by hypothesis, and hence ^^ = 0.
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We can then assume that rank(A(/)) = k + 1, and we determine
the subsets S c {1 , .. . ,n} such that rank (A (j)s) < k + 1. It is clear
from (5.1) that any S such that j ^ S has this property. It is also clear
that if j e S , then

rank (A(j)s) < k + 1 o rank (As\^) < k .

Assume that j e 5' and that rank (As^) < k. If £, e Vs (i.e. if E, = ̂ 5) we
have

wy= z ^(^/u^) n <P(^)
S'e^j k^S'u{n}

= z ^(s'u^s) n <P(^)-
S'e^j kiS'u{n}

Since 7 ^ 5" when S ' e^j, then (^^{n}) n 5' c 5'\{/}. By assumption,

^(^u^ns) = 0 and then WQ = 0.

In general, however, ^u^ does not vanish on the subspaces Vs with
j i S , i.e. it does not vanish whenever ^ = 0 . For this reason we
introduce the measure V^ given by

(5.3) v^) = y^,,..., ̂ .,..., ̂ ) - ̂ (^,.... 2^,,..., u.
Then the V^ are supported on the double of the unit cube and

(5.4) ^(^, . . . , ̂ ,, . . . , ̂ ) - ^ V^,, . . . . 2^,, . . . , ̂ )
^0

boundedly.

For LeZ^ 1 , define W^ to be equal to V^ if L = (/,^) with
^ ^ 0 , and W^ = 0 otherwise. Then the {-W^ ^ z^+1 satisfy the
assumptions (i), (ii) and (iii) relative to the dilations induced by the
matrix A ( J ) . By the inductive hypothesis,

^ IW^^) ^ Cz 1 /
L e Z ^ + 1.,yk+ 1

and the kernel
jK= ^ W^

L e Z ^ + l

defines a bounded convolution operator on Z/^R"), for 1 < p < oo.
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By (5.4), for fixed / e Z*

s w= z M? = ̂ >
<"eZ ^o

and

l̂ 7^)! ̂  ^ \^\2AUW^)\.
< f e Z

This implies that

^ = E j^
ZeZ*

and that

E lyH?(2A^)| ^ C.
JeZ*

We take now j = n. In order to apply the same argument used for

J^ n- 1 , we only have to show that "^ vanishes on the subspaces
Vs with n e S and rank (A ,̂,,) < fc. It is sufficient to assume that S is
maximal with respect to these two properties, i.e. that S\{n} e y . We

(5.5) y^)=^)- ^ ^>(^) pj ^.
s/ 6 y k t S'u{n}

If ^€V, and ^\{n}e^, then ^^ = ̂ <^. We claim that if

S' ^ S\{n}, then rank {A^n^s) < k, so that H"̂ ,,,.,) = 0 In fact
if we had rank (A^^)=fe, we would have rank (A,,-,,, .)>k-l'
and actually rank (A^(^) = k - 1 , since both A,, and A^, , have
rank k - l . But this would imply that also rank (A ,̂,,,,) = k - 1
contradicting the maximality of 5" and of S\{n}.

So in the right-hand side of (5.5) only the term corresponding to
S - S\{n} is different from zero and then

y^)=^)-^;)n<p(^.
hi S

But since ^ e P,, for k t S, q>(^) = (p(0) = 1 , hence y^) = 0.

Q.E.D.



MULTIPARAMETER SINGULAR INTEGRALS 661

6. Homogeneous kernels.

We assume that A is an n x fe dilation matrix, with rank (A) = k.
If x e R" and 8eR^ (i.e. 8=(8i, .. .,8^ with 8, > 0 for every 7), we
denote by 8^ the element (8^1 . . . 8^X1, . . . ,8^1 . . . 8^x^) e R\

A convolution operator /^/* ̂  commutes with all the dilations
8A if and only if K is homogeneous, in the sense that

(KJ(6^)y=(KJ)

for every / e ^(R") and every 8 e R^.. If K coincides with a function
on an open set, then this function satisfies the identity
K(x) = det (8^ K(^x). Clearly dot (8^ = 8^71 . . . 8^\

The class of homogeneous distributions is quite rich when k < n.
We will deal with a subclass of it, consisting of «principal value
kernels » located away from the coordinate hyperplanes. To stay away
from these hyperplanes may look as an awkward restriction in certain
cases (like the ordinary isotropic one-parameter dilations), but it is quite
reasonable in the general context.

