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CLASS GROUPS OF ABELIAN FIELDS,
AND THE MAIN CONJECTURE

by Cornelius GREITHER

Introduction.

The relative class number h~(F) of an abelian number field F is
expressed by the analytic class number formula (roughly speaking) as
a product of certain generalized Bernouilli number B i ^ . It is customary
here to fix a prime p and only consider the p-parts of the involved
numbers. It is natural to ask for an algebraic version of that formula
which connects the orders of ^-parts of p-class groups to p-parts of
individual generalized Bernouilli number B i ^ . A precise formulation of
this idea has been proved by Greenberg, Mazur and Wiles (see Mazur,
Wiles [17]) for odd p and [F:Q] not divisible by p, and by Solomon
[22] for odd p and rather general abelian fields F . (The first-mentioned
result is called Conjecture of Leopoldt and Iwasawa.) In this paper we
prove a similar theorem for p = 2. This also gives an amelioration of
Stickelberger's annihilation theorem « by a factor two », a result obtained
previously by G. Gras in many cases. A simple nontrivial example for
this is the class group of F = ©(i^s)- It is (Z/2Z)3, equal to the minus
class group, and the customary form of Stickelberger's theorem gives
no information on its Galois module structure at all.

In a similar vein, the p-adic class number formula connects the class
number of a real abelian field F with a product of certain values
Lp(l,^). Since this formula also contains the regulator of F (which is
hard to evaluate), it is more convenient to deal with ^-parts of ray
class groups modulor p°° (one must assume ^ nontrivial in order that
these ^c-parts be finite). One then gets a real analog of the Conjecture
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of Iwasawa and Leopoldt, which we again prove for all p. As a
consequence one obtains, building on work of Greenberg and Sinnott,
a generalization of Gras' conjecture, which postulates a close connection
between the class group of the real field F and the quotient group of
the units of F by the circular units.

All these results are based on the Main Conjecture for F . This
conjecture, which identifies the characteristic power series of certain
projective limits of p-class groups with certain p-adic L-series, was
proved for odd p and F/Q abelian by Mazur and Wiles (1984). Their
methods have been developed further by Wiles (1990), so that now the
Main Conjecture is established even for Galois extensions of a totally
real ground field if p 7^ 2, and (at least) for abelian extensions of Q
if p = 2. Nevertheless, for abelian fields there is now a much more
elementary approach which uses « Euler systems », is due to Kolyvagin
and was developed by Rubin (see e.g. Rubin [19]). It seems that this
has not yet been done for all p and all abelian F, so we offer in this
paper (§ 3) a detailed proof of the «full » main conjecture, including
in particular the case p = 2. (It is probably no surprise that the
technique of Kolyvagin and Rubin is supple enough to do this.) We
use Euler systems of circular units to prove a « real main conjecture »
in § 3 and get back on the minus side using Kummer duality and the
appropriate general form of Iwasawa's and Gillard's results on semilocal
units modulo circular units which we prove in § 2. (Of course, one can
go the other way and use this, and the main conjecture as proved by
Wiles, to infer the « real main conjecture ».)

The final section § 4 is devoted to the aforementioned applications:
^-parts of class groups, imaginary and real. We draw on methods of
Greenberg and Sinnott, and ideas of Solomon.

Notation is standard if not explained. Throughout, ^ is a primitive
n-th root of unity and Q(n) = QKn). Because of the technical character
of § 2-4, we had to redefine notations at some points. Note in particular
that X is an indeterminate in § 2 but X is an Iwasawa module in the
other sections.

At the end of this introduction, we discuss what we call « ^-parts ».
Let p be any prime, and let us agree that all characters are p-adic, i.e.
take values in the algebraic closure of Qp. Each character ^ °f an

abelian field is also considered as a primitive Dirichlet character whenever
the need arises.
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DEFINITION. — Let A be any finite abelian group, ^ a character of
A, and M any Zp[/^]-module. Let ZpQc) = Zp0c(8)|8 e A).
Then M^ = M ®z [A]Zp(x) ls called the ^-part of M. We sometimes
denote the canonical surjection M —> M^ just by y »—>• y ^ , y e M.

We list some simple, mostly well-known properties:
(a) The functor M }—> M^ is right exact; if | A | is prime to p, it is

even exact.
(ft) If ^ is conjugate to v|/ over Qp (i.e. there is an automorphism

T of Q^ over Qp with v|/ = T^), then M^ ^ M ,̂ over Zp[A].
(c) Let 5 == Zp[A]. The ideals ker(5'-> 5^ == Zp(x)), X character of

A, are just the minimal prime ideals of S .
(d) If A | is prime to p, then S is a product of (complete) discrete

valuation rings, and for any 5'-module M, the canonical map M ->
Y[M^ (product over all characters / of A, modulo Qp-conjugacy) is an
isomorphism.

Now assume also that A = Gal (F/Q), F an (abelian!) number field.
Let j denote complex conjugation, considered as an element of A.
Recall : a character / is odd if 7(7) = — 1, even if 7(7) = 1.

(e) If 7 is odd, then 1 4 - 7 maps to 0 in 5^ (recall S == Zp[A]),
hence for any M, (\-\-j)M goes to zero in M^.

(/) If M = Ap(F), M+ = Ap(F+), then the norm M-> M+ is onto
as is well-known. Consequently, the image im M+ of M+ in M coincides
with (1+7')M, and we obtain for odd 7 from (a) and by right exactness :
M^ ^ (M/imM^.

We need one last observation:
(g) If p = 2, and A is cyclic of order 2r with generator So, say,

and j + 1 (i.e. F is imaginary), then for every odd 7 and every module
M on which j acts as multiplication by — 1 (At is a « minus module »),
we have M^ = M. (Proof: Since ^(j) = = — 1 , 7 must be injective with
Im (x) = <^>, and hence Z,(x) ^ ZATM^-^ 1) ^ ZJ5J/0+1).
From this we obtain M^=M/(l+7')M=Af.) More generally, if
A = Az x Ao, with |Aol odd and Ag cyclic of 2-power order, then for
any odd character / of A one has M^ ^ M^ with %o = X I Ac-

Most of this paper was written during a one-year stay of the author
at the University of Karlsruhe. It is a pleasure to thank this institution,
and Mathematisches Institut II in particular, for their hospitality.
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1. The Main Conjecture and its consequences.

We shall first state the Main Conjecture for all p . To this end, let
F be an abelian number field, unramified in p, with Galois group9 A
Further, let ^ = F(^^(n ̂  0), ^ = [JK^ G = Gal (7^/Q) ^
A x Z; ^ A' x r with F = Gal(^/7Co) ^ Z, and A- = Gal(^o/Q).
We may consider any character 7 of A also as a character of A\
Moreover one has the Teichmuller character (0 : G -^ ^ c Q^. Let us
make the convention ^ = /"^co.

By Gp(T^) (for \|/ an even character of A\ considered as primitive
p-adic Dirichlet character), we denote the element in Quot(Z^(v|/)[[r]])
which is written/(T,v(/) in Washington [23], p. 122. In particular:

^(s,vK) = G'^-l.vl/) for s e Z p , (s^l for v|/ trivial)

where u = 1 + ^ is an integer fixed in the construction of Gp, see loc.

cit. For v|/ nontrivial, ,G^(T,v|/) is in ^(v|/)[[T]]. For v|/ the trivial
1

character, ^(T,v|/) • (T-go) is in Z^(i|/)[[r]], and even a unit, see

Washington [23], p. 125. For any number field K, denote the p-part of
the class group of K by Ap(K). The correct formulation for the main
conjecture including p = 2 is now (cf. Federer [4]):

THEOREM (=Thm.3.2). - Let Z=lim^(^), X^limA^). Let

7 be any odd character o f A ' . Then (X/imX+\ ̂  X^ canonically, and
\ve have

char (A,) = Q . (^(T^)) if ^ is not trivial,

char (^) = Q . G,(T,;c) • (T-q,)\ = (1) if ^ is trivial,

as ideals of the ring A, = ^(^[[T]]. (For the notation «char» see
Rubin [19].)

Remark. - The canonical isomorphism in the theorem is easy to
see: Since the norm map A,(Kn) -^ A,(K,) is surjective, the group
im^(^) is contained in (1+^) -A,(K,). Whenever 7 is odd, all
multiples of 1 + 7 map to zero in A^\, and the map A^\ ->
A^(K~n\ is already the zero map.
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The theorem will be proved in § 3 (using the result of § 2). We now
describe the arithmetical consequences, starting with the following analog
of a conjecture of Iwasawa and Leopoldt for p = 2:

THEOREM A. — If F/Q is abelian imaginary, unramified in 2, mth
Galois group A, such that the 2-Sylo\v subgroup Ag is cyclic, then for
every odd 2-adic character % of A "which is not of 2-power order :

d(X)

\w^
2B1•^1

{Notation. - 1 0 1 2 = 2 ' for a = T ' ue ^(x), u a unit;
d(^) = [^(x): ^2] • Further, A^(F)^ is the x-P^1 of the minus part
A^(F)~ = {x e ̂ (-Q: x^ - x}. The notion « x-Part >y has been explained
in the introduction.)

Remark. - a) Write A = Az x Ao, |Ao l odd. For any character ^
of A, let 70 = X l ^ o . Then ^ has 2-power order iff /o ^ th6 trivial
character e of Ao. The idempotent ^ = | A o | ~ 1 - ^ § lies in ^[A]. It

S e A o

is then a corollary of Thm. A that the ZgAo-module (\-e^).A^(F)~
(i.e. we remove the trivial representation of Ao from A^(F)-) is
annihilated by 1/2 times the images in (l-^)^2[A]/(l+j) of all the
usual Stickelberger elements belonging to F . This is a sharpening of
Stickelbergers's Theorem for p = 2, and generalizes results of Gras [7].
Examples show that some condition on A 2 is necessary.

b) There is, up to Q^-conjugacy, just one odd character 72 for
A of 2-power order. Let L be the fixed field of Ao. Then one
obtains from the analytic class number formula A^(F)^\= \A^(L)~
= 2 - \l~^^\^k^ where k^ = |ker (A,^) -^ A,{L))\. We used
that QL = 1.

As is common in such situations, one can show that it is enough
to prove a divisibility statement in Thm. A. Moreover, on can replace
the left hand side by another term which is easier to treat. This leads
to the following formulation :

THEOREM B (= Thm. 4.1). - For all odd characters ^ of A \vhich
are not of 2-po\ver order :

[ / A (P\ \ \ d(x)

(. 2 ( ) ) is divisible by -B^_, .
\\imA^F+)^ 2 ^
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(Note that the expression inside | • | on the left is isomorphic to
A^(F\/im (A^(F^\), by our definition of /-components and right
exactness of (x), and also to A^(F\, since / ls °dd and the norm:
A^F)->A2(F+) is onto.)

Thm. B will be derived from the main conjecture in § 4. Here we
show how Thm. A follows from Thm. B : Let L = F^° as in the last
Remark. Note that A^(L)~ ^ e^(F)~ . Now \A^(F)~\ == ^"CO-^
and similarly for L (see Remark b)). One sees that kp == k^, hence one
gets from the analytic class number formula that \(l-e^)A^(F)~ | equals
the product over all odd % with / j A o ^ £, modulo Qg-conjugacy,
of |2-12^ -ilS?^. Moreover (for the same set of ^s) one has
\A^(F)^\ = \(A<i(F)|\mA^(F+)\\, and the product of all these terms
equals |(1 -e^)A^(F)~ \. From this one sees that Thm. B implies Thm. A.

Theorem A has a counterpart for real fields. Assume as above F/Q
abelian, unramified in p (p is again arbitrary) with
Gal ( F / Q ) == A = Ao x A^,, Ap the p-part of A .

THEOREM C. — If F is real and Ap ;5 cyclic, then for all characters
7 of A whose order is not a power of p (i.e. / lAo^e) , and which are
faithful on Ap, we have

|d(X)

WF\^^ n\ ^p(U)

where Ap(F) is the p-part of the projective limit of the ray class groups
C v(F), v e ^ J . (Note that A'p(F) is infinite, but we will see that
(l-e,)Ap(F) is finite.)

We shall also obtain a generalization of Gras' conjecture. For the
precise statement, see Thm. 4.14. We only mention the following corollary
(see 4.15): If p = 2 and |A| is odd, then E / C ^ and A^(F) have
isomorphic composition series as ZatAj-modules, where E = Op and Ci
is the «large » group of circular units of F, as defined by Sinnott [20],
p. 209. For odd p, a similar result has been proven (modulo the main
conjecture) by Greenberg [9].

Finally let us mention that (as Wiles points out) the 2-adic main
conjecture implies the 2-part of the Birch-Tate conjecture by a theorem
of Kolster [14], so that now the full Birch-Tate conjecture is established
for real abelian fields.
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2. Semilocal units and circular units.

Let p be a prime number, and F/Q abelian such that p does not
divide the conductor of F. Define:

Kn = F(i^+i), ^oo = U "̂ '

^ = (Zp (8)2^ )" (semilocal units of Kn over p);

€/„ = pro-p-part of ^n (= principal semilocal units);
^ = circular units of Kn in the sense of Sinnott;

^ = closure of ^ in ^; Cn = pro-p-part of ^;

<^ = lim f, c ̂  = lim ^^;

Coo = pro-p-part of (€^\ U^= pro-p-part of ^oo.

