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LIPSCHITZ PROPERTIES
OF SEMI-ANALYTIC SETS

par Adam PARUSINSKI

The main purpose of this paper is to prove the existence of an
L-stratification for a compact semi-analytic set. The concept of
L-stratification was introduced in [6] by Mostowski, where its existence
for a germ of a complex analytic set was proved. An L-stratification
is a stratification satisfying very strong conditions (see Definition 1.1),
much stronger than Whitney’s Conditions, but it ensures the constance
of the Lipschitz type of the stratified set along each stratum.

The existence of an L-stratification in the real case can be deduced
from the complexe one (see [7]), but in this paper we present the proof
which is independent of the complex case and does not use the « quasi-
wings », a machinery introduced by Mostowski in [6].

In the first section we recall Mostowski’s definition of an L-
stratification and introduce an equivalent definition, more convenient
for us.

In Section 2, we give a brief exposition of Mostowski’s theory on
regular projections and its consequences. In Section 3 we derive from
this theory some interesting facts about semi-analytic sets (Proposition 3.5
and Remark 3.6). Section4 has a preparatory character for the proof
of the main result, which is showed in Section 5. In section 6, we prove
Key Lemma, which plays the role of « quasi-wings » in our investigations.

The reader is expected to be familiar with some basic properties of
semi-analytic sets ([4] is the best reference).

The character C will stand for various constants.

Key-words : Semi-analytic sets - Lipschitz stratification (L-stratification) - Regular
projections - L-regular sets - Lipschitz vector fields.
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1. L-stratifications.

Let X be a semi-analytic subset of an open subset of R” or a
complex analytic subset of an open subset of C". By a stratification of
X we shall mean a family & = {S/}7, of closed semi-analytic subsets
of X (or complex analytic) such that

X=8">8"1o...o8#

and & = S\S'" for j=1 1+ 1,...,m (we mean S ' = (), is a
smooth manifold of pure dimensionj or empty (a complex analytic
manifold of pure complex dimension j) . We call the connected components
of S’ the strata of &. For qe §' let P,:R" —» T8 (P,:C" - T,$) be
the orthogonal projection and P; = I — P, be the orthogonal projection
onto the normal space T+S'. We denote the function of distance to S’
by d;. From now on the letter | is reserved for the smallest dimension
of strata of & .

In [6] Mostowski has introduced the notion of L-stratification. Let
us present his definition in a slightly shortened but an equivalent way.

Let ¢ be a fixed constant, ¢ > 1. A chain (more exactly, a c-chain)
for a point ge& is a strictly decreasing sequence of indices
j =JjisJjzs .-, J» = l and a sequence of points g; € S such that 9, =49
and :

js is the greatest integer for which
dx(q) > 2¢*d; (q) for all k <jo, k=1,
lg—q;| < cd;(q).

The existence of a chain for a given point is clear. It is easy to verify
the following inequalities :

1 di, (@) < 27c™d; _1(q),
(2) 19;,— 4, | < Z"HCZ("H)djS—l(Q),
(©) 2d;-1(q;) = d;,-1(q).
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DerFiNITION 1.1, — We call a stratification & = {S}., of X
an L-stratification if for some constant C > 0 and every chain
q = 4;,,4;,> ----9;, and every k, 1 < k <r,

4) \Pg; oy, -+ Poy | < Cla—g;)/d;—1(q).

. 1
If, further, q¢' € 8t and |q—q'| < (2—c d;-1(q), then

(5) I(P(I'_P(I)quz st I)Cljkk < C|q_q’|/djk—1(4)’

in particular,

(6) IPq'—qu < C'q_q’|/dj1~1(‘1),
where d,_, = 1.

We say that a vector field v defined in a subset of X is &-compatible
if v is tangent to the strata of &% . The following proposition, proved
first by Mostowski [6], explains the interest of L-stratifications.

PrOPOSITION 1.2. — Let & = {S'}[*, be an L-stratification of X and
let v be a Lipschitz -compatible vector field on S bounded on
S!'(I<j<m). Then v can be extended to a Lipschitz &-compatible vector
field on S7*1.

Proof. — Let L denote a Lipschitz constant of v and let v be
bounded on S' by K.

Extend v to a Lipschitz vector field on R" (by [1] any Lipschitz
function defined in a subset of R" can be extended to a Lipschitz
function on R" with the same Lipschitz constant). By abuse of notation
we continue to write v for this extension. Define a vector field on S/*!
by:w = von S/ and w(g) = Pu(q)forge §*'. Letq = Qiys By s -5 4,
be a chain for g e $*'. Then, by (2) and (4)

Iw(q)—w(g;,)| < |P(v(q)—0v(q;))| + |P;v(q;,)]
< Lig—q;,| + ]P;qu2 - Py, v(g;,)|
+ X IPgPy; .- Py (v(q;) = 0(q,, )| < CLHK)Ig—q,,,

s<r

for some constant C not depending on gq.
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For an arbitrary ¢’ € S’ we have [g—q'| = Clq—q,,| (by (1)), and
consequently

w(g)—w(q) < Iw(g)—w(g;,)| + Iw(g)—w(g;,)!

C(L+K)lq—q'|

VAN

(recall that the character C stands for various constants).
.. 1
Let ¢ e . If |g—¢'| < (2—c) d;(q), then by (2) and (5)

w(@)—w(g)| < [v(@)—v(q)] + [(Py—Pyv(q)
< Llg—q'| + ](P(,:—P,])qu2 . qurv(qu))

+ Z |(Pq’_Pq)qu2 s qus(v(qjs)_v(‘Ijs+l))I

s<r

S CL+K)lq—q'].

1
If lq—q'| > (Z) di(q), then |q¢'—q;,| < C|q—q’| and consequently
w(@)—w(@| < Iw(g)—w(g;,)| + Iw(g)—w(g;,)]
< C(L+K)ig—q'].
Hence w is Lipschitz. O

Integrating Lipschitz vector fields by the same method as « controlled »
vector fields in the proof of Thom’s First Isotopy Lemma (see for
example [5]) we obtain

CoroLLARY 1.3. — If & is an L-stratification of X, then for any q,
q' which belong to the same stratum of & the germs (X,q'), (X,q) are
Lipschitz homeomorphic.

