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ON CLASSICAL INVARIANT THEORY
AND BINARY CUBICS

by
Gerald W. SCHWARZ*

0. Introduction.

(0.0) Throughout this paper, G denotes a reductive complex
algebraic group and 0 : G —> GL (V) a fc-dimensional representation
of G . A first main theorem (FMT) for 0 gives generators for the
algebras C^V]0 ,n>0, where n\ denotes the direct sum of
n copies of V . A second main theorem (SMT) for 0 is a
determination of the relations of these generators. Classical invariant
theory provides FMT^ and SMT's for the standard representations
of the classical groups, and in [14] we provide ones for the standard
representations of G^ and Spin^ .

(0.1) There are classical [21] and recent ([19], [29]) results
on how to bound the computations involved in establishing FMT^
and SMT'^. Our work in [14] required improved bounds, and we
present them in this paper. As an application, we compute the FMT
and SMT for SL^ acting on binary cubics. Perhaps these last results
can be of help in the enumerative problem of twisted cubics.

(0.2) Let m G N . Then from generators and relations for
C {m V]0 , one obtains, by polarization, a partial set of generators
and relations for C [n V]° , n > m . Let gen (0) (resp. rel(0))
denote the smallest m such that this process yields generators
(resp. generators and relations) for all n > m . It is classical that

(*) Research partially supported by the NSF. AMS (MOS) subject
classification 1980. Primary 14L30, 20G05.
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gen (0) < k = dim V , and we show that rel (0) < k 4- gen (0).
Vust [19] showed that the relations of C[n\}G are generated by
polarizations of the relations of C [kN}G and by relations of degree
at most k 4- 1 in the generators of C [n\}G . We improve upon
the bound k 4- 1 .

(0.3) In § 1 we recall facts about integral representations of
GL and apply them to invariant theory. We give bounds on
gen (0), mostly due to Weyl. For example, if 0 is symplectic, then
gen (0) < k / l . Something similar is true if 0 is orthogonal.

In § 2 we establish the (new) results on SMT'5 described in
(0.2). We show how one uses them to easily recover the SMT'51 for
the classical groups. In § 3 we recall properties of the Poincare
series of C [V]0 (or any C [^V]°). If one knows a homogeneous
sequence of parameters for C [V]° , then one easily bounds the
degrees of its generators and relations. The bound on degrees of
relations was essential to the work described in [13]. In § 4 we
apply the techniques developed to obtain the FMT and SMT for
binary cubics.

(0.4) I thank Th. Vust and C. DeConcini for their aid and
encouragement, and I thank J. Dixmier, H. Kraft and P. Littelmann
for helpful comments.

1. First Main Theorems.

(1.0) We first recall properties of integral representations of
GL^ (i.e. those representations lying in tensor powers of the standard
representation on C"). Our presentation is a variation of that of Vust
([19], [20]). We then recall Cauchy's formula and its applications to
FMT^ . We end by giving results estimating gen (0).

(1.1) Let ^1(^2) denote the standard representation of GL^
on C" , and let ^,(n) = A^V/iOC), ; > 0. Note that V/^) = 0
for ; > n and that V/o (n) is the 1-dimensional trivial representation.
Let N°° denote the sequences of natural numbers which are eventually
zero. If (a) = (^ ,a^ , . . . ) ̂  N°° , let ^^ (n) denote the highest
weight (Cartan) component in S01 ( V / i W) ® . . . ® S^ (^ (n))
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where m is minimal such that a- = 0 for / > m. If m < n (hence
^ / . ( ^ ^ O ) , we will also use the notation V/^1 . . . ^a^ (n) or
^ . . . ^a^1 (n) for V/^ (n). If (a) is the zero sequence, then
^(a) W == ^o (n) • ^e w1^ confuse the V/^ (n) with their
corresponding representation spaces, and similarly for representations
V / / ^ defined below.

(1.2) We include C" in C^1 as the subspace with last
co-ordinate zero. For any (a) € N°° , this induces inclusions
^(a) W c ^(a) (/i + 1) ^ . . • compatible with the actions of
GL^ C GL^.n C . . . . Thus GL = lim GL^ acts linearly on
i///. = lim V//) (^2). Let U^ denote the subgroup of GL^ consisting
of upper triangular matrices with ^s on the diagonal, and set
U = lim U^ . We identify GL^ , U^ and V//^ (^2) with their images
in GL, U and V/^ , respectively. If V//^ (n) •^ 0, then
V/^x = ^//^ (^) " is the space of highest weight vectors of i//^ (n).

(1.3) Let (f l)E N"5 . We define
deg (a) = 2 ^., width (a) == 2 ̂ .,

and ht (a) (the height of (a)) is the least / > 0 such that ^ = 0
for / > 7 . The height, degree etc. of i//^ and V/^ (n) are defined
to be the height, degree, etc. of (a).

Let (b) e N00 . Then (a) 4- (b) denotes (a^ 4- ̂  , . . . ) and
^(a) ^(6) denotes V/(a)+(/,) • We order N°° lexicographically from
the right, i.e. we write (a) < (6) (and also i/^. < V/-.) if there is
a 7 G N — {0} such that a^ < by and a^ = b^ for ; > /.

(1.4) We say that i//^ occ^ in ^ ® ̂  if i^ ® Y/^)
contains a subspace isomorphic to \^.. , and similarly for
representations 0 ^= \^^ (n) of GL^ . We identify isomorphic
representations of GL and GL^ .

(1.5) PROPOSITION. -Suppose that 0 ^= ^^(n) occurs in
^(a) W ^ ^(6) W ' Then

(1) deg ̂  = deg ̂  4- deg ̂ ^ .
(2) ht ̂  , ht V^ < ht V/^ < ht ^^ + ht ̂  .
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(3) width ^ , width ^^ < width ^ < width V//.
+ width V/^) .

(4) The multiplicity of V/^ (^2) in ^^ (n) ® ̂ . (n) is
independent of n as long as ^. (n) + 0 .

Proo/ - One can use the Littlewood-Richardson rule [9], or one
can use the methods of Vust [20] together with standard Lie algebra
results on tensor products.

(1.6) COROLLARY. - Let (a) , (6) E N°° . Then there are
(c1), . . . , (c^ E N00 , not necessarily distinct, such that

^W ® ^w = J ̂ ,
i.e.

