## Annales de l'institut Fourier

# Gerald W. Schwarz <br> On classical invariant theory and binary cubics 

Annales de l'institut Fourier, tome 37, nº 3 (1987), p. 191-216

[http://www.numdam.org/item?id=AIF_1987_37_3_191_0](http://www.numdam.org/item?id=AIF_1987_37_3_191_0)
© Annales de l'institut Fourier, 1987, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

# ON CLASSICAL INVARIANT THEORY AND BINARY CUBICS 

by<br>Gerald W. SCHWARZ*

## 0 . Introduction.

(0.0) Throughout this paper, $G$ denotes a reductive complex algebraic group and $\phi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{V})$ a $k$-dimensional representation of G. A first main theorem (FMT) for $\phi$ gives generators for the algebras $\mathbf{C}[n \mathrm{~V}]^{\mathbf{G}}, n \geqslant 0$, where $n \mathrm{~V}$ denotes the direct sum of $n$ copies of V . A second main theorem (SMT) for $\phi$ is a determination of the relations of these generators. Classical invariant theory provides FMT's and SMT's for the standard representations of the classical groups, and in [14] we provide ones for the standard representations of $\mathrm{G}_{2}$ and $\mathrm{Sin}_{7}$.
(0.1) There are classical [21] and recent ([19], [29]) results on how to bound the computations involved in establishing FMT's and SMT's. Our work in [14] required improved bounds, and we present them in this paper. As an application, we compute the FMT and SMT for $\mathrm{SL}_{2}$ acting on binary cubics. Perhaps these last results can be of help in the enumerative problem of twisted cubics.
(0.2) Let $m \in \mathbf{N}$. Then from generators and relations for $\mathbf{C}[m \mathrm{~V}]^{\mathrm{G}}$, one obtains, by polarization, a partial set of generators and relations for $\mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}, n>m$. Let gen ( $\phi$ ) (resp. rel ( $\phi$ )) denote the smallest $m$ such that this process yields generators (resp. generators and relations) for all $n>m$. It is classical that

[^0]gen $(\phi) \leqslant k=\operatorname{dim} V, \quad$ and we show that $\operatorname{rel}(\phi) \leqslant k+$ gen $(\phi)$. Vust [19] showed that the relations of $\mathrm{C}[n \mathrm{~V}]^{\mathrm{G}}$ are generated by polarizations of the relations of $\mathbf{C}[k \mathrm{~V}]^{\mathrm{G}}$ and by relations of degree at most $k+1$ in the generators of $\mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}$. We improve upon the bound $k+1$.
(0.3) In $\S 1$ we recall facts about integral representations of $\mathrm{GL}_{n}$ and apply them to invariant theory. We give bounds on gen $(\phi)$, mostly due to Weyl. For example, if $\phi$ is symplectic, then gen $(\phi) \leqslant k / 2$. Something similar is true if $\phi$ is orthogonal.

In $\S 2$ we establish the (new) results on $\mathrm{SMT}^{\prime} s$ described in (0.2). We show how one uses them to easily recover the $\mathrm{SMT}^{\prime} s$ for the classical groups. In § 3 we recall properties of the Poincare series of $\mathbf{C}[\mathrm{V}]^{\mathrm{G}}$ (or any $\mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}$ ). If one knows a homogeneous sequence of parameters for $\mathbf{C}[\mathrm{V}]^{\mathrm{G}}$, then one easily bounds the degrees of its generators and relations. The bound on degrees of relations was essential to the work described in [13]. In § 4 we apply the techniques developed to obtain the FMT and SMT for binary cubics.
(0.4) I thank Th. Vust and C. DeConcini for their aid and encouragement, and I thank J. Dixmier, H. Kraft and P. Littelmann for helpful comments.

## 1. First Main Theorems.

(1.0) We first recall properties of integral representations of $\mathrm{GL}_{n}$ (i.e. those representations lying in tensor powers of the standard representation on $\mathbf{C}^{n}$ ). Our presentation is a variation of that of Vust ([19], [20]). We then recall Cauchy's formula and its applications to FMT's. We end by giving results estimating gen $(\phi)$.
(1.1) Let $\psi_{1}(n)$ denote the standard representation of $\mathrm{GL}_{n}$ on $\mathbf{C}^{n}$, and let $\psi_{i}(n)=\Lambda^{i}\left(\psi_{1}(n)\right), i \geqslant 0$. Note that $\psi_{i}(n)=0$ for $i>n$ and that $\psi_{0}(n)$ is the 1 -dimensional trivial representation. Let $\mathbf{N}^{\infty}$ denote the sequences of natural numbers which are eventually zero. If $(a)=\left(a_{1}, a_{2}, \ldots\right) \in \mathbf{N}^{\infty}$, let $\psi_{(a)}(n)$ denote the highest weight (Cartan) component in $\mathrm{S}^{a_{1}}\left(\psi_{1}(n)\right) \otimes \ldots \otimes \mathrm{S}^{a_{m}}\left(\psi_{m}(n)\right)$
where $m$ is minimal such that $a_{j}=0$ for $j>m$. If $m \leqslant n$ (hence $\left.\psi_{(a)}(n) \neq 0\right)$, we will also use the notation $\psi_{1}^{a_{1}} \ldots \psi_{n}^{a_{n}}(n)$ or $\psi_{1}^{a_{1}} \ldots \psi_{m}^{a_{m}}(n)$ for $\psi_{(a)}(n)$. If $(a)$ is the zero sequence, then $\psi_{(a)}(n)=\psi_{0}(n)$. We will confuse the $\psi_{(a)}(n)$ with their corresponding representation spaces, and similarly for representations $\psi_{(a)}$ defined below.
(1.2) We include $\mathbf{C}^{n}$ in $\mathbf{C}^{n+1}$ as the subspace with last co-ordinate zero. For any $(a) \in \mathbf{N}^{\infty}$, this induces inclusions $\psi_{(a)}(n) \subseteq \psi_{(a)}(n+1) \subseteq \ldots \quad$ compatible with the actions of $\mathrm{GL}_{n} \subseteq \mathrm{GL}_{n+1} \subseteq \ldots$. Thus $\mathrm{GL}=\underset{\rightarrow}{\lim \mathrm{GL}_{n}}$ acts linearly on $\psi_{(a)}=\underset{\rightarrow}{\lim } \psi_{(a)}(n)$. Let $U_{n}$ denote the subgroup of $\mathrm{GL}_{n}$ consisting of upper triangular matrices with $I^{\prime} s$ on the diagonal, and set $\mathrm{U}=\underset{\rightarrow}{\lim } \mathrm{U}_{n}$. We identify $\mathrm{GL}_{n}, \mathrm{U}_{n}$ and $\psi_{(a)}(n)$ with their images in $\overrightarrow{\mathrm{GL}}, \mathrm{U}$ and $\psi_{(a)}$, respectively. If $\psi_{(a)}(n) \neq 0$, then $\psi_{(a)}^{\mathrm{U}}=\psi_{(a)}(n)^{\mathrm{U}_{n}}$ is the space of highest weight vectors of $\psi_{(a)}(n)$.
(1.3) Let $(a) \in \mathbf{N}^{\infty}$. We define

$$
\operatorname{deg}(a)=\Sigma i a_{i}, \text { width }(a)=\Sigma a_{i},
$$

and ht (a) (the height of (a)) is the least $j \geqslant 0$ such that $a_{i}=0$ for $i>j$. The height, degree etc. of $\psi_{(a)}$ and $\psi_{(a)}(n)$ are defined to be the height, degree, etc. of (a).

Let $(b) \in \mathbf{N}^{\infty}$. Then $(a)+(b)$ denotes $\left(a_{1}+b_{1}, \ldots\right)$ and $\psi_{(a)} \psi_{(b)}$ denotes $\psi_{(a)+(b)}$. We order $\mathbf{N}^{\infty}$ lexicographically from the right, i.e. we write $(a)<(b)$ (and also $\left.\psi_{(a)}<\psi_{(b)}\right)$ if there is a $j \in \mathbf{N}-\{0\}$ such that $a_{j}<b_{j}$ and $a_{i}=b_{i}$ for $i>j$.
(1.4) We say that $\psi_{(c)}$ occurs in $\psi_{(a)} \otimes \psi_{(b)}$ if $\psi_{(a)} \otimes \psi_{(b)}$ contains a subspace isomorphic to $\psi_{(c)}$, and similarly for representations $0 \neq \psi_{(c)}(n)$ of $\mathrm{GL}_{n}$. We identify isomorphic representations of GL and $\mathrm{GL}_{n}$.
(1.5) Proposition. - Suppose that $0 \neq \psi_{(c)}(n)$ occurs in $\psi_{(a)}(n) \otimes \psi_{(b)}(n)$. Then
(1) $\operatorname{deg} \psi_{(c)}=\operatorname{deg} \psi_{(a)}+\operatorname{deg} \psi_{(b)}$.
(2) ht $\psi_{(a)}$, ht $\psi_{(b)} \leqslant$ ht $\psi_{(c)} \leqslant$ ht $\psi_{(a)}+$ ht $\psi_{(b)}$.
(3) width $\psi_{(a)}$, width $\psi_{(b)} \leqslant$ width $\psi_{(c)} \leqslant$ width $\psi_{(a)}$ + width $\psi_{(b)}$.
(4) The multiplicity of $\psi_{(c)}(n)$ in $\psi_{(a)}(n) \otimes \psi_{(b)}(n)$ is independent of $n$ as long as $\psi_{(c)}(n) \neq 0$.

Proof. - One can use the Littlewood-Richardson rule [9], or one can use the methods of Vust [20] together with standard Lie algebra results on tensor products.
(1.6) Corollary. - Let $\quad(a),(b) \in \mathbf{N}^{\infty}$. Then there are $\left(c^{1}\right), \ldots,\left(c^{r}\right) \in \mathbf{N}^{\infty}$, not necessarily distinct, such that

$$
\psi_{(a)} \otimes \psi_{(b)}=\stackrel{r}{i=1} \psi_{(c i)}
$$

i.e.

$$
\psi_{(a)}(n) \otimes \psi_{(b)}(n)=\stackrel{r}{i=1} \psi_{(c i)}(n)
$$

for all $n$.

We give examples of tensor product decompositions which play a role in classical invariant theory (see § 2). They are actually disguised versions of the Clebsch-Gordan formula.
(1.7) Lemma. - Let $p, q \in \mathbf{N}$ with $p \leqslant q$. Then
(1) $\psi_{p} \otimes \psi_{q}=\psi_{p} \psi_{q}+\psi_{p-1} \psi_{q+1}+\ldots+\psi_{p+q}$.
(2) $S^{2} \psi_{p}=\psi_{p}^{2}+\psi_{p-2} \psi_{p+2}+\ldots$.
(3) $\Lambda^{2} \psi_{p}=\psi_{p-1} \psi_{p+1}+\psi_{p-3} \psi_{p+3}+\ldots$.