Let Z = {X,;} be a family of subsets of X. We call a stratification

& of X compatible with & if each X; is a union of some strata
of &.

THeOoREM 1.4. — If X is a compact semi-analytic subset of R" and
Z is a finite family of semi-analytic subsets of X, then there exists an
L-stratification of X compatible with % .
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Theorem 1.4 will be proved in Section 5.

Because the notion of chain is a little troublesome, we give two
equivalent definitions of an L-stratification.

ProposiTiON 1.5. — The following conditions are equivalent to the
definition of an L-stratification :

(i) There exists C > 0 such that for every W < X satisfying
S'"' <« W < S’ for some j : each Lipschitz &-compatible vector field on
W with a Lipschitz constant L, bounded on W n S' by K, can be
extended to a Lipschitz &-compatible vector field on S’ with a Lipschitz
constant C(L+K).

(ii) There exists C > 0 such that for every j and every W < X
equal to S u{p}, for peS’, and every qe § : each Lipschitz
F-compatible vector field on W with a Lipschitz constant L, bounded on
W n'S' by K, can be extended to a Lipschitz &-compatible vector field
on W v {q} with a Lipschitz constant C(L + K).

(If Il = 0, then K = 0 and the conditions (1) and (ii) are simpler.)

Proof. — The proof of Proposition 1.2 shows that any L-stratification
satisfies (i). Obviously, (i) follows (ii).

Assume that & satisfies (ii). We prove that & is an L-stratification.
We give the proof only for the case I = 0, the case | > 0 is left to
the reader. We show by induction on j that {S?},_ o is an L-stratification
of S/. For j = 0 it is evident. Assume that {S?},_} is an L-stratification.
Let ge & and ¢q = Q> -+ 44, be a chain forq We begin with
proving (4). Take any v e T, S’k such that |v| = < k <r. The
vector field w on S/~ 1u{q }, defined by: w O on S$* ' and
w(qj) =v, 18 - compatlble and Lipschitz with  constant
L= [d,-k_l(q,-k)]_l. By the inductive hypothesis, we extend w to a
Lipschitz &-compatible vector field on S’/~' with the constant CL and
such that w(g;,) = qu2 qukv. Applying (ii)) and (2) we extend this
vector field on S’7' U {q} with the constant CL. Thus, using (3) we
have

|PgP,, ... Py vl < [Pz (w(g) — w(gy,)l
< lg = q5,l/d;-1(9),

which shows (4).
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Next, we prove (6). Take any v e TqS’j , lv] = 1. The vector field
w, defined by: w =0 on S§°' and w(q) = v, is S-compatible and
Lipschitz with the constant L = [d;_,(¢)]”"'. Using (ii), we extend w on
S'7'u{q, q'}, and obtain

|Pyv| = [Pz(w(g) — w(@)) < CLIqg — ¢'|.
Since the above inequality holds for any ve T,8, |v] = 1,

|PiP,) < CL|q — ¢'|.

Likewise,
|P;P;| < L'lqg — q'l,

where L' = C[d;-,(q")]"". Note that |PyP;| = |P;P;| (P, P, are
self-adjoint). Thus

(1) 1Py = Pyl < |Py = (Py + PYP,| < |PyPL| + |PEP,|

<
< CL + L).

1
If lg—-4q1< (Z) di-1(q), then 2d;_,(q") > d;-.(9) and (6) follows
from (7).

The proof of (5) is similar. First, for every v e qukgjk, lv] = 1, we
construct a Lipschitz &%-compatible vector field w on S’ such that

w(g;,) = quz, ...,qukv, w(q) = Pw(q;,) and L = C[d;,_,(g;)]"" is a
Lipschitz constant of w. Therefore, by (2) and (6),

[(Pg = Pw(g;)| (P — Pw(@)l +1(Py = Py)(w(q) — w(g;,)) |
<Iw(g) = Pow(q') + Pp(w(q) —w(q))| + CL|P,— Pylig—q,,|

<CLig—¢'|.
This ends the proof. O
CoroLLARY 1.6. — Let & be an L-stratification. Then for some

C>0and any ge &, ¢ € S* (k < j)
!quPq’! < Clg — q'l/de-1(q).

In particular, . satisfies the w-condition and consequently Whitney’s
conditions (see [9]).
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Proof. — Fix qe &, q' € §¥ (k < j). Using the same method as in
the proof of Proposition 1.5, we find for every ve TQ.SQ*, lvl =1, a
Lipschitz #-compatible vector field w on S’ such that w(q’) = v and
Cld,-,(¢")]"" is a Lipschitz constant of w. Hence

[Py Pyo| = [Py(w(g) — w(g))| < Clde-1(@)] 7 '1g — q'I.
This proves the corollary. O

2. Regular projections.

Let X « C" be a germ at O of a hypersurface with a reduced
equation F = 0. Fix the x,-axis so that F does not vanishes on it. Let
Q be a neighbourhood of 0 in C"' such that for every £eQ the
projection w(€): C* - C"~ ', parallel to (§,1), restricted to X is finite.
Then, by the preparation theorem, F(x+A(E,1)) is equivalent to a
distinguished polynomial W(x,&;)) in A.

Let g be a germ at 0 of a complex (real) analytic curve such that

q(0) = 0. We say that n(§) for £e€Q is e-regular (with respect to X)
at g if there exists an integer k such that for all n, In—&| < &:

Aq(®),m) =0 for i<k,
Ax(q(®),m) # 0

for t # 0, where A; denotes the i'th generalized discriminant of W
(see [6]).

Let S.(x,£) denotes the open cone {x+A(n,1);|n—§&|<e,AeC*}.
As was proved in [6], if w(f) is e-regular at g, then for some constant
C and for t # 0 sufficiently small :

®) S.(q(t),&) n X consists of points of the form q(¢) + A;(m)(n,1)
(i=1,...,r), where A, are analytic for |n—§&| < € and satisfy :
A:(M) # Aj(m) for i # j and all n, |DA;] < ClAl.