^(a) W ® V/(^ (n) = e ^ (^)
1=1 v /

/b/- a// ^2.

We give examples of tensor product decompositions which play
a role in classical invariant theory (see § 2). They are actually
disguised versions of the Clebsch-Gordan formula.

(1.7) LEMMA. -Let p , ^ E N with p < q . Then

(1 ) ^ ® ^ == ̂  + ̂  ̂ ^ + . . . + ̂  .

(2) S 2 ^ = ^ 4 - ^ _ , ^ „ + . . . .

(3) A2 ̂ =^ ^^+^-3^.3+ . . . .

Proo/: - Let n = p + q . As representations of SL^ C GL
V/p (^2) and V/^ (A?) are dual and irreducible, hence the trivial
SL^-representation i//^ (n) occurs once in ^ (n) ̂  \p (n). Thus
^p ® ^g equals ^ together with representations of height
< n - 1 . Relative to the action of SL^_^ , V/p (^ - 1) ® i// (^2 — 1)
is dual to ^y(n — 1) ® ^ (/2 — 1) where

r = n — 1 — q ^ s == n — 1 — p and r + ^ = ^ — 2.
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By induction, V/^ ® V/^ has a decomposition as in (1), hence so does
V/p (n — 1) ® V/^ (n — 1) by duality, and (1) follows. The proofs of
(2) and (3) are similar.

(1.8) We recall Cauchy's theorem on the decomposition of the
symmetric algebra of a tensor product: We consider groups of the
form GL^ x GL^ (or GL x GL) and irreducible representations
^(a) W ® i^) (m) (or 1̂  ® V/^) where we use the prime to
distinguish between representations of the first and second copies of
the general linear group.

(1.9) THEOREM ([9],[10]).

(i) s^v/i ®v / i )= e v /^® ̂ .
deg(a)==d

(2) S^ (^ ^) ® V/; (m)) = 0 i//^ (n) ® V/^ (m).
deg(a)==of

ht(a)<w,^

(1.10) Remark. — Most proofs of (2) are combinatorial in
nature. However, as in [18], one can use Frobenius reciprocity to show
that C [ ^ i ( A 2 ) ® \^\ (m)] contains \^^ (m)* with multiplicity
dim ^) (n) when n < m . (GL^ then has an orbit in
V/^ QI) ® V/^ (w) whose complement has codimension > 2.) One
easily shows that S^ (i^ (n) ® V/'i (w)) contains every

^(a) (n) (g) ^^ (m) with deg (^) = ^.
hence (2) is true when n < m . The case n = m follows by taking
fixed points of a copy of GL^_^ , and (2) implies (1).

(1.11) COROLLARY. - Let (a),(b),(c) G N°° and suppose that
^(c) occurs m ^(a) ^ ^(b) • Then Y/^) ® V/^.) ^ contained in the
product of ^(a)^ ^[a) and ^w ^ ^W m S ' (V/^ i / / ^ ) .

Proo/: - Let C = ht (a) , m = ht (6), n == C + w . Then there
is a copy of

^(c) ̂ ) c (̂,) (^2) ® 0(,) (^) ^ S' (CV/, (^))

® S " ( m V / i (n)) ^ S ' ( ^ V / ^ ^)).
Now use (1.9).
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(1.12) We apply the results above to invariant theory: Let
0 : G —^ GL(V) be our fc-dimensional representation of the
reductive group G . We will also denote 0 by (V, G) and we will
sometimes confuse 0 with V , so, for example, C [0]° = C [V]° .
If (a) G N°° , we let ^^ (V) denote the representation (or
representation space) of GL(V) as defined in (1.1), e.g.
^2 (V) = A2 V . Via 0 : G —> GL(V), we obtain a representation
0^ of G on ^(V).

Let P = S'(^ ® V*) and P(n) = S'(i^ (n) ^ V*) C P.
Then P (resp. P(n)) is a graded direct sum of GL x G (resp.
GL^ x G) representations. Let R = P0 and R (n) = P (n)0 . Note
that P(n)^ C[nV], R(n)^ C[nVf and that P = = l i m P ( n ) ,
R = l i m R ( ^ ) . By (1.9) we have "">

(i . i3) p = e ^® v/^(V*),
ht(a)<fc

(1.14) R = C ^^^(V*)0 ,
ht(a)<fc

and similarly for R (^) and P (n) .
Let R (^+ (resp. R4 ') denote the elements of R (n) (resp. R)

with zero constant term. Since R (n) is finitely generated,
^ (n)^ I (R (n^ )2 is a finite-dimensional GL^-representation. We
can thus find elements 0 ^ f^ G ^/ , (V*)° , z == 1 , . . . , p , such
that the representation spaces ^ ^ ( ^ ) < ^ /^ R(^) minimally
generate R (n), i.e. bases of these subspaces are a minimal set of
generators of R(n) and map onto a basis of R^)^ / ( R ( n ) ^ ' ) 2 .
From (1.14) we see that ht (a1) < k for all i , hence :

( 1 . 1 5 ) THEOREM. - Let f^ V/ , (V*)° , fl^rf suppose that
the subspaces ^ ^ (k) ® f^ minimally generate R (A:), i = 1 , . . . , p.
Then the subspaces ^ ^ (n) ® f^ minimally generate R (n)
for any n.

(1.16) Let ^ , (n) ® f^ i = 1 , . . ., p , minimally generate
R (/O. We say that trie generators lying in ^ . (n) ® f^ transform
by ^/ , (^), and their height, degree, etc. are defined to be that of
(a1). We say that the minimal generators of R (n) transform by

w^'—w^'
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Suppose that n > k . Then R is generated by the V/ - ® f^,
and we say that the minimal generators of R transform by
^ i ? • • • ' ^( p \ • ^et \* ^e a h1^6^ weight vector of ^ , . We
call hf = \ ® ff a (minimal) highest "weight generator of R (and
of R (m) , m > ht (a1)). All elements of V/ ,. ® /^ can be obtained
from h^ via the action of the Lie algebra of strictly lower triangular
matrices (acting as polarization operators, in Weyl's language [21 ]).

(1.17) Let h = X ® f€ ^ (n)^ ® ̂  (V*)0 C R (n) .
Identifying R (^2) with C [^V]° in the standard way, one sees that
h corresponds to an invariant homogeneous of degree a^ + a^ ^ ^ . . .
in the ;th copy of V .