Proof. - Let $n=p+q$. As representations of $\mathrm{SL}_{n} \subseteq \mathrm{GL}_{n}$, $\psi_{p}(n)$ and $\psi_{q}(n)$ are dual and irreducible, hence the trivial $\mathrm{SL}_{n}$-representation $\psi_{n}(n)$ occurs once in $\psi_{p}(n) \otimes \psi_{q}(n)$. Thus $\psi_{p} \otimes \psi_{q}$ equals $\psi_{n}$ together with representations of height $\leqslant n-1$. Relative to the action of $\mathrm{SL}_{n-1}, \psi_{p}(n-1) \otimes \psi_{q}(n-1)$ is dual to $\psi_{r}(n-1) \otimes \psi_{g}(n-1)$ where

$$
r=n-1-q, s=n-1-p \quad \text { and } \quad r+s=n-2
$$

By induction, $\psi_{r} \otimes \psi_{s}$ has a decomposition as in (1), hence so does $\psi_{p}(n-1) \otimes \psi_{q}(n-1)$ by duality, and (1) follows. The proofs of (2) and (3) are similar.
(1.8) We recall Cauchy's theorem on the decomposition of the symmetric algebra of a tensor product: We consider groups of the form $\mathrm{GL}_{n} \times \mathrm{GL}_{m}$ (or $\mathrm{GL} \times \mathrm{GL}$ ) and irreducible representations $\psi_{(a)}(n) \otimes \psi_{(b)}^{\prime}(m) \quad\left(\right.$ or $\left.\quad \psi_{(a)} \otimes \psi_{(b)}^{\prime}\right) \quad$ where we use the prime to distinguish between representations of the first and second copies of the general linear group.
(1.9) Theorem ([9], [10]).
(1) $S^{d}\left(\psi_{1} \otimes \psi_{1}^{\prime}\right)=\underset{\operatorname{deg}(a)=d}{\oplus} \psi_{(a)} \otimes \psi_{(a)}^{\prime}$.
(2) $\quad S^{d}\left(\psi_{1}(n) \otimes \psi_{1}^{\prime}(m)\right)=\underset{\substack{\operatorname{deg}(a)=d \\ \mathrm{ht}(a) \leqslant m, n}}{\oplus} \psi_{(a)}(n) \otimes \psi_{(a)}^{\prime}(m)$.
(1.10) Remark. - Most proofs of (2) are combinatorial in nature. However, as in [18], one can use Frobenius reciprocity to show that $\mathbf{C}\left[\psi_{1}(n) \otimes \psi_{1}^{\prime}(m)\right] \quad$ contains $\quad \psi_{(a)}^{\prime}(m)^{*}$ with multiplicity $\operatorname{dim} \psi_{(a)}(n)$ when $n<m . \quad\left(\mathrm{GL}_{m}\right.$ then has an orbit in $\psi_{1}(n) \otimes \psi_{1}^{\prime}(m)$ whose complement has codimension $\geqslant 2$.) One easily shows that $S^{d}\left(\psi_{1}(n) \otimes \psi_{1}^{\prime}(m)\right)$ contains every

$$
\psi_{(a)}(n) \otimes \psi_{(a)}^{\prime}(m) \quad \text { with } \quad \operatorname{deg}(a)=d
$$

hence (2) is true when $n<m$. The case $n=m$ follows by taking fixed points of a copy of $\mathrm{GL}_{m-n}$, and (2) implies (1).
(1.11) Corollary. - Let $(a),(b),(c) \in \mathbf{N}^{\infty}$ and suppose that $\psi_{(c)}$ occurs in $\psi_{(a)} \otimes \psi_{(b)}$. Then $\psi_{(c)} \otimes \psi_{(c)}^{\prime}$ is contained in the product of $\psi_{(a)} \otimes \psi_{(a)}^{\prime}$ and $\psi_{(b)} \otimes \psi_{(b)}^{\prime}$ in $S^{\bullet}\left(\psi_{1} \otimes \psi_{1}^{\prime}\right)$.

Proof. - Let $\quad \ell=$ ht $(a), m=\mathrm{ht}(b), n=\ell+m$. Then there is a copy of

$$
\begin{aligned}
\psi_{(c)}(n) \subseteq \psi_{(a)}(n) \otimes \psi_{(b)}(n) \subseteq S^{\bullet}\left(\ell \psi_{1}(n)\right) & \\
& \otimes S^{\bullet}\left(m \psi_{1}(n)\right) \subseteq S^{\bullet}\left(n \psi_{1}(n)\right) .
\end{aligned}
$$

Now use (1.9).
(1.12) We apply the results above to invariant theory: Let $\phi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{V})$ be our $k$-dimensional representation of the reductive group $G$. We will also denote $\phi$ by ( $\mathrm{V}, \mathrm{G}$ ) and we will sometimes confuse $\phi$ with V , so, for example, $\mathbf{C}[\phi]^{\mathrm{G}}=\mathbf{C}[\mathrm{V}]^{\mathrm{G}}$. If $(a) \in \mathbf{N}^{\infty}$, we let $\psi_{(a)}(\mathrm{V})$ denote the representation (or representation space) of $G L(V)$ as defined in (1.1), e.g. $\psi_{2}(\mathrm{~V})=\Lambda^{\mathbf{2}} \mathrm{V}$. Via $\phi: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{V})$, we obtain a representation $\phi_{(a)}$ of G on $\psi_{(a)}(\mathrm{V})$.

Let $\mathrm{P}=\mathrm{S}^{*}\left(\psi_{1} \otimes \mathrm{~V}^{*}\right) \quad$ and $\quad \mathrm{P}(n)=\mathrm{S}^{*}\left(\psi_{1}(n) \otimes \mathrm{V}^{*}\right) \subseteq \mathrm{P}$. Then P (resp. $\mathrm{P}(n)$ ) is a graded direct sum of $\mathrm{GL} \times \mathrm{G}$ (resp. $\left.\mathrm{GL}_{n} \times \mathrm{G}\right)$ representations. Let $\mathrm{R}=\mathrm{P}^{\mathrm{G}}$ and $\mathrm{R}(n)=\mathrm{P}(n)^{\mathrm{G}}$. Note that $\mathrm{P}(n) \simeq \mathbf{C}[n \mathrm{~V}], \mathrm{R}(n) \simeq \mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}$ and that $\mathrm{P}=\underset{\rightarrow}{\lim } \mathrm{P}(n)$, $\mathrm{R}=\underset{\rightarrow}{\lim \mathrm{R}}(n)$. By (1.9) we have
(1.13) $\mathrm{P}=\underset{\mathrm{ht}(a) \leqslant k}{\oplus} \psi_{(a)} \otimes \psi_{(a)}\left(\mathrm{V}^{*}\right)$,
(1.14) $\mathrm{R}=\underset{\mathrm{ht}(a) \leqslant k}{\oplus} \psi_{(a)} \otimes \psi_{(a)}\left(\mathrm{V}^{*}\right)^{\mathrm{G}}$,
and similarly for $\mathrm{R}(n)$ and $\mathrm{P}(n)$.
Let $\mathrm{R}(n)^{+}$(resp. $\mathrm{R}^{+}$) denote the elements of $\mathrm{R}(n)$ (resp. R ) with zero constant term. Since $\mathrm{R}(n)$ is finitely generated, $\mathrm{R}(n)^{+} /\left(\mathrm{R}(n)^{+}\right)^{2}$ is a finite-dimensional $\mathrm{GL}_{n}$-representation. We can thus find elements $0 \neq f_{i} \in \psi_{(a i)}\left(\mathrm{V}^{*}\right)^{\mathrm{G}}, \quad i=1, \ldots, p$, such that the representation spaces $\psi_{\left(a^{i}\right)}(n) \otimes f_{i} \subseteq \mathrm{R}(n)$ minimally generate $\mathrm{R}(n)$, i.e. bases of these subspaces are a minimal set of generators of $\mathrm{R}(n)$ and map onto a basis of $\mathrm{R}(n)^{+} /\left(\mathrm{R}(n)^{+}\right)^{2}$. From (1.14) we see that $h t\left(a^{i}\right) \leqslant k$ for all $i$, hence :
(1.15) Theorem. - Let $f_{i} \in \psi_{\left(a^{i}\right)}\left(\mathrm{V}^{*}\right)^{\mathrm{G}}$, and suppose that the subspaces $\psi_{\left(a^{i}\right)}(k) \otimes f_{i}$ minimally generate $\mathrm{R}(k), i=1, \ldots, p$. Then the subspaces $\psi_{\left(a^{i}\right)}(n) \otimes f_{i} \quad$ minimally generate $\mathrm{R}(n)$ for any $n$.
(1.16) Let $\psi_{\left(a^{i}\right)}(n) \otimes f_{i}, i=1, \ldots, p, \quad$ minimally generate $\mathrm{R}(n)$. We say that the generators lying in $\psi_{(a i)}(n) \otimes f_{i}$ transform by $\psi_{\left(a^{i}\right)}(n)$, and their height, degree, etc. are defined to be that of $\left(a^{i}\right)$. We say that the minimal generators of $\mathrm{R}(n)$ transform by $\psi_{\left(a^{1}\right)}(n), \ldots, \psi_{(a p)}(n)$.

Suppose that $n \geqslant k$. Then R is generated by the $\psi_{\left(a^{i}\right)} \otimes f_{i}$, and we say that the minimal generators of R transform by $\psi_{\left(a^{1}\right)}, \ldots, \psi_{\left(a^{p}\right)}$. Let $\lambda_{i}$ be a highest weight vector of $\psi_{\left(a^{i}\right)}$. We call $h_{i}=\lambda_{i} \otimes f_{i}$ a (minimal) highest weight generator of R (and of $\left.\mathrm{R}(m), m \geqslant \mathrm{ht}\left(a^{i}\right)\right)$. All elements of $\psi_{\left(a^{i}\right)} \otimes f_{i}$ can be obtained from $h_{i}$ via the action of the Lie algebra of strictly lower triangular matrices (acting as polarization operators, in Weyl's language [21]).
(1.17) Let $h=\lambda \otimes f \in \psi_{(a)}(n)^{\mathrm{U}_{n}} \otimes \psi_{(a)}\left(\mathrm{V}^{*}\right)^{\mathrm{G}} \subseteq \mathrm{R}(n)$. Identifying $\mathrm{R}(n)$ with $\mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}$ in the standard way, one sees that $h$ corresponds to an invariant homogeneous of degree $a_{i}+a_{i+1}+\ldots$ in the $i$ th copy of V .
(1.18) Remark. - Let $\tau: \mathrm{G} \longrightarrow \mathrm{GL}(\mathrm{W})$ be an irreducible representation, and let $\mathrm{P}(n)_{\tau}$ (resp. $\mathrm{P}_{\tau}$ ) denote the sum of the G-irreducible subspaces of $\mathrm{P}(n)$ (resp. P ) isomorphic to $\tau$. Then $\mathrm{P}(n)_{\tau}$ is isomorphic to the invariants of $\mathrm{S}^{*}\left(\psi_{1}(n) \otimes \mathrm{V}^{*} \oplus \mathrm{~W}^{*}\right)$ which are homogeneous of degree 1 in $W^{*}$. We can find finitely many subspaces $\psi_{\left(c^{j}\right)}(n) \otimes g_{j}$, where $g_{j} \in\left(\psi_{\left(c^{j}\right)}\left(\mathrm{V}^{*}\right) \otimes \mathrm{W}^{*}\right)^{\mathrm{G}}$, which minimally generate $\mathrm{P}(n)_{\tau}$ as an $\mathrm{R}(n)$-module. Moreover, ht $\left(c^{j}\right) \leqslant k$ for all $j$. Analogous results hold for $\mathrm{P}_{\tau}$.
(1.19) Let $\phi, \tau$ and the $\left(a^{i}\right)$ and $\left(c^{j}\right)$ be as above. Then (see (0.2)) gen $(\phi)=\max _{i}$ ht $\left(a^{i}\right)$, and we set gen $(\phi, \tau)=\max _{j}$ ht $\left(c^{j}\right)$. We find situations where the estimates gen $(\phi)$, gen $(\phi, \tau) \leqslant k$ can be improved.

We say that a representation $\psi_{(a)}(n)$ is irrelevant (for $\phi$ ) if $\psi_{(a)}(n)=0$ or $\psi_{(a)}(n)$ does not occur as a subrepresentation of $\mathbf{P}(n) / \mathrm{R}(n)^{+} \mathbf{P}(n)^{+}$. One similarly defines when $\psi_{(a)}$ is irrelevant, and if ht $(a) \leqslant n$, then $\psi_{(a)}$ is irrelevant if and only if $\psi_{(a)}(n)$ is. By definition, no minimal generators of $\mathrm{R}(n)$ or any $\mathrm{P}_{\tau}$ transform by an irrelevant representation.