The following proposition is an immediate consequence of Proposition
4.2 of [6] except the last statement which can be easily deduced from
its proof.

ProrosSITION 2.1. — There exist a finite subset {&,, ...,Ex} of Q and
€ > 0 such that for every pair p, q of germs of complex analytic curves,
there is m(E;) which is e-regular at both p and q.

Furthermore, &,, ...,Ey can be taken from Q N R*™!.
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Remark 2.2. — In Proposition 2.1 we can require the existence of
a constant C satisfying (8) for every pair p, g of germs of real analytic
curves and the associated regular projection m(g)).

Proof. — For simplicity we consider the case of single germs instead
of pairs. Let &,, ...,&y and ¢ satisfy the assertion of Proposition2.1.
Put X® = {x e C*; F e m’}, where m, is the ideal of all germs at x of
analytic functions vanishing at x. Then, (see [6]),

XON\XUD = (xeChA;_(x,)#£0 and A (x,.)=0 for s<i—1}.

Fix k such that X*® # X**V_ Take an irreducible component T of
X® at 0 such that T & X**Y, For each (x,n)e T x Q and such that
Ar_1(x,m) #0, W(x,m;A) =0 has exactly d — k non-zero solutions
A1, ..., Ag_x which we consider locally as analytic functions in n. We
claim that their derivates S_Xi @i=1,...,d—k,j=1,...,n—1) are roots

J
of a polynomial with coefficients meromorphic in a neighbourhood of

T x Q, and with denominators not vanishing identically on T X Q.
First we prove the following lemma.

LEmMMA 2.3. — Let U be an open subset of C*. Let (f,,...,fx) be
a multivalued function on U such that each f,, ..., f; satisfies

® ffrafft+ o +a,=0

with a,, ..., a, analytic in a neighbourhood of U. Then any partial
derivative of f,, ..., fr satisfies, on the set where it exists, an equation
of the same type with coefficients meromorphic in a neighbourhood of U .

Proof of the lemma. — Without loss of generality we can assume

0 0
that the equation (9) is reduced. Fix a partial derivative % = . Let
fisfo, .., fn be all solutions of (9). Locally, outside some nowhere
dense subset of U, they can be considered as analytic functions. By (9)

_I:%f;n—l-g- +€a_"’]
%_ 0z 0z

0z  mfr'+ ... +4a,,

and the denominator does not vanish because (9) is assumed to be
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reduced. So, every elementary symetric function of df,/dz, ..., df,/0z
is a symetric function in f;, ..., f, with meromorphic coefficients and
the lemma follows. O

In our situation, we can find a branched analytic coveringn: T — U,
U an open neighbourhood of 0 in €/, j = dim T, induced by a linear
projection. Then

)“l(n_l(x), T])9 LR ] )"d—k(n_l(x)a Tl)

form a multivalued function on U x Q satisfying an equation like (9)
with coefficient analytic on U x Q. Applying to this function Lemma 2.3,
we see that all JA;/0n; have the desired properties.

Consider the germs at 0 of sub-analytic sets

V= {xe T\X*"V; Ap_,(x,n)#0 for n—§&;|<e/2}.

From the curve selection lemma (see [2] or [3]) and Proposition2.1 we
conclude that the family {V;} covers T\X**" near 0. Consider on
T\X**? the function

d—k

@(x) =min max Y [DA(x,n)|*/|A(x,M)I%,

m=-gji<e/2 j=

where the minimum is taken over all j for which x € ¥;. Fix a partial
derivative 0/dn. Since 0JA;,/on, i=1,...,d — k, are roots of a
polynomial with meromorphic coefficients, so is g = Y [(O\;/on)A; 2.

Hence the closure of the graph of g in V; x {n:|n—§;|<g/2} x CP(1)
is sub-analytic, and so is the graph of ¢ in T x CP(1). By Proposition 2.1,
¢ is bounded on any R-analytic curve, so is bounded near 0 by the
curve selection lemma ([2], [3]). This ends the proof. O

CoROLLARY 2.4. — Let X, Q be as above. There exist a hypersurface
of an open neighbourhood V of 0 in C" representing X (call it also X),
a subneighbourhood U of V, a finite set {&,,...,Exf =« QA R*"! and
constants C, &> 0 such that for every pair x, x' € U, there is &; such
that both S.(x,t;) and S.(x',E;) look like in (8).

Remark 2.5. — There exist constants €', &', M depending only on
C,&,n such that if X is a hypersurface in a neighbourhood of 0 in
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C" and (8) happens for S,(x,0) (i.e. § = 0, then we denote ©(0) simply
by n) with constant C, then:

Se(x,0) is contained in the disjoint union of the graphs of analytic
functions ©;: B(n(x),|A;(0)|8") = C, i =1, ...,r, where
B(y,R) = {zeC""':|z—y| < R}.

Furthermore, |Do,| < M for i=1,...,r.

If X near x is the graph of an analytic function ®, then we can
also require |[D®(n(x)) < M.

The above remark was proved in [6] except the last statement which is
obvious (X near x is outside S, (x,0)).

3. Regular sets.

Our next task is to cover a compact semi-analytic set with semi-
analytic sets with good metric properties. Let us start with some
definitions.

DeriniTiON 3.1. — Let U be a relatively compact semi-analytic subset
of R" and let Int(U) be dense in U. We call a continuous map
F:U—-> R™ strongly semi-analytic if each coordinate function f = F;
(i=1,...,m) satisfies an equation of the form :

(10) ff+afri+ oo +a,=0,
with some analytic functions a,, ..., a, defined on an open neighbourhood
of U and if

(n D)l < C,

for some constant C and any x for which DF is defined (compare with
the definition of (L)-analytic surface from [4]).