(1.18) Remark. -Let r : G —>- GL(W) be an irreducible
representation, and let P (n\ (resp. P^.) denote the sum of the
G-irreducible subspaces of P (n) (resp. P) isomorphic to r . Then
P(n\ is isomorphic to the invariants of S' (V/ i (n) ® V* C W*)
which are homogeneous of degree 1 in W* . We can find finitely
many subspaces V/ • (n) ®gy , where ^ ^ ( V ^ / x (v*) ®W*)0 ,
which minimally generate P (n\ as an R (^)-module. Moreover,
ht (c7) < k for all 7. Analogous results hold for P^. .

(1.19) Let 0 , r and the (a1) and (c7) be as above. Then (see
(0.2)) gen (0) = max ht (a1), and we set gen (0, r) = max ht (c7).

i /
We find situations where the estimates gen (0), gen (0 , r) < k can
be improved.

We say that a representation V//^ (n) is irrelevant (for 0) if
^(a) ̂  == ^ or ^(a) ̂  does not occur as a subrepresentation of
P(n)/R(n)+P(n)+ . One similarly defines when ^//^ is irrelevant,
and if ht (a) < n , then i^ is irrelevant if and only if V/^ (71) is.
By definition, no minimal generators of R(n) or any P .̂ transform
by an irrelevant representation.

From corollary (1.11) we obtain :

(1.20) PROPOSITION. - (1) // V/^ is irrelevant and (b) e N°° ,
then any irreducible representation occurring in \^^ ® ^^ is
irrelevan t. In particular, V/ ̂  ̂  ̂  is irrelevan t.
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(2) // ^ is irrelevant, then ^ is irrelevant for n > m,
and gen (0), gen (0 , r) < m .

(3) // ^(V*)0^ (i.e. G CSL(V)), then any representation
of height k , except perhaps for V/^ , is irrelevant.

(1.21) PROPOSITION. — The representation ^^ is irrelevant
if and only if

A'" V* = \ (A^'V*)0 A A'" ~ 1 V* .
1 < (•< m

In particular, ^ is irrelevant if and only if A^V*)0 ^ 0 for some
i with 1 < / < k.

Proof. - One sees directly that the product of i^.(w) ® A^V*)0

and ^ _,(m) ® A^ "'(V*) in Sw ( i / /^ (m) ® V*) projects to
^/^(m) ® A^V*)0 A A^'^V*) C i^ (m) ® A^ (V*).

D

(1.22) THEOREM ([21]). - (1) Suppose that k == 2m > 4 W
^/za^ V admits anon-degenerate skew form oj € (A2 V*)° (i.e.
0 is symplectic). Then ^ ^ , is irrelevant.

(2) Suppose that k > 2 <2^rf r/zar V admits a non-degenerate
symmetric G-invariant bilinear form (i.e. 0 ^ orthogonal). Then
\l^p V/^ ^ irrelevant whenever p ^ q > k .

Proof (See ([21] p. 154) for (2)). -Part (1) follows from (1.21)
and the well-known fact that a; A A"" -1 (V*) == Am+l (V*).

(1.23) Remarks. - (1) Let V = V^ C . . . e V, where the
V^. are irreducible representations of G. Then the homogeneous
invariants of ^ j V , ^ . . . ̂  /^V,. transform by sums of representations
V/^(^)® . . . ® V^(^) of

GL^ x . . . x GL^ , and ^^ (n,) ® . . . ® ^^^ (n,)
is irrelevant (obvious definition) if any ^ (n ) is irrelevant for
( V y , G ) . In particular, the representation is irrelevant if
ht (a1) > dim Vy for some /'.
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(2) Let V = W e W* where W is an m-dimensional
representation of G. Then (V,G) has a symplectic structure, and

m + 1
A W + 1 ( V ) = 0 A^'W ® A^^W*.

i= o

Thus a representation V/^ (^i) ® Y^) (^2) ls irrelevant if
ht (a) + ht (b) > m . In other words, modulo polarization, generators
of C [Hi W 0 n^ W*]° occur in subspaces C [rW 0 ^W*]0 where
r < ^ ^ , 5 < ^2 an(^ ^ + 5 < m .

(3) Let 0 == (V ,G) = ̂  C (C^)* , SL^). Then one cannot
improve upon the bound gen (0) < m since there are generators
(determinant invariants) of height m .

(4) Let (V,G) be orthogonal, and let
h = X ® / G i^W® ^(V*)0

be a highest weight generator. Write V/,. = V/,^ V/g where
£ = ht (a) > m = ht (b). Then £ 4- m < k by (1.22). As an element
of C [£V]° , h is linear and skew symmetric in the last £ — m copies
of V (see (1.17)). Thus h maps non-trivially to

(M = C V(m\)l^ M^ , where A^"^ V = C r^ .

In other words, we can obtain the minimal highest weight generators
of R from minimal generators of R(m)-modules P (m\, where
m < k / 2 and r is a subrepresentation of some A^V with
2m+ r < k .

(1.24) For later reference and as examples we now state the
FMT'5 for the orthogonal and symplectic groups (see (2.22) for SL^).
Given our results so far, one can establish these FMT^ using the
Luna-Richardson theorem [8], the methods of [ I I ] , or the standard
approach [21]. (Using (1.22) one can even improve upon the standard
approach in the symplectic case.)

(1.25) Example. -Let G = Sp^ act standardly on V = C
k>2. Let o^A^*)0 be the usual G-invariant. Then
S 2 ^^)® V*)° ^ A2^)® (A'V*)0^ ^)®c^ ^(,z)
generates R (n). The generator o?^ of C [nV]0 corresponding to
the usual basis element ^ A ^ - of ^^(n) has value cj(v^v-) on
(y ^ , . . . , ! ; „ ) G n\ . A highest weight generator is o?.̂  .

.2k
3
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(1.26) Example. - Let G =0^ act standardly on V = Ck ,
and let i? E (S2 V*)° be the usual G-invariant. Then
S2^^)® V*)0 ^ S2^)® (S'V*)0 = ^ ) ® T ? ^ i//^)

generates RO?). In other words, C [nV]0 has generators
T^., 1 < ; < ; < n , where T^.(^ , . . . , ̂ ) = 7? (i;,, v ^ ) , and 77^
is a highest weight generator.