Let ^ be any nontrivial character of Gal (F/Q).

LEMMA 2.1. - Suppose F c= F, anrf ^no^ Gal(F/F/) by H. Define
^'nfor F in the same way as ^^ as F. Then the kernel and the cokernel
of the map

^(^n^-^n (tne subscript H means: take H-coinvariants),

induced by the norm F -> F', are annihilated by the number H\ = [F: F'].

Proof. - The kernel in question is H^H^n), and the cokernel is
H\H^,Y 0

COROLLARY. — Ifj, is already a character of F ' , i.e. %(H) = 1, then
the kernel and cokernel of the natural map

a,:(^oo),-WJ,

are annihilated by the number [F; F']2.

Proof. - Let A = ker (a), B = coker (a). On taking x-parts, we
obtain:

A^ -> ^oo.x -> Im (a)^ -^ ° (we "^y d1"0? the suffix -») \
Tor (Zp(x), -8) ̂  Im (a), ̂  ̂ ^,, ̂  B^ -^ 0.
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(Tor is taken over Z^[Gal (F/Q)].) Then [F: F1] annihilates ̂ , B^ and
Tor (Zp (/),!?). The two sequences, together with Lemma 2.1, give the
corollary. D

Lemma 2.1 is an instance of the more general

LEMMA 2.2. — Let H a A be finite abelian groups, X a ZpA-module,
X' a Zp(A/H)-module. Assume there exist A-maps N : X -> X' and
i : X' -> X such that Ni = multiplication by \H\, and iN = multiplication
by ^ CT . Then kernel and cokernel of the induced map N : XH -> X are

06 H

annihilated by \H\. (Example : X = Ap(F), X' = Ap(F')\

The proof is easy. D

We need a better understanding of the projective limit of the circular
units. One could do without the following lemma if one just took the
right hand side in its statement instead of the left hand side in all
what follows, but this would be somewhat unsatisfactory.

LEMMA 2.3. — Let F be as above, and let m = cond (F) (hence m
is not divisible by p ) . Let G = Gal (Kyo/Q). Then we have up to a finite
prime-to-p torsion group :

C^ = closure of the ZpG-span of {±T|^,F l^m\m} u ^(QKpoo)),

with
n - rN (\-rp~v r ^ ^=2 for p=2?
•Im'.F ~ l^QCw^/QCm^nFV1 Sm • SpV+^ve ^ .^i r ^ ̂ \

Proof. — The relation « => » is evident from the definition of circular
units. (Note here that the T|'S are well-defined, i.e. we do have a norm-
coherent sequence on the right.)

« c » : We make three preliminary remarks.

1) If some relative norm of some circular number x is a (circular)
unit, then x is itself a unit, hence a circular unit by definition (Sinnott
[20], p. 202).

2) Fix an abelian extension fe/Q. We claim : In Sinnott's definition
of circular numbers in k

D(k) == Z[Gal(fe/Q)] - span {±NQ(n)iQ(n)nk(l-^n)\n,a e f^J}

we may just as well take a = 1 : it is allright to restrict to
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all a dividing n ; let n' = n / a . Since the map
Gal (Q(n)/Q(n) nk) -> Gal (Q(n')/Q(n')nfc) is surjective, one easily sees
that A^(n)/Q(n)n^(l-^) equals AQ^/Q^n^l-^y3, P a suitable element
of Z[Gal(k/Q)].

3) Let k/Q be abelian of conductor dividing m. Define
ZVk) == D(k) n ^[m-1]. Then Z),(k) = <±N^^^(l-^)\n divides
m>.

(Proof of 3): « => » is clear since the right hand side consists of
circular numbers, and also of m-units.

« c » : We first claim that we may even omit in the definition of
D(k) all n which are not prime to m and do not divide m. For suppose
n is not prime to m, i.e. n' = gcm(n,m) ^ 1. One quickly checks that
M.H^/Q^I-U is in the Galois span of 1 - ̂ , and
Q(n) n k = Q O Q n k , hence the contribution of n is already covered
by the contribution of n1.

Now we can show « c= » in 3): Consider an expression

n^QW/^QWa-^)^. n ^Q(^nQ(«)(l-^)^
n\m (u,n)=l

(second product also finite, of course), and assume it represents an
m-unit. Since k n Q(u) is just Q for all u prime to m, the second ]~[
is an integer, prime to m. The first ]~[, however, is an m-unit. Hence
the second Y[ is ± 1, and Remark 3) is proved).

After these remarks, we can now prove « c: » of Lemma 2.3. It
suffices to show for all v > 0.

(*) (universal norms in ^v) c: <{d=r|^^| l^m^u^Q))

with r\^F == Mn^l-^pv^) and N^ short for A^)/Q(^)^, and
< • • • > means « closure of Galois span of .. ».

It does not change anything if we also admit all r|̂  with 0 ^ v' ^ v
in the right side of (*). Denote the right side of (*) by A^\ write A'^
for the group that we get if we replace ^v(Q) = ^(Q(^ v + < ) ) by
Z)(Q(^V+()) . (This amounts to adjoining the circular number
1 — ^ v + ^ . ) Write A^v+n/v for the norm from K^+y, to K^, and Z>v for the
circular numbers D(K^).
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Claim (**). - A^(Z)y) c= ^.(2\)^ for all ̂  0.

This claim implies the lemma as follows: Letting [i -^ oo, we
find that the universal norms in Dy are contained in
^•(non-p torsion of Dy). We now intersect with the global units of
K^ taking into account Remark 1). We find: The universal norms in
^ lie in Ay- ( a prime-to-p torsion group). Passing to the closure and
to the projective limit, we get « c= » of Lemma 2.3.

We still have to show (**). From Remark 3) we know

D(Fv^) = Galois span {±x(n)\n=m' -p^m' lm.O ^ a ^ v+r+^i}

with x(n) = A^)^^Q(V)(I-^). Let N == A^. What is N(x(n))1
For a < v + t , x(n) is already in K^, hence N acts on it as p^-th
power. For a > v + t and m' + 1, one easily checks that x(n) is in
the Galois span of ri^y, and hence N(x(n)) is in A,. Finally, for
m' = 1, we certainly have A^(a(n)) e A/(Q) c: ̂ . This finishes the proof
of Lemma 2.3.

Remark. - We conjecture that a similar lemma concerning the
projective limit of certain Stickelberger ideals is true.

It is now our objective to establish a sort of isomorphism of Uao/C^
with a certain factor ring of Zp[[A1][A7] {X an indeterminate),
A' = Gal (KQ/Q) . We employ Coleman's technique, working over Qp
(i.e. with denominators) towards the end. (NB. The indeterminate is T,
not X, in Coleman's paper. We shall reserve the letter T for the
indeterminate in Iwasawa algebras.)

Recall p is an arbitrary prime. Let (9 be a finite unramified Galois
extension of Zp with Galois group A. (Later on, (9 will be ( 9 p , F/Q
abelian, unramified over p.) If e^, . . . , eg are the primitive idempotents
of ( 9 , then Zj = e^Zp x • • • x CgZp is a subring of ( 9 , and all e,(9 are
discrete valuation rings. The stabilizer D in A of e, is independent of
i and may be called the decomposition group oi ( 9 .

DEFINITION. - a) (Q[[X]]°= {fe(P[[X]}:f(0)=lmodp}.

b) (p : (P[[X\] -> (^[[X]] is the unique Zp-algebra endomorphism given
by (p|^ = Frob = Frobenius of p , and (^(t-X) = (I-XY. Frob has
a continuation to 0[[X]] with X\-^X, which we also call Frob.

Let F' = Z;. Then A and F7 operate on ^[[X]}, the latter via
[a](l-X) = {\-X)\ aeZp . Recall ( = 1 for p odd, t = 2 for p = 2.



CLASS GROUPS AND THE MAIN CONJECTURE 459

THEOREM 2.4 (Coleman [2]). - After choosing a generator ^=(^ ^,)
°f ^p(l) = lim n^v+f , one has for odd p an exact sequence of A x^r'-

modules, where V operates on Zp(l) in the usual manner : [a]^ = ̂ a.

(l-^log
o -> z,w -> (9[[X}}^ p/ ^[[x]] -^ z,(iy -^ o.

For p = 2, replace the terms Z,W by (Z^(l)x {1, -1})^. 77^ m^/nwi
^ i-th factor Z^(l)[x {1, -1}] fs ̂ ^ ̂  ̂ ^.(i-^) (̂  -1^-^,
for p=2), the map to the i-th factor Zp(l)[x {1, -1}] is given by

f^ ̂ ^flw} (Tr : (9^-L, the trace) for ^2,
/^(^r(^(0))^_^Tr(.,/(0)))^ ^ ^ ^

Proo/. - One easily reduces to the case g = 1, i.e. (9 a domain.
In this case, this is essentially Theorem 2.2 of Coleman [2]. We explain
the differences in notation, and terminology : our (9 is (9^ in loc. cit •
our ^[[X]] is /; the maximal ideal (p,X) is m in loc. cit; Coleman's
formal group ^ is just the multiplicative group G^ our context, and
^(m) = ^[[Jd]0. Coleman establishes the following sequence:

0 -^ ̂ ][^^]X -^ ^(m) ̂ A -^ 0.

The term ^-(m) = 0[[X]]° is already one term of the sequence we
want. We shall verify : the first nonzero term is Zp( l ) [x{ l , -1}]; the
term A is isomorphic to ker^[[X]] ̂ (l)[x { l , -1}]), and the maps
are correct.

We first look at @y. By def. (loc. cit. p. 108), ©^ = © o ^ with
^ = Lubin-Tate logarithm of G, = the usual log function, and © the
msi? f^f - —j^- • Here, just for the moment, (p is Coleman's notation,

i.e. (p is Frobenius. Since we may take TT (the parameter) = p, and
fp is [p]f in our notation, we find (in our notation) that

e,-(,-^.

Next, consider ^. This is defined in loc. cit. as the group of torsion
points of y = G^ in (9 which are = 1 mod n = p , i.e. ^ = 1 for p
odd and V ={!,-!} for p = 2. The symbol [+] is the group law in
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^, i.e. just multiplication. Moreover j^oo is defined as the closure of
^AG^} in Rao (notations K, Goo, R^ from Coleman p. 94); in our
situation this simplifies to: ^^ = profinite group ring Zp[[r']], and
[^^}X= topological span of all (l-Ay, a e Y ' ^ Z p . Hence the
beginning of Coleman's sequence is 0 -^ (l-Z)^[x {1, -1}] -. (9[X}}\
and (l-X^p is r-isomorphic to Zp(l).

Finally we calculate A: In toe. ci^., we find

A={ge^[[X]}\dgMl-¥rob)(9} (p odd)
dX

={g^[W]\ -^(O)e(l-Frob)^(0)e2(P+(l-Frob)^} (p=2).
dA

Since (1- Frob)^ = ker (Tr •.(9-^Zp), we find that A is in fact the
kernel of our map ^[[X]] -> Zp ( l ) [x{ l , -1}]; to conclude, one has to
make sure the latter is surjective, but this is easy. D

DEFINITION. - ^=^[[^ / ] ] , F = Q p ( P . (For (9 a domain,
F = Quot(^).) Let R operate on (9[[X}} as follows : it is clear ho\v (9
operates, and for aeV, we let [a](l-Z) = (1-^)° as earlier.

LEMMA 2.5. - (9{[X\} = R'(1-X) + (p(^[[.ni).

Proof. - As in Coleman [3], Lemma 2. (Note (p(l-Z)=
(1-A7.) D

DEFINITION. - Let y : Zp[[r|] -> I-p[[X]} be the trace operator in the
sense of Coleman [2], [3]. ^ has an (9-Unear prolongation to ^[{X}}.
Define ^ = ker (^ : (9[[X}} -> ^[W]).

THEOREM 2.6. - V = R - ( 1 - X ) .

Proof. - We have ^(1-X) = 0 (easy, see Coleman [3] p. 1). The
identity (6) in loc. cit. generalizes in our context to give

^(p(^)=p.Frob(g) (ge^[[Z]])

(check it on (9 and Zp[[;r|]). Hence ^(p is injective. The rest of the
proof goes as in Coleman [3], Thm. 3. D
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COROLLARY 2.7. - Let D : 0[[X}] -^ G[[X}} be the O.linear operator

^~x^"dy• Then D^ = ̂ , and there is an R-isomorphism

D-.-r ^i^(\) = TT®^Z,(I), z ^ D z ® ^ .
Proof. - First of all, D(l - X) = (I - X) • (1 - X)' = - (1 - X). Since

D([a]g) = a-([a\D(g)) for all aeZ; (chain rule, see Coleman [3] p. 2),
we obtain DRg = RDg, hence D: T -^ ir is well-defined and surjective
by Thm. 2.6 (put g=l-X). From the same rule as in the last sentence,
one sees that D: -T -^ -T(\) is ^-linear. Finally, D\T is injective •
ker (Z)) = ker (d/dX) = (9 <= (9[[X}\, and (9 n r = 0 (^ is multiplication
by p on ^). Q

Now let ^:0((X)Y ^G((X)Y be Coleman's norm operator
(Coleman [2] Thm. 11).