Note that if f, g are strongly semi-analytic, so are f+g, f—g, fg.
DeriNiTION 3.2. — By a zero-dimensional L-regular set we mean a

point. For n > 0, a compact n-dimensional semi-analytic subset X or R"
will be called to be L-regular if Int(X) = X and

X ={(x,x)eR"" x R: f(x) < x, < g(x), X' € ¥}
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(maybe after a linear change of coordinates in R"), where Y is an
L-regular subset of R"™' and f, g are strongly semi-analytic functions on
Y, analytic on Int (Y) and satisfying f < g on Int (Y).

For k < n we call a compact k-dimensional semi-analytic subset X of
R™ L-regular if it is the graph (maybe after a linear change of coordinates)
of a strongly semi-analytic map F defined on an L-regular subset of R*
and such that F is analytic on Int (Y). Any system of coordinates for
which the above characterization occurs is called to be associated with X .

Although an L-regular subset X of R” may not be a manifold with
boundary, we denote by 0X the set of that points of X near which X
is not a manifold without boundary. Particularly, if dim X = n, then
0X = Fr(X). If X is the graph of F: Y — R"*, as in Definition 3.2,
then 0X is the graph of F restricted to 0Y. It is easy to check the
following property of L-regular sets.

Remark 3.3. — Let X be an L-regular subset of R". Then X\0X is
homeomorphic to an open disc and for every x, x' € X\0X there exists
a smooth curve v in X\0X joining x and x’, and satisfying

(12) lengthy < C|x—x'|,
for some C not depending on x,Xx'.

Remark 3.4. — Let X be an L-regular subset of R" given by the
graph of F: Y — R"* as in Definition 3.2. Then the standard projection
n: R* - R* restricted to X gives one-to-one correspondence between
semi-analytic subsets of X and those of Y. Furthermore, m|, is a
Lipschitz homeomorphism.

Proof. — The first statement follows from Lojasiewicz’s version of
the Seindenberg-Tarski Theorem (see [4]) and the second one is a simple
consequence of (11) and (12). O

We call an L-regular set X compatible with a semi-analytic set Z if
X\0XcZor (X\oX)nZ=(.

ProPOSITION 3.5. — Every compact semi-analytic subset of R" can be
written as a finite union (not necessarily disjoint) of L-regular subsets of
R" compatible with a given semi-analytic subset Z of X.

Proof. — We can assume that X is pure dimensional. Let dim X = k.
We show that we can cover X with k-dimensional L-regular sets. The
proof is by induction on n. The case n = 0 is evident. '
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Because X is compact, it is sufficient to show that for each xe X
there exist L-regular subsets of X covering a neighbourhood of x in X
and compatible with Z. If xelInt (X)\Fr(Z), it is obvious. Fix
x,€ Fr(X)u Fr(Z). Note that Fr(X)u Fr(Z) is a compact semi-
analytic set of dimension smaller thann. Complexify R" and find a
small neighbourhood U of x, in C" and a complex hypersurface X in
U such that Y = (Fr (X) u Fr (Z)) n U = X. Without loss of generality
we can assume that ¥ R" has pure dimension n — 1. We apply
Corollary 2.4 to the germ (X,x,). Fix & one of the obtained regular
projections &,, ..., &y. To shorten notation we assume © = n(£) to be
the standard projection (£=0). We <can also assume that
n:X - n(U) = U’ is a branched analytic convering, so X is defined
by

d

[T Gen=fix)) =0,

i=1
where x = (x',x,)eC" ' x C and f,, ..., f; are analytic outside a
proper analytic subset Z' = U’ (in fact, each f; is only defined locally).
Consider on U’'\Z’ the function

d
F(x') = Y IDfix)I.
i=1
By Lemma 2.3, V(M) = {x' e (UnR")\Z': F(x")<M} is open and
semi-analytic for every M € R.

Assume that dim X = n. The projection ©t|y: Y - U nR* ' is a
branched covering and an analytic covering outside some semi-analytic
subset T of U nR* ', dimT < n — 1. Fix M for a moment. Apply
the inductive hypothesis to V(M) and its subset
W=Fr(V(M)U(TnnV(M)). Let Y, be one of the obtained
L-regular sets. Then dimY, =n —1 and WnInt(Y) = &J. Put
¥,=n"%(Y)n Y. Over Int(Y,) m|p: ¥, > Y, is a trivial analytic
covering (Int (Y;) is contractible). Thus, ¥, n n~!(Int (Y})) is the union
of the graphs of some analytic functions g, < g, < --- < g, from
fis ..., fs. By Remark 2.5, each of them satisfies (10) and (11). They
are also Lipschitz by (11) and (12), so we can extend them to Lipschitz
functions on Y;. Call them also g,, ..., gn. It is also clear from the
above construction that n~*(Y,) n X is covered near x, with some of
the sets

(X', x,)R": x" € Y,,8:(xX)<x,<gix1(X)},
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and, maybe, sets of the form

{(xlvxn) eR": x' € Yljaxan - 6<xn<gl(x,)},

{(X', xn) eR": x' e Ylj,gd(x,)sxngxon-FS}a

where x, = (xg, X,,), & > 0 is sufficiently small, and (n— I)-dimensional
L-regular sets Y,; cover a neighbourhood of x; in Y,. Each of these
sets is L-regular and compatible with Z. Thus, we have found the
required covering of n~'(V(M))n X. To complete the proof for
dim X = n it suffices to note that for M sufficiently large the sets
n~Y(V(M)) constructed for all €,,...,Ey cover X near x, (as Corol-
lary 2.4 and Remark 2.5 state).