2. Second Main Theorems.

(2.0) Let 0 = (V,G) and k = dim V as in § 1 , and let
R = S" (^/i ® V*)° be minimally generated by subspaces

^«,i) ® A ' • • • ' ^> ® f. •
Let T = S* (6D ^/ ^ ) , and let TT : T —> R be the canonical
GL-equivariant surjection (canonical given our choice of the f^).
Define T (n) = S" (C ^ . (^2)) C T. Then TT induces

TT (^): T (/z) —> R(n) , and I (n) = Ker TT (n)

lies in I = Ker TT . We give elements of V/ , 3 V/ ^ (n) their
natural degree (== deg (a1)), in which case TT and TT (n) are degree
preserving homomorphisms of graded algebras.

(2.1) To solve the SMT for 0 is, of course, to find generators
of I. We show that one knows generators of I, up to polarization,
if one knows I (k + gen (0)). Vust showed that I is generated
by elements of T of degree at most k 4- 1 in the V/, ,,, along

(a1)
with polarizations of elements of I (k). We refine his result, and we
use it to easily rederive the SMT'^ for the classical groups.

(2.2) It will be convenient for us to use the term relation not
only for element of I , but also for irreducible subspaces of I : A
relation (of TT : T —^ R) is an equivariant injection v '. ^ ̂  —> I
for some (b). Note that v : i//^ —> T has image in I if and only
if v (h) € I where h is a highest weight vector of V/^ (we call
v (h) a highest weight relation). We also refer to equivariant injections
a: ^^ (n) —> I (n) as relations (of TT (n) : T (n) —> R (n)).
Clearly a relation v : \^^ —> I induces relations
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V W : ̂ ) (^) -^ I (^Z)

by restriction, and if a : ̂ ^ (n) —> I (n) is a relation with
^(c) (^) =^ 0, then there is a unique relation v : i / / / v —> I with
^)= a . We use the notation (V/^ , ^) to denote relations
^ : ^(&) —> l » and similarly for relations in I (n).

(2.3) Let v : ̂ ^ —> T be an equivariant inclusion. If
ht (b) > k , then Im v C I by (1.14), and we call (i//^ , v) ^general
relation. We call a relation special if it is not general. Roughly, the
special relations are the ones ore already sees in I (k), and the general
relations are those which occur for dimensional reasons.

(2.4) Let (V/^ , ̂ .),/ == 1 ,2 , . . . be a minimal set of
generators for I . For any j r , ̂  (V/ . ) lies in the image in T of

^ V/^ ® T^., where d, = deg (67) - deg (a1) and T .̂ denotes
i

the elements of T of degree d^. Any subrepresentation of T^. of
height > k is in I , hence by minimality, ^ . injects into a sum
2 v/^) ^ ^(cfi) where ht (c£) ^ k for a11 6 e • one then ^^obtains :

(2.5) THEOREM. - Let T = S' (^ ^ ^ . . . 0 ^ ), etc. be
as above.

(1) I is minimally generated by relations

(^i)^i)—.,(^^)
where rel (0): = max ht (67) < k + gen (0).

/
(2) // {(^fi)^ ^fi)^ fl^ relations such that the (V/ n (^2), 7?g (n))

generate I (^2) /o^- some n > rel (0) (e.g. for n = 2k), then the
(^fi) ^fi) generate I .

(2.6) Example. - To solve the SMT for V , G) = (C" , (\)
it suffices to find generators of I (k 4- 1).

p
(2.7) Let 3, (or J^ ( (^ i// . ) ) denote the direct sum of the

i == 1 {a )

irreducible subspaces of T transforming by representations of height
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>r By (1.5), J, is an ideal of T, and I = Spc + J^ , where
Spc is the subideal of I generated by the special relations. We bound
the degrees of minimal generators of the ideals J

(2.8) THEOREM. -Let T = S- (<^ 0) . . . 3 ̂ ). Assume
that h t ( a Q < r for i ^ s and ht (a1) > r for s < i ^ p . Then
J, is generated by the V/^ with s < i < p and by the sub spaces

^n (SJ1 ^(.i) ® . • • ® S^ ̂ ) v^m? ^ + . . . + d^r-m + 1
W w = max {ht (a1): d, ̂  0} .

(2^9) COROLLARY (Vust [19]). - J, is generated by the subsvaces
J , H (S l ̂  ® . . . ® S^ ̂ ) mr/z d, + . . . 4- ̂  < r.

(2.10) Example. The ideal J^(^ C ^ 0 ^3 V/^) is generated
by subspaces J, 0 (S0 ^ ® S^, ® S^ 1^3 y/^) with a < 6 ,
a + 6 < 5 if 6 ^ 0 and a 4 - 6 4 - c < 3 if c ^ O .

(2.11) Remarks. -(1) One can usually improve our estimates
in specific cases. For example, (2.8) says that J,.(V^) is generated
by elements of degree < r — 1 in ^ • But

S2 ̂  = V/2 + ̂  , S3 V/, == V/,3 4- ^^^ + ̂  ,

etc. (see (2.20) below), hence J,(^) is generated by elements of
degree < (r + 1)/2 in i/^ • In example (2.10) we may add the
condition a -t- 26 + c < 6.

(2) In general, one cannot improve upon (2.8) even when there
are several representations of large height: Let ^ = ̂  e ^ C i / /
and consider ]^ ( i / /) . There is a copy of ^ i//^ in A3 ̂  C S3 (i//)2

Now J4 0 S2 (i//) consists of copies of ^^ , and V/2 1^4 ^ ̂  (g) i//
Hence 14 n S2 (i//) does not generate ]^ , and the estimate of (2.8)
is sharp.

(2.12) We consider a multilinear version of (2.8). Let
m

i r ( ^ ^(c^ (or just fr) denote the subspace of ® i// ,. spanned

by subrepresentations of height > r . If A C { 1 , . . . , m}, let | A |
denote the cardinality of A and A^ its complement. Let
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ir,A(^ V^n) (or just /\ ^) denote /,( ® ^ . 0®( ® V^ , . ) ,
v ' »€:A v / /eA<- v /

considered as a subspace of j\ (® V/ ^) via the canonical isomorphism
of ( ® V/ , ) ® ( ® V/ . ) with ® ^ ,. .

i<EA v / f^AC lc / vc /

w
(2.13) THEOREM . — Let jy = jy ( ® V/ ^.) be as above. Suppose

i = 1 (c )

^flr r > C = h t ( c 1 ) ^nrf r^r C > ht (c1),; == 2 , . . . ,m . Then j\
is the sum of {jy ^ : 1 G A a72rf | A | < r — C + 1}.