From corollary (1.11) we obtain :
(1.20) PROPOSITION. - (1) If $\psi_{(a)}$ is irrelevant and $(b) \in \mathbf{N}^{\infty}$, then any irreducible representation occurring in $\psi_{(a)} \otimes \psi_{(b)}$ is irrelevant. In particular, $\psi_{(a)+(b)}$ is irrelevant.
(2) If $\psi_{m}$ is irrelevant, then $\psi_{n}$ is irrelevant for $n>m$, and gen $(\phi)$, gen $(\phi, \tau)<m$.
(3) If $\psi_{k}\left(\mathrm{~V}^{*}\right)^{\mathrm{G}} \neq 0$ (i.e. $\left.\mathrm{G} \subseteq \mathrm{SL}(\mathrm{V})\right)$, then any representation of height $k$, except perhaps for $\psi_{k}$, is irrelevant.
(1.21) PROPOSITION. - The representation $\psi_{m}$ is irrelevant if and only if

$$
\Lambda^{m} \mathrm{~V}^{*}=\sum_{1 \leqslant i<m}\left(\Lambda^{i} \mathrm{~V}^{*}\right)^{\mathrm{G}} \wedge \Lambda^{m-i} \mathrm{~V}^{*}
$$

In particular, $\psi_{k}$ is irrelevant if and only if $\Lambda^{i}\left(\mathrm{~V}^{*}\right)^{\mathrm{G}} \neq 0$ for some $i$ with $1 \leqslant i<k$.

Proof. - One sees directly that the product of $\psi_{i}(m) \otimes \Lambda^{i}\left(\mathrm{~V}^{*}\right)^{\mathrm{G}}$ and $\psi_{m-i}(m) \otimes \Lambda^{m-i}\left(\mathrm{~V}^{*}\right) \quad$ in $\quad \mathrm{S}^{m}\left(\psi_{1}(m) \otimes \mathrm{V}^{*}\right)$ projects to $\psi_{m}(m) \otimes \Lambda^{i}\left(\mathrm{~V}^{*}\right)^{\mathrm{G}} \wedge \Lambda^{m-i}\left(\mathrm{~V}^{*}\right) \subseteq \psi_{m}(m) \otimes \Lambda^{m}\left(\mathrm{~V}^{*}\right)$.
(1.22) THFOREM ([21]). - (1) Suppose that $k=2 m \geqslant 4$ and that V admits a non-degenerate skew form $\omega \in\left(\Lambda^{2} \mathrm{~V}^{*}\right)^{\mathrm{G}}$ (i.e. $\phi$ is symplectic). Then $\psi_{m+1}$ is irrelevant.
(2) Suppose that $k \geqslant 2$ and that V admits a non-degenerate symmetric G-invariant bilinear form (i.e. $\phi$ is orthogonal). Then $\psi_{p} \psi_{q}$ is irrelevant whenever $p+q>k$.

Proof (See ([21] p. 154) for (2)). - Part (1) follows from (1.21) and the well-known fact that $\omega \wedge \Lambda^{m-1}\left(\mathrm{~V}^{*}\right)=\Lambda^{m+1}\left(\mathrm{~V}^{*}\right)$.
(1.23) Remarks. - (1) Let $\mathrm{V}=\mathrm{V}_{1} \oplus \ldots \oplus \mathrm{~V}_{r}$ where the $\mathrm{V}_{i}$ are irreducible representations of G . Then the homogeneous invariants of $n_{1} \mathrm{~V}_{1} \oplus \ldots \oplus n_{r} \mathrm{~V}_{r}$ transform by sums of representations $\psi_{\left(a^{1}\right)}\left(n_{1}\right) \otimes \ldots \otimes \psi_{\left(a^{r}\right)}\left(n_{r}\right)$ of
$\mathrm{GL}_{n_{1}} \times \ldots \times \mathrm{GL}_{n_{r}}, \quad$ and $\quad \psi_{\left(a^{1}\right)}\left(n_{1}\right) \otimes \ldots \otimes \psi_{\left(a^{r}\right)}\left(n_{r}\right)$
is irrelevant (obvious definition) if any $\psi_{(a j)}\left(n_{j}\right)$ is irrelevant for $\left(\mathrm{V}_{j}, \mathrm{G}\right)$. In particular; the representation is irrelevant if $\mathrm{ht}\left(a^{j}\right)>\operatorname{dim} \mathrm{V}_{j}$ for some $j$.
(2) Let $\mathrm{V}=\mathrm{W} \oplus \mathrm{W}^{*}$ where W is an $m$-dimensional representation of $G$. Then $(V, G)$ has a symplectic structure, and

$$
\Lambda^{m+1}(\mathrm{~V})=\stackrel{\oplus}{i=0} \mathrm{~m}^{i+1} \mathrm{~W} \otimes \Lambda^{m+1-i} \mathrm{~W}^{*}
$$

Thus a representation $\psi_{(a)}\left(n_{1}\right) \otimes \psi_{(b)}\left(n_{2}\right)$ is irrelevant if ht $(a)+$ ht $(b)>m$. In other words, modulo polarization, generators of $\mathbf{C}\left[n_{1} \mathrm{~W} \oplus n_{2} \mathrm{~W}^{*}\right]^{\mathrm{G}}$ occur in subspaces $\mathbf{C}\left[r \mathrm{~W} \oplus s \mathrm{~W}^{*}\right]^{\mathrm{G}}$ where $r \leqslant n_{1}, s \leqslant n_{2}$ and $r+s \leqslant m$.
(3) Let $\phi=(\mathrm{V}, \mathrm{G})=\left(\mathbf{C}^{m} \oplus\left(\mathbf{C}^{m}\right)^{*}, \mathrm{SL}_{m}\right)$. Then one cannot improve upon the bound gen $(\phi) \leqslant m$ since there are generators (determinant invariants) of height $m$.
(4) Let $(\mathrm{V}, \mathrm{G})$ be orthogonal, and let

$$
h=\lambda \otimes f \in \psi_{(a)}(k) \otimes \psi_{(a)}\left(\mathrm{V}^{*}\right)^{\mathrm{G}}
$$

be a highest weight generator. Write $\psi_{(a)}=\psi_{(b)} \psi_{\ell}$ where $\ell=h t(a) \geqslant m=h t(b)$. Then $\ell+m \leqslant k$ by (1.22). As an element of $\mathbf{C}[\ell \mathrm{V}]^{\mathrm{G}}, h$ is linear and skew symmetric in the last $\ell-m$ copies of V (see (1.17)). Thus $h$ maps non-trivially to

$$
\left(\mathrm{M}=\underset{j}{\oplus} \mathrm{P}(m)_{\tau_{j}}\right) / \mathrm{R}^{+} \mathrm{M}^{+}, \quad \text { where } \quad \Lambda^{\ell-m} \mathrm{~V}=\oplus \tau_{j}
$$

In other words, we can obtain the minimal highest weight generators of R from minimal generators of $\mathrm{R}(m)$-modules $\mathrm{P}(m)_{\tau}$, where $m \leqslant k / 2$ and $\tau$ is a subrepresentation of some $\Lambda^{r} \mathrm{~V}$ with $2 m+r \leqslant k$.
(1.24) For later reference and as examples we now state the FMT's for the orthogonal and symplectic groups (see (2.22) for $\mathrm{SL}_{k}$ ). Given our results so far, one can establish these FMT's using the Luna-Richardson theorem [8], the methods of [11], or the standard approach [21]. (Using (1.22) one can even improve upon the standard approach in the symplectic case.)
(1.25) Example. - Let $\mathrm{G}=\mathrm{Sp}_{2 k}$ act standardly on $\mathrm{V}=\mathbf{C}^{2 k}$, $k \geqslant 2$. Let $\omega \in\left(\Lambda^{2} \mathrm{~V}^{*}\right)^{\mathbf{G}}$ be the usual G-invariant. Then $\mathrm{S}^{2}\left(\psi_{1}(n) \otimes \mathrm{V}^{*}\right)^{\mathrm{G}} \simeq \Lambda^{2} \psi_{1}(n) \otimes\left(\Lambda^{2} \mathrm{~V}^{*}\right)^{\mathrm{G}}=\psi_{2}(n) \otimes \omega \simeq \psi_{2}(n)$ generates $\mathrm{R}(n)$. The generator $\omega_{i j}$ of $\mathrm{C}[n \mathrm{~V}]^{\mathrm{G}}$ corresponding to the usual basis element $e_{i} \wedge e_{j}$ of $\psi_{2}(n)$ has value $\omega\left(v_{i}, v_{j}\right)$ on $\left(v_{1}, \ldots, v_{n}\right) \in n \mathrm{~V}$. A highest weight generator is $\omega_{12}$.
(1.26) Example. - Let $\mathrm{G}=\mathrm{O}_{k}$ act standardly on $\mathrm{V}=\mathrm{C}^{k}$, and let $\eta \in\left(\mathrm{S}^{2} \mathrm{~V}^{*}\right)^{\mathrm{G}}$ be the usual G -invariant. Then $\mathrm{S}^{2}\left(\psi_{1}(n) \otimes \mathrm{V}^{*}\right)^{\mathrm{G}} \simeq \mathrm{S}^{2} \psi_{1}(n) \otimes\left(\mathrm{S}^{2} \mathrm{~V}^{*}\right)^{\mathrm{G}}=\psi_{1}^{2}(n) \otimes \eta \simeq \psi_{1}^{2}(n)$ generates $\mathrm{R}(n)$. In other words, $\mathbf{C}[n \mathrm{~V}]^{\mathrm{G}}$ has generators $\eta_{i j}, 1 \leqslant i \leqslant j \leqslant n, \quad$ where $\quad \eta_{i j}\left(v_{1}, \ldots, v_{n}\right)=\eta\left(v_{i}, v_{j}\right)$, and $\eta_{11}$ is a highest weight generator.

## 2. Second Main Theorems.

(2.0) Let $\phi=(\mathrm{V}, \mathrm{G})$ and $k=\operatorname{dim} \mathrm{V}$ as in $\S 1$, and let $\mathrm{R}=\mathrm{S}^{\bullet}\left(\psi_{1} \otimes \mathrm{~V}^{*}\right)^{\mathrm{G}}$ be minimally generated by subspaces

$$
\psi_{\left(a^{1}\right)} \otimes f_{1}, \ldots, \psi_{(a p)} \otimes f_{p}
$$

Let $\mathrm{T}=\mathrm{S}^{\bullet}\left(\oplus \psi_{\left(a^{i}\right)}\right)$, and let $\pi: \mathrm{T} \longrightarrow \mathrm{R}$ be the canonical GL-equivariant surjection (canonical given our choice of the $f_{i}$ ). Define $\mathrm{T}(n)=\mathrm{S}^{\bullet}\left(\oplus \psi_{\left(a^{i}\right)}(n)\right) \subseteq \mathrm{T}$. Then $\pi$ induces

$$
\pi(n): \mathrm{T}(n) \longrightarrow \mathrm{R}(n), \quad \text { and } \quad \mathrm{I}(n)=\operatorname{Ker} \pi(n)
$$

lies in $\mathrm{I}=$ Ker $\pi$. We give elements of $\psi_{\left(a^{i}\right)} \supseteq \psi_{(a i)}(n)$ their natural degree $\left(=\operatorname{deg}\left(a^{i}\right)\right)$, in which case $\pi$ and $\pi(n)$ are degree preserving homomorphisms of graded algebras.
(2.1) To solve the SMT for $\phi$ is, of course, to find generators of $I$. We show that one knows generators of $I$, up to polarization, if one knows I $(k+$ gen $(\phi))$. Vust showed that I is generated by elements of T of degree at most $k+1$ in the $\psi_{\left(a^{i}\right)}$, along with polarizations of elements of $\mathrm{I}(k)$. We refine his result, and we use it to easily rederive the $\mathrm{SMT}^{\prime}$ ' for the classical groups.
(2.2) It will be convenient for us to use the term relation not only for element of $I$, but also for irreducible subspaces of I: A relation (of $\pi: \mathrm{T} \longrightarrow \mathrm{R}$ ) is an equivariant injection $\nu: \psi_{(b)} \longrightarrow \mathrm{I}$ for some (b). Note that $\nu: \psi_{(b)} \longrightarrow \mathrm{T}$ has image in I if and only if $\nu(h) \in I$ where $h$ is a highest weight vector of $\psi_{(b)}$ (we call $\nu(h)$ a highest weight relation). We also refer to equivariant injections $\sigma: \psi_{(c)}(n) \longrightarrow \mathrm{I}(n) \quad$ as relations $\quad(o f \quad \pi(n): \mathrm{T}(n) \longrightarrow \mathrm{R}(n))$. Clearly a relation $\nu: \psi_{(b)} \longrightarrow$ I induces relations