DEFINITION. - m = {feG((X)Y l^/=Frob(/)} ;W°=Wt n (P[[^]°.

According to Coleman [2] Thm. 16, for every norm-coherent sequence
a = (a,),eM, ciieF(t,^tY , there exists exactly one/=/,e9K with

/,(! - ̂ +,) = Frob'(a,), i ̂  0.

Note that in our situation (P is allowed to be a finite product of
maximal orders in p-adic fields (and F a product of p-adic fields), which
does not present problems.

THEOREM 2.8 (Coleman [2]). - There is an exact sequence

0 -^ Z,(iy -^ 9T -̂  -T -^ W ^ 0.

Proof. - We use 2.4. Since ^(l-X) = 1 - X= Frob(l-A-) we
have l -^eSTc 0[[A1]°. Claim: The precise preimage under
P: =( l -p- l (p) logof^r<=^[[^] ] is 9M°[x{l , - l}<] (no [ . .] term for
p odd), the map 0[[X]] -. (Z,(l)[x { l , -1}]). has the same kernel as
the restricted map -T -^ Zp(l)^ and this restricted map is surjective.
From this claim, and Theorem 2.4, one deduces

0 ̂  (Z,(l)[ x { l , -1)])^ ̂  ((R°[ x { l , - iy] ̂  ̂  _ ̂ (ty -^ 0,

which gives the theorem.
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Proof of claim. — One may again assume g = 1. We use the identity
cpCO = p ' Frob (/) (cf. Coleman [3]), and the identity
yiog(f) = logC/T/), see Coleman [2], remark following Cor. 12. We
calculate for fe (9[[X}Y :

^(l -(p) log/) = y log (/) - Frob (log (/))
= log ̂ f- log (Frob CO)
=log(^-CO/FrobCO).

Recall V was ker(^). Hence: P C ^ e ^ ' o ^P(/) = 0 <^>
log (^(/)/Frob (/)) = 0 <=> J^(/)/Frob (/) a root of unity, and
= 1 mod p6?. For odd p, 1 is the only such root of unity, and for
p = 2, there are two, + 1 and - 1. For odd p, we therefore may
continue : • • • ^> ̂ (/) = Frob (/) ofe 9M°. For p = 2, we have
^T(—l)/Frob (—1) = + ! / — 1 = = — 1, and we obtain as correct condi-
tion : • • • o 4- / or — / is in 9W°, as claimed.

The surjectivity of i^ -> J-p(Y) is seen by taking elements y - ( l — X ) ,
y e ( 9 . For odd p, we are done. It remains to see that the maps
V -> Zp(l) x {!,-!} and V -^ Zp(l) have the same kernel for p = 2.
In elementary terms: if g e i ^ , and if we know g ' ( 0 ) , then we know
g(0) mod 2. This is left as an exercise ; use 2.6. D

LEMMA 2.9. - Let U,;= {xe0g^,]\x = 1 mod (l-i^-n)}. Then
the assignment \|/: lim 1},;-»- 3R, a»—^/a» defines a Zp[[r'^-isomorphism
u^ = l im^-^gr.^

Proo/. - This is Corollary 17 in Coleman [2]. D

From Thm. 2.8, Cor. 2.7, and Lemma 2.9 we now may deduce :

PROPOSITION 2.10. - Let 8 = 2 ) log: (9[[X}} -^ F[[X]]. Recall A is
the Galois group of (9 over Zp. Then \ve have an exact sequence of
Tp[[Y'}}[^modules

0 -> ZpW ^ W°-^-r(l) -. ̂ (l)8 -> 0

/ (p\
mth a = Z)p = D{ 1-— log = (l-(p)Z)log = (l-(p)8, and \ve have

\ P /another sequence

o ̂  ZpW -^ u^ ^^(i) - ZpW -^ o.
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Proof. - We first remark that all maps in Cor. 2.7, Thm. 2.8 and
Lemma 2.9 are also A-equivariant. The short exact sequence is obtained
by combining 2.7 and 2.8. The second equality sign in the last line of
the proposition is a consequence of the (easily checked) rule Z)(p = p(pZ>.
The second sequence follows easily, using Lemma 2.9. D

So now we have « almost an isomorphism» of U^ with a certain
very explicit module ^(1). As usual, the next step is to determine the
image of the circular units. This becomes easier if we work over Qp,
and one character at a time. Hence, let F/Q be abelian, unramified
over p, K, = F(i;^), A = Gal (F/Q), (9 = ~L, ® ̂ , A' = Gal (2^/Q).
Note that A' ^ A x Gal (Qi;^)/Q).

DEFINITION. — If ^ is any p-adic character of A, M any Zp[A]-
module, then

V,(M)==Qp^M(S^W

^ Qp ®z ^c • (^-coinvariants, as in the introduction).

The same construction is also defined with A7 in the place of A and ^ a
character of A'. Sometimes we write V^\M) or V^'\M), as the case
may be, to make clear over which group ring we are working.

LEMMA 2.11. — Assume % is a character of A with conductor m (a
divisor of cond (F)), and write F ' = F n Q(Af). Then :

a) The additive Qp^-module V^(Qp<S)QF) is generated by y^ =
(^QWIF'^m))^'

b) Assume ^ ^ 1. Recall Uao = lim £/v is the projective limit of the
local principal p-units ofK^ = F(ta v + < ) , t = 1 resp 2 according to whether
p is odd or p = 2. (l/y is also the pro-p-part of ^v.) Also, Coo = (p^-
p-part of ^oo) ^ ^ subgroup of U^. Then

Woo)- ^[A]).(TIJ,, w/i^
(^ suppress the projection

U. = (^(^(l-^v^)'1"0'^. ^oo ^ C, in ^ notation.)

Proof. - a) The additive QpA-module QpF is generated by all
elements x^' = ^(^(m^iF^Q^'^m') where m7 runs over all divisors of
cond (F) (exercise, using the existence of additive normal bases). By
definition, F ' contains F11®1'0^, the fixed field of the kernel of ^ • Now
ker (7) certainly operates trivially on V^(QpF). Since the group
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ring Q [ker ^] is semisimple, we get a surjection
(QpF)^ -^ V^QpF)^^ = V^QpF). Hence the natural map
QpF' -> V^(QpF) is onto. Hence V^(QpF) is already generated by the
images of all x^' with m' a divisor of m. We show that the proper
divisors m' contribute nothing: if m' \ m, m' -^ m, then there exists
a e Z , a = l(m7), 5c(a) ^ 1. If a is the corresponding element of A,
then we get for the image y of Xm' in F^: a(y) = ̂ (a)' y ; on the other
hand, cr fixes x ^ ' , hence y , and we get y = 0.

b) We proved in Lemma 2.3 : Coo is generated by — 1, all r\^i,
1 ^ m' | cond (F), and by CQ = pro-p-part (lim ^(Q (^+ <))) • Let
F " = ^ker(x) ^g ^g^ ]^yg (with self-explaining notation):
(QpO^C^F))1"1'00 == Qp® Coo(F"). This is quite easy (idea: if M is a
circular unit for F, fixed under H = Ker(^), then u'^' = N F I F " ( U ) is
circular for F " , and the power |7if| does not matter since we tensored
with Qp).

{Remark. - It is a theorem that the above equality holds without
tensoring with Qp, in the case that both F and F " are cyclotomic fields
(Gold, Kirn [6]).)

Similarly as in a), we deduce that Qp (x) C ^ ( F ' ) -^ V^(C^(F)) is
surjective. From this one obtains : V^(C^ (F)) is already generated by
- 1 and the images of all T|̂  with 1 + m'\m, and the image of CQ.
We may forget about CQ since ^ ls nontrivial. Exactly as in a), one
shows that one only needs the image of T|^. (What happened to - 1 ?
For p odd, — 1 is projected away since we work in the pro-p-group
Coo. For p = 2, - 1 drops out after tensoring with Qg.) n

COROLLARY 2.12. - Let F, ( 9 , % be as above, cond (j) = m. Then
V^V) is free on the generator z ^ = y ^ ' ( l - X ) over <QpR[^, where
y^ = ̂ Q^)iQ(m)r.F^m) as in Lemma 2.11 a).

Proof. - By 2.11 a), y^ is a QpA-generator of ^(F), hence
for some N e ^ : p^^ c (ZpA)y^. From 2.6 one knows that i^ is the
7^-span of ^•(1-JT), hence p^ lies in the 7?[A]-span of ^•(1-Z),
hence y ^ ' ( l - X ) is a generator. ^(YQ is free on it since it is not zero
(easy) and Qp^[A]^ is a PID. D

For the next theorem we need some more notation. Let ^ be any
odd Dirichlet character of conductor d or pd (4d if p = 2), d prime
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to p, p = co^"1 the complementary even character. Let \ = ZpOc)[['T]]
as usual. Then A^ carries an involution ', which is identity on Z^)
and satisfies T == (1+ T)-1 - 1. (In the identification A, = Zj[r]],
F ^ J.p, the involution corresponds to taking inverses in r.) For p ^ 1,
we also have the Stickelberger series C^(T,p)eA, = Ap. In the notation
of Washington [23], (^(T,p) =/(T,p).

Recall F/Q is abelian, unramified over p ; Ko = F(^p), K^ = F(^ ^),
A = Gal (F/Q), r ' = Gal (^/F) ^ Z; . Let A7 = Gal (^o/Q),'
r = Gal(K^/Ko) ^ 1 + 2pZ^. We have a canonical decomposition
A' = A x 0) with <D = Gal (Q^/Q) = Gal (A:o/F). Then F7 = 0 x r
and 7? ̂  Zp[[r]][<D] ̂  ZJ[r|][<D]. Finally G = Gal (A^/Q) = A x F' =
A7 x F. The following is obvious for any Zp[A']-module M and any
character 7 of A' :

^(M))= ^(F^(M)).

THEOREM 2.13. - For any even nontrivial character p of A ' , ^ = cop"1:

oW(c,) = G,(r,p).z^_, c ^p(^(i)) = (^^(-r))^).
COROLLARY 2.14. - For any even nontrivial character p of A',

X = ® p ~ 1 , consider the two QpAp-modules V^U^/C^) and
^p(K)[[T]]/(Gp(T,p))* (1). These t\vo modules have the same characteristic
ideal over QpAp. If ^(p) ^ 1, they are even isomorphic. (Cf. Thm. 1 of
Gillard [5]. Recall : * means that A' x r operates through the inverse
map.)

Proof of Corollary. - First note ^-1 = pco"1 • V -i(^) is free cyclic
on z^_i over Qp(x-l)[[^]], since one already has an isomorphism
^-1,^) ^ ^-^(RW) ̂  QpOc^lAM^ntn] by 2.12. One now checks
easily that the map given by T\-> T ' and identity on QpOc) = QpOc"1)
induces an isomorphism over A' x r

Qpte^Mmm^p)) -^ (Qp(x)[[r|]G,(r,p))*.
From Prop. 2.10, one gets an exact sequence

0^^(Z,(l)^)^Fp(^/(C,)^Fp(^(l))/ocv|/(Fp(C,))^^(^(l)^)-^0.

(There is a small point here: Zp(l)^ n C^ = Z^(l), and V, of this is
0, since p ^ co.) Since Z^(l)^ ^ (ZJA/Z)]) ® Z^(l), 2) = decomposition
group for ^ = decomposition group of 2 in F, one has : Fp(Z^(l)5) = 0
whenever ^(p) ^ 1. At any rate, one obtains the corollary by using
Thm. 2.13 and multiplicativity of characteristic ideals.
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Remark. - One can show Vp(U^/C^) == 0 for p the trivial character.

Proof of Thm. 2.13. - Let m be the conductor of p|A ; let T| == r|^
(notation of Lemma 2.11). Since Fp(Coo) is generated by r|p by Lemma
2.11&) (NB. the lemma is applied to p|A), it will suffice to show
ocv|/0lp)=^(r,p).z^ in ^-i(n.

Let /o = ̂  + (1-U, e = WIpOY I . Then f\ = 1 mod p and
^(/o) = Frob(/o), hence /^eaR0 . One easily sees that ^(r^) =
^Q<m)/Q(m)nF(^) (if you substitute 1 - ^+< for ^ in /o, you
get 1 - ^m^+t). Our task is therefore to evaluate
(l~~<P)§(^Q(m)/Q(m)nF(/o))- For this, it is enough to show that
l-(p)8(/o)^-i = (G^(r,p)-^. (1-^)^-1; then applying the norm gives
the desired result by definition of z -i.

Let v' = v + t for brevity. There are evaluation maps e^(v e ^) from
r to Q^,;;^), and from Fp(YQ to Q^(^,^/)p, induced by
X\-^\ - ̂ , and one knows that the intersection of all kernels ker (^)
is zero. It is suggestive to write /li-^v7 for ^(/). Thus, it is
sufficient to show

(d-cp)5(/o)l^i-^)p = ̂ (r,p)(^),-i.