Assume that dim X = k < n — 1. Apply the inductive hypothesis to
V(M) and its subset V(M) nn(X), and take T one of the obtained
L-regular sets. Of course dim7 = n — 1. Then, as we have shown
above, ¥ = X n R* A n~Y(T) is the union of the graphs of Lipschitz
semi-analytic functions g, < g, < --- < g,. Consider the set
VnXcna '(dT). Apply the inductive hypothesis again to
(TAn(V), Tor(Fr (Z))). Let Y, be one of the obtained L-regular sets
and dim Y, = k (we can ignore sets of dimension smaller than k).
Then Y, is the graph of f:Y,-> R**! Y,c RF, as in
Definition 3.2 (we can assume that the standard system of coor-
dinates is associated with Y)). Let =n':R"—> R*' be defined
by #n'(xy,...,%X,) = (Xy,%X3,...,Xk,X,). Then the map
T (n" (Y )nVnX) = Y,, given by (xi,...,%XkX%n) = (X1, ...,Xx), 1S a
branched covering, and using again the inductive hypothesis, we can
assume it to be trivial over Int (Y,). So, =~ !(Y,) is a finite union of
the graphs of maps from Y, into R""* whose coordinates satisfy (10).
To see that one of them, say F, satisfies (11) it is sufficient to consider
its last coordinate F,,. We can assume that the graph of F lies on one
of the graphs of g;, say g,. Then, F,(x) = g,(x, Fy+1(x), ..., F,_1(x)).
Both g, and (Fyx+,,...,F,-,) are Lipschitz, so is F,. This proves (11).
Therefore, the graph of F is L-regular. Now we can repeat the argument
that such sets constructed for &,,...,Ey and a sufficiently large M
cover X near Xx,.

The similar proof works for k = n — 1 (the details are left to the
reader). 0

A slightly more detailed proof leads to the following strenghtening
of Proposition 3.5.
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Remark 3.6. — The assertion of Proposition 3.5 is still true if we
require additionally :

a) For every x, x’ € X there exist elements of the desired union
Y, Y such that xe Y, x’€Y’, and Y and Y’ have a common
associated system of coordinates, and if k = dim Y > dim Y’ and Y is
the graph of F: T — R"* (as in Definition 3.2) and n : R® - R is the
standard projection, then either n(Y") = T or n(Y") n (T\0T) = &.

b) The elements of the union are compatible with a given finite
family of semi-analytic subsets of X.

4. Lifting of Lipschitz vector fields.

In proving Theorem 1.4 the main difficulty lies in showing the
following fact :

Fact 4.1. — Let X be an L-regular subset of R"** given by a map
F:Y — R*, as in Definition 3.2. Then there exist a stratification . of
Y and a constant C > 0 such that F is analytic on every stratum of &
and for every Lipschitz .#-compatible vector field v on Y with a Lipschitz
constant L the map A(x) = DF(x)v(x) is Lipschitz with a constant CL.
In particular, (v,DFv) gives a Lipschitz vector field on X .

DErFINITION 4.2. — Given a stratification ., we say that a stratification
7" is compatible with % if each stratum of ' is contained in a stratum
of & (in other words, if %' is compatible with % as a family of sets).

Note that if &’ is compatible with &, then every &’-compatible
vector field is &-compatible. For every finite family of semi-analytic
sets there exists a stratification compatible with it, so each finite family
of stratifications of a given set possesses a stratification compatible with
each of them.

The following lemma plays the crucial role in our investigations. It
states that the spaces of all symetric homogeneous polynomials is
sufficiently large for carrying out some estimates concerning differentials
of polynomials.

Key LEMMA. — For every me N there exist a constant C, a finite
family W of real homogeneous symetric polynomials of m variables and
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a finite family ¥~ of real homogeneous polynomials of m variables such
that :

If p=@,.-.,pmeEC™, v=(vy,...,0,)€C™, and DV(pyp =0 if
V(p) =0 for all Ve, and

- (13) IDW(p)| < LIW(p)!,
for all We# and some L, then
(14) lv;l < CLIpil,
fori=1,...,m.

Obviously, we can require that if Ve, then V(c(p))e ¥ for every
permutation G .

Key Lemma will be proved in Section 6. Now, we show how it
works. The Lojasiewicz Inequality ([4]) implies for each analytic function f
defined in a neighbourhood of x,e R"

dist (x, f7(0)|Df ()| < CIf(x)1°,

for some constants C, o > 0 in some neighbourhood of x,. Key Lemma
allows us to prove a similar result with oo = 1.

CoRroLLARY 4.3. — Let f: U — R be an analytic function satisfying (10)
with a; analytic in some neighbourhood of U and let U be open and
relatively compact. Then there exist a semi-analytic subset Y of U and
a constant C such that dim Y < n and

15) |Df(x)| dist (x, Y) < Clf(x)],

for every xe U. (Generally Y is greater than f~'(0), see for example
f(xy, x)=x1—x3).

Proof. — 1t is sufficient to prove (15) for x from a dense subset of
U. Since the problem is local, we can work in a sufficiently small
neighbourhood of some x,e U.

Assume that f is analytic in a neighbourhood of x,. By the
preparation theorem, we can assume that f is a distinguished polynomial

(16)  f(x) =xa T - T h(x e +ba(x) =[] (a—rilx)),

i=1
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where x = (x’,x,) e R"™! x R = R", b, are analytic in a neighbourhood
U of m(x,), where m: R” -» R"™! denotes the standard projection. For
each x’e U’ and outside some proper analytic subset of U’ we can
treat r,, ..., r,; as complex-value analytic functions in some neighbou-
rhood of x. This gives

10f/0x,| = |f(x)]

) (xn-ri(x'))“l < d|f(x)|(dist (x", ¥,)) 77,

i=1

for Y, containing all the graphs of Re r; intersected with U and Fr (U).
. 1 . . .

Since Rer; = 3 (r;+7), we can choose Y, semi-analytic. In a suitable

system of coordinates we obtain similar inequalities for each 0Jf/dx;

and some sets Y,. Putting ¥ = () ¥;, we get (15).

Return to the general case. Let f=f,, f;,...,f; be all solutions
of (10). Let #°, ¥  be as in Key Lemma with m = d. Each W,e #
gives a real analytic function Wi(x) = Wi(f,(x), ..., fs(x)), for which
there exist semi-analytic sets Y; of dimension smaller than n and
satisfying (15). Therefore, for Y = U Y, u Z, where Z is the union of

the zero sets of these V(x) = V(fi(x),...,fs(x)) constructed from
Ve v, which are not identically equal to 0,

|0W/0x;(x)| dist (x,Y) < LI W(x)],
and
|0V /0x;(x)| dist (x,Y) =0 if P(x) =0,

for al We# and Vev,j=1,...,n and x from a dense subset of
a neighbourhood of x,. Put p(x) = (fi(x), ..., fs(x)),

v(x) = dist (x,Y)((9/0x,)(x), . . ., (0fa/ Ox)(x)) .
So, [(9f/0x;)(x)| dist (x,Y) < CL|f(x)|. This for each j gives (15). O
The following two lemmas generalize Corollary 4.3.