One easily deduces theorem (2.8) from theorem (2.13). We
deduce theorem (2.13) from

(2.14) PROPOSITION . - Let r , C , d G N with £ < r < £ 4- d .
Then jy{^^ ® (^^ V^)) ^ generated by the subspaces jy ^ with
\ e A a n d \ A \ = r - 9 . - ^ \ .

Proof of (2.13). - Let rf, = deg (c1), i = 1 , . . . , m , and
let Q, be a GL-equivariant projection from ® l V / ^ onto
V/ . / = 2 , . . ., m . Let Q^ be an equivariant projection from

V- / , ___ 0

V/g ® (® x ^) onto V/ . , and let

Q = Q, ® . . . ® Q, : ̂  ® (®^,) —— ^^ ® . . . ® ^ ̂
where d = — S. + S ^.. Then

Q(U^®(®d^)))=7.(^® . . . ® ^)).
By (2.14), /^(^g ® (^d V/ i ) ) is generated by subspaces jy ^ where
A = { 1 < ;\ < . . . < ^_g}, and clearly the images Q(j\ ^) are
contained in subspaces j\ g (V/ . ® . . . <X) ^ ^ ) where 1 £ B
and | B | < | A | == r - £ + 1'.

D

(2.15) The proof of (2.14) requires some results about the
symmetric group S^ : Let r , 9 . and d be as in (2.14) and
set n = = C + r f . Let E denote the group algebra C[SJ. If
A C { 1 , . . . , n} , then S (A) denotes the subgroup of S^ fixing

A" and we set p^ = I / 1 A | ! S (sign a) a . If A = { 1 , . . . , s} ,
oes(A)

we also write p y for p^ .
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Let W == ®" V/ i . Then W is a left E-module where
a (x, ® . . . ® ^) == ̂ .,^ ® . . . ® ^_,^ , a E S, .

The actions of GL and E on W commute, and pgW is the subspace
V / c ® ((^ V / i ) .

(2.16) LEMMA.-/ , (W) ^= 1 p ^ W .
|A|=r

Proof. — There is a canonical embedding
W^ S" 02^)- S"(^ ® ^ (^)),

where the elements of W are of degree 1 in each copy of i^ .
Versions of (1.9), (1.11) and (1.5) show that J ^ ( V / i ® ^\(n)) is
generated by i^ ® V^ (^) C S^ ( i / /^ ® ^/^ (^)). Intersecting W
and J^i® V/'i (n)) in S" (i//^ i//'i (n)) shows that /, (W) is
generated as claimed.

D
Proof of (2.14). - Note that

;,(^ ® (^ ^i)) = 7.(^ (W)) = p, (/,W),

and by (2.16) it suffices to proves the following : Let A C { 1 , . . . , n}
with | A | = r . Then pgp^ ls ln t^e right ideal of E generated by
elements pg with { 1 , . . . , C} C B and | B | == r .

Let pe__ ^ denote p^ where C = {2 , . . . , C} . Then
PePf i - i = Re , and by induction on C (the case £ = 0 being trivial)
we may assume that P\-\P ^ is in the right ideal generated by
elements p^ where | A ' | = A - and A ' D { 2 , . . . , C}. Thus it
suffices to consider the case A = { 2 , . . . , r + l } .

Now

(r + l ) ^ + i = (1 -Oi 2 -...-^ , r + l ) ? A .

^ P e ^ A = (! -^i^ ~ • • • - ^ I ^PA »

where a^ • is the transposition of ;' and /'. Hence
r+i

^PfiPA =('• + OPr+1 + ^ ^l,/^ •
/ = Q. + 1

Now Ji •p^ = PB ^i ;• ^ere
B = { ! , . . . , ^ + 1}~ {/}, 7 = C + ! , . . . , / • + 1 ,
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and p^ i G ̂  E . Hence Pcp^ ls m ihe desired right ideal.
D

(2.17) We now easily recapture the SMYs for the classical
groups. The following proposition will come in handy.

(2.18) PROPOSITION (see [5] pp. 100-101). -Let p : H —> GL(W)
be a representation of the complex algebraic grouo H , ^here H°
is semisimple. Then

dim C [W]" = dim W - max dim Hw.
w<EW

(2.19) Example. -Let (V ,G) = (Sp^ , C2") as in (1.25).
Then R ^ T/I where T = S* (^)- The generic isotropy group of
G acting on (2k) V is trivial (this is already true for SL (V)), and
then (2.18) shows that R(2k) and R ( 2 A ; + 1) are regular (i.e.
polynomial) algebras. It follows that 1 ( 2 / ^ + 2 ) is generated by
^+2 (2^ + 2) C S^ (^(2A; + 2)), and by theorem (2.5),
we see that I is minimally generated by ^ 2 ^ + 2 ^ ^ " ^ ( V / ^ ) .

y
Let o = ^ ^i]ei A e] where the a?-, etc. are as

1 < i< /< 2 f c + 2

in (125). Then the coefficient of e^ A . . . A ^+2 in the (k 4- 1) st
exterior power of a is a highest weight vector of V^fc+2 C I .
which, up to a scalar, is the Pfaffian of the o;̂ . see [21 ]).

(2.20) Remark.— Our arguments above show that S* (i/^)
contains no elements of odd height and that ^^(\^^ is generated
by V^m ^ ^ ( ^ 2 ) lor any m. By an easy induction w e get

3d (V/^) = ^ {^(^ : deg (a) = 2rf and a, = 0 for ; odd} .