$$
\nu(n): \psi_{(b)}(n) \longrightarrow \mathrm{I}(n)
$$

by restriction, and if $\sigma: \psi_{(c)}(n) \longrightarrow \mathrm{I}(n)$ is a relation with $\psi_{(c)}(n) \neq 0$, then there is a unique relation $\nu: \psi_{(c)} \longrightarrow$ I with $\nu(n)=\sigma$. We use the notation $\left(\psi_{(b)}, \nu\right)$ to denote relations $\nu: \psi_{(b)} \longrightarrow \mathrm{I}$, and similarly for relations in $\mathrm{I}(n)$.
(2.3) Let $\quad v: \psi_{(b)} \longrightarrow \mathrm{T}$ be an equivariant inclusion. If ht $(b)>k$, then $\operatorname{Im} \nu \subseteq \mathrm{I}$ by (1.14), and we call $\left(\psi_{(b)}, \nu\right)$ a general relation. We call a relation special if it is not general. Roughly, the special relations are the ones ore already sees in $\mathrm{I}(k)$, and the general relations are those which occur for dimensional reasons.
(2.4) Let $\left(\psi_{\left(b^{j}\right)}, \nu_{j}\right), j=1,2, \ldots$ be a minimal set of generators for I . For any $j, \nu_{j}\left(\psi_{\left(b^{j}\right)}\right)$ lies in the image in T of $\sum_{i} \psi_{(a i)} \otimes \mathrm{T}_{d_{i}}, \quad$ where $d_{i}=\operatorname{deg}\left(b^{j}\right)-\operatorname{deg}\left(a^{i}\right)$ and $\mathrm{T}_{d_{i}}$ denotes the elements of T of degree $d_{i}$. Any subrepresentation of $\mathrm{T}_{d_{i}}$ of height $>k$ is in I, hence by minimality, $\psi_{\left(b^{j}\right)}$ injects into a sum $\Sigma \psi_{\left(a^{i}\right)} \otimes \psi_{\left(c^{\ell}\right)} \quad$ where $\quad$ ht $\left(c^{\ell}\right) \leqslant k \quad$ for all $^{\left(b^{j}\right)} \ell$. One then easily obtains:
(2.5) THEOREM. - Let $\quad \mathrm{T}=\mathrm{S}^{\bullet}\left(\psi_{\left(a^{1}\right)} \oplus \ldots \oplus \psi_{\left(a^{p}\right)}\right)$, etc. be as above.
(1) I is minimally generated by relations

$$
\left(\psi_{\left(b^{1}\right)}, \nu_{1}\right), \ldots,\left(\psi_{(b q)}, \nu_{q}\right)
$$

where $\operatorname{rel}(\phi):=\max _{j} \mathrm{ht}\left(b^{j}\right) \leqslant k+\operatorname{gen}(\phi)$.
(2) If $\left\{\left(\psi_{\left(c^{\ell}\right)}, \eta_{\ell}\right)\right\}$ are relations such that the $\left(\psi_{\left(c^{\ell}\right)}(n), \eta_{\ell}(n)\right)$ generate $\mathrm{I}(n)$ for some $n \geqslant \operatorname{rel}(\phi)$ (e.g. for $n=2 k)$, then the $\left(\psi_{\left(c^{\ell}\right)}, \eta_{\ell}\right)$ generate I.
(2.6) Example. - To solve the SMT for $\mathrm{V}, \mathrm{G})=\left(\mathbf{C}^{k}, \mathrm{O}_{k}\right)$ it suffices to find generators of $\mathrm{I}(k+1)$.
(2.7) Let $\mathrm{J}_{r} \quad$ (or $\left.\mathrm{J}_{r}\left(\underset{i=1}{\stackrel{p^{-}}{\oplus}} \psi_{\left(a^{i}\right)}\right)\right)$ denote the direct sum of the irreducible subspaces of T transforming by representations of height
$\geqslant r$. By (1.5), $\mathrm{J}_{r}$ is an ideal of T , and $\mathrm{I}=\mathrm{Spc}+\mathrm{J}_{k+1}$, where Spc is the subideal of I generated by the special relations. We bound the degrees of minimal generators of the ideals $\mathrm{J}_{r}$.
(2.8) Theorem. -Let $\quad \mathrm{T}=\mathrm{S}^{\bullet}\left(\psi_{\left(a^{1}\right)} \oplus \ldots \oplus \psi_{(a p)}\right) . \quad$ Assume that ht $\left(a^{i}\right) \leqslant r$ for $i \leqslant s$ and ht $\left(a^{i}\right)>r$ for $s<i \leqslant p$. Then $\mathrm{J}_{r}$ is generated by the $\psi_{(a i)}$ with $s<i \leqslant p$ and by the subspaces $\mathrm{J}_{r} \cap\left(\mathrm{~S}^{d_{1}} \psi_{\left(a^{1}\right)} \otimes \ldots \otimes \mathrm{S}^{d_{s}} \psi_{\left(a^{s}\right)}\right)$ where $d_{1}+\ldots+d_{s} \leqslant r-m+1$ and $m=\max \left\{\mathrm{ht}\left(a^{i}\right): d_{i} \neq 0\right\}$.
(2.9) Corollary (Vust [19]). $-\mathrm{J}_{r}$ is generated by the subspaces $\mathrm{J}_{r} \cap\left(\mathrm{~S}^{d_{1}} \psi_{\left(a^{1}\right)} \otimes \ldots \otimes \mathrm{S}^{d_{p}} \psi_{(a p)}\right)$ with $d_{1}+\ldots+d_{p} \leqslant r$.
(2.10) Example. The ideal $\mathrm{J}_{6}\left(\psi_{1}^{2} \oplus \psi_{2} \oplus \psi_{3} \psi_{4}\right)$ is generated by subspaces $\mathrm{J}_{6} \cap\left(\mathrm{~S}^{a} \psi_{1}^{2} \otimes \mathrm{~S}^{b} \psi_{2} \otimes \mathrm{~S}^{c} \psi_{3} \psi_{4}\right)$ with $a \leqslant 6$, $a+b \leqslant 5$ if $b \neq 0$ and $a+b+c \leqslant 3$ if $c \neq 0$.
(2.11) Remarks. - (1) One can usually improve our estimates in specific cases. For example, (2.8) says that $\mathbf{J}_{r}\left(\psi_{2}\right)$ is generated by elements of degree $\leqslant r-1$ in $\psi_{2}$. But

$$
S^{2} \psi_{2}=\psi_{2}^{2}+\psi_{4}, S^{3} \psi_{2}=\psi_{2}^{3}+\psi_{2} \dot{\psi}_{4}+\psi_{6}
$$

etc. (see (2.20) below), hence $\mathrm{J}_{r}\left(\psi_{2}\right)$ is generated by elements of degree $\leqslant(r+1) / 2$ in $\psi_{2}$. In example (2.10) we may add the condition $a+2 b+c \leqslant 6$.
(2) In general, one cannot improve upon (2.8) even when there are several representations of large height: Let $\psi=\psi_{2} \oplus \psi_{2} \oplus \psi_{2}$ and consider $\mathrm{J}_{4}(\psi)$. There is a copy of $\psi_{1}^{2} \psi_{4}$ in $\Lambda^{3} \psi_{2} \subseteq S^{3}(\psi)$. Now $\mathrm{J}_{4} \cap S^{2}(\psi)$ consists of copies of $\psi_{4}$, and $\psi_{1}^{2} \psi_{4} \nsubseteq \psi_{2} \otimes \psi_{4}$. Hence $\mathrm{J}_{4} \cap \mathrm{~S}^{2}(\psi)$ does not generate $\mathrm{J}_{4}$, and the estimate of (2.8) is sharp.
(2.12) We consider a multilinear version of (2.8). Let $j_{r}\left(\stackrel{m}{\otimes} \underset{i=1}{*} \psi_{\left(c^{i}\right)}\right)$ (or just $j_{r}$ ) denote the subspace of $\otimes \psi_{\left(c^{i}\right)}$ spanned by subrepresentations of height $\geqslant r$. If $\mathrm{A} \subseteq\{1, \ldots, m\}$, let $|\mathrm{A}|$ denote the cardinality of A and $\mathrm{A}^{c}$ its complement. Let
$j_{r, \mathrm{~A}}\left(\otimes \psi_{\left(c^{i}\right)}\right)$ (or just $\left.j_{r, \mathrm{~A}}\right)$ denote $j_{r}\left(\underset{i \in \mathrm{~A}}{\otimes} \psi_{\left(c^{i}\right)}\right) \otimes\left(\underset{j \in \mathrm{~A}^{c}}{\otimes} \psi_{\left(c^{j}\right)}\right)$, considered as a subspace of $j_{r}\left(\otimes \psi_{(c i)}\right)$ via the canonical isomorphism of $\left(\underset{i \in \mathrm{~A}}{\otimes} \psi_{\left(c^{i}\right)}\right) \otimes\left(\underset{j \in \mathrm{~A}^{c}}{\otimes} \psi_{\left(c^{j}\right)}\right)$ with $\otimes \psi_{\left(c^{i}\right)}$.
(2.13) THEOREM. - Let $j_{r}=j_{r}\left(\underset{i=1}{m} \psi_{\left(c^{i}\right)}\right)$ be as above. Suppose that $r \geqslant \ell=\mathrm{ht}\left(c^{1}\right)$ and that $\ell \geqslant \mathrm{ht}\left(c^{i}\right), i=2, \ldots, m$. Then $j_{r}$ is the sum of $\left\{j_{r, \mathrm{~A}}: 1 \in \mathrm{~A}\right.$ and $\left.|\mathrm{A}| \leqslant r-\ell+1\right\}$.

One easily deduces theorem (2.8) from theorem (2.13). We deduce theorem (2.13) from
(2.14) Proposithon. - Let $\quad r, \ell, d \in \mathbf{N}$ with $\ell \leqslant r \leqslant \ell+d$. Then $j_{r}\left(\psi_{\ell} \otimes\left(\otimes^{d} \psi_{1}\right)\right)$ is generated by the subspaces $j_{r, \mathrm{~A}}$ with $1 \in \mathrm{~A}$ and $|\mathrm{A}|=r-\ell+1$.