LemMA 4.4, — Let U be a relatively compact open subset of R" and
let f: U — R be a continuous function satisfying (10) with a; analytic in
a neighbourhood of U. Then there exist a constant C and a stratification
&% of U such that :

a) f is analytic of each stratum of &,
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b) if v is a Lipschitz &-compatible vector field on U with a Lipschitz
constant L, then

a7 IDf(x)v(x)| < CL|f(x)],
for every xe U.

Proof. — Induction on n. For n = 0 the lemma is evident. Let
n > 0. By standard arguments, there exist a stratification satisfying a),
so we concentrate on b). The idea of the proof is the same as that of
the proof of Corollary 4.3.

First, assume that f is analytic in a neighbourhood of U. According
to Proposition 3.5, Corollary 2.4 and Remark 2.5, we can assume without
loss of generality that f is a distinguished polynomial (16) and :

W) T ={(x,x)eR"'XR:g,(x)<x,<g,(x"),x" € U'} is L-regular,
as in Definition 3.2, U' = R"™! is open,

(ii) r; (from (16)) are well-defined continuous complex-value functions
on U’, and analytic on U’ (the zero set of the discriminant of f does
not intersect U’), and |Dr;| < C on U’.

Choose a stratification %’ of U’ satisfying the assertion of the
lemma for all Imr;, g, — Rer;,, g, — Rer,. We can do it by the
inductive assumption. Let % be a stratification of U compatible with :

D (S)Yn U, for all S’e &’

2) the intersection of U and the graphs of Rer;

3) the graphs of g, and g,.

We show that & satisfies the assertion of the lemma. Let v be a
Lipschitz &-compatible vector field on U with a Lipschitz constant L.
We write v(x) = (v'(x),v,(x)) e R"™' x R. Let z = (z',z,) e U and
z' € U’'. Consider on U’ the vector field w(y) = v'(tg,(y) +(1 —1)g.(»)),
where t satisfies z, = tg,(z') + (1—1)g.(z'). By (i), w is Lipschitz with
a constant CL. On the other hand, 1) implies that w is &’-compatible.
Hence, for all i

ID Im ri(z' ) (z)|<CL|Im ri(z)].
Similarly, for i =1, ...,d,j=1,2

ID(g;—Re r)(2')' (2)| <CLI|g;(z")—Re ri(z)].
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If g,(z') < Reri(z') < g,(2'), then by 2)

va(z) = D Re ri(2')' (2)| < |va(2) —v,(2", Reri(2))]
+ |DRe ri(z)@' (z',Rery(z')—v'(2))|
< CL|z,—Reri(z)].

If Rer,(z') < g.(2'), then

lvn(z) =D Re ri(z')0'(2)| < [0,(2) —va(2', £:(2))
+ | Dg.(z) (V' (2", £:(2")) — V' (2)) |
+ |D(g,—Re r)(z')v' (2)|
< CL(lz,—g:(2)1+18:(z") —Re ri(2')])
< CL|z,—Re ri(z")].

The same inequality holds for Re r;(z') > g,(z").
Consequently,

DI = 11|y 2L @)

d
)
i=1

z,—r{(z")

¢ 1z,—Reri(z)| |DImr(z)(2)
sV (z)l[gl Z—rZ) ’ PR ]
< CLIf@)I.

This ends the proof for f analytic.

For the general case, we use Key Lemma in the same manner as

in the proof of Corollary 4.3. |
LEMMA 4.5. — Let f be an analytic function defined in a relatively
compact open subset U of R" satisfying (15) with a,, ..., a, meromorphic

in a neighbourhood of U. Then there exist a stratification &' of U and
a constant C such that for each Lipschitz &-compatible vector field v on
U with a Lipschitz constant L (17) holds for all x e U.

Proof. — As above, it suffices to prove the lemma for f = g/h,
where g, h are analytic in a neighbourhood of U. In order to do this,
we take a stratification % satisfying the assertion of Lemma 4.4 for h
and g. Then

(Dg(x)v(x))h(x) — (Dh(x)v(x))g (x)

IDf(xp(x)| < )

< CLIf()1,

and the lemma follows. O
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Proof of Fact 4.1. — 1t suffices to prove the fact for k = 1. Let
us denote Int (Y) by U. Let & be a stratification of Y satisfying the
assertion of Lemma4.4 for f = F and Lemmad4.5 for f = 0F/dx;,
i=1,...,n (see Lemma2.3). Let v be a Lipschitz %-compatible
vector field on Y with a constant L.

__ First, we prove that A is Lipschitz in U. Assume that a segment
pq lies in U. Then

|A(p)—A(q)| = |DF(p)v(p)— DF(q)v(q)|
< |DF(p)(w(p)—v(q))| + | Y, w.D(df/0x)(q)v(q)

i=1

+ |D(oF/ow)(q)v(q)— (DF(p) — DF(q))v(9)l,

where w = (wy,...,w,) denotes the vector ;;; The first two terms of
the right side of the above inequality are bounded by CL|p—gq|. To
estimate the third one, we consider

B; = |((0°F/ow 0x)(q))vi(q) — ((0F/0x))(p) — (OF /0x,)())vi(4) | -

By the mean value theorem (0F/0x;)(p) — (0F/0x,)(q) = (0°F/0x; ow)(p"),
for some p’ € pq. Consequently

B, = |(0°F/0z; ow)(q) — (9°F/0z; ow)(P")| lvi(q)| < C'lp—q!?,

where C’ depends on the maxima on }76; of 0°F/0z; 0*w and v,(q).