(2.21) Example.-Lei (V ,G) = (C^ ,(\) as in (1.26). Then
R ^ T/I where T = S" ( i / /^ ) . Using (2.18) one sees that R (k) is
regular and that I (k 4- 1) is generated by a single element. By (1.5)
and (2.9) this element lies in S^1 (^ (A: 4- 1)), hence I (k + 1)
is generated by ^^ (fc + 1) C S^ (^ (A: 4- 1)), and I is
generated by i//^ ^S^"^^). A corresponding highest weight
relation is del (7^.) z , ; = l , . . . , ^ + l (see (1.26)). As in (2.20)
one can prove

S^ ̂ \ = 0 {^^ : deg (a) = 2rf and all .̂ are even}.
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(2.22) Example. - Let V = Ck and let G = SL^ act standardly
on V and V*. As in (1.23) it is convenient to use two copies of
GL to describe invariants of several copies of V and V*, so
we set R = S* (^ ® V* 4- i^ (g) V)0 . Then R ^ T/I where
T = S' (V/^ + y/^ + ^ ® ^) and the representations V/^ , i^
and i^ ® V/^ correspond to determinants of A: copies of V
determinants of k copies of V* and contractions of copies of V
and V*, respectively. Irreducible subspaces of T and I transform
by representations V/^ ® i//^ , and it is appropriate here to call
a relation v : V/^ ® ̂  —> I special (resp. general) if ht (a),
ht (&) < A; (resp. ht (a) > k or ht (6) > A:).

Using (2.18) one can see that the special relations are generated
by a copy of ^ ® V/^: the copies of ^ ® ^ in S2 (^ 0 ^) C T
and in S^ ( V / ^ ® \^\) C T have the same image in R . Applying (2.8)
and (1.7) one immediately sees that the general relations are generated
by

(2.22.1) ^-2 ^+2 + ^-4^+4 + . . . C S ' C ^ ) .

(2.22.2) ^-2 ^+2 + ^-4 ^+4 + . . . C S2 (^).

(2.22.3) ^+1 ® ^ C ̂  ® (V/^ ® V/ ; ) .

(2.22.4) V/i ® ̂  C ^®(^ , ® ^ /^ ) .

(2.22.5) V^ ® V/^i CS^^y/, ® ^^) .

A minimal set of relations does not include (2.22.5) since it
results from (2.22.3) or (2.22.4) and the special relation.

3. Bounds using Poincare Series.

(3.0) We briefly recall some of the main properties of the
Poincare series of an algebra of invariants. In case one knows the
degrees of a homogeneous sequence of parameters, then one can
estimate the degrees of minimal generating sets and their relations.
We have applied such estimates in [13] and [14].

(3.1) Let r: H——> GL (W) be a representation of the
reductive complex algebraic group H. Let A == C [W]" and
d = dim A. By Noether normalization there are always homogeneous
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sequences of parameters (HSOP 5) for A , i.e. sequences /\ , . . . , f^
of non-constant homogeneous elements of A such that A is a finite
C [/i ,. . . ,/J-module. Using results of Hochster and Roberts [3]
(or Boutot [ 1 ]) and the Nullstellensatz we have

(3.2) PROPOSITION. - Let /i ,. .., /^ be non-constant homo-
geneous element of A. The following are equivalent:

(1) The f, are an HSOP for A .
(2) A is a graded finite free C [/^ , . . . , f ̂ module.
(3) { w G W : / , ( w ) = 0 z = 1, . . . , r f } = { w € W : / ( w ) = / ( 0 )

for every f G A}.

(3.3) Recall that the Poincare series P^ (A) of a finitely

generated graded C-algebra A = 0 A, is V (dim^A ) r" .n — '• \^ y i /
n> 0 n> 0

If A = C [W]" and /\ , . . . , f^ are an HSOP for A , then it
follows from (3.2) that A ^ C [f, , . . . , /J ®c A° as graded
C [/i , . . . , /J-module, where A° = A/(/^ A + . . . 4- /^ A). Thus

(3.4) P, (A) = n (1 - r^)-1 P, (A°)
i= 1

where e, = deg /^, i = 1 , . . . , d . Since A° is a finite dimensional
algebra,

(3.5) P,(A°)= t a,^,
1=0

for some a^ and £ , where we assume that a^ ¥= 0.
Construct a surjection p : F —> A of graded algebras, where

F = C [X^ , . . . , Xp] for some p and where the p (X .̂) minimally
generate A . Let r € N be minimal such that J = Ker p is generated
by elements of degree < r , and set m = max deg X.

/ ;

(3.6) THEOREM . - Let A, m, f i , 6? .̂ &6? fl5 above. Then
(1) w <max { £ , ^ , . . . , ̂ }
(2) r < w + C .
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Proof. - Part (1) is obvious from (3.4) and (3.5). Let ^ , . . . , ̂
be homogeneous elements of A mapping onto a basis of A° . Choose
homogeneous preimages a\ , . . ., a\, f[, . . . , /J of ^ , . . . , a,,
/i » • • • »/d m F • We will use symbols 6^ and &^ to denote
elements of C [/\ , . . . , /J , and &^ and b\^ will denote the unique
elements of C [/; , . . . , /;! such that p (6;) = b,, p (6;,,) == 6^ .
(Note that the f^ are algebraically independent, hence so are
the f[ .) Now p (X .̂) df can be uniquely written as a sum
V
-L b^ a ^ , 1 < i < p , 1 < / < s . Thus J contains elements
t

(3.6.3) hy = X,a; - S b'^ a; , 1 < ;• < p , 1 < /• < s
t

of degree < m 4- £ .

We may assume that ^ = ̂  = 1 . Let M = X^ . . . X^
be a monomial in F. By induction on 2 n^ one can show that there
is an expression E = S ̂  a\ such that M — E lies in the ideal of
the A .. (One begins the induction with the cases M == X. = X.a' .)
There is a canonical linear section a for p , where o sends
2 b^ a^ to "Lb\a\. Our argument above shows that Im a and the
ideal of the /^.. span F. Hence J is generated by the A . . .

(3.7) THEOREM. —Assume that H is connected and semisimple.
Then

(1) A ^d A° are Gorenstein: dim (A°\ = 1 , wrf the
bilinear map (A°), x (A°)e_, —> (A\ ^ C f5 a non-degenerate
pairing, 0 <i <i. In particular, a^ = ^g_ / , 0 < i < £ .

(2) dimA <-£ + 2^ .<dimW.
(3) £ = - dim W 4- 2 e, if coding (W - W) > 2 ,

wA^r^ W f5' rt^ MAizo^ o/rt^ orbits in W wTA /m^e isotropy.