(It will become clear presently how Gp(T',p) operates on Q(^,i;^)
when we recall the definition of Gp(T\p) as limit of certain Stickelberger
elements.)

Calculation of left hand side :

We have 8(/o) = Df,/f, = (l-AX^;r+(l -^)). Therefore :

6(f.)\,-r^ , ̂ m ;
^ 1 - ̂

cp5(^) = J (1-^ '1 = ^-^-^
T^V O/ T l ^ T L ^ I ^ I f \ l 4 ^-1 ^\nt-,^.r+(i-^V i-(i-z)^

hence for v ^ 1

(l-(p)8(/,)|^, = (5 -(?§)(/,) | ̂

== ^pV7 • ^m _ SpV' - 1 • ^m

l-^v-.^ l-^v'-l.^'
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For the calculation of the right hand side, we need some notation
and a lemma. We use the notation of Washington [23] p. 118 (his d
is our m): ^ == m-j/, F, = Gal ( K , / K o ) ; for a prime to q^ let
Oa = 8'(a)YvOO, y(a) e A', y,(a) e F. Finally, let ^(p) =
- ^•Zaa-pG)"1^)-^"1^) (summation over l ^ a ^ f l y , ^ prime to
^v), and ^:(p) = - ̂ •Z^.pG)-1^)^), so ^(T.p) == lim ^(p) and
W.p) = lim^(p) in Zp(p)[[r]] = Ap.

LEMMA 2.15.

a)^-^-^)0 = -^ , ̂ pv; (v^O)
a=l 1 SmSpV7

b) E a.(^.^a=-^.-^^-+^,^v>-l (v>0).
Ka^^ 1 SwSpV' 1 SmSpV'-l
(a,p)=l

Proo/. - a) is quite easy, and b) follows from a). See Coleman [3],
Prop.5. D

We are ready to treat the right hand side, RHS for short. It is
sufficient to show: q^ times RHS, evaluated in 1 - ^ ^ , equals q^ times
LHS, evaluated in 1 - ̂  ^ , for v' > 0 arbitrary. We calculate :

gv-Gp(T,p)-z^_i|i_^ == tev-^Km^vQ^-i (construction of Gp)

= - Z ^•x"1^)-^^))^^)-
(a,q^)=l

= - Z X-(^(a).Y,(a))(^^) ,
(a,<7v)=l

= - ( Z (̂ ))(̂ ))
\(a,gy)=l /^-l

= - ( E ^(^^v)")
Ma^y)"1 ^X"1

= - ( £ "(^^v)") - ( £ a(^^)°) .
\ l ^ a ^ ^ ^ X " 1 \ l ^ a ^ ^ ^x"1

(a.P)=l (a,P)=l
(a,w) > 1
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Now the first term is easily seen, by Lemma 2.15 b) and the calculation
already done, to equal the left hand side in theorem 2.13, evaluated in
1 - ^v/. It remains to see that the second term is 0. This second term
(without ( . . . ) ^ _ i ) , however, is a sum of algebraic numbers
^GQ(^d^), where d runs over the proper divisors of m. Since
m = cond (p | A) = cond (x'^A) one sees, similarly as in 2.12, that
already F-^(Q(^)) = 0, hence F_i(Q(^)) = 0 for all proper
divisors d of m, and the second term above is zero. D

Remark. - It appears likely that there is a version of Thm. 2.13
without denominators, building on the work of Sinnott [21].

3. The Main Conjecture for odd and even characters.

Let F/Q be abelian, unramified over p (p a fixed prime); let
X = lim A(Kn). (Recall : A^=F(^.n), A = Ap = « p-class group of».)

Coo was defined in the last section. Let <^ = 0(Kn), En the pro-p-part
of the closure of ^ in ^, and E^ = lim En. Finally, let X+, £^,

C^ be defined by replacing Kn throughout by Kn . The following
theorem is another main result of this paper.

THEOREM 3.1. - For every even character p + 1 of Ko, the
characteristic ideal of the Ap-module Xp divides the characteristic ideal of
V^oo/ ^•"oo/p •

Remark. - a) If ^ < oo and j^ = 0 for two A-modules Y and T
(A=ZJ[T]]), then Y is quasi-isomorphic to Y ' iff Q p F ^ Q ^ r .
Moreover, it is an easy exercise to show that for even p,
Qp(Ap) ^ (^((A^p). (Use e.g. Lemma 2.2.) Hence Xp is quasi-isomorphic
to (A^p, and the characteristic ideals of Xp and X^ agree. We also
have Qp(£oo/CJp ^ Qp(E^/C^)p. Since we did not prove yet that
£00/C» has [i = 0, we only may infer from this isomorphism that the
characteristic ideals of (£oo/<"oo)p and (jE'oo/C^p agree up to a factor
power of p. Since char (Xp) is prime to p, we may replace X and
Eao/C^ by their plus counterparts in the proof of Theorem 3.1.

b) For p = 1, one can show that char(A'p) = char((^oo/Coo)p)) = (1).

c) It is a byproduct of the proof of Thm. 3.2 below that in
Theorem 3.1, actually equality holds.
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Thm. 3.1 implies the Main Conjecture :

THEOREM 3.2. — For every odd character 7 7^ co of Ko, one has mth
p=o) / - 1 :

char (^) = (JCWP)) c ^(x)[[r|] = A,, ^ p ^ 1 ;

char Oy = Q G,(T,p). (T-^o)) == (1) if P = 1.

Proo/ o/ ^e implication 3.1 => 3.2 : This is a well-known argument
(cf. Rubin [19], p. 415-416, and Greenberg [9] §2), involving the injective
limit A^ = lim A(K^), and the Galois group Y of the maximal abelian
p-ramified p-extension of K^. One has

LEMMA 3.3. — X is quasi-isomorphic to Hom^(A^,Q/Z) over A^.
(Caution : the ring A^=Zp[A'][[r]] operates via a/(a)==/((j6i), aeA^ ,
a e A^, not via the « inverse >->.)

Proof. - As stated in Solomon [22], p. 475, this follows from work
of Iwasawa. Indeed, it is not hard to give a direct proof of the lemma,
starting from Iwasawa's result that the two modules concerned are
quasi-isomorphic over A.

Next, one uses the Kummer pairing, as in Greenberg [9], and obtains
(Y+ is defined for K^ just as Y for K^):

PROPOSITION 3.4. - mth Vp as in Section 2, we have for each even
character p of Ko:

v^) ̂  v^(\y)
^ W*(i))
^ ^W*(l) with x = cop"1.

In different notation Qc odd) : V^(X) ^ Vp^Y^)* (1). D

Remark. - We preferred the simplest method here. Greenberg (see
op. cit.) has done an analysis of the Kummer pairing for p = 2 without
tensoring by Qg.

Theorem 3.2 will now follow from 3.4, 3.1, and Cor. 2.14: One
starts from the two exact sequences (one from class field theory, the
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other tautological):

0-^ U^IE^ -> Y-. X -^0,
0 -^ E^IC^ -^ VJC^ -^ VJE^ ^ 0.

By 3.1, hp • char (X) = char (^/CJp for some f c p e A p . Moreover, the
function « characteristic ideal» is multiplicative on short exact sequences.
Hence one finds by comparison that for p nontrivial

Vchar(Fp)=char((^/CJp)

= char^A^QG^r.p)) (1)V (Corollary 2.14)

From Proposition 3.4: char(rp) = char(A^(l)). It finally follows that

char(A^) divides char (A^(_G(T ,p ) ) = [.Gp(T,p)\ for all odd 7 ^ to.
\ / \2 . / \2 /

We claim that A^ is finite for x = ® • By Lemma 2.2, one can replace
F by Fn Q(^p) in showing this. For odd p, X^ is then zero (see e.g.
Mazur, Wiles [17], p. 183). For p = 2, F = Q or Q(i), JT is itself zero.
Hence we have char (A^) = (1) for ^ = G) . From the analytic class
number formula for minus class groups, one deduces equality, as claimed
in Thm. 3.2. (See e.g. Greenberg [8].) D

The rest of the section is devoted to the proof of Theorem 3.1. This
is a very technical matter; the principal ideas are already contained in
the relevant papers of Kolyvagin and Rubin. As the proof wears on,
factors p and (y-1) (r=<y» accumulate in the formulas ; using \i = 0
and Leopoldfs conjecture, one can fortunately throw them out at the
end.

LEMMA 3.5 (Rubin [19] Lemma 2.3). - Let K/Q be real and abelian,
M some fixed power of p , ^ a prime = 1 mod M which splits totally
in K. Let G = Gal(AyQ). Then there is a unique G-equivariant
epimorphism

(P.: (OKI^KY -^ / ^ I M / ,

KW
where :

/ f is the subgroup of the divisor group Div (K) of K generated by
all prime divisors of < f ; let ̂ : K" -> / ^ / M / ^ be the map which
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associates to xeK" the «support over ^»-part of the principal ideal (x);

the map going right upward is K^Y -norm+ ^x -^ / { I M / { ;
and the map going left upward is exponentiation with 1 - a^, where

^ is a generator of Gal (K(^)/K), fixed once and for all.

Proof. - See Rubin op. cit. D

Remarks. - a) Since <f splits in A:, we have a (^-isomorphism
S K / ^ K - ^ ^ ? ' Since M divides ^ - 1, the unit group (F;)6 maps
G-epimorphically onto (Z/M)[G] ^ / ^ I M / ^ . What the lemma above
does, is to fix an epimorphism (p^ in accordance with other data.

b) From (p^ one obtains another map, abusively also written (p^:

{-ye JT/^IO^ e M/,} -^ ^/M^,
^^ ̂ (u) where ^ = z^u, z e A^ , M a unit at all places over ^.

We need some notation from Kolyvagin's theory. Let A:, M be as
in the last lemma and define ̂  = ^K,M = {re N | r squarefree, all
primes <f dividing r split in K and are = 1 mod M}. An £ukr system
(ES) over A: is a family of algebraic integers (^), re^, satisfying
the properties ES 1 - 4 from Rubin [19], p. 398. (His F corresponds to
our A:.)

Given any Euler system (^) consisting of units, let x^e A^/A:^ be
defined from (^) as in loc. cit. p. 399. (Rubin always works with a
specific choice of (^).) We say: «x starts an ES» if there is an ES
(^) with ^i = x . We point out the probably well-known fact that every
circular number x of A: starts an ES. This is easy to check, using e.g.
the description of circular units obtained in claim (3) in the proof of
Lemma 2.3 : one reduces to K = Q(^) and x = 1 - ̂ , and there one
can take ^= 1 - (n^).C..

LEMMA 3.6 (see 2.4 in op. cit.). - Let r be an element of ̂ , ^ a
prime number, (^) an Euler system over K.

a) If / does not divide r , then (y.r\n = 0 (notation as in 3.5).
b) // r = ^r', r ' e ̂ , then (^ = (p,0^).

Proof. - Exactly as in loc. cit. D

The next step (application of Cebotarev's Theorem) already necessitates
some changes w.r.to Rubin's formulation, in order to cover the case
p = 2 .
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THEOREM 3.7. - Let K , M , G be as in 3.5 ; assume M ^ 4 for
p = 2. Assume that we are given: c e A ( K ) , a finite Z[G]-submodule
W cz K" |KXM, and a G-homomorphim

^-(19^-
Let 1° be the precise power of 2 which divides cond (K). Then there
exist infinitely many primes X of K such that (quantities in [••] are to
be omitted for odd p ) :

(1) W = P^l.c (we use additive notation in A(K) as always) ;

(2) If <f i5 the rational prime below X, then £ = ImodM, and f
splits completely in K ;

(3) For all w € W : (w)^ = 0 in / { I M / ( ; and there exists a unit
u of Z / M such that

(p,(w) = P^l.M.vKw)^ for all w e W.

COMPLEMENT. - If K = K^ (notation from the beginning of the
section), veN arbitrary, and p = 2, then we may replace the factor
2C+2 by 4. (This will be used later.)

Proof. - For odd p, this is just Thm. 3.1 in Rubin [19]. Let
therefore p = 2. Consider the following fields where H is the 2-class
field of K in the wide sense, so Gal ( H / K ) ^ A ( K ) :

K" = K{^ W^)

K = K(^)

H—— K

The idea is (as in loc. cit.) to find a prime K of K whose Frobenius
on H is c and whose Artin symbol on K" is (the conjugacy class of)
y, where y is an appropriate element of G s i l ( K " / K ) , constructed by
Rummer theory. But there are slight obstructions.

Claim (a). - [ H r ^ K ' ; K\ ^ 2' (in case K=K^ even H n K ' = K ) .
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Proof. - Let c > 0. Then 2 ramifies in K/Q with exponent at most
2'"1, hence all divisors of 2 ramify in K ' / K with exponent at least
M / l ' ; the degree of K ' I K is at most M/2, hence the inertia field
H r ^ K ' has degree at most 2C-1 over K ' . The case c = 0 is easy. (For
K= K^ = F^^^ : Write M = 27". For w ^ v + 2, A" is quadratic
over ^. For m > v + 2, the field K^ is quadratic over K and is the
biggest subfield of K which is unramified over K at all finite places.
In both cases, the only subfield of K' unramified everywhere over K is
K itself.)