Proof of (2.13). - Let $d_{i}=\operatorname{deg}\left(c^{i}\right), i=1, \ldots, m$, and let $Q_{i}$ be a GL-equivariant projection from $\otimes^{d_{i}} \psi_{1}$ onto $\psi_{(c i)}, i=2, \ldots, m$. Let $\mathrm{Q}_{1}$ be an equivariant projection from $\psi_{\ell} \otimes\left(\otimes^{d_{1}-\ell} \psi_{1}\right)$ onto $\psi_{\left(c^{1}\right)}$, and let

$$
\mathrm{Q}=\mathrm{Q}_{1} \otimes \ldots \otimes \mathrm{Q}_{m}: \psi_{l} \otimes\left(\otimes^{d} \psi_{1}\right) \longrightarrow \psi_{\left(c^{1}\right)} \otimes \ldots \otimes \psi_{\left(c^{m}\right)}
$$

where $d=-\ell+\Sigma d_{i}$. Then

$$
\mathrm{Q}\left(j_{r}\left(\psi_{\ell} \otimes\left(\otimes^{d} \psi_{1}\right)\right)\right)=j_{r}\left(\psi_{\left(c^{1}\right)} \otimes \ldots \otimes \psi_{\left(c^{m}\right)}\right)
$$

By (2.14), $j_{r}\left(\psi_{\ell} \otimes\left(\otimes^{d} \psi_{1}\right)\right)$ is generated by subspaces $j_{r, \mathrm{~A}}$ where $\mathrm{A}=\left\{1<i_{1}<\ldots<i_{r-\ell}\right\}$, and clearly the images $\mathrm{Q}\left(j_{r, \mathrm{~A}}\right)$ are contained in subspaces $j_{r, \mathrm{~B}}\left(\psi_{\left(c^{1}\right)} \otimes \ldots \otimes \psi_{\left(c^{m}\right)}\right) \quad$ where $\quad 1 \in \mathrm{~B}$ and $|\mathrm{B}| \leqslant|\mathrm{A}|=r-\ell+1$.
(2.15) The proof of (2.14) requires some results about the symmetric group $\mathrm{S}_{n}$ : Let $r, \ell$ and $d$ be as in (2.14) and set $n=\ell+d$. Let E denote the group algebra $\mathrm{C}\left[\mathrm{S}_{n}\right]$. If $\mathrm{A} \subseteq\{1, \ldots, n\}$, then $\mathrm{S}(\mathrm{A})$ denotes the subgroup of $\mathrm{S}_{n}$ fixing $\mathrm{A}^{c}$ and we set $p_{\mathrm{A}}=1 /|\mathrm{A}|!\sum_{\sigma \in \mathrm{S}(\mathrm{A})}(\operatorname{sign} \sigma) \sigma$. If $\mathrm{A}=\{1, \ldots, s\}$, we also write $p_{s}$ for $p_{\mathrm{A}}$.

Let $\mathrm{W}=\otimes^{n} \psi_{1}$. Then W is a left E-module where

$$
\sigma\left(x_{1} \otimes \ldots \otimes x_{n}\right)=x_{\sigma-1(1)} \otimes \ldots \otimes x_{\sigma-1(n)}, \sigma \in \mathrm{S}_{n}
$$

The actions of GL and E on W commute, and $p_{\ell} \mathrm{W}$ is the subspace $\psi_{\ell} \otimes\left(\otimes^{d} \psi_{1}\right)$.
(2.16) LEMMA. $-j_{r}(\mathrm{~W})=\sum_{|\mathrm{A}|=r} p_{\mathrm{A}} \mathrm{W}$.

Proof. - There is a canonical embedding

$$
\mathrm{W} \hookrightarrow \mathrm{~S}^{n}\left(n \psi_{1}\right) \simeq \mathrm{S}^{n}\left(\psi_{1} \otimes \psi_{1}^{\prime}(n)\right),
$$

where the elements of W are of degree 1 in each copy of $\psi_{1}$. Versions of (1.9), (1.11) and (1.5) show that $\mathrm{J}_{\boldsymbol{k}}\left(\psi_{1} \otimes \psi_{1}^{\prime}(n)\right)$ is generated by $\psi_{k} \otimes \psi_{k}^{\prime}(n) \subseteq S^{k}\left(\psi_{1} \otimes \psi_{1}^{\prime}(n)\right)$. Intersecting $\quad \mathrm{W}$ and $\mathrm{J}_{k}\left(\psi_{1} \otimes \psi_{1}^{\prime}(n)\right)$ in $\mathrm{S}^{n}\left(\psi_{1} \otimes \psi_{1}^{\prime}(n)\right)$ shows that $j_{r}(\mathrm{~W})$ is generated as claimed.

Proof of (2.14). - Note that

$$
j_{r}\left(\psi_{\ell} \otimes\left(\otimes^{d} \psi_{1}\right)\right)=j_{r}\left(p_{\ell}(\mathrm{W})\right)=p_{\ell}\left(j_{r} \mathrm{~W}\right)
$$

and by (2.16) it suffices to proves the following: Let $\mathrm{A} \subseteq\{1, \ldots, n\}$ with $|\mathrm{A}|=r$. Then $p_{\ell} p_{\mathrm{A}}$ is in the right ideal of E generated by elements $p_{\mathrm{B}}$ with $\{1, \ldots, \ell\} \subseteq \mathrm{B}$ and $|\mathrm{B}|=r$.

Let $p_{\ell-1}^{\prime}$ denote $p_{\mathrm{C}}$ where $\mathrm{C}=\{2, \ldots, \ell\}$. Then $p_{\ell} p_{\ell-1}^{\prime}=p_{\ell}$, and by induction on $\ell$ (the case $\ell=0$ being trivial) we may assume that $p_{\ell-1}^{\prime} p_{\mathrm{A}}$ is in the right ideal generated by elements $\quad p_{A^{\prime}}$ where $\left|\mathrm{A}^{\prime}\right|=r$ and $\mathrm{A}^{\prime} \supseteq\{2, \ldots, \ell\}$. Thus it suffices to consider the case $A=\{2, \ldots, r+1\}$.

Now

$$
\begin{gathered}
(r+1) p_{r+1}=\left(1-\sigma_{1,2}-\ldots-\sigma_{1, r+1}\right) p_{\mathrm{A}} \\
\ell p_{\ell} p_{\mathrm{A}}=\left(1-\sigma_{1,2}-\ldots-\sigma_{1, \ell}\right) p_{\mathrm{A}}
\end{gathered}
$$

where $\sigma_{i, j}$ is the transposition of $i$ and $j$. Hence

$$
\ell p_{\ell} p_{\mathrm{A}}=(r+1) p_{r+1}+\sum_{j=\ell+1}^{r+1} \sigma_{1, j} p_{\mathrm{A}}
$$

Now $\quad \sigma_{1, j} p_{\mathrm{A}}=p_{\mathrm{B}} \sigma_{1, j}$ where

$$
\mathrm{B}=\{1, \ldots, r+1\}-\{j\}, j=\ell+1, \ldots, r+1,
$$

and $p_{r+1} \in p_{r} \mathrm{E}$. Hence $p_{\ell} p_{\mathrm{A}}$ is in the desired right ideal.
(2.17) We now easily recapture the $\mathrm{SMT}^{\prime} s$ for the classical groups. The following proposition will come in handy.
(2.18) Proposition (see [5] pp. 100-101). - Let $\rho: \mathrm{H} \rightarrow$ GL (W) be a representation of the complex algebraic groun $H$, where $H^{0}$ is semisimple. Then

$$
\operatorname{dim} C[W]^{\mathrm{H}}=\operatorname{dim} \mathrm{W}-\max _{w \in \mathrm{~W}} \operatorname{dim} \mathrm{H} w
$$

(2.19) Example. - Let $(\mathrm{V}, \mathrm{G})=\left(\mathrm{Sp}_{2 k}, \mathrm{C}^{2 k}\right)$ as in (1.25). Then $\mathrm{R} \cong \mathrm{T} / \mathrm{I}$ where $\mathrm{T}=\mathrm{S}^{\bullet}\left(\psi_{2}\right)$. The generic isotropy group of G acting on $(2 k) \mathrm{V}$ is trivial (this is already true for $\mathrm{SL}(\mathrm{V})$ ), and then (2.18) shows that $\mathrm{R}(2 k)$ and $\mathrm{R}(2 k+1)$ are regular (i.e. polynomial) algebras. It follows that $\mathrm{I}(2 k+2)$ is generated by $\psi_{2 k+2}(2 k+2) \subseteq S^{k+1}\left(\psi_{2}(2 k+2)\right), \quad$ and by theorem $(2.5)$, we see that $I$ is minimally generated by $\psi_{2 k+2} \subseteq S^{k+1}\left(\psi_{2}\right)$.

Let $\sigma=\sum_{1 \leqslant i<j \leqslant 2 k+2}^{\sum} \omega_{i j} e_{i} \wedge e_{j}$ where the $\omega_{i j}$, etc. are as in (1.25). Then the coefficient of $e_{1} \wedge \ldots \wedge e_{2 k+2}$ in the $(k+1) s t$ exterior power of $\sigma$ is a highest weight vector of $\psi_{2 k+2} \subseteq \mathrm{I}$, which, up to a scalar, is the Pfaffian of the $\omega_{i j}$ see [21]).
(2.20) Remark. - Our arguments above show that $S^{\bullet}\left(\psi_{2}\right)$ contains no elements of odd height and that $\mathrm{J}_{2 m}\left(\psi_{2}\right)$ is generated by $\psi_{2 m} \subseteq \mathrm{~S}^{m}\left(\psi_{2}\right)$ for any $m$. By an easy induction we get

$$
S^{d}\left(\psi_{2}\right)=\oplus\left\{\psi_{(a)}: \operatorname{deg}(a)=2 d \quad \text { and } \quad a_{i}=0 \quad \text { for } \quad i \text { odd }\right\}
$$

(2.21) Example. - Let $(\mathrm{V}, \mathrm{G})=\left(\mathbf{C}^{k}, \mathrm{O}_{k}\right)$ as in (1.26). Then $\mathrm{R} \cong \mathrm{T} / \mathrm{I}$ where $\mathrm{T}=\mathrm{S}^{\bullet}\left(\psi_{1}^{2}\right)$. Using (2.18) one sees that $\mathrm{R}(k)$ is regular and that $\mathrm{I}(k+1)$ is generated by a single element. By (1.5) and (2.9) this element lies in $\mathrm{S}^{k+1}\left(\psi_{1}^{2}(k+1)\right)$, hence $\mathrm{I}(k+1)$ is generated by $\psi_{k+1}^{2}(k+1) \subseteq S^{k+1}\left(\psi_{1}^{2}(k+1)\right)$, and I is generated by $\psi_{k+1}^{2} \subseteq \mathrm{~S}^{k+1}\left(\psi_{1}^{2}\right)$. A corresponding highest weight relation is $\operatorname{det}\left(\eta_{i j}\right) \quad i, j=1, \ldots, k+1$ (see (1.26)). As in (2.20) one can prove

$$
\mathrm{S}^{d} \psi_{1}^{2}=\oplus\left\{\psi_{(a)}: \operatorname{deg}(a)=2 d \quad \text { and all } \quad a_{i} \quad \text { are even }\right\}
$$

(2.22) Example. - Let $\mathrm{V}=\mathrm{C}^{k}$ and let $\mathrm{G}=\mathrm{SL}_{\boldsymbol{k}}$ act standardly on V and $\mathrm{V}^{*}$. As in (1.23) it is convenient to use two copies of GL to describe invariants of several copies of $V$ and $V^{*}$, so we set $R=S^{\cdot}\left(\psi_{1} \otimes V^{*}+\psi_{1}^{\prime} \otimes V\right)^{G}$. Then $R \simeq T / I \quad$ where $\mathrm{T}=\mathrm{S}^{\cdot}\left(\psi_{k}+\psi_{k}^{\prime}+\psi_{1} \otimes \psi_{1}^{\prime}\right)$ and the representations $\psi_{k}, \psi_{k}^{\prime}$ and $\psi_{1} \otimes \psi_{1}^{\prime}$ correspond to determinants of $k$ copies of $V$, determinants of $k$ copies of $\mathrm{V}^{*}$ and contractions of copies of V and $V^{*}$, respectively. Irreducible subspaces of $T$ and $I$ transform by representations $\psi_{(a)} \otimes \psi_{(b)}^{\prime}$, and it is appropriate here to call a relation $\nu: \psi_{(a)} \otimes \psi_{(b)}^{\prime} \longrightarrow$ I special (resp. general) if ht $(a)$, ht $(b) \leqslant k \quad$ (resp. ht $(a)>k$ or $\mathrm{ht}(b)>k)$.