Let D be the set of points with non-vanishing coordinates in R".
Under the action of R\ D decomposes as a disjoint union of orbits,
each orbit being a fe-dimensional manifold. We say that an (n-fe)-
dimensional manifold £ c= D is a representative set if S contains exactly
one point from each orbit inD and it is transversal to each orbit.

This is equivalent to saying that the map 0 : S x ̂  -> D given by
0>(x,8) = S^x is a diffeomorphism. Explicit constructions of representative
sets for any family of dilations can be found in [14].

The representative set plays the role of (a dense open set in) the
unit sphere for the one-parameter isotropic dilations. The choice of S
is not unique. For the dilations in Example (a), one can take
E == {(±l,y):y^0} or S = { (x ,±x) :x + 0}.

A choice of E for Example (b), which is different from the one
used in [14], is S = {(± 1, ± l,z} :z^0}.

For r, s e R^, with r < s (in the sense that r, < Sj for eachj) and
F c X, we set

F,,, = {8Ax:xeF,r^8<s}.
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Let [i be a measure on D that is homogeneous under the dilations S^.
If F is a Borel subset of S, then

(6.1) n(^)=CT(F)niog(Vr,)
7=1

for some constant o ( F ) . Clearly, a is a measure on Z and i f / i s a
continuous function with compact support in D,

(6.2) !f(x) d^x) = [ f f^x) da(x) dot (5^ ̂  .. .^.
J JR{ Js - °1 °k

Conversely, if a is a measure on S, then (6.2) defines a homogeneous
measure \x on D (see Theorem 2.1 in [14]).

We want to define principal value distributions K on R" by the
formula

(6.3) p.v. f/(x) dK(x}

file yi/e (• j? JS.

=lim ... /(BA^rfa^deKa^-1...-^,
^0 Je Je Js °1 6^

where / is a smooth function with compact support in R".

In order that (6.3) makes sense, some condition must be imposed
on a. Once K is defined by (6.3), we want to discuss L^-boundedness
for the corresponding convolution operator. This analysis leads to a
very simple statement if we assume that the orbits in D are «well-
curved ».

For x e D, we call 0^ its orbit under the dilations 8A and denote
by co^ the surface measure on Ox.

LEMMA 6.1. — Let A be an n x k dilation matrix of rank. The
following are equivalent :

(i) for each x e D, the orbit 0^ is not contained in any proper affine
subspace of R";

(ii) if H is a measure supported on an orbit Ox <= D and
d\ji(y) == (p(y) d(Qx(y) ^ith (pe C^(0x), then there is e > 0 such
that |A(^)1 ^0(1+1^1)-^

(iii) the n rows of A are all different and none of them is equal to
zero.
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Proof. — The implication (i) => (ii) is known (see e.g. [17]). Conversely,
if a measure p- is supported in a proper affine subspace, then (1 has no
decay in the orthogonal directions.

The equivalence of (i) and (iii) is a consequence of the fact that
the n+ 1 functions on R^ :/o(8) = 1, /i(8) = 8^11 . . . 8^,
. . . ,/n(8) = 8^1 . . . 8^ are linearly independent if and only if they
are all different. _

v^.c/.l_J.

THEOREM 6.2. — Assume that the rows of A are all different and
non-zero. Let a be a measure supported on a compact subset of Z, such
that a vanishes on each coordinate subspace Vs of R" corresponding to
a submatrix As of A with rank strictly smaller than k . Then (6.3) defines
a homogeneous distribution K and the associated convolution operator is
bounded on Z/^R") for 1 < p < oo.

Proof. — Let (p(8) be a smooth function on R^ supported on the

cube Q = \S:- ^6j<^4,l<^j^k[ and such that T q^^) = 1 for
I 2 J leZk

every 8 e R*..

Let also [i be the measure on R" given by

(6.4) !f(x) du(x) = [ f /(8^) da(x)(p(8) dot (8^ dsl • • .^ •
J JQJZ 5! 8^

If we set u^ = u for every 7, we see that the hypotheses of Theorem 5.1
are satisfied. Actually (iii) is trivial and (i), (ii) follow from the fact
that they are satisfied by a.