Claim (b). - The abelian group G&l (H r\ K" / K) is annihilated by
2C+1 (by 2 in the case K=K^).

Proof. - Gal ( K ' I K } operates on the abelian group ¥= Gat ( K " / ^ ) ;
one easily sees that j = (complex conjugation on K ' ) operates as - 1
on V. Since j operates as identity on G a l ( H K ' / K ' ) , the extension
K" n H K ' / K ' must be 2-elementary, hence also K" n H / K ' n H . By
claim (a) we may deduce that Gal (K" n H / K ) is killed by 2C+1 (resp. 2).

Cfaiw (c). — The cokernel of the canonical injection from Kummer
theory

Gal { K " I K ' ) ^ Horn (W^)

is annihilated by 2.

Proof. - By Kummer theory it suffices to show:
U = ker^/TT^-^'/jr^) is annihilated by 2. But £/ injects iMo
H\K'IK^M)> Let Z = ^.CH^ . Then [^7: Z] = 2 and Z/^ is real
cyclic. If Z = K, then I^TT/A:,^)! ^ 2 and we are done. If Z ^ A:,
then ^7^ admits a subextension with Klein four group V^ as Galois
group, which implies that U contains a copy of V^. Buit
\U\ < \H\K'|Z^M)\9\H\Z|K^M)\, and both of these factors are at
most two, as one checks easily^ hence \U\ = 4 and U == ^4, and we
are done.

Now the core of the argument runs as follows : Consider the diagram

Gal(^TH/70 ^ G a l ( K " / K ) ;

T^2 I TC4 J;

Gal (H/K) ^ GaWnJf/X);
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It is cartesian (if 713 (x) = 714 (j) then there is a unique z with 71:1 (z) = ^,
K^(z) = x), and the lower right term is annihilated by 2c+l(resp. 2).

Let ^M denote a primitive M-th root of 1, and define L : (Z/M)[G] -> ̂
by ^(1) = ^M, efe) = 0 for 1 ̂  g e G. Then i\|/ e Horn (P^,^). Therefore
by (c), 2i\|/ has a preimage ye Gal { K " I K ' ) . Let yi =

2(——)eGal(7:f/A:). With the help of the diagram we find
\^/A/

8 e Gal (K" H / K ) with 6\K" = 2C+1Y, 8 | ^=2 c + l y l . By Ceboratev's
theorem, there exists infinitely many primes X, of degree one, unramified

in K " H / K with ( y,,uirA = conjugacy class of 8. Since 8 is the\A H / K /
identity on K' (because y is), ^ splits in K ' , i.e. <f (the rational prime

under K) is congruent 1 modM. Moreover, ( — — ) = 8 | 7 ^ =
\HIK}2•"(^)•i•e•'x'-2•"c•

We have for \veW: ord^(2c+2\|/(w)^) divisible by M
o y^vKw) == 1 o (2c+ly)(wl/M)/wl/M = 1 o w is an M-th power mod 5i
(the last equivalence holds because 2C + 1Y is the Artin symbol of X on
K " ) . On the other hand by definition of cp^ and since (w)^eM^
(because K " / K is unramified in ^): ord^((p^(w)) divisible by Mo\v an
M-th power mod ^. Exactly as in loc. cit. p. 403 one infers that
(p^w) = 2c+2m|/(w)^ with suitable ue^/M)' for all w e W, as claimed.
In the special case (K=K^) one can replace 2°+1 by 2 in the construction
of 8, and thus 2C+2 becomes replaced by 4. Q.E.D. D

For the rest of the section, let F/Q be abelian, unramified in p,
and K^ = F^v+i) as always. It is convenient to restate 3.7 in the
following form :

COROLLARY 3.8. - Let K = K^ . Then Thm. 3.7 holds mth the
following modifications in the formulas of the conclusion, for all p :

(IH^^c

(2) as in 3.7

(3) (p^^mHw)^.

Proof. - It is easy to get in the factors p2 for odd p, e.g. by just
replacing c by p\ and \|/ by p2^ in 3.7. D
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We now introduce new notation for our Galois groups: Recall
F/Q abelian unramified in p , Kn = F(^-n). From now on,
A = Gal^/Q), G, = Gal(^:/Q), and F, = Gal^;/^). (In ear-
lier notation, A should be something like A^ .) As always, F =
limr\ ^ J .p . Fix a topological generator y of F, and abbreviate the

p"th power of y by y^. Let now 5c range over characters of A ; note
/ is even (in contrast with earlier convention, where / was odd).
Another important change in notation : We already remarked (following
Thm. 3.1) that in proving 3.1 we may replace X, E^/C^ by their plus
counterparts. We shall do this now, even in notation. Thus: X =
lim^ with A ^ = A ( K ^ ) ; similarly for ^, E^ and C^.

For any character ^ of A, we have the ring A^ = Zp(x)[[T]] and the
A^-module (E^IC^\. This module is finitely generated (e.g. because
(7oo/Coo is finitely generated over A), we therefore may choose a
generator H^ A, of char(^/Coo),. (It will be a byproduct that
^7^0 , i.e. (E^IC^\ is A^-torsion.) On the other hand, there is a
quasi-isomorphism

T : ^©A^,),
1 = 1

and consequently char (A^) = (g) with g = gr " g k .

We need two lemmas providing the link with the finite levels.

LEMMA 3.9. - Let 7 ^ 1 be a character of A. There exists a
constant Ci depending on F only, and G^-homomorphisms
^n '' E^ -> A^ = A^/(l -yj for all n such that

(y-l)yi.^.A, c: ^(im C^) c: p - ^ ' H ^ A ^ .

LEMMA 3.10. - Let ^ be as in 3.9. There exists a constant €3
depending on F only, and Gn-homomorphisms ^ : A^ -> © A^/(^)

(=1, . . . , k
for all n such that

^•cokerCcJ = 0.

Proof of 3.9. - Write M(I_^) for the module of (1-yJ-coin variants
M/(l-yJM (M any A,-module), let F^ = Gal(^/^) for m ̂  n ,
and let ^*(*eZ) denote Tate cohomology. By Rubin [18], Lemma 1.2,
there exists x = x(F) such that |(y- l)^(r^,^)[ ^ ̂  for all
O ^ n ^ m and f e { - l , 0 } . NB. In toe. c^. there is a hypothesis
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« [K^ : Q] prime to p », but this is not used in full. One only needs
that all divisors of p in K^ are totally ramified in K^, and that K^
is linearly disjoint with the cyclotomic Zp-extension of Q. As in \oc.
cit. p. 705 one obtains for any n a sequence

(*) 0 ̂  lim H-\T^E^) -. (^oo)i-y,

-^,-> limH\r^E^-^0.
m ̂  n

(Our new notation omitting + is also applied to the symbols E^ here.)

We showed in the proof of Cor. 2.14 that V^(U^) is free cyclic
over Q p ® A ^ , Hence the submodule V^(E^) is also free cyclic, hence
there exists a A^homomorphism a: E^ -> A^ with finite cokernel and
kernel annihilated by some power of p. The first and last term in (*)
are killed by (y—l)^. From this, one infers by an easy use of Tor
the following sequence for arbitrary n :

(**) 0 ̂  A, -. (E^\,^ ̂ E^-^B^O

with (y—l)?0 ' 'An == (y—l)?^^ = 0 with c' a constant independent of
n. Now it follows as in loc. cit. p. 705 that there exist Gn-maps ^n
making the following square commutative for all n:

(y-DV-o; ^
00% — — — — — — — — — — — — — l s " ^

Q
^n-t ————————> A^ = (A^)i-^^.

On the other hand, H^(E^/im C^) is finite, hence H^ • (a(£oo^)/a(im Coo^))
is also fimite. From this and the finiteness of coker (a) one obtains
5 = s(F) e f^J with p3!! e a(im C^). Using surjectivity of A^ -> A^ we
deduce

(y-l)y^^.^.A^ c= ^(im C,,).

Similarly, •there exists s'e ^ with ^(im C^) c= H^E^ (this uses that
Qp£^ = ^(£'00) is A^-cyclic). One obtains

^^(imC^) c H^A^.

Setting Ci = max (57,s+2c /), we get the lemma. D
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Proof of 3.10. — We need a sublemma which will be used again at
the end of this section.

LEMMA 3.11. — The kernel and the cokernel of the multiplication of
y — 1 on X is finite.

Proof (cf. Rubin [18] p. 705). — X is a finitely generated A-torsion
module. By the structure theorem, it will be sufficient to show
the statement concerning the cokernel. Let Z = X/(j— 1)X. Then
Z ^ Gsi[(N/K^) where N is the maximal unramified ^-extension of
K^ which is abelian over Ko (not only over K^). N is unramified
outside p, and N is the composite of finitely many Zp-extensions with
a finite extension. Since K^ is real abelian, it has only one Zp-extension
by Leopoldfs Conjecture, namely K^. Hence N is finite over K^, and
Z = coker(y—l :X) is also finite.

Back to the proof of 3.10: We intend to show that the surjections
(!) X(i-y^) -> An have bounded kernels. The same then follows also for
the surjections A^i-y )^ -> (A^\ for any 7 (again an easy argument
involving Tor). It is then a routine matter to deduce the requested
morphisms !„ from a quasi-isomorphism T : X^ -> © \/(gi), which
will finish the proof. i=l, ..,k

By Washington [23] p. 278 we have

A, ̂  X I Y^ V, = ^—Yn Fo with (Y-l);r c Y, c= X .

Therefore the kernel of XI(\-^^X -> A^ is YJ(l-y^)X, which is an
epimorphic image of Yo/(l~y)X. The latter group is finite, by 3.11,
as was to be shown. This concludes the proof of 3.10. D

Before we can tackle the induction argument involved in proving
3.1, we first need an exceedingly technical lemma. It is modeled after
Lemma 7.1 in Rubin [13].

LEMMA 3.12. - Let Q c K, K/Q real abelian, G = GalWQ), A
a subgroup of G. Let 7 be a character o/A, M a power of p , r e ^M,K^
and "write r = <fi • • • • • <f, , with ^ prime. Set ^ = ^;. Let 'k be some
fixed prime divisor of £ in K, c = [k]eA(K).

Write A for A (K), and let B c A the subgroup generated by the
classes of the primes above < f i , • • • ^-i in K. Let x e K " / K X M such that
(x)[q^ = 0 for all primes q not dividing r (notation from 3.5), and
W c: K ) ' | K ) ( M the Zp[G}-module spanned by x . Assume that E, g ,
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T) 6 Zp[G] satisfy the following properties :
(i) E- (annihilator of (c\ e (A/B\) c: g'(Z,[G]\;
(ii) Z,[G]V(g) is finite ; and

(/,IM/\

'•l̂ ri
^llVl^f\wi Ar(iii) M ^ 1.4J.

TT^n t^r^ is a G-homomorphism ^ '.W^-^ (Z/M)[G]^ such that

(^•v|/(x)^=^.TT(x^.

Proof. - Choose some preimage P of x in K" . Notation: v^(P) is
defined as the element of Zp[G] with (P)^] = v^(P)X. (This works since
^ is totally split in K.) By hypothesis, (P)^ = 0 for all primes q not
dividing r , i.e. the support-^-part of (?) is an M-th power. Since
M-A^ = 0 (see iii)), we therefore obtain that the image of (P)(>] in
(A/B\ is trivial (because it coincides with the image of the principal
ideal (P), given the definition of B). Hence v^(P) annihilates (c\ in
(A/B\, and by i): E'v^\ is divisible by g in Zp[G]^. Abbreviate
this ring by R.

Division by (g\ is unique (if possible) in R, since that ring has no
Zp-torsion and its factor by (g\ is a finite ring by ii). Hence we may
define 8 = £'• v^\/(g\ e R. We now define \|/: W -. R/MR by setting
v|/(p-x) = r|p8 mod MR, for peZp[G]. Once v|/ is well-defined, it at
once factors to \|/: W^ -> R/MR, and we also may check the conclusion :
^\[/(x)^ = (r||A|g8)^ = r|£'.v^(P)^ = (r|£'(x)^, as required. Thus
all that matters is that \|/ is well-defined. Just suppose px = 0; we
want r|p8 = 0 mod MR. But px = 0 means pp = ^M for some y e K" .
Hence p-Qc)^ = 0. Let h = \A^\. From iii) we get

Mh- \ • (/,IM/,\ c: 7? • (x)^,,

and p annihilates the right side. Hence r|p annihilates Mh~\/^/M/^\,
which is 7^-isomorphic to R/hR (since already / { J M / ( is (Z/M)[G]-
free on ^); and therefore r|p is divisible by h in R/MR.

We claim that this implies: r[(y)^ goes to 0 in (A/B\. For this
we write :

00= Z (jOM
9 prime

i-1

-(^i-^ Z(^.]+ Z PM-^
7=1 (^r

(note (x)^] is a M-th power).
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Multiply everything in this equation by T| . Then the left side goes to
0 in (A/B\; the middle summand of the right hand side goes to 0 by
definition, and the third summand goes to 0 since r|p is divisible by
h = | A^ |. Hence r[(y\^ goes to 0 as claimed.