Now take x, x’ € U and a smooth curve y:[0,1] - U joining x and
x" and such that lenght v < C|x—x*|. If N is sufficiently large, then
for px = y(k/N)
N-1

[4(X)—AX)| < Y [APi+1)— APy

< Z (CLIpks1= Pl + C' I prsr— Pl ?

k=0
< CL|x—Xx'| + 0.

If N is arbitrary large, then o is arbitrary small. So, 4 is Lipschitz
on U.

Extend A|, to the Lipschitz function 4 on U. We only need to
show that 4 = 4. Because A4 is continuous on each stratum, it suffices
to show this in a dense subset of each stratum. Fix j and x, € §'. By
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the Whitney Wings Lemma (see for instance [4]), & near x, is contained
in the closure of a semi-analytic subset Z of U such that dim Z = j + 1.
By Proposition 3.5 we can assume that Z is L-regular, so moving x,
a little and changing coordinates near x,, we can write Z as the graph
of a strongly semi-analytic map g: ¥V — R"/~! such that

(i) V is an open neighbourhood of 0 in
H={y.,....0j+1)€ Rt Vi+1=0}

(i) G™HS) = V A R’ and G(0) = 0, where G(y) = (y,g(»)).

Changing again x, and using the Puiseux Theorem (in the version
from [6]), we can assume that for some natural number r > 0 both
g .- ¥i«1) and H = FoG(y,,...,y;,yj+1) are analytic. The
vector field w(y) = n(v(G(y))) is Lipschitz (Dg is bounded) and
compatible with ¥ n R’ (the flow generated by w preserves VnRY). Put
t(G(y)) = DG(y)w(y). The function DF(x)5(x) is continuous on Z. In
fact, DF(x)d(x) = D(F o G)(m(x))w(n(x)) and

D(Fo G)(y)W(y)=l?H(y1, ces Yo Vi W ()

J
=Y ((BH[0y)(»))wi(y) +% Y ((OH [0y ) ())W41 ()
i=1
tends to 0 if y,.;, >0 (w is Lipschitz, so w;;,(y)<C|y;+:1). This
proves the continuity of DF(x)J(x). Similar arguments show that
7(x) iS  continuous. Therefore, since DF is bounded,
DF(x)v(x) = DF(x)(x) + DF(x)(v(x)—9(x)) is continuous (the last term
vanishes on S'nZ). This ends the proof. O

5. Proof of Theorem 1.4.

By induction on k = dim X. For k = 0 the theorem is obvious. It
will be easier to find an L-stratification of X with [ = 0 (see the remark
after Proposition 1.5).

First, assume that X is the union of two L-regular sets X, X,,
given by the graphs of F, G: Y - R""*, as in Definition 3.2, and that
F<G (F can be equal to G; if k=mn, then F= G = 0). Let
&' = {S"}f) be a stratification of Y satisfying the assertion of Fact 4.1
for F, G, F — G, and compatible with the zero set of F — G. By the
inductive  assumption, we can assume that {S'}-' is an
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L-stratification of S'*'. Then, because every Lipschitz function in a
subset of R* can be extended to a Lipschitz function on R* with the
same Lipschitz constant ([1]), &’ is an L-stratification of Y. Let S’ be
the union of the graphs of F and G restricted to S"/. We show that
&' = {S/E, satisfies (ii) of Proposition 1.5.

Let ge §/, pe S’ and let v be a Lipschitz ¥-compatible vector
field on W = S/7' U {p}. Put p’ = n(p), ¢ = n(q), where n:R" - R*
is the standard projection.

Suppose that p and g belong to X, (or X,). The distance between
q and W is estimated by the distance between g’ and n(W). The vector
field x(y) = mv(y,F(y)) on n(W) is Lipschitz and % '-compatible. Extend
w to a Lipschitz & '-compatible vector field w on Y. By Fact4.l,
i(x) = (W(n(x)), DF(n(x))w(rn(x))) is Lipschitz on X, and &(q) is the
desired extension.

Let p' = q'. We can assume that p € X,, q € X,. Then the distance
from g to W is estimated by |[p—q|, and d(q) = DG(p')n(v(p)) is the
desired extension. In fact,

l3(p)—d(q)| = |ID(F=G)P I p))| < CLI(F-G)(p)| < CLIp—ql,

because n(v| Xlﬁw) is Lipschitz and % ’-compatible, and can be extended
on Y, so we can use Fact4.l again.

Let peX,, qe X, (or pe X,, ge X,). Put r = (p',G(p")). By the
above arguments, we can extend v on W u {r}, next on W u {r} U {q},
and so obtained the desired extension (|r—¢q| < C|p’—q'| < C|lp—ql).
Note that Lipschitz constants of the obtained extensions can be estimates
by Lipschitz constants of v, so & is an L-stratification.

For the general case, we use Remark 3.6. Let % = {Y,} be the given
family of L-regular sets. For each pair Y,, Y;€ % such as in a) of
Remark 3.6 and such that dim Y, = dim Y; we fix an L-stratification
Sy of Yiu Y, Let & be a stratification compatible with all &; and
the family % . We show that % satisfies (ii) of Proposition 1.5 for j = k.
Let ge S*, pe S* and letv be a Lipschitz &-compatible vector field
on W = S*¥' U {p}. Let r be one of the points of W which are closest
top. Find Y, Y’ for q, r as in a) of Remark 3.6. If dim ¥ = dim Y’ = k,
then we can find the required extension because % is compatible with
an L-stratification of Y'u Y (we use (i) of Propositionl.5). If
dim Y' < k (dim Y must be equal to k), then by a) of Remark 3.6, we
can replace r by a point s of Y, such that |p—s| < C|p—r|, and
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repeat the above arguments. By b) of Remark 3.6, & is compatible
with . Now we apply the inductive hypothesis to S*~! and the family
&' ={S)k-}. The obtained stratification of S* ' and $* = X\§*!
form an L-stratification. In fact, it satisfies (ii) of Proposition 1.5, for
Jj < k by construction, and for j = k, because it is compatible with a
stratification satisfying this condition. This completes the proof. O

6. Proof of Key Lemma.

m be

.....