Using (2.18) one can see that the special relations are generated by a copy of $\psi_{k} \otimes \psi_{k}^{\prime}$ : the copies of $\psi_{k} \otimes \psi_{k}^{\prime}$ in $S^{2}\left(\psi_{k} \oplus \psi_{k}^{\prime}\right) \subseteq \mathrm{T}$ and in $\mathrm{S}^{k}\left(\psi_{1} \otimes \psi_{1}^{\prime}\right) \subseteq \mathrm{T}$ have the same image in R . Applying (2.8) and (1.7) one immediately sees that the general relations are generated by

$$
\begin{gather*}
\psi_{k-2} \psi_{k+2}+\psi_{k-4} \psi_{k+4}+\ldots \subseteq S^{2}\left(\psi_{k}\right)  \tag{2.22.1}\\
\psi_{k-2}^{\prime} \psi_{k+2}^{\prime}+\psi_{k-4}^{\prime} \psi_{k+4}+\ldots \subseteq S^{2}\left(\psi_{k}^{\prime}\right) \\
\psi_{k+1} \otimes \psi_{1}^{\prime} \subseteq \psi_{k} \otimes\left(\psi_{1} \otimes \psi_{1}^{\prime}\right) \\
\psi_{1} \otimes \psi_{k+1}^{\prime} \subseteq \psi_{k}^{\prime} \otimes\left(\psi_{1} \otimes \psi_{1}^{\prime}\right) \\
\psi_{k+1} \otimes \psi_{k+1}^{\prime} \subseteq S^{k+1}\left(\psi_{1} \otimes \psi_{1}^{\prime}\right) \tag{2.22.5}
\end{gather*}
$$

A minimal set of relations does not include (2.22.5) since it results from (2.22.3) or (2.22.4) and the special relation.

## 3. Bounds using Poincaré Series.

(3.0) We briefly recall some of the main properties of the Poincaré series of an algebra of invariants. In case one knows the degrees of a homogeneous sequence of parameters, then one can estimate the degrees of minimal generating sets and their relations. We have applied such estimates in [13] and [14].
(3.1) Let $\tau: \mathrm{H} \longrightarrow \mathrm{GL}(\mathrm{W})$ be a representation of the reductive complex algebraic group $H$. Let $A=C[W]^{H}$ and $d=\operatorname{dim} \mathrm{A}$. By Noether normalization there are always homogeneous
sequences of parameters ( $\mathrm{HSOP}^{\prime} s$ ) for A , i.e. sequences $f_{1}, \ldots, f_{d}$ of non-constant homogeneous elements of $A$ such that $A$ is a finite C $\left[f_{1}, \ldots, f_{d}\right]$-module. Using results of Hochster and Roberts [3] (or Boutot [1]) and the Nullstellensatz we have
(3.2) Proposition. - Let $f_{1}, \ldots, f_{d}$ be non-constant homogeneous element of A . The following are equivalent:
(1) The $f_{i}$ are an HSOP for A .
(2) $\mathbf{A}$ is a graded finite free $\mathbf{C}\left[f_{1}, \ldots, f_{d}\right]$-module.
(3) $\left\{w \in \mathrm{~W}: f_{i}(w)=0 i=1, \ldots, d\right\}=\{w \in \mathrm{~W}: f(w)=f(0)$ for every $f \in \mathrm{~A}\}$.
(3.3) Recall that the Poincare series $\mathrm{P}_{t}(\mathrm{~A})$ of a finitely generated graded C -algebra $\mathrm{A}=\underset{n \geqslant 0}{\oplus} \mathrm{~A}_{n}$ is $\sum_{n \geqslant 0}\left(\operatorname{dim}_{\mathbf{c}} \mathrm{A}_{n}\right) t^{n}$. If $\mathrm{A}=\mathrm{C}[\mathrm{W}]^{\mathrm{H}}$ and $f_{1}, \ldots, f_{d}$ are an HSOP for A , then it follows from (3.2) that $\mathbf{A} \cong \mathbf{C}\left[f_{1}, \ldots, f_{d}\right] \otimes_{\mathbf{C}} \mathrm{A}^{0}$ as graded $\mathbf{C}\left[f_{1}, \ldots, f_{d}\right]$-module, where $\mathbf{A}^{0}=\mathbf{A} /\left(f_{1} \mathbf{A}+\ldots+f_{d} \mathbf{A}\right)$. Thus

$$
\begin{equation*}
\mathrm{P}_{t}(\mathrm{~A})=\prod_{i=1}^{d}\left(1-t^{e_{i}}\right)^{-1} \mathrm{P}_{t}\left(\mathrm{~A}^{0}\right) \tag{3.4}
\end{equation*}
$$

where $e_{i}=\operatorname{deg} f_{i}, i=1, \ldots, d$. Since $\mathrm{A}^{0}$ is a finite dimensional algebra,

$$
\begin{equation*}
\mathrm{P}_{t}\left(\mathrm{~A}^{0}\right)=\sum_{i=0}^{\ell} a_{i} t^{i} \tag{3.5}
\end{equation*}
$$

for some $a_{i}$ and $\ell$, where we assume that $a_{\ell} \neq 0$.
Construct a surjection $\rho: \mathrm{F} \longrightarrow \mathrm{A}$ of graded algebras, where $\mathrm{F}=\mathrm{C}\left[\mathrm{X}_{1}, \ldots, \mathrm{X}_{p}\right]$ for some $p$ and where the $\rho\left(\mathrm{X}_{i}\right)$ minimally generate $\mathbf{A}$. Let $r \in \mathbf{N}$ be minimal such that $\mathbf{J}=\operatorname{Ker} \rho$ is generated by elements of degree $\leqslant r$, and set $m=\max _{j} \operatorname{deg} \mathrm{X}_{j}$.
(3.6) Theorem. - Let A, $m, \ell$, etc. be as above. Then
(1) $m \leqslant \max \left\{\ell, e_{1}, \ldots, e_{d}\right\}$
(2) $r \leqslant m+\ell$.

Proof. - Part (1) is obvious from (3.4) and (3.5). Let $a_{1}, \ldots, a_{s}$ be homogeneous elements of $A$ mapping onto a basis of $A^{0}$. Choose homogeneous preimages $a_{1}^{\prime}, \ldots, a_{z}^{\prime}, f_{1}^{\prime}, \ldots, f_{d}^{\prime}$ of $a_{1}, \ldots, a_{s}$, $f_{1}, \ldots, f_{d}$ in F . We will use symbols $b_{t}$ and $b_{i j t}$ to denote elements of $\mathbf{C}\left[f_{1}, \ldots, f_{d}\right]$, and $b_{t}^{\prime}$ and $b_{i j t}^{\prime}$ will denote the unique elements of $\mathbf{C}\left[f_{1}^{\prime}, \ldots, f_{d}^{\prime}\right]$ such that $\rho\left(b_{t}^{\prime}\right)=b_{t}, \rho\left(b_{i j t}^{\prime}\right)=b_{i j t}$. (Note that the $f_{i}$ are algebraically independent, hence so are the $f_{i}^{\prime}$.) Now $\rho\left(\mathrm{X}_{i}\right) a_{j}$ can be uniquely written as a sum $\sum_{t} b_{i j t} a_{t}, 1 \leqslant i \leqslant p, 1 \leqslant j \leqslant s$. Thus J contains elements

$$
\begin{equation*}
h_{i j}=\mathrm{X}_{i} a_{j}^{\prime}-\sum_{t} b_{i j t}^{\prime} a_{t}^{\prime}, 1 \leqslant i \leqslant p, 1 \leqslant j \leqslant s \tag{3.6.3}
\end{equation*}
$$

of degree $\leqslant m+\ell$.
We may assume that $a_{1}=a_{1}^{\prime}=1$. Let $\mathrm{M}=\mathrm{X}_{1}^{n_{1}} \ldots \mathrm{X}_{p}^{n_{p}}$ be a monomial in F . By induction on $\Sigma n_{i}$ one can show that there is an expression $\mathrm{E}=\Sigma b_{t}^{\prime} a_{t}^{\prime}$ such that $\mathrm{M}-\mathrm{E}$ lies in the ideal of the $h_{i j}$. (One begins the induction with the cases $\mathrm{M}=\mathrm{X}_{i}=\mathrm{X}_{i} a_{1}^{\prime}$.) There is a canonical linear section $\sigma$ for $\rho$, where $\sigma$ sends $\Sigma b_{t} a_{t}$ to $\Sigma b_{t}^{\prime} a_{t}^{\prime}$. Our argument above shows that $\operatorname{Im} \sigma$ and the ideal of the $h_{i j}$ span F . Hence $\mathbf{J}$ is generated by the $h_{i j}$.
(3.7) Theorem. - Assume that H is connected and semisimple.

Then
(1) A and $\mathrm{A}^{0}$ are Gorenstein: $\operatorname{dim}\left(\mathrm{A}^{0}\right)_{\ell}=1$, and the bilinear map $\left(\mathrm{A}^{0}\right)_{i} \times\left(\mathrm{A}^{0}\right)_{\ell-i} \longrightarrow\left(\mathrm{~A}^{0}\right)_{\ell} \cong \mathrm{C}$ is a non-degenerate pairing, $0 \leqslant i \leqslant \ell$. In particular, $a_{i}=a_{\ell-i}, 0 \leqslant i \leqslant \ell$.
(2) $\operatorname{dim} \mathrm{A} \leqslant-\ell+\Sigma e_{i} \leqslant \operatorname{dim} W$.
(3) $\ell=-\operatorname{dim} \mathrm{W}+\Sigma e_{i}$ if $\operatorname{codim}_{\mathrm{w}}\left(\mathrm{W}-\mathrm{W}^{\prime}\right) \geqslant 2$,
where $\mathrm{W}^{\prime}$ is the union of the orbits in W with finite isotropy.
Proof. - Part (1) is due to Murthy ; see [15]. Parts (2) and (3) are recent work of Knop [4] (c.f. [16]).

We note here that the representation of $\mathrm{SL}_{2}$ on one or more copies of the space of binary cubics satisfies the hypothesis of (3.7.3.). In § 4 we apply the results above to this situation.
(3.8) Example. - Let $(\mathrm{W}, \mathrm{H})=\left(k \mathbf{C}^{k}, \mathrm{SO}_{k}\right), k \geqslant 2$. Then the $\eta_{i j}$ of (1.26), $1 \leqslant i \leqslant j \leqslant k$, are an HSOP, and one can check that the hypothesis of (3.7.3) is satisfied. Theorem (3.6) then gives estimates of degree $k$ for generators and degree $2 k$ for relations, both of which are sharp. (The determinant det and the $\eta_{i j}$ generate A, and det satisfies a quadratic relation over the $\eta_{i j}$.)
(3.9) Example. - Let $\quad(\mathrm{W}, \mathrm{H})=\left((2 k+2) \mathrm{C}^{2 k}, \mathrm{Sp}_{2 k}\right)$. Again, (3.7.3) applies, and $\ell=2 k$. Since $m=2$, theorem (3.6) gives an estimate of degree $2 k+2$ for the relations, which is sharp. The estimate $m \leqslant 2 k$ is not sharp unless $k=1$.

## 4. Binary Cubics.

(4.0) We use the results of $\S \S 1-3$ to find the FMT and SMT for the representation $(\mathrm{V}, \mathrm{G})$ of $\mathrm{SL}_{2}$ on binary cubics. The generators were known classically, but not the relations (c.f. [2] pp. 323-326, [17]). We quickly rederive the generators, and we indicate the form and degree of the relations.
(4.1) Let $\mathrm{R}(n)=\mathrm{S}^{\bullet}\left(\psi_{1}(n) \otimes \mathrm{V}^{*}\right)^{\mathbf{G}}$, etc. be as usual. We begin by calculating $R(1)$ and $R(2)$.