If we call K = ^ Uj, then K defines a bounded convolution
JeZ^

operator on L^(R"), 1 < p < oo . We prove now that K is the principal
value distribution given by (6.3).

It follows from Theorem 5.1 that

^ 1(7(2^)1 ^ C
ZeZ^

for some constant C and every t; e R". This easily implies that

f lo(6^)| ̂ •••^C'
JR^ °i °*
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and that

K^)= ^ ( aCT^a)^... dsk

JeZ*Jfi! 61 6*

= f a(5^...^.
JR^E 61 °k

If A'g is the distribution given by

P... ["[/(a^^^detO-)^1..^,
Je Js Jz °i 8^

then
P/2 pl/e ^X ^X

^)== • • • Wy^1...^,
Je JE Sl ^

and ^(0 tends to K(Q boundedly as e -^ 0. This ends the proof.
Q.E.D.

7. A general A-parameter maximal theorem.

We would like now to formulate and prove a general fe-parameter
maximal theorem. Suppose [i is a finite positive measure on R", and
define the dilated measures |̂ § by

f/(x)^M = f^x)^),

where x ̂  8^ are the fc-parameter dilations introduced in Section 4.

We shall be concerned with the ZAboundedness of the operator M
defined by

(7.1) (M/)(x) = sup|(/*^)(x)|.
6eR^

THEOREM 7.1. — Suppose that the measure \JL satisfies the majorization

(7.2) sup H§ ^ v,
1^5j<2

where v is a finite measure. Then the operator M defined by (7.1) is
bounded from 27 (R") to itself for all p , 1 < p ^ oo .
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Remark. - Note that the condition (7.2) is easily seen to be
equivalent with the condition that sup u§ is a finite measure, whenever

8eA

A is a non-empty relatively compact open set in R^ .

Proof. — We shall first prove the Theorem under the assumption
that the measures u, and v are concentrated on D = {x e R" : Xj^O V/}
(i.e. they assign no mass to Rn\D).

For every XQ e D we define the measure u"0 supported on the orbit
of dilations through XQ and given by

(7.3) \fd^=\ /(e^o)^...^.[ f d v x v = \ /(e^o)^
J J l ^ £ j < 2 °1J l < 8 , < 2 £! ^

Next, we define the corresponding maximal operator My, , given by

(7.4) (M,/)(x)= sup |/*^°(x)|,
SeR^

and this clearly equals

sup f /Oc-^)^...^
5eR^ j5^e,<2§^ °1 °*

The following lemma, in the case where the exponents of the dilations
are non-negative, is essentially contained in [6].

LEMMA 7.2. — For each XQ e D, the operator M^ is bounded from

LP(Rn) to itself, \vhen 1 < p ^ oo, \vith a bound independent ofxo.

Proof. — For a given XQ e D, the boundedness of M^ follows easily
from Lemma 6.1 (part (ii)) and Theorem 3.2, when the orbit is well-
curved (i.e. satisfies one of the equivalent statements of that lemma).

In the case the orbit is not well-curved, we can, by part (iii) of
Lemma 6.1, decompose R" as R^ x R""^, so that XQ == (xo,0), with
8^0 == (5^X0,0), and the orbit of x; under 8^ is well-curved in R^.
This allows us to assert the boundedness of M^ in the general case.

To prove the uniformity of the estimates in Xo, we consider the
n-parameter family of scalings x == (xi, . . . ,x^) i—> (ppCi, . . . ,pn^n) = P^?
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with pj + 0 for all j. Observe that these maps commute with the
dilatations 8\ where 8 e R * . Moreover, as is easily verified, if we
define R, by R, f{x) == /(pi^i, . . . , p^xj, then R^M^R^M^

It therefore follows that the inequality \\M^/\\p ^ Ap\\f\\p implies the
inequality \\M^/\\p < Ap\\f\\p, with the same bound Ap. Since the p-
scalings act transitively on Z), the lemma is established. Q.E.D.

We shall next use the « polar coordinates » for D defined in Section 6.
Thus if x e D, we write x = (5, z) = 8^, where 8 e R^ and z G £, and
so identify D with R*. x £.