. 1
Replacing v by Zv we may assume that L = 1. Let {O4}4-,

the family of elementary symetric polynomials

O'k(Pla---st): Z pi19"-9pik’

h<...<lg

for k=1,...,mand o,=1. It is easy to see that

DCk(P)U Z Gkvl(pl,'--’iji’--',pm)vi
i=1

3

13

and det (@xi)xi-1,...m = H (pi—p).

i<j

ax(p)v;
1

]

Defines families of polynomials {q,(P)}x-1, ... .m2s = ¥ (5) as follows : ‘
Qi = Pis @t} = {4~ i~ Q- nibig=1,.. .m2s-2. Let #(s) denote the family
of elementary symetric function of {g.(p)}. We shall show that # =

m+1

U #7°(s), ¥ = |J ¥ (5) satisfy the assertion of Key Lemma.

s=1 s=1

Suppose this is not the case. Then, by the curve selection lemma,
there exist R-analytic curves p, v: [0, €) - C™ (polynomials from #" and
¥" are homogeneous) such that

(19) [DW(p@®Ow@)| < [WE®)I,
(20) DV(p@®w®) =0 if V(p®) =0,

for all We# , Vev and

(21) lim |v;(t)/p:(t)| = oo for some i.
t—0
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Fix such p(t), v(t). Let f, g be the germ at 0 of complex-value
R-analytic functions. We write f=0(g) if lim | f(t)/g(t)| <0 or f=g=0,
t=0

and f= O(g) if limf(t)/g(t) = 0. If limf(t)/g(t) =l or f= g = 0 we

will write f ~ g. Note that ~ is an equivalence.

SuBLEMMA 1. — Let p(t), v(t) satisfy (19) and (20) for all We % (1),
Vevy 2Qyuv ). If {pi,...,ps} is a ~ class in the set of coordinate
functions of p(t), then

(22) vi(®) + - o) = O(py(1) + -+ + pi(D)),
and
23) if pi(t) = 0 (for some i=l,..\.,m), then v(t) = 0.

Proof. — Assume, for a moment, that p;(t) # p;(¢t) for i # j. Consider
the system of linear equations

Doi(p)v = Zaki(p)vi = Z br(p)w; = Ay, k=1,...,m,

where w, = v; + --- + v,, w; = v; for i > 1. Then, b;, = a,, and
by = ay; — ay, for 1 < i< s and by, = a;; for i > s, so

B = det (b)) = det (ay;) = H (Pi—p).

i<j

On the other hand,

A=det (A;bii-1,. mi-2....m= n pi—py. l_[ (Pi_Pj)-(z Aksk(p)>-
k=1

i<j<s s<i<j

By (19) for We# (1), |4, < o(p)| and consequently

«(17)

where Za,- =s(m—s) + 1 and a;, < s for i > s (because p; enters in

1

sk < lok(P)si(P)l < Y

a=(ty, ..., Up)

B

by or A, with a power not larger than 1 and p; does not enter in by,).
But p,(t) = O(p;(t)—p;®)), for i >s, j<s,ori<s, j>s. From



212 ADAM PARUSINSKI

this, we conclude

Aisy(p) = 0<P1(t) H (Pi(t)_l’j(t))),

i<s<j

and (22) follows from Cramer’s rule.

If pi(t) = p(t) for some i # j, then v;(t) = v;(t) (because of
(20) for p, — p). In this case, instead of v,, ..., v,, we consider

vy + -+, for iy <i, < ... <isuchthat p,(t) = --- = p;(t) and

pi,(t) # p;(t) for j # {i,,...,i;}, and the system of linear equations
Doy(p)v = A;, where k ranges from 1 to the number of all = classes
in the set of coordinate functions of p(t).

The rest of the proof in this case is similar to that of the special
case. The detailed verification is left to the reader.

The condition (23) is an immediate consequence of (20) for
V= Di. D

Consider a functional I(p) = qui(p), where 1<s<m and

the sum is taken over all such i that {qu(p)(¥))} is a ~ class in
{4;(p(1))} j=1... . .m2s. Then, by Sublemma 1, and (19) for We #'(s) and
(20) for Vev (s)u ¥ (s+1)

(24) I(0()) = Dlp@)w®) = O ().

The same happens for | = q, if q,(p(t)) = 0. We call | of the above
form to be admissible.

For an integer r, we denote by K(r) the linear subspace of C™
generated by all admissible functionals [ satisfying I(p(t)) = O(t").

SuBLEMMA 2. — If pi(t) = O(t") for an integer r, then p,e K(r).

Proof. — Suppose, by contradiction, that p,(t) = O(t") and p; ¢ K(r).
For each s =1, ..., m choose ¢ such that gqg.(p(t) = O(t),
Guw ¢ K(r) and such that if j satisfies g (P(t) = O(quw(P(®)), then
qs; € K(r). If such gy, exists, we know that it exists at least for s = 1,
we put L(p) =) q,, where the sum is taken over all such j that

J
q5;(p(®) ~ gi(p(t)). We shall prove that if both I, and I, exist, then
li-:(p(®) = O(L(p(1))) .
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In fact, if this weren’t true, then (qu¢—9qs)€ K(r) for
45(P() ~ quw(P(?), and L€ K(r), s0 g € K(r), which contradicts
our assumptions. The same argument shows that if I, exists, so does
ls,,. Therefore I,, ..., 1, exist and they are lineary independent. In
fact, if Y’ Bi; = 0, then ) BJl,(p(t)) = 0, which implies B, = 0 for all
i. Thus {l;};-, .. . generate K(r) = C™, which contradicts our assump-
tions. This ends the proof. a

We are now in a position to prove Key Lemma. Take ie {1, ... ,m}.
Let pi(t) ~ At", A # 0. By Sublemma 2, p, = ) Bjl(p) for admissible
I; and such that [;(p(t)) = O(t"). Therefore, by (24)

vi(t)) = Y Bli(v(1) = O(t") = O(p,(2)).

But this contradicts (21), which ends the proof. O
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