From the claim, we get: T| • v^(y) annihilates c^, hence by i)
E ' T| • v^ (y\ e gR, or, what is the same, E • r| • v^ (px)^ e MgR. But
^•^•YxCP^) = r! • ? • < ? • § ? and (again since division by g is unique on
R), r|p5eMr, q.e.d. D

The map v|/ produced by 3.12 goes to (Z/M)[G]^. We later would
like to have a map which goes to (Z/M)[G] and whose composite with
the natural map n : (Z/M)[G] -> (Z/M)[G]^ is \|/. This can always be
achieved at the cost of a factor A |, because of the following lemma :

LEMMA 3.13. — Let N be any Zp[^]-module, ^ a character o /A, n:
N -> N^ the natural epimorphism. Then there is a J-p[^\-homormorphism
£^: N^-> N mth ne^ = | A | • id^y.

Proof (Maschke). - One may assume N = Zp[A], N^ = ZpQc)- Let
/ be a Zp-linear right inverse of n. Then s^ : y \—> Sge^ ^/(S'Y) (j e ̂ )
does the trick. D

We now are ready for the main argument in the proof of Thm. 3.1.
Recall that we have to prove: g (the characteristic series of Xy) divides
H^ (the characteristic series of (£oo/Cx))x)- Let c = max(ci,C2) (see 3.9,
3.10). Let % be a character of A. If ^ is trivial, then it is not hard to
see that X^ is quasi-isomorphic to lim^(Qv), with Qoo = U^v ^e

cyclotomic Zp-extension of Q, and it is quite well-known that here
^4(Qy) = 0, so there is nothing to prove, and we may assume ^ 7 ^ 1 .
Fix n e N , let K = A^(=F(i^ n+i)^? choose h a power of p such that
h ^ max (| A,,/ (/^) [ , | A^/(ord (A)) | , |A , , / (p ) [ ) and let
M = \A^'h3k+ck+l, where .4 is again short for A(K). For 1 ̂  i ^ k,
there is by 3.10 an element c , •e A^ with
Tn(c,) = (0,.. .,0,^2,0,.. .,0) e ® A,/(^) with p^ in the f-th position ;
choose C j f c + i e ^ at will. From 3.10 we obtain directly:

p ' 2 • (Annihilator of c, in ^/(Ci, . . . ,c,-i)) c: ^-A^.

By Lemma 3.9 there exists a circular unit ^ e K with 8^) == (y-1)2^^.
Let (^), re^M.K, be an Euler system starting with ^, and let x^ be
as earlier (cf. Rubin [19]).
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We shall use Thm. 3.7 to construct inductively prime ideals ^ of
K, 1 ^ i ^ k + 1, such that:

(a) [̂  = p\,
(b) ^-, the rational prime below ^, is in ^M,K
(c) In A^/(M) we have:

v^(x^) = unit-IAI^y-l)2 .?2^!.^;

gi-1 • Vx,(x,,,̂ .) = unit • | A | • p^ ̂ . (y - l)2^'. v^(x^_,)

(2<f^+l) .

First we do the case i = 1 : We apply Cor. 3.8 with c = a preimage
of Ci in A = A{K), W = € | € M (<T=units of K), and

v|/: W -^ E^IE^ ̂  \nj{M) ̂  A^/(M).

Cor 3.8 provides a X which we call ^-i and which satisfies [^i]^ == p2^ = p2c^,
(fc) above holds, and for (c) we calculate :

(3.6) (3.7)

v^(^)^i = (^i)[^] = (P,^) = p'-unit-vK^i

= ^•unit-s^^)^!

=p2.unit•£,(y-l)yl^^;

if we apply (..\ to this equation, we get (the e^ gives a factor |A| ) :

^i^A = P^^-uni t - IAKy-l) 2 .^ , as claimed.

Induction step i- 1 => i ( 2< i^ fe+ l ) : Let r,-i = <f • • • ^_ i . Assume
that ^-i, . . . , ^,_i are already constructed. Putting together the formulas
(c) for 1, . . . , i — 1 gives that:

v^(x,^) divides (y - I)2"'»p^'- ̂ p^- 2yi. | A |I-1. ̂  ;

abbreviate the underlined quantity by d . It follows that the A^-module

N = ̂ -^\/^J{M^^^)

is cyclic and annihilated by dH^. From the choice of h, it is then
clear that \N\ ^ h^-^^-^^'h1-1^, and this is ^Mp-"|q-1 .
Let W, c= K" |K)(M be the A^-module generated by x^._^. We intend
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to apply Lemma 3.12 with :

r= r , -_ i ; <?=<f, - i ; X = X , _ i ; ^=^ , - -1 ;
x=v.r,_,; E = p c 2 • , and n=(y- l ) 2 ' - 1 .

We have to check the hypotheses of 3.12. The condition on x is
satisfied by 3.6; (i) is a consequence of 3.10 as has already been
noticed since B, is just the span of [^,..., [̂ . Condition (ii) is
a well-known fact about the characteristic ideal (g) of ̂  (it amounts
to saying that g and 1-y,, are coprime in A,). Condition (iii) is just
what we have proved about the module N (with a superfluous factor
p ) . Hence there exists a A^-homomorphism <)/.: W^ -^ A^/(M) with

(*) 8i- . • ̂ r,_ ,) = ̂  • (7 - I)2'- 1 . V,,_ ̂ ,_ ,), .

Similarly as above we now apply Cor. 3.8 with c a preimage of c
W - W,, and i|/ = e ,̂. Write ?i, for the resulting prime ).. Then (a)
and (fc) above are certainly satisfied. For (c), we calculate:

8i-r^(K^, = g,_,.(^^ = g,_^^_^

= p^unit.^^.^,^^) ̂  P2•unit.e,.pc2.(Y-l)2-l.^_^^_^^

Again, one applies (..), to both sides and gets the correct statement.

^Therewith the X, are constructed. The conditions c) for
l ~ , l ' • • • ' k + l give ̂  "^f^ng successively (suppress unit factor in
A,,,/(M)) :

gr • • • -Sk-v^^^) = gr • • • -^-r lAlp^^. (Y- l)2*^^)

=\^\k•pw+c^-\)^l-\^

= |A|*•>• l .p*(2+<•2)+ O+'-l) . CY _ ^\2*+ 1 . TJ

Call the underlined quantity r). We have now that g = g ' • • - . g
divides T|̂  in A^/(M), hence in A^/(p») (since certainly p"|M) From
this it follows as in Rubin [19] that g divides T)^ in A,. By Lemma 3 11
and since a = 0, see e.g. Washington [23] §7.5, one finds that n acts
on ^ with finite kernel and cokernel, which means by the structure
theorem that TI and g are coprime in Q^A,, i.e. we may write

P" = ar) + pg (suitable N e /V, a, (3 e \).
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From this one easily finds that g divides p^^H^. Again since ^=0, p
does not divide g, and we finally get: g == char(A^) divides
H^ = char((£oo/Coo)^), and this proves Theorem 3.1.

4. Theorems on class groups.

We begin with relative class groups. Theorem 3.2 states : If F/Q is
abelian, p unramified in F, ^ an odd character of
A- = Gal(^o/Q)(^o=^2p)), X ^ co, then

char(^)=QG,(r,x))<=A,.

From this, we want to get information on A(F\. At present, we only
succeed if / ls already a character of A = Gal(F/Q). Assume ^ is
such, and let Foo = U^» ^e ̂  Gyd0!0111^ Zp-extension of F . (Then
[K^ :FoJ = (p(2p).) Let JT = lim^(F^). Then it is well-known (and
follows from 2.2) that char (A^) = char (Xy). With this in mind, we
shall henceforth only consider characters % of A, and change notation
as follows : X = limA(Kn). Note that now automatically / ^ co. For
this whole section, we assume that Ap, the p-part of A, is cyclic and
F is imaginary. Then for p = 2, every odd character ^ ^s automatically
faithful on Ag.

Our result is :

THEOREM 4.1. — For all odd characters ^ ^hich are faithful on Ap,
\ve have

i d(X)

\A{F\\^ ,B^_ ,
'- p

(Recall our notation: \ x \ p = p v ( x ) for xeQ^. This theorem implies
Thm. A from § 1. In particular, equality holds in Thm.4.1., except the
case p = 2 and ^ of 2-power order; then \A(F\\ = 2 - 2~1B^ -i (w

as we saw in § 1.)

For the proof, we first remark that the theorem is known for p
odd, see Mazur and Wiles [17] (case |A| prime to p) and Solomon [22]
(general case). For simplicity (although this is unnecessary), we suppose
p = 2 for the rest of the proof. Recall our notation from § 1 : Ap = odd
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part of A and Xo = restriction of x to A(>. There we also saw that
A(F)^ ^ (A(F)/imA(F+)\ ̂  (A(F)/im A(F+)\^.

The proof of 4.1 splits up in two cases: y(2) ^ 1 and x(2) = 1.
The former is relatively easy, and the latter rather difficult.

Since x(complex conj.) = - 1, ^ is injective on A, (cf. end of
introduction), hence ker (x) is contained in the odd part Ao of A. Hence
one may replace F throughout by the fixed field of ker 00, i.e. we
may assume % is injective on A.

The case -^(2) ^ I , i.e. 2 does not split completely in F. Let D be
the decomposition group of 2 in A and let A = A / D Let j be a
topological generator of F = Gal (K^/K,), 7, = y< As in Washington
[23] p. 278 we get:

o^lT:r^•Y^-y^^w-^x^A(K^^o,

and the first term is an epimorphic image of Z = Y^(\-^)X. (The
module Yo is defined in toe. cit. p. 278.)

Let L and G = Gal ( L / F ) be as in toe. cit. p. 277 and pick a divisor
p of p in F, <p a prime over p in L, and o a generator of the inertia
group /, of <p in L / F . Let G' = Gal (L/Q) and Z' be the Z,-span of
all z^^a-^eX/^l-^X ( - c e G ' ) . Then G' operates naturally on
Z'; for z e G we have (^a-'e^G] = (1-y)^ by toe. cit., so z, = 0.
This implies that z, only depends on T mod G, hence Z' is an
epimorphic image of the augmentation ideal of Z,A via 8 - 11-> z, (r
any lift of 6), and also Z' = Z. Since the p-part of A is cyclic'by
hypothesis, Z' = Z is cyclic over ZpA. After a little calculation one
finds that D c A acts trivially on Z', hence Z' is an epimorphic image
of ZpA. By taking x-parts, we find :

(ZA ̂  ̂ /(l -yJA, ̂  ̂ (^), -^0.

On the leftmost term, the Frobenius of p = 2 acts trivially (since D
acts trivially), and also via ^(2), per definition. Hence the leftmost term
is a cyclic Z, (^-module annihilated by 1 - x(2), i.e. its 2-order is at
most H-^)!^. On the other hand,

char (Ax) = (2-l(?2(^,x)),
and

2-l^(r,x)^.„ = 2-l^(0,x) = - 2-l(l-x-l(2))•Z^.^ ^ 0.
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Hence we get from a well-known lemma (see e.g. Coates [1] Lemma 9):

|Z,/(I-Y)^| ^ z.oo/a-x-^))-^-,
i d(X)

— 1 1 _^- i^9\ |d(x) . _ n— 11 X 1^12 ^ °i -iz ' 2

From the exact sequence and the above dicussion, we then get the
formula of 4.1.

The case ^(2) = 1. By our reduction to the case ^ faithful on A,
we have that 2 is totally split in F . The problem is that the error term
linking A ^ / ( l — y J A ^ and A(Fn) is no longer a finite group, and
correspondingly that the Iwasawa series (72 (T, 7) is divisible by T. So
roughly speaking « we must divide 0 by 0 and end up with the correct
result».

We begin with a lemma for which we allow arbitrary p . Let B^ be
the subgroup generated by the divisors of p in the divisor group of
Fn, and Dn the image of B^ in An == A(F^). Let D^ = limZ)^, and
define B ^ , D ^ analogously with F~n instead of F^. (The following
lemma only needs that p is totally split in Fo(=F), all divisors of p
in FQ are totally ramified in the Zp-extension F ^ , and that |ipoo(Foo) is
finite.)

LEMMA 4.2. — With the above notation and j = complex conjugation
e A , one has an isomorphism of J-p/^[[Y}}-modules, mth trivial V-action
on the right :

Z),/im/):^Z,A/((l+;)Z,A).