Proof. -Part (1) is due to Murthy; see [15]. Parts (2) and (3)
are recent work of Knop [4] (c.f. [ 16]).

D

We note here that the representation of SL^ on one or more
copies of the space of binary cubics satisfies the hypothesis of (3.7.3.).
In § 4 we apply the results above to this situation.
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(3.8) Example. - Let (W, H) = (k^ , S(\), k > 2 . Then the
i7,y of (1.26), ! < ; < / < / ; , are an HSOP, and one can check
that the hypothesis of (3.7.3) is satisfied. Theorem (3.6) then gives
estimates of degree k for generators and degree 2k for relations,
both of which are sharp. (The determinant det and the 77.. generate
A, and det satisfies a quadratic relation over the 77...)

(3.9) Examvle. - Let (W, H) = ((2k + 2)C^, Sp^). Again,
(3.7.3) applies, and t = 2k. Since m = 2, theorem (3.6) gives an
estimate of degree 2k +- 2 for the relations, which is sharp. The
estimate m < 2k is not sharp unless k = 1.

4. Binary Cubics.

(4.0) We use the results of § § 1-3 to find the FMT and
SMT for the representation (V, G) of SL^ on binary cubics. The
generators were known classically, but not the relations (c.f. [2]
pp. 323-326, [17]). We quickly rederive the generators, and we indicate
the form and degree of the relations.

(4.1) Let R(n) = S" (^ (n) ̂  V*)0 , etc. be as usual. We
begin by calculating R ( l ) and R (2).

Let {e^ ,e^} be the standard basis of C2 . Then W = S'" C2

has basis (w) e\ e^ ~ 1 , i = 0 , . . . , m [ , m > 0. The W^ are

(all the) irreducible representations of SL^ , and by counting weights
one obtains:

(4.1.1) S^ = W^ 4- W^ .

(4.1.2) 8^3 = W^ 4- Wg + W3 .

(4.1.3) S4 W3 = W^ + Wg + W^ 4- W^ + Wo .

We think of V as W^, so a typical element / G V can be
written

(4.2) / = ax3 4- 3bx2 y + 3cxy2 4- dy3

where [x ,y] is the dual basis to {^ ,^}. We may factor / as a
product of 3 linear forms, /= e^^ . Since SL^ acts transitively
on triples of points on the projective line, a non-zero / has one of
three normal forms:
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<4-2-1) /= 3b(x2y + x y 2 ) , b ^ 0 .
(4.2.2) f=3x2y.

(4.2.3) f =x 3 .

The isotropy group of the form in (4.2.1) is isomorphic to
Z/3Z , hence dim C [V]0 = 1 and C [V]0 a R (1) is generated by
a non-zero invariant D of minimal degree, namely 4 (see (4.1) and
[5] p. 103). We choose

(4.3) D (/) =a^dl + 4ac3 - 6abcd + 4b3d - 3blc^ ,

where / is as in (4.2). Then D is a multiple of the discriminant of
/ (see [7].

(4.4) We now consider R(2): By (2.18), dim R (2) = 5 .

Let / , / i e V , r £ C . Then D(f+th)= S a,.(/,/0 f4-'
l+/=4

where ay £ C [2V]0 and a^ (f , h) = D (/). The a,̂  are a basis
of the copy of ^ (2) in R (2) with highest weight vector D (where
ay corresponds to (^)e\e{ e S4 V/i (2)). As Hilbert already knew
we have:

(4.5) LEMMA. - The ay are an HSOP for R(2).

^oo/ - Let (/,/!)£ 2V and suppose that a^(f,h)=0,
i + / = 4. By (3.2) it suffices to show that the orbit S of (f,h)
has the origin in its closure. We may assume that / has the
form (4.2.2) or (4.2.3), and let

(1) h = a ' x 3 + 3b'x^y + 3c'xy2 + d ' y 3 .

Then_ D (/ + th) = 0 for all t forces c ' = rf' = 0, and clearly
O G S.

D

Let /, /z be as in (4.2) and (4.5.1), respectively. Set

(4.6) P ( f , h ) = a d ' - 3bc + 3cb'- d a ' .

Then ^ & ̂  (2) ® (A^*)0 C R (2), and ^ is a non<iegenerate
skew form on V . Thus (V,G) is symplectic.
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(4.7) Since R (2) is finite over C[a,y], the Noether
normalization lemma shows that it is also finite over C [j3 ,a' , . . . , a.]
where the a\ are linear combinations of the a^ . Thus

P , ( R ( 2 ) ) = ( 1 -r2)-1 (1 -^-^(F^)0),
where, by (3.7.3),

P,(R(2)°)= l + ^ r + . . . + ^ r 9 ^ t10

for some a^ , . . . , a^ E N .
No odd tensor power of V contains the trivial representation,

hence all a, with ; odd are zero. Clearly a^ = 0. Using (4.1.1),
etc. one easily sees that dim R ( 2 ) ^ = 6 , which forces a. = 1 .
Applying (3.7.1) we obtain

(4.8) P,(R(2)°) = 1 +- r4 + ^ + t10 .
From (4.8) we see that there is an element 7 G R (2) of degree 6

whose image 7 E R ( 2 ) ° is non-zero. Let a be some a , not in the
span of a\ , . . . , c^ . Then a has non-zero image a E R (2)° .
Clearly a2 = 72 = 0, while "07 ̂  0 by (3.7.1). Hence

(4.9) PROPOSITION . - (1) R (2) has generators a^ , p and 7 .

(2) The relations are generated by one in degree 8 and one in
degree 12.

D

We make the relations explicit below.

(4.10) We normalize 7 as follows: Let f,h E V . Then their
resultant Res (/, h) (see [7]) is an invariant transforming by ^ (2).
Degree arguments (or computations as below) show that Res is not
a multiple of |83 , hence we may set 7 = Res.

From (1.22) and (4.9) we obtain

(4.11) THEOREM . — R has minimal generators transforming by
representations ^ , ̂  and ^ with corresponding highest weight
generators ^ i i , < 3 and 7, respectively.

