Annales de l'institut Fourier

Robert Brooks
 On the angles between certain arithmetically defined subspaces of \mathbf{C}^{n}

Annales de l'institut Fourier, tome 37, n 1 (1987), p. 175-185

http://www.numdam.org/item?id=AIF_1987__37_1_175_0
© Annales de l'institut Fourier, 1987, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

ON THE ANGLES BETWEEN CERTAIN
 ARITHMETICALLY DEFINED SUBSPACES OF C ${ }^{\boldsymbol{n}}$

by Robert BROOKS(*)

In this note, we consider the following problem: Let $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ be two sets of unitary bases for \mathbf{C}^{n}. The bases $\left\{v_{i}\right\}$ and $\left\{w_{j}\right\}$ are about as "independent as possible" if, for all i and $j,\left|\left\langle v_{i}, w_{j}\right\rangle\right|$ is on the order of $\frac{1}{\sqrt{n}}$. For θ some fixed number, for instance $\frac{1}{5}$, we consider linear spaces V^{θ} (resp. W^{θ}) spanned by $[\theta \cdot n]$ of the vectors in the set $\left\{v_{i}\right\}$ (resp. $\left\{w_{j}\right\}$, where [] denotes the greatest integer function. What can one say about the angle between V^{θ} and W^{θ}, as n tends to infinity?

In view of the paper [5], we may view such a question as relating to the prediction theory of such subspaces, although we do not see a direct connection between the methods of [5] and the present paper.

Let us consider the following special cases: In the first case, let $\left\{v_{i}\right\}$ be the standard basis for C^{n}, and let $\left\{w_{j}\right\}$ be the "Fourier transform" of this basis

$$
w_{j}=\frac{1}{\sqrt{n}}\left(\zeta^{j}, \zeta^{2 j},, \ldots, \zeta^{n j}\right)
$$

(*) Partially supported by NSF grant DMS-83-15522; Alfred P. Sloan fellow.
Key-words: Angles - λ_{1} - Eigenvalues - Kloosterman sum.
where $\zeta=e^{2 \pi i / n}$ is a primitive n-th root of 1 . Then clearly $\left|\left\langle v_{i}, w_{j}\right\rangle\right|=\frac{1}{\sqrt{n}}$ for all i, j.

For a number α, let us denote by $[[\alpha]]$ the distance from α to the nearest integer

$$
[[\alpha]]=\inf _{n \in Z}|\alpha-n|
$$

Let V^{θ} and W^{θ} denote the spaces spanned by

$$
\left\{v_{i}:\left[\left[\frac{i}{n}\right]\right]<\theta\right\} \quad \text { and } \quad\left\{w_{j}:\left[\left[\frac{i}{n}\right]\right]<\theta\right\}
$$

respectively. For σ_{n} a permutation of the integers $(\bmod n)$, let $\mathrm{W}_{\sigma_{n}}^{\theta}$ be the space spanned by $\left\{w_{j}:\left[\left[\frac{\sigma_{n}(j)}{n}\right]\right]<\theta\right\}$. Then we will show :

Theorem 1. - (a) For any θ, the angle between V^{θ} and W^{θ} tends to 0 as n tends to ∞.
(b) If the permutations. σ_{n} are "sufficiently mixing", then the angle between V^{θ} and $\mathrm{W}_{\sigma_{n}}^{\theta}$ stays bounded away from 0 as n tends to ∞.

By "sufficiently mixing", we mean that, for all i, we do not have both $\left[\left[\frac{\sigma_{n}(i)}{n}\right]\right]<\theta$ and $\quad\left[\left[\frac{\sigma_{n}(i+1)}{n}\right]\right]<\theta$. Clearly, weaker hypotheses on the σ_{n} would also allow us to conclude (b), but we will not explore this question here.