Proof. — Fix a norm-coherent sequence of divisors p^ of p in F^.
Let h(h^) be the p-class number of F ^ F ^ ) . Then the projective system
BJ(hBo-\-B^) is isomorphic to the projective system (Z/hprlZ)[A]/(l+j),
via 11-^ pn - We now intend to show that the orders of the kernels
of ain'.BJ(hBo-^-B^)-> Dn/imD^ are bounded. (NB. hB^ maps
to 0 in Dn.) This will imply that lim oc^ induces an isomorphism
Zp([A]/(l+j) -> D^/imD^, for the ker (o^) disappear in the limit which
is Zp-torsion free.
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It suffices to show |Im (a,,)) ^ ^"•^'^•const for n -> oo, or:
|AJ/|Z^| ^ p^i2. const. By Lang [16], chap. 13 §4, formulas (2) and
(3), we have for any cyclic extension K / F ' with group G (I = divisor
group, P = principal divisor group, e ( k / F ' ) = product of all ramification
indices of K / F ' , N = N 1 , 1 ? ' ) '•

e(K/F')'h,[^:-pa=K ' KJ [ K : F ' } ^ E F . : N E ^

We apply this twice : for ( K , F ' ) = (F»,F) and ( K , F ' ) = (F^F4-), and
compare. Note that B^ = I ^ ^ I ^ / P ^ ) ' ^ Dn (for A:=FJ, with / short
for « p-part ». One obtains

^(F,/F)=plA^(F;/F+)=plAI/2,

D, ^p^-^h^E.'.NEpj,

••(^-'v.l

/LAJ.— i |
\D!\==p\2 jh^^E^'.NE^y.

Since F contains only finitely many roots of 1 of p-power order, the
quotient of the two norm indices in the last two equations stays
bounded. Thus the quotient of the two right hand sides above can be
minorated by p^12 times a constant, QED. D

COROLLARY 4.3. — Let p = 2 again. Let X = lim^(F^), and
E = X/D^ ^ lim (AnIDn), (NB. E has no relation with units here),

and similarly X^ , F4 ' . Let i : E+ -> E be the canonical map. Then i is
injective. (We shall take the liberty of "writing E|E+ for E/imE+ .)

Proof. — Consider the diagram

0->Z)^ -^X+ -> E^ -^0
i i i

0 - ^ D ^ - > X - > E - > 0 .

We want D^r^imX^ = im D^ (=? is, clear). Consider the operation
of j on the quotient Q = D^ r\imX+/im D^,. It must be identity
(because of the plus sign at X), but it must also be -identity, as it is
so on the whole of D^/imD^. Since D^/imD^ has no 2-torsion by
lemma 4.2, Q must be zero, q.e.d. D
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Now let also En == A ^ / D ^ , E^ = A ^ / D ^ . For brevity, we write M^
for M/xM throughout for Z^,[[r]]-modules M and xeZp[[V]]. Look
at the following diagram where Z and Z4' are defined as kernels :

Et ^00 - > Z +

a i
0-^ Z

(^1-y

P i
£'

ei
Eo ^0.

(*)
l-y -7

we obtainFrom the snake lemma
looker (£)|-|ker (8)|-1:

using | £ o l - £'0'

K^/^^i-J = looker (?)

(**) ^ |ker(P)|- J^H^r1-looker (a)|

= Iker(P) E, ' \ E ! \ ~ l ' \ Z / i m Z + \ .

(The ^ sign comes from neglecting | ker (a) | ~1 .)

Convention and Remark. — Denote /o = X l ^ o by ^ for the rest of
the proof. Since Ao has odd order, the functor ( • • \ is exact on ZatAo]-
modules. Hence the preceding formulas and the next lemma remain
true on attaching ( • • \ to all modules involved.

LEMMA 4.4. — Let ( ' ' y^^ denote the annihilator of 1 — y in ( - • ) .
If Z/im Z+ is finite, then

| ker (?) | ^ \ ( E / E + ) ( 1 ~ ' { ) < oo .

Proof. — There is a map P7 with P'P = 2- id (use the norm Fn->
F ^ ) . Hence 2-ker(P) = 0, and ker (?) is finite because E^ (a quotient
of X+) is finitely generated over Z g - Since Eo is finite, the hypothesis
implies that ( E / E ^(I-Y) is finite, whence T = 1 — y operates with finite
kernel and cokernel on E / E ^ . From 0 -> E ' ^ -> E -^ E / E ^ -. 0 we get
(since ( • • . \^ = A / ( r ) ® A . . . ) :

Tor^A^T),^/^) -^ (E^^-^E,^ -^ (E/E^,,, ̂ 0 ,

and the lemma follows because the Tor term is just ( E / E ' ^ Y 1 ' ^ . D

From this we get
E^\d(X)

PROPOSITION4.5. — |^G'2(0,7) <
l^o^l

• K Z / Z + ^ I . C is derivative
w.r.to T).
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Proof. - There is a short exact sequence (from 4.3 and the snake
lemma):

0 ̂  (D^/D^\ -^ (Z/im X^\ -> (E/E^ -^ 0.

In all three occurences, one may replace (")^ by (")^ without change.
Thus we obtain for the characteristic ideals over A^ = ^(^[[T}]:

char((Z^/D^) = (T) by Lemma 4.2;

char ((A7im X^) = ̂ G^T^)\ by Section 3.

Hence 2-1G!2(T,^) is divisible by T (which one may also see directly
form x(2)=l ; so-called trivial zero), and

char((£/^+),)=QG,(^,7)•^-ly

From a well-known lemma on Iwasawa modules (see e.g. Coates [1]),
we obtain

d(X)
looker (P^)| = {(E/E^.^ = \(EI E^-^^G'^)

We now use (**) for the left hand side and obtain

d(X)

|ker(^)|•|^|.|(^^|- l.[(Z/imZ+)^| ^ ̂ E/E^ .•^UOi)

By (the aversion of) Lemma 4.4 we get the conclusion. (Note that the
proposition is trivial if (Z/Z^ happens to be infinite.) D

We have \ E , / E , \ = \E,\/\E^ = \A,\-\A, ^ l^or ' - l ^o" , and the
^-version of this is also true. Since ^ is nontrivial, the maps (A^\->
A^ and (D^\->D^ are injective, whence \A^\A^\~1=\A^| A^\~\
and similarly for Z>. Hence we may rewrite the statement of 4.5 as
follows :

(***)

(A,\
(^

^

(E,\
W\

1 ^ , ,yG,([0,

TO
(D

x)

o'),
d(X)

2
( z }VmZ^

— 1 (D,\
(Df\



488 CORNELIUS GREITHER

Note that the left hand side of (***) is precisely \A{F\\. To prove
Thm.4.1, it therefore suffices to show the following

THEOREM 4.6. — ^2(0,X)

d(x) z
,imZ'

(D,\
W\o A 2^~1

d(x)

We need some preparations. One main point is to get a better
understanding of Z , Z+ etc. Fix a prime divisor p of p in F and a
prime p'1' under p in F + . Then the prime divisors of p in F are
precisely all pg = p5, 8 e A, and the prime divisors of p in F^ are the
(p^)5 where 8 runs over a set of representatives of A mod {lj}. Let
V c= (Q^ be the subgroup generated by - 1 and 2 , s o ^ = { l , - l } x 2 z .
The group (Qz 00 F)" is canonically identified with (Qz^, the A-fold
product of Q^ with itself. We introduce the following group :

N(F) = (Q>, (g) ^'/closure^P-T)- V

and similarly N^) (replace F by ^+ , A by A^A/UJ}). Note that
N(F) is an epimorphic image of WY.

PROPOSITION 4.7. - If ^ + 1, then :
a) TTier^ is a natural isomorphism Z^ -> N(F\, and ditto with + .

b) (Z/imZ^, ^ (^(^/^(F^), ^ ^(F),.

Proo/. - a) (Cf. Sinnott [21].) We give the proof for F; the
argument for F+ is quite the same. Let L be the maximal unramified
abelian 2-extension of Foo in which all divisors of 2 split completely.
Then by class field theory, Gal(L/FJ ^ E = X / D ^ . Similarly,
EQ = Gal(Lo/F), LQ the maximal abelian unramified 2-extension of F
in which all divisors of 2 split completely. Let M = L n F06;
G = Gal(L/F), G7G" = Gal(M/F). The fields involved form a diagram

^oo

r

K. = F

E.
Foo^o

r

L.

M L

Claim. - Gal(M/Lo) is naturally isomorphic to N(F). Proof of
claim : M is the maximal abelian 2-ramified 2-extension of F satisfying
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simultaneously (i) M/F^ unramified and (ii) all divisors of 2 in F have
inertial degree one in M. Let C^F) = J^/F' -Y[U^F) (product over
all q not dividing 2). Then M corresponds to some closed subgroup H
of CaCF). We want to determine H . First of all:

M ̂  F^^H c= N^(H,) c C^F),

with Ho = (norm group belonging to Qoo/Q) = {1, -1} c: Q^^ =
€2(0). Recall we identified (Qz-F)' with (C^; let C..)^: Q^-.
(Q^-Fy be the 5-th canonical injection. Of course there is the canonical
map (Q,Fy -^(F).

Since, for all pg , the decomposition group and the inertia group of
p§ in M coincide, we know: in^C^) = im^^) in C ^ F ) / H . Hence
one can find for all 8 e A some i^eZ^ with 2(s) = (u^ mod H , i.e.
(2•^ l) ( s )e^. Since ^Q((2.^-1)<5)) = 2u5-le Q^^2 , we must have
u^e{l, -1}. On the other hand, we also have that M is unramified
over K^, which translates to :

^(Z^nA^-^o) c: H,

and in particular (- l)^ e H for all 6. Taking all this together, we
see that H is the image of V^ in C^F). (Recall F = { l , - l } x
21 c Q^ .) Hence Gal(M/F) = C^CQ/imV^

One now checks that one has a short exact sequence

o . Q^ C,(F) ^o
^^p-T-^"^8"^"'05

where ^o/^o is the Galois group of L o / F . Hence the first term, which
is just A^CF), is canonically isomorphic to Gal(M/Lo), in other words :

0 -> N(F) -^ G I G ' -> E, -. 0

is exact. Now one has as usual (cf. Washington [23] Lemma 13.14):

O ^ E ^ - ^ G / G ' -^ r -^0 ,

with A operating trivially on r, i.e. F^ == 0. Hence E^,^ ^ ( G / G ' ) ^ ,
and since all the maps are canonical, we obtain N(f)^^
ker(^(i_^ -> Eo^) = Z^, which proves part a).
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Proof of b). — From a) for F and F^ one obtains by naturality of
the isomorphism an isomorphism (Z/imZ^ ^ (N(F)/N(F+)\. One
sees directly that j operates as — 1 on the right hand side, hence also
on the left hand side, and we may replace the subscript i; by ^ on
both sides. D

In order to process the quantity ( N ( F ) / N ( F + ) ) ^ further, we need
the Gross-Koblitz formula, as used in Gross [10].

DEFINITIONS.

W = (^P^D/^P-1]' (2-units of F mod 2-units of F + ) ,
M == (free ^-module on all p§, 8eA)/(5pan of all pgpi)

^ZJA]/(1 + 7 ) ;
p: W -^ M,u ^ E ^psO^-ps ;

8eA

^: W -> 4M

u ^ ^log^S-^).^. (log2: F^Fp=Q, logi4Z,.)
S€A

Then ^ and ^ are ZA-linear, with the evident A-action on M. Note
that M^ ^ Za(x) v1^ pi-^1, and that we also have homomorphisms
H,, ^: ^-M,.

The usefulness of ^ and ^ only becomes apparent when they are
applied to a certain subgroup of W afforded by Gauss sums. In more
detail: Let m be the conductor of F (hence m is odd), ^3 a prime of
Q(m) over p , and T| : ^Q(^)/^P -> ^m the m-th power residue symbol.
Further, let \|/: Fg -^ ^2 a (or rather: the) nontrivial additive character.
Define a Gauss sum g by

^ = - ETi-^-vKTr^)) (Tr: ^/^P ̂  ̂  the trace).

Then g e F . (This is an instance of the fact that for p arbitrary, ^-1

is in the decomposition field of p in Q(m).) Moreover, it certainly is
a 2-unit. Denote the ZgA-span of g in W by <^>. From Stickelberger's
theorem one obtains :

(Gl) g(9^ = p^-^^-^
(outer sum over b ̂ Z/m)"/^), / = ord (p mod m))
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hence
[i(g) = w^ ^ <fc/m>-p8-i ,

5eA ft mod m
CT^§

)̂ = ̂ •(S^/m^-^mp), = m.B^_,.(?),.

On the other hand, we have from the Gross-Koblitz relation and the
Ferrero-Greenberg relation, as used in Gross [10], p. 993 :

^(§) = Zl^^"1^)^ by definition, hence
8

^^(Elogz^-X^Kp),
§

/

= (Zr^-logznW^/^KP^ (where a,^ 8)
5 (=1

(Gross-Koblitz)
= Z X - lW•log2^2«fo/m»)(p),

(b,m)= 1

= E ^(fcK^OKp^ (Ferrero-Greenberg).
(&,m)=l

For the definition of ^(b,s), see Gross op. cit. By Lemma 4.8 below,
the last expression equals LaCO.xKp)/- This in turn equals
log2(M)6'2(0,x)(Px) ̂  the formula ^(s,/) = ^2^ - l,5c), and log2(i()
is associated to 4. The end result is therefore :

(G2) V^)=4G2(0,x).unit.(p),.

LEMMA 4.8. — With the above notation ^ ^ ~ l ( b ) 9 ^ ( b / s )
^ (6,m)=l

=1/2(5,^) as meromorphic functions on ~L^.