D

(4.12) The rest of this section is devoted to describing generators
of I , where R ^ T/I and T = S' (^ + V^ 4- i^). Let
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•̂  = ̂  (^ + V'2 + V^). let K^ denote the subideal of I
generated by subrepresentations of height < m, and let

^=( I+J^ i ) / (K, +J^).
To find generators for I is equivalent to finding subrepresentations
which project to generators of the T/(K_ + J , .) - ideals I
<- ^ / "• m ' 1 Wtor w < 6 .

We use the notation ^ (^^7'") to denote a copy of i//..
lying in S* i//,4® S2 ̂  ® S"'^C T (in all cases considered the
multiplicity will be one), and \ (^ ̂  (cc" ̂  j " ' ) ) denotes a
corresponding highest weight vector.

We need to use the following tensor product decompositions.
They follow from the Littlewood-Richardson rule and the techniques
in f61.

(4.12.1) s2^=^+^^+^.

S3^^2 +^+^+^+^

(4.12.2) + ̂  ̂  + ^ ̂  ̂  + ̂  ^3 ^^ + ̂

(4.12.3) S2 ̂  = ̂  + ̂  ̂  ̂  + ̂  ̂  + ̂  ̂  + ̂  ̂  ̂  ^ ̂

(4.12.4) ^ ® ,̂3 ^ ̂  ^3 ^ ^^ ̂  ^^ ^ ^^ ^^ ̂  + ^ , V . ^ .

(4.12.5) S 2 ^ ® ^/, D V/^2® V/, D ̂ ^^4.

(4.12.6) V ^ ® ^ 3 ^ ^ .

(4.13) Generator of I of height 2: From (4.9) we see that
I^ is generated by relations of degrees 8 and 12 which must transform
by ^ and ^ respectively. Using (2.20) and (4.12.1), etc. one
easily determines that the copies of ^ and ^i\ in T are
(4-13-0 ^(^^a?4),^),
(4•13•2) ^ ("3),^ (P6), ̂  (^7), V',6 (72),
where we set
(4•13•3) x^ (a2)) = <4 - 3a3,a,3 + \la^ ,

X(^^(a3)) = 2^-9.03,0,^,3 +27a^

(4•13•4) -72^a,,^+27a2,^,
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and X(^(^))=^X(^(^))=^, etc.

Evaluating the \'s in case /= ax3 + 3bx2 y and /? = 3cxy2 4- rfy3

one sees that 1̂  is generated by relations with highest weight
vectors
(4.13.5) 9X (i^ (a2)) - X (^ Q?4)) - S\(^ (^)).

27X (^ (a3)) + 2X (^ O?6)) - 40X (^ O?3^)

(4.13.6) - 16X(i^(72)).

(4.14) Generators of I o/ Ae/gftr 3 : We will not be so specific
as to the relations, but rather just indicate their form and degree.
Our computations are aided by the following general fact:

(4.15) THEOREM ([12] Table 3).-Let H = S p ^ act standardly
on W = (m + 1) C^ . Then C [W] is a free graded C [W]" -module.

D

Returning to binary cubics, we see that C [3V] is a free
c [P 12^13^231-module, where the (3 .̂ are a basis of the copy of
V/2 (3) c R (3) Q3 = j3i2 is a highest weight vector.) Projecting to
G-invariants, we see that R (3) is free over S" i//^ (3).

By theorem (1.22), any representation in T of height > 3
is, modulo I , in the ideal of V^ • since R (3) is free over
S" \1^^(3), we have a recipe for finding generators of 1^ : Compute
generators of J^ (^ (a) + i//3 (7)) and express the ones of height 3
as elements of the ideal of ^ W • For example, using (4.12.4)
with i//3 = i//3 (7) and V/ 3 ^ 3 ) , one finds representations ^ 1^(07)
and ^^(o^3) in T. In fact, T contains i//^3 with multiplicity
two, hence I contains a relation showing that \^^^(aj) and
V^V/3^3) have the same image in R .

Using theorem (2.8), one can see that ] ^ ( ^ ( a ) + i//3 (7))
is generated by the representations of height > 3 in (4.12.2) through
(4.12.4), of which 8 are of height 3. Thus the corresponding 8 elements
of I generate 1^ , but not minimally : One can show (by computing
highest weight vectors) that the image

^ ® V ^ c s 2 ^ ® ^ —> s3^
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contains V / 2 ^ 2 ^ 2 + V^V^^a 4" ^3 • Using the relation with highest
weight (4.13.5) we see that the elements of I corresponding to
i^ 2^ 2^ 2^ 3 ) , etc. are not needed to generate 1^. Thus 13 is
generated by relations corresponding to ^^3 (a3), ̂ ^^(r2),

^^3(07), ̂ ^(07) and ^^(07).

(4.16) Generator of I of height 4 : Modulo I , 14 is generated
by ^(jS2), and R (4) is a free C [det]-module, where det is the
image in R (4) of a highest weight vector of ^4 (j82). Thus, as (4.14),
we obtain generators of 1̂  by expressing the height 4 generators
of ^^\ + ^2 4- ^) as elements of the ideal of i^QS2). We
claim that the 6 height 4 representations i^V/4(72), . . . , V^V^OihO
in (4.12.3) through (4.12.6) suffice:

By theorem (2.8), ]^ has generators in Sk ̂  ® S6^ ® S'" ̂
with A: == 4 and C = w = 0 , or A : + C + w < 3 . Using our six
height 4 relations and those of height < 3 one eliminates the
following cases completely, or in favor of cases with a larger value of
9 . : k : = 4 , 9 . = = m = 0 , m > 2 , k > m > l . It follows that our
list is complete.

(4.17) Generators of I of height > 4 : Modulo the generators
of I described so far, elements of J<; lie in the ideal of ^(jS2).
Hence the remaining generators of I required are among

(4.17.1) ^^s(a^c ̂ )® S2^)-

(4.17.2) ^2^27)+ ^^(^7)C 1^(7)® S2^).

(4.17.3) ^W"3^)-

We only add (4.17.1) and (4.17.3) to our list, since (4.17.2) is a
consequence of the height 4 relation transforming by V/2 V/4 .

(4.18) THEOREM .-I is minimally generated by special
relations transforming by

^, v/26. v^L v^^L W^^ ^2^3, ̂ L
V^4. ̂ L ^^4, ^L ^2^4
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and ^^4 , and by general relations transforming by ^ f V / g
and V / ^ .

Proof. — We know there are generators of I as described, and
degree and height considerations easily establish minimality.
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