Let $\left\{e_{1}, e_{2}\right\}$ be the standard basis of $\mathrm{C}^{2}$. Then $\mathrm{W}_{m}=\mathrm{S}^{m} \mathrm{C}^{2}$ has basis $\left\{\binom{m}{i} e_{1}^{i} e_{2}^{m-i}, i=0, \ldots, m\right\}, m \geqslant 0$. The $\mathrm{W}_{m}$ are (all the) irreducible representations of $\mathrm{SL}_{2}$, and by counting weights one obtains:

$$
\begin{align*}
& \mathrm{S}^{2} \mathrm{~W}_{3}=\mathrm{W}_{6}+\mathrm{W}_{2}  \tag{4.1.1}\\
& \mathrm{~S}^{3} \mathrm{~W}_{3}=\mathrm{W}_{9}+\mathrm{W}_{5}+\mathrm{W}_{3}  \tag{4.1.2}\\
& \mathrm{~S}^{4} \mathrm{~W}_{3}=\mathrm{W}_{12}+\mathrm{W}_{8}+\mathrm{W}_{6}+\mathrm{W}_{4}+\mathrm{W}_{0} \tag{4.1.3}
\end{align*}
$$

We think of V as $\mathrm{W}_{3}^{*}$, so a typical element $f \in \mathrm{~V}$ can be written

$$
\begin{equation*}
f=a x^{3}+3 b x^{2} y+3 c x y^{2}+d y^{3} \tag{4.2}
\end{equation*}
$$

where $\{x, y\}$ is the dual basis to $\left\{e_{1}, e_{2}\right\}$. We may factor $f$ as a product of 3 linear forms, $f=\ell_{1} \ell_{2} \ell_{3}$. Since $\mathrm{SL}_{2}$ acts transitively on triples of points on the projective line, a non-zero $f$ has one of three normal forms :

$$
\begin{equation*}
f=3 b\left(x^{2} y+x y^{2}\right), b \neq 0 . \tag{4.2.1}
\end{equation*}
$$

$$
\begin{equation*}
f=3 x^{2} y \tag{4.2.2}
\end{equation*}
$$

$$
\begin{equation*}
f=x^{3} \tag{4.2.3}
\end{equation*}
$$

The isotropy group of the form in (4.2.1) is isomorphic to $\mathbf{Z} / 3 \mathbf{Z}$, hence $\operatorname{dim} \mathbf{C}[\mathrm{V}]^{\mathrm{G}}=1$ and $\mathbf{C}[\mathrm{V}]^{\mathrm{G}} \cong \mathrm{R}(1)$ is generated by a non-zero invariant $D$ of minimal degree, namely 4 (see (4.1) and [5] p. 103). We choose
(4.3) $\mathrm{D}(f)=a^{2} d^{2}+4 a c^{3}-6 a b c d+4 b^{3} d-3 b^{2} c^{2}$,
where $f$ is as in (4.2). Then D is a multiple of the discriminant of $f$ (see [7].
(4.4) We now consider $R(2): B y(2.18), \quad \operatorname{dim} R(2)=5$. Let $\quad f, h \in \mathrm{~V}, t \in \mathrm{C}$. Then $\mathrm{D}(f+t h)=\sum_{i+j=4} \alpha_{i j}(f, h) t^{4-i}$ where $\alpha_{i j} \in \mathrm{C}[2 \mathrm{~V}]^{\mathrm{G}}$ and $\alpha_{40}(f, h)=\mathrm{D}(f)$. The $\alpha_{i j}$ are a basis of the copy of $\psi_{1}^{4}(2)$ in $R(2)$ with highest weight vector $D$ (where $\alpha_{i j}$ corresponds to $\left.\binom{4}{i} e_{1}^{i} e_{2}^{j} \in \mathrm{~S}^{4} \psi_{1}(2)\right)$. As Hilbert already knew we have:
(4.5) Lemma. - The $\alpha_{i j}$ are an HSOP for $\mathrm{R}(2)$.

Proof. - Let $(f, h) \in 2 \mathrm{~V}$ and suppose that $\alpha_{i j}(f, h)=0$, $i+j=4$. By (3.2) it suffices to show that the orbit $S$ of $(f, h)$ has the origin in its closure. We may assume that $f$ has the form (4.2.2) or (4.2.3), and let

$$
\begin{equation*}
h=a^{\prime} x^{3}+3 b^{\prime} x^{2} y+3 c^{\prime} x y^{2}+d^{\prime} y^{3} \tag{1}
\end{equation*}
$$

Then $\mathrm{D}(f+t h)=0$ for all $t$ forces $c^{\prime}=d^{\prime}=0$, and clearly $0 \in \bar{S}$.

Let $f, h$ be as in (4.2) and (4.5.1), respectively. Set
(4.6) $\quad \beta(f, h)=a d^{\prime}-3 b c^{\prime}+3 c b^{\prime}-d a^{\prime}$.

Then $\beta \in \psi_{2}(2) \otimes\left(\Lambda^{2} V^{*}\right)^{G} \subseteq \mathrm{R}(2)$, and $\beta$ is a non-degenerate skew form on $V$. Thus ( $V, G$ ) is symplectic.
(4.7) Since $R(2)$ is finite over $C\left[\alpha_{i j}\right]$, the Noether normalization lemma shows that it is also finite over $\mathbf{C}\left[\beta, \alpha_{1}^{\prime}, \ldots, \alpha_{4}^{\prime}\right]$ where the $\alpha_{i}^{\prime}$ are linear combinations of the $\alpha_{i j}$. Thus

$$
\mathrm{P}_{t}(\mathrm{R}(2))=\left(1-t^{2}\right)^{-1}\left(1-t^{4}\right)^{-4} \mathrm{P}_{t}\left(\mathrm{R}(2)^{0}\right)
$$

where, by (3.7.3),

$$
\mathrm{P}_{t}\left(\mathrm{R}(2)^{0}\right)=1+a_{1} t+\ldots+a_{9} t^{9}+t^{10}
$$

for some $a_{1}, \ldots, a_{9} \in \mathbf{N}$.
No odd tensor power of V contains the trivial representation, hence all $a_{i}$ with $i$ odd are zero. Clearly $a_{2}=0$. Using (4.1.1), etc. one easily sees that $\operatorname{dim} R(2)_{4}=6$, which forces $a_{4}=1$. Applying (3.7.1) we obtain
(4.8) $\quad \mathrm{P}_{t}\left(\mathrm{R}(2)^{0}\right)=1+t^{4}+t^{6}+t^{10}$.

From (4.8) we see that there is an element $\gamma \in \mathrm{R}$ (2) of degree 6 whose image $\bar{\gamma} \in \mathrm{R}(2)^{0}$ is non-zero. Let $\alpha$ be some $\alpha_{i j}$ not in the span of $\alpha_{1}^{\prime}, \ldots, \alpha_{4}^{\prime}$. Then $\alpha$ has non-zero image $\bar{\alpha} \in \mathrm{R}(2)^{0}$. Clearly $\bar{\alpha}^{2}=\bar{\gamma}^{2}=0$, while $\bar{\alpha} \bar{\gamma} \neq 0$ by (3.7.1). Hence
(4.9) Proposition. - (1) R (2) has generators $\alpha_{i j}, \beta$ and $\gamma$.
(2) The relations are generated by one in degree 8 and one in degree 12 .

We make the relations explicit below.
(4.10) We normalize $\gamma$ as follows: Let $f, h \in \mathrm{~V}$. Then their resultant $\operatorname{Res}(f, h)$ (see [7]) is an invariant transforming by $\psi_{2}^{3}(2)$. Degree arguments (or computations as below) show that Res is not a multiple of $\beta^{3}$, hence we may set $\gamma=$ Res .

From (1.22) and (4.9) we obtain
(4.11) Theorem. - R has minimal generators transforming by representations $\psi_{1}^{4}, \psi_{2}$ and $\psi_{2}^{3}$ with corresponding highest weight generators $\alpha_{11}, \beta$ and $\gamma$, respectively.
(4.12) The rest of this section is devoted to describing generators of $I$, where $R \simeq T / I$ and $T=S^{\bullet}\left(\psi_{1}^{4}+\psi_{2}+\psi_{2}^{3}\right)$. Let
$\mathrm{J}_{m}=\mathrm{J}_{m}\left(\psi_{1}^{4}+\psi_{2}+\psi_{2}^{3}\right)$, let $\mathrm{K}_{m}$ denote the subideal of I generated by subrepresentations of height $<m$, and let

$$
\mathrm{I}_{m}=\left(\mathrm{I}+\mathrm{J}_{m+1}\right) /\left(\mathrm{K}_{m}+\mathrm{J}_{m+1}\right)
$$

To find generators for $I$ is equivalent to finding subrepresentations which project to generators of the $\mathrm{T} /\left(\mathrm{K}_{m}+\mathrm{J}_{m+1}\right)$-ideals $\mathrm{I}_{m}$ for $m \leqslant 6$.

We use the notation $\psi_{(a)}\left(\alpha^{k} \beta^{l} \gamma^{m}\right)$ to denote a copy of $\psi_{(a)}$ lying in $\mathrm{S}^{k} \psi_{1}^{4} \otimes \mathrm{~S}^{\ell} \psi_{2} \otimes \mathrm{~S}^{m} \psi_{2}^{3} \subseteq \mathrm{~T}$ (in all cases considered the multiplicity will be one), and $\lambda\left(\psi_{(a)}\left(\alpha^{k} \beta^{\ell} \gamma^{m}\right)\right.$ ) denotes a corresponding highest weight vector.

We need to use the following tensor product decompositions. They follow from the Littlewood-Richardson rule and the techniques in [6].

$$
\begin{gather*}
\mathrm{S}^{2} \psi_{1}^{4}=\psi_{1}^{8}+\psi_{1}^{4} \psi_{2}^{2}+\psi_{2}^{4}  \tag{4.12.1}\\
\mathrm{~S}^{3} \psi_{1}^{4}=\psi_{1}^{12}+\psi_{1}^{8} \psi_{2}^{2}+\psi_{1}^{6} \psi_{2}^{3}+\psi_{1}^{4} \psi_{2}^{2}+\psi_{2}^{6} \\
+\psi_{1}^{6} \psi_{3}^{2}+\psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}+\psi_{1}^{3} \psi_{2}^{3} \psi_{3}+\psi_{3}^{4}  \tag{4.12.2}\\
S^{2} \psi_{2}^{3}=\psi_{2}^{6}+\psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}+\psi_{2}^{4} \psi_{4}+\psi_{2}^{2} \psi_{4}^{2}+\psi_{1}^{2} \psi_{3}^{2} \psi_{4}+\psi_{4}^{3} \\
\psi_{1}^{4} \otimes \psi_{2}^{3}=\psi_{1}^{4} \psi_{2}^{3}+\psi_{1}^{3} \psi_{2}^{2} \psi_{3}+\psi_{1}^{2} \psi_{2} \psi_{3}^{2}+\psi_{1} \psi_{3}^{3} \\
S^{2} \psi_{1}^{4} \otimes \psi_{2} \supseteq \psi_{1}^{4} \psi_{2}^{2} \otimes \psi_{2} \supseteq \psi_{1}^{4} \psi_{2} \psi_{4} \\
\psi_{2}^{3} \otimes \psi_{2} \supseteq \psi_{2}^{2} \psi_{4}
\end{gather*}
$$