Proof. — It suffices to check this f o r s = l — n , n e ^ J odd. This
is easily done, using the definitions (see Washington [23] chap. 5 and
Gross [10] p. 989). D

It remains to put everything together. From (Gl) we see that
u^ 7^ 0; from Gross [10] we see \ ^ 0. (This follows from 1.15 in op.
cit., which in turn is a consequence of Conjecture 2.12. This conjecture
is proved in the abelian case at the end of op. cit.). The range of ^
and u^ is M^; let us identify M^ with ^(x) with the help of the basis
element (p\ for the rest of the proof.
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It is an easy exercise to show ©2 ® W ^ QzMl +7), whence also
QaOO W ^ C^Oc). Let M^ be the 2-adic completion of ^, modulo
2-torsion. Then W\ is a rank one module over ^Oc), hence X^ and ^
induce monomorphisms ^x ^ ^x-

LEMMA 4.9. - | coker (?4) | = [(Z/imZ4")^.
Proo/. - We show | coker (^)| == \(N(F)/N(F+)\\ (this suffices by

4.7). Consider
^ ^> 4Z,(x)

i I I

^^((Q^ACM^)^ ^> 4Z,Oc)

with ^ / : (Q2^)> <-^4Z2 defined exactly as ?i. Since
ker(log2: Q^-^Zz) ^ ^, we easily see that the lower sequence is
exact. Hence coker (\)= domain (k^/(imW^imVA)^(N(F)/N(F+)\,
which proves the lemma. D

LEMMA 4.10. - | coker (^) | = |(Z)o/im D^\ .
Proof. - From the definition of ^i, one has a natural isomorphism

coker (^i) ^ Z>o/im D ^).
Finally, we can give the proof of Theorem 4.6 :

I (Z/im Z +), | -1.! (Z)o/im D f\ \ ^ ̂  ̂  \ coker (?i,) | -1.! coker (^) |'^i-^^o/im^o^l^^Ico^^^'-1-

^»|-l•|Im(^)/^«^)= ^OOAx^)!"1-!^ ax)Ax«^»l-1^2(z)/^«^»l
•|lm(^)/^«^»|-1

= |4Z2(x)A,«^»l-1-! ̂ x/<^>-1^2(x)/^«^»l-l ̂ x/«^»l~1

== 1^2(0,x)l2 -d(x)•|Bl,,-l|2 -d(x) by (Gl) and (G2) above.

This is, up to slight rearranging, precisely the formula of 4.6. Hence
4.6 and also 4.1 are proved.

We now turn to class groups of real abelian fields. Let for the rest
of the section F be a real abelian number field, p a fixed prime,
A = Ap x AQ = Gal(F/Q), with Ap the p-part of A. First we consider

*a variant of the class group: let A ' ( F ) = lim C(^V)(F), with
C(pv)(F) = p-part of /^V)(F)/P^V)(F)), the p-ray class group mod p^p.
Then F= \imA'(Fn) (Fn as in §3) is isomorphic to the Galois group
of the maximal abelian p-ramified p-extension of F ^ . Recall e = e^ =
A o l - 1 . E § .

§ e A n
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THEOREM 4.11. - The group (\-e}A'(F) is finite, and for all
characters Xo ^ 1 o/Ao:

1 1 l^x)i^Wxoi- nxiAo=xo ^p(U)

(7 character o/A).

Proo/. - V is a A^-module, and one knows that A ' ( F ) ^ Y/TY.
Let t be defined by 1 + t = M.(1+TT1; then by Theorem 3.2 and
Prop. 3.4, for all characters 7 of A :

charA,(r,) =5<^(r,5c)A,,

hence, as is easily verified,

^So^o) = (nI^C^X^. fn over all x with x|Ao=XoV
\ x / \ /

From Iwasawa theory we get, letting 8(^0) = order of module
of T-coinvariants of (V^)^5: ( A ' is short for A\F))

d(xo)
\A'xo ' n^t^._,

d(xo)

•§0co)

= n 2^(1^) •8(Xo).

If we can show that, on the other hand, the product of \A[ \ over all
7o 7^ 1 equals the product of \2~lLp(l^)\p over all 7 with / |Ao ^ 1,
then all 5(^o) must be 1, and we are done. The former product is
equal to \(\-e)A'\ = \ A ' ( F ) \ / \ A ' ( L ) \ , L the fixed field of Ao. Now
consider the sequence

0^(l-e)(U,/E^) -^ (\-e)A'(F) -^ (\-e)A(F)^Q.

We claim that \(l-e)(U^/E^\ = p-^^^.^F).^)-1.

(Proof of claim : Consider the homomorphism
log^:(l-^)U^->(l-^)p(Z^®^). One has | ker (logp) | == | coker (log^) |
(for odd p, both are 1 ; for p = 2, both are equal to 2^F)-^(L), g
denoting the decomposition degree of 2 in an abelian field). Moreover,
(1 - e)Ep n ker (logp) = 0. Hence we find 1(1-6?) U p l E p ) \ =
\(\-e)pl.p(9Fl(\-e)\ogp(Ep)\. Using the definition of the regulators
Rp(F) and Rp(L), one obtains the claimed formula.)
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Hence we get:

Kl-^WI-P-————.^.^.

By the p-adic class number formula for F, and L (see e.g. Washington
[23] Thm. 5.24), the last expression equals

d ( F ) 1/2(2?)-^^-^ . n (i-p-^pr^u).d(L) \P X lAo^ l

Now L and F are unramified in p , and ^(p) is never zero. Hence this
last expression has the same p- value as j^"1!^!,̂ ) (product over all
^ with / |A()T^I) , what was to be shown. D

This theorem has two consequences. First, we get a real analog for
the Conjecture of Iwasawa and Leopoldt:

THEOREM 4.12 (= Thm. C in §1). - Let F be as in 4.11, and
cyclic over Q. (Actually Ap cyclic suffices.) Then for all characters ^ of
A such that ^ | A^, is faithful :

i d(x)
\A'(F\\ = ,^(l,x) .

p

Proof. — Let ^ = ^ | Ao, ^" = ̂ \\. If A^, = 1, the theorem is
immediate from Thm. 4.11. So suppose Ap 7^ 1 and let C be the unique
subgroup of Ap with p elements. Denote the fixed field of C by F^.
By Lemma 4.13 below one has maps a: A ' ( F ) —> A'(F-^ and P :
A ' ( F ^ ) -> A ' ( F ) such that a is surjective, P is injective, and pa is
multiplication with ^aeZ[A]. By Solomon [22] cor. 11.1, we may
infer: a ec

\A\F\\ = \A'(F\.\1\A\F,\.

Now a character of F is also a character of Fi iff it is not faithful
onAp. By 4.11, we hence obtain that the above quotient is equal to

n^-^i,;;)^
(product over all ^ with ^ |Ao = 7', ^ on Ap faithful).

It is easy to see that the latter product equals precisely
^-^(U)!^.
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LEMMA 4.13. - If F/K is a p-extension of cyclic number fields which
are unramified over p , then there are Galois-equivariant homomorphisms
Q i : A ' ( F ) -. A ' ( K ) and P : A ' ( K ) -> A ' ( F ) such that a is onto, P is
monic, and pa = multiplication by the norm element of C = Gal(F/K).

Proof. - One naturally takes a to be the map induced by A^/jc,
and P the map induced by the inclusion K c= F . Since Gal (F/Q) is
spanned by inertia groups, and is cyclic, one sees that some rational
prime (^p) ramifies totally in F/Q. Hence F/K has no p-ramified
subextensions, and therefore a is onto. The point is to show that P is
injective. If m is any divisor of K, then one verifies that
ker(C,(70 -. C^(F)) embeds into H\C,E^F)) where E^F) =
ker(^ -^ F/md)^). It is therefore sufficient to show lim
H\C,E(pv)(F)') = 0 (since lim is left exact). The proof of this uses the
validity of Leopoldt's conjecture for p and F: it is easily checked that
there exists a constant 2 < N e N such that: if x e F^+I)(F), then x
is the p-th power of another unity y . Since p is unramified in F, y is
necessarily already in F(^)(F). Now let p0 = |C|, N ^ V G ^j and take
any 1-cocycle x = (x^) in Z^C.F^v+^F)). Then every x^ can be
written y^ with y ^ e E ^ F ) . Since there are no p-power roots of unity
in F, (} )̂ is again a cocycle. Hence the image of x in H^(C,E^(F))
is divisible by p0 which means that it is zero. Since v (^N) was
arbitrary, we get our conclusion.

Now we go back from ray class groups to class groups.

THEOREM 4.14. - Let F/Q be real and cyclic with group A . (Again,
it suffices that the p-part Ap is cyclic.) Let ^p be the group of circular
units of F in the sense of Sinnott, Cp = ^p n E p . Then we have for all
nontrivial characters %' of Ao (recall A = A ? x A o ) :

! | (E,IC,\. \=\A (F)/1 • l^'^ • | (R: U)^ ,

where R = Z[A] and U are as in Sinnott [20].

Remark. - The group Cp is usually a bit smaller than one would
expect; e.g., if F = QKp)^ p ^ 3, then it does not contain ^p + ^1

(only the square of this unit). This can be partly remedied by studying
the group Cp (see op. cit. p. 209). Usually, this brings about indeterminacies
in the formulas. However, one can prove the following :



496 CORNELIUS GREITHER

COROLLARY 4.15. — If | A | is prime to p , then the conjecture ofG.
Gras is true in the following form : [Ep/C,p] = [A(F)] in ^"(ZJA]),
the Grothendieck group of the category of all finite ^.p[A]-modules.

Assuming Thm. 4.14, we give the proof of the corollary :

It is not too hard to check that ZpR = ZpU if |A| is prime to p .
Using the description of K^{Zp[A}) via ^-parts, and Thm. 4.14, we
obtain [Ep/Cp] = [A(F)] + [(1-^)(Z^/2Z^)[A]]. For p odd, we are then
done since C^p/Cp is 2-elementary. For p = 2, one checks, using the
arguments of Sinnott [20], p. 209 and (p, A|) = 1, that every totally
positive element of Cp is a square in E p , and hence
CIF/CF ^ (1-^)(Z/2Z)[A], and we are again done. D

Proof of 4.14. — First note that U does not have to be a subset
of R; the index notation is explained in Sinnott, op. cit. §1. Let
e' == 1 — e . The statement of 4.14 can be equivalently expressed in the
form (suppress subscripts (. . )p) '.

[e'WQ] = [e'A(F)] + [^Z,/2)[A]] + [ e ' R / e ' U ]

in K^(Zp[A]). (To see the equivalence, note that R^ = Zp(^)[Ap] is
local for any character %' of Ao, and the class of an R^ module in
K^(Zp[^\) is determined by its length, i.e. by its order.) Let (9 be the
ring obtained by adjoining all values of all characters ^ of A to Zp.
(O will play the role of R in Sinnott's proof.) Let (9^ be the Z^A-
module (9 (A operating through 7).

Claim. - [(9®e'A(F)} = ̂ W(2- ̂ (U))] - [e'U, : e'E,\ in
CT^A). x

(^ running over all characters of A which are nontrivial on Ao, ®
taken over Zp.)

To prove this claim, it suffices to see that for any %' ^ 1, A ' ( F )
has the cardinality p to the power ^t^"1!^!,^)) (sum over ^ with
^lAo^7); but this follows directly from Theorem 4.11.

Since [Ey/C^ = [Up/Cp] — [Up/Ep] ^d since the natural map
K^^pA) -> K^^A) is injective, it remains to show :

(*) [(9®e'(UplCp)\ = f ]~[ ^i(\Lp(\^)\\
L/|Ao^l / \1 /J

+ [e'^/l^W + [e'ORIe'OU},
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where the last summand means [e'(9Rle'(9M\ - [ e ' G U / e ' ^ M ] , M arbitrary
lattice contained in both R and U . This is proved by adapting the
method of Sinnott [20] §4. In particular, the L-functions used in loc.
cit. are replaced by p-adic L-functions. We consider the p-adic logarithmic
embedding

^: (9 ® Up -^ pW, u ̂  ^ log^.a-1.
S e A

One checks, using that F/Q is unramified in p , that

[(9®e\U^C,)} = [^e'p^^^og^e'C^ = [e'pOWI^(e'C,)}.

Following Sinnott, we define

G/ = ̂ -I'L^l^^p-W-ir^f^x^eQwtWW
x

(sum over all characters ̂  of A). One rewrites prop. 4.2 and its corollary
of op. cit. appropriately (using the formula for Lp(l,/)) and obtains :

^(e'Cp) = e ' w ' U .

On the other hand, since R^ = fj^00 is the integral closure of ^[A],
x

one obtains

[e'pWIe'^'W} = [e'pR-le'^R-} = |~ ]~[ ^Wp(l,z))1
LxlAo^l J

(note (p'^Cp)-!)"1^). Putting the last three formulas together, we
get

[O^e^UplCf)} = [e'pWIe'^'U}
= [e'pWIe'w'W}' [e'W/e'U]

=[ n ^/(^(l^))]-^^:^^,
LxlAo^l J

which implies the desired formula (*) immediately.
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