LEMMA 7.3. — Suppose v is a positive measure concentrated on D
If

(7.5) v = f v^...^,
J l ^ e , < 2 £! 8^

then v f5 majorized as

(7.6) rfv(x)^ S xz(8)^ •"^dv1^,
7eZ* ^ 6/c

vv/iere /j(8) (5 ̂  characteristic function of the set where TJ ^ 8^ < 2^+ l ,
7 = O'i, . . . ,^)» and v1 are positive measures on £, with

(7.7) ^ !dv\z)< oo.
JeZ^ J

Proo/. - It is convenient to change variables, via 8j = 2^,
j = 1, . . . , k, identifying R* with R^. With this (and a slight abuse
of notation), we are reduced to the following : suppose dv = dv(y,z) is
a finite measure on R^ x £. We write v^ for the ^-translate (by h e R")
of v ; i.e. symbolically, dvh(y,z) = d\(y-h,z). We then define v by

v = ] ^dh, . . . ^,.
Jo^hj<l

Then

v = S f XX^v"^,
ZeZ^ Jo^hj<l
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where /j is the characteristic function of the cube
Qi= {y eR^. ̂ ^< ̂ + 1}. However if y e Qi and Qf =
{y e R*. ^-1^^-<^+1}, then as measures on (^ x S,

(7.8) [ dv^, .) dh ^ ffz^(/) ^v(/, -))^.
JO^HJ<I \J )

We first prove (7.8) when v is absolutely continuous, i.e. dv = f(y, z) dy d z .
Then dv11 = f(y-h,z) dy dz and (7.8) becomes

f f(y-h,z)dh ^ f f(y\z)dy'
Jo^hj<l J y'eQ*j

when y e Qi.

The proof of (7.8) in the general case now follows by approximating
v by absolutely continuous measures in the weak-* topology.

Next define

^(z)= fx^(/)^v(/,z).
Then clearly v

^ f dvI(z)=2k f dv(y,z) < oo .
/ JE JR^XS:

Restating this result in terms of 5^ = 2^ gives us (7.6) and (7.7).
Q.E.D.

End of the proof of Theorem 7.1. — Suppose that u is concentrated

on D. We can assume that Ug ^ v, for . < s^ 1, where v is a finite

measure which is also concentrated on D. Then u < Vg, whenever
1 ^ E j < 2, and therefore

f dsi ds.,,[ i ^ C \ v,^.. .^= Cv.
Jl^e^2 8! ^k

It thus suffices to prove the maximal theorem with u, replaced by v.
However if / ^ 0, by (7.6),

(/*v)(x)^ ^ f /(x-a^x^f1..^^^),
76Z*jR^£ Ol 0^
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SO

SUP (/*Vg)(x) ^ ̂  f M,(f) d^(z).
5eR^ j Js

Applying Lemma 7.2 and the inequality (7.7) then gives \\Mf\\p ^ Ap\\f\\p
as desired.

To lift the restriction that our measures p, and v are concentrated
on D we can argue as follows. Decompose R" as a disjoint union,
R" = IjRS, where S ranges over the subsets of { 1 , . . . , n } and

s

Rg = { x e R ^ x ^ O o je S}.

Then write d[i = ̂ /s^ = S^Us, dv == ^/s^v = ^ rfvs where 75 is
s s s s

the characteristic function of Rg. Since each Rg is a union of orbits,
our assumption implies that sup (^s)§ ^ Vs.

1^6j<2

Note that when 5 = 0 , then Rg = D, and this corresponds to the
result proved above. The result for S = 0 then follows from the case
already proved, in the setting of Rw with m = n - | S |.

As a final remark, we point out that using Theorem 3.2 one can
prove that the following maximal operator is bounded from Z/^R3) to
itself, for 1 < p ^ oo :

(Mf)(x,y,z) = sup \f(x-ru,y-sv,z-2krsuv)\du dv.
^>oJ - i J-i
f c e Z

A general class of maximal operators of the same type can be obtained
as follows : let M^ be the maximal operator in (7.4) associated with a
well-curved fe-parameter orbit 0^ in R" ; considering the full n-parameter
dilations, define

^^P^W-
Then M is bounded on L^(R^), 1 < p ^ oo.

We have assumed the orbit to be well-curved in order to have the
decay of the Fourier transform required by Theorem 3.2. On the other
hand this hypothesis may not be necessary, since it is known that a
result of this kind holds when the orbit is a half-line [2], [7], [13], [20].
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