(4.13) Generator of I of height 2: From (4.9) we see that $\mathrm{I}_{2}$ is generated by relations of degrees 8 and 12 which must transform by $\psi_{2}^{4}$ and $\psi_{2}^{6}$, respectively. Using (2.20) and (4.12.1), etc. one easily determines that the copies of $\psi_{2}^{4}$ and $\psi_{2}^{6}$ in $T$ are

$$
\begin{gather*}
\psi_{2}^{4}\left(\alpha^{2}\right), \psi_{2}^{4}\left(\beta^{4}\right), \psi_{2}^{4}(\beta \gamma)  \tag{4.13.1}\\
\psi_{2}^{6}\left(\alpha^{3}\right), \psi_{2}^{6}\left(\beta^{6}\right), \psi_{2}^{6}\left(\beta^{3} \gamma\right), \psi_{2}^{6}\left(\gamma^{2}\right), \tag{4.13.2}
\end{gather*}
$$

where we set

$$
\begin{array}{r}
\lambda\left(\psi_{2}^{4}\left(\alpha^{2}\right)\right)=\alpha_{22}^{2}-3 \alpha_{31} \alpha_{13}+12 \alpha_{40} \alpha_{04} \\
\lambda\left(\psi_{2}^{6}\left(\alpha^{3}\right)\right)=2 \alpha_{22}^{3}-9 . \alpha_{31} \alpha_{22} \alpha_{13}+27 \alpha_{40} \alpha_{13}^{2} \\
-72 \alpha_{40} \alpha_{22} \alpha_{04}+27 \alpha_{31}^{2} \alpha_{04} \tag{4.13.4}
\end{array}
$$

and $\lambda\left(\psi_{2}^{4}\left(\beta^{4}\right)\right)=\beta^{4}, \lambda\left(\psi_{2}^{4}(\beta \gamma)\right)=\beta \gamma$, etc.
Evaluating the $\lambda^{\prime} s$ in case $f=a x^{3}+3 b x^{2} y$ and $h=3 c x y^{2}+d y^{3}$ one sees that $I_{2}$ is generated by relations with highest weight vectors

$$
\begin{align*}
& 9 \lambda\left(\psi_{2}^{4}\left(\alpha^{2}\right)\right)-\lambda\left(\psi_{2}^{4}\left(\beta^{4}\right)\right)-8 \lambda\left(\psi_{2}^{4}(\beta \gamma)\right)  \tag{4.13.5}\\
& 27 \lambda\left(\psi_{2}^{6}\left(\alpha^{3}\right)\right)+2 \lambda\left(\psi_{2}^{6}\left(\beta^{6}\right)\right)-40 \lambda\left(\psi_{2}^{6}\left(\beta^{3} \gamma\right)\right) \\
&-16 \lambda\left(\psi_{2}^{6}\left(\gamma^{2}\right)\right) . \tag{4.13.6}
\end{align*}
$$

(4.14) Generators of I of height 3: We will not be so specific as to the relations, but rather just indicate their form and degree. Our computations are aided by the following general fact:
(4.15) Theorem ([12] Table 3). - Let $\mathrm{H}=\mathrm{Sp}_{m}$ act standardly on $\mathrm{W}=(m+1) \mathbf{C}^{2 m}$. Then $\mathbf{C}[\mathrm{W}]$ is a free graded $\mathbf{C}[\mathrm{W}]^{\mathrm{H}}$-module.

Returning to binary cubics, we see that $C[3 V]$ is a free $\mathbf{C}\left[\beta_{12}, \beta_{13}, \beta_{23}\right]$-module, where the $\beta_{i j}$ are a basis of the copy of $\psi_{2}(3) \subseteq R(3)\left(\beta=\beta_{12} \quad\right.$ is a highest weight vector.) Projecting to G-invariants, we see that $R(3)$ is free over $S^{\bullet} \psi_{2}(3)$.

By theorem (1.22), any representation in $T$ of height $\geqslant 3$ is, modulo $I$, in the ideal of $\psi_{2}$. Since $R(3)$ is free over $S^{\bullet} \psi_{2}(3)$, we have a recipe for finding generators of $I_{3}$ : Compute generators of $\mathrm{J}_{3}\left(\psi_{1}^{4}(\alpha)+\psi_{2}^{3}(\gamma)\right)$ and express the ones of height 3 as elements of the ideal of $\psi_{2}(\beta)$. For example, using (4.12.4) with $\psi_{2}^{3}=\psi_{2}^{3}(\gamma)$ and $\psi_{2}^{3}\left(\beta^{3}\right)$, one finds representations $\psi_{1} \psi_{3}^{3}(\alpha \gamma)$ and $\psi_{1} \psi_{3}^{3}\left(\alpha \beta^{3}\right)$ in $T$. In fact, $T$ contains $\psi_{1} \psi_{3}^{3}$ with multiplicity two, hence I contains a relation showing that $\psi_{1} \psi_{3}^{3}(\alpha \gamma)$ and $\psi_{1} \psi_{3}^{3}\left(\alpha \beta^{3}\right)$ have the same image in R .

Using theorem (2.8), one can see that $\mathrm{J}_{3}\left(\psi_{1}^{4}(\alpha)+\psi_{2}^{3}(\gamma)\right)$ is generated by the representations of height $\geqslant 3$ in (4.12.2) through (4.12.4), of which 8 are of height 3 . Thus the corresponding 8 elements of I generate $I_{3}$, but not minimally: One can show (by computing highest weight vectors) that the image

$$
\psi_{2}^{4} \otimes \psi_{1}^{4} \subseteq S^{2} \psi_{1}^{4} \otimes \psi_{1}^{4} \longrightarrow S^{3} \psi_{1}^{4}
$$

contains $\psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}+\psi_{1}^{3} \psi_{2}^{3} \psi_{3}+\psi_{3}^{4}$. Using the relation with highest weight (4.13.5) we see that the elements of I corresponding to $\psi_{1}^{2} \psi_{2}^{2} \dot{\psi}_{3}^{2}\left(\alpha^{3}\right)$, etc. are not needed to generate $I_{3}$. Thus $I_{3}$ is generated by relations corresponding to $\psi_{1}^{6} \psi_{3}^{2}\left(\alpha^{3}\right), \psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}\left(\gamma^{2}\right)$,
$\psi_{1}^{3} \psi_{2}^{2} \psi_{3}(\alpha \gamma), \psi_{1}^{2} \psi_{2} \psi_{3}^{2}(\alpha \gamma)$ and $\psi_{1} \psi_{3}^{3}(\alpha \gamma)$.
(4.16) Generator of I of height 4 : Modulo $\mathrm{I}, \mathrm{J}_{4}$ is generated by $\psi_{4}\left(\beta^{2}\right)$, and $\mathrm{R}(4)$ is a free C [det]-module, where det is the image in $R(4)$ of a highest weight vector of $\psi_{4}\left(\beta^{2}\right)$. Thus, as (4.14), we obtain generators of $\mathrm{I}_{4}$ by expressing the height 4 generators of $\mathrm{J}_{4}\left(\psi_{1}^{4}+\psi_{2}+\psi_{2}^{3}\right)$ as elements of the ideal of $\psi_{4}\left(\beta^{2}\right)$. We claim that the 6 height 4 representations $\psi_{2}^{4} \psi_{4}\left(\gamma^{2}\right), \ldots, \psi_{2}^{2} \psi_{4}(\beta \gamma)$ in (4.12.3) through (4.12.6) suffice:

By theorem (2.8), $\mathrm{J}_{4}$ has generators in $\mathrm{S}^{k} \psi_{1}^{4} \otimes \mathrm{~S}^{\ell} \psi_{2} \otimes \mathrm{~S}^{m} \psi_{2}^{3}$ with $k=4$ and $\ell=m=0$, or $k+\ell+m \leqslant 3$. Using our six height 4 relations and those of height $\leqslant 3$ one eliminates the following cases completely, or in favor of cases with a larger value of $\ell: k=4, \ell=m=0 ; m \geqslant 2 ; k \geqslant m \geqslant 1$. It follows that our list is complete.
(4.17) Generators of I of height $>4$ : Modulo the generators of $I$ described so far, elements of $J_{5}$ lie in the ideal of $\psi_{4}\left(\beta^{2}\right)$. Hence the remaining generators of I required are among

$$
\begin{gather*}
\psi_{1}^{3} \psi_{5}\left(\alpha \beta^{2}\right) \subseteq \psi_{1}^{4}(\alpha) \otimes S^{2} \psi_{2}(\beta) .  \tag{4.17.1}\\
\left(\beta^{2} \gamma\right)+\psi_{2}^{2} \psi_{6}\left(\beta^{2} \gamma\right) \subseteq \psi_{2}^{3}(\gamma) \otimes S  \tag{4.17.2}\\
\psi_{6}(\beta) \subseteq S^{3} \psi_{2}(\beta) .
\end{gather*}
$$

We only add (4.17.1) and (4.17.3) to our list, since (4.17.2) is a consequence of the height 4 relation transforming by $\psi_{2}^{2} \psi_{4}$.
(4.18) Theorem. - I is minimally generated by special relations transforming by

$$
\begin{aligned}
\psi_{2}^{4}, \psi_{2}^{6}, \psi_{1}^{6} \psi_{3}^{2}, \psi_{1}^{2} \psi_{2}^{2} \psi_{3}^{2}, & \psi_{1}^{3} \psi_{2}^{2} \psi_{3}, \psi_{1}^{2} \psi_{2} \psi_{3}^{2}, \psi_{1} \psi_{3}^{3}, \\
& \psi_{2}^{4} \psi_{4}, \psi_{2}^{2} \psi_{4}^{2}, \psi_{1}^{2} \psi_{3}^{2} \psi_{4}, \psi_{4}^{3}, \psi_{1}^{4} \psi_{2} \psi_{4}
\end{aligned}
$$

and $\psi_{2}^{2} \psi_{4}$, and by general relations transforming by $\psi_{1}^{3} \psi_{5}$ and $\psi_{6}$.

Proof. - We know there are generators of I as described, and degree and height considerations easily establish minimality.

## BIBLIOGRAPHY

[1] J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Inv. Math., 88 (1987), 65-68.
[2] J. Grace and A. Young, The Algebra of Invariants, Cambridge University Press, Cambridge, 1903.
[3] M. Hochster and J. Roberts, Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Adv. in Math., 13 (1974), 115-175.
[4] F. KNOP, Über die Glattheit von Quotientenabbildungen, Manuscripta Math., 56 (1986), 419-427.
[5] H. Kraft, Geometrische Methoden in der Invariantentheorie, Viehweg, Braunschweig, 1984.
[6] M. Krämer, Eine Klassifikation bestimmter Untergruppen kompakter zusammenhängender Liegruppen, Comm. in Alg., 3 (1975), 691-737.
[7] S. Lang, Algebra, Addison-Wesley, Reading, 1965.
[8] D. Luna and R. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J., 46 (1979), 487-496.
[9] I.G. Mac Donald, Symmetric Functions and Hall Polynomials, Clarendon Press, Oxford, 1979.
[10] C. Procesi, A Primer of Invariant Theory, Brandeis Lecture Notes 1, Department of Mathematics, Brandeis University, 1982.
[11] G. Schwarz, Representations of simple Lie groups with regular rings of invariants, Inv. Math., 49 (1978), 167-191.
[12] G. Schwarz, Representations of simple Lie groups with a free module of covariants, Inv. Math., 50 (1978), 1-12.
[13] G. Schwarz, Invariant theory of $\mathrm{G}_{2}$, Bull. Amer. Math. Soc., 9 (1983), 335-338.
[14] G. Schwarz, Invariant theory of $G_{2}$ and $\operatorname{Spin}_{7}$, to appear.
[15] R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc., 1 (1979), 475-511.
[16] R.P. Stanley, Combinatorics and invariant theory, Proc. Symposia Pure Math., Vol. 34, Amer. Math. Soc., Providence, R.I., 1979, 345-355.
[17] F. Von Gall, Das vollständige Formensystem dreier cubischen binären Formen, Math. Ann., 45 (1894), 207-234.
[18] Th. Vust, Sur la théorie des invariants des groupes classiques, Ann. Inst. Fourier, 26-1 (1976), 1-31.
[19] Th. Vust, Sur la théorie classique des invariants, Comm. Math. Helv., 52 (1977), 259-295.
[20] Th. Vust, Foncteurs polynomiaux et théorie des invariants, in Séminaire d'algèbre Paul Dubreil et Marie-Paule Malliavin, Springer Lecture Notes, No. 725, Springer Verlag, New York, 1980, pp. 330-340.
[21] H. Weyl, The Classical Groups, 2nd edn., Princeton Univ. Press, Princeton, N.J., 1946.

Manuscrit reçu le 25 novembre 1986.

Gerald W. Schwarz, Brandeis University
Dept. of Mathematics
Waltham, Mass. 02254-9110 (USA).


[^0]:    (*) Research partially supported by the NSF. AMS (MOS) subject classification 1980. Primary 14L30, 20G05.

    Key-works: Classical invariant theory - Binary cubics - First main theorem Second main theorem.