Now let us consider the following different example: for a prime p, let χ denote an even multiplicative character $(\bmod p)$. Then set $\left\{v_{i}\right\},\left\{w_{j}\right\}$ to be the following bases for C^{p+1} :

$$
\begin{aligned}
& v_{j}-\frac{1}{\sqrt{p}}\left(1, \zeta^{j}, \ldots, \zeta^{(n-1) j}, 0\right) j=0, \ldots, p-1 \\
& v_{p}=(0, \ldots, 0,1) \\
& w_{k}=\frac{1}{\sqrt{p}}\left(0, \chi(1) \zeta^{-k}, \chi(2) \zeta^{-\overline{2 k}}, \ldots, \chi(n-1) \zeta^{-(\overline{n-1}) k}, 1\right) \\
& \quad k=0, \ldots, p-1
\end{aligned}
$$

$w_{p}=(1,0, \ldots, 0)$
where \bar{m} denotes the reciprocal of $m(\bmod p)$. Note that

$$
\left\langle v_{i}, w_{k}\right\rangle=\frac{1}{p} \sum_{x=1}^{p-1} \overline{\chi(k)} \zeta^{(j x+k \bar{x})}=\frac{1}{p} \mathrm{~S}_{x}(j, k, p)
$$

where $\mathrm{S}_{x}(j, k, p)$ is a Kloosterman sum. The fact that the bases $\left\{v_{k}\right\},\left\{w_{k}\right\}$ are about as "independent as possible" is a deep result of A. Weil [7] that $\left|\mathrm{S}_{\mathrm{x}}(j, k, p)\right|<2 \sqrt{p}$.

Denoting by V^{θ} and W_{x}^{θ} the vectors spanned by

$$
\left\{v_{i}:[[i / p]]<\theta\right\} \quad \text { and } \quad\left\{w_{j}:[[j / p]]<\theta\right\}
$$

respectively, our second result is:
Theorem 2. - For θ sufficiently small, the angle between $\mathrm{V}_{\mathrm{x}}^{\theta}$ and $\mathrm{W}_{\mathrm{x}}^{\theta}$ stays bounded away from 0 as p tends to ∞, uniformly with respect to χ.

Our proof of Theorem 2 relies on the deep theorem of Selberg [6] that, when Γ_{n} is a congruence subsgroup of $\operatorname{PSL}(2, \mathbf{Z})$, then the first eigenvalue $\lambda_{1}\left(\mathrm{H}^{2} / \Gamma_{n}\right)$ of the spectrum of the Laplacian satisfies $\lambda_{1}\left(\mathrm{H}^{2} / \Gamma_{n}\right) \geqslant \frac{3}{16}$.

Another important ingredient in Theorem 2 is our recent work [3] on the behavior of λ_{1} in a tower of coverings. Indeed it is not difficult to find an extension of Theorem 2 which is actually equivalent, given [3], to Selberg's theorem, at least after replacing " $\frac{3}{16}$ " by "some positive constant".

The main number-theoretic input into Selberg's theorem is the Weil estimate. Theorem 1 shows that, by contrast, the conclusion of Theorem 2 cannot be achieved directly by appealing to the Weil estimate, and suggests an interpretation of Selberg's theorem in terms of the random distribution of Kloosterman sums.

The proof of Theorem 1 is completely elementary.
We would like to thank Peter Sarnak for useful discussions, and Alice Chang for showing us the paper [5] and for her suggestions.

1. A Lemma.

In this section, we give a simple lemma in linear algebra which is the key to proving Theorems 1 and 2.

Suppose U and T are unitary matrices acting on $\mathbf{C}^{\boldsymbol{n}}$. For a given value δ, let U^{δ} (resp. T^{δ}) be the subspace spanned by the eigenvectors of U (resp. T) whose eigenvalues λ satisfy $|\lambda-1|<\delta$. Let U_{\perp}^{δ} and V_{\perp}^{δ} denote the perpendicular subspaces.

Denote by $k(\mathrm{U}, \mathrm{T})$ the expression

$$
k(\mathrm{U}, \mathrm{~T})=\inf _{\|\mathrm{X}\|=1} \max (\|\mathrm{U}(\mathrm{X})-\mathrm{X}\|,\|\mathrm{T}(\mathrm{X})-\mathrm{X}\|)
$$

Let $\alpha(\delta)$ denote the cosine of the angle between U^{δ} and T^{δ} :

$$
\alpha(\delta)=\sup _{\mathrm{X} \in \mathrm{U} \delta, \mathrm{Y} \in \mathrm{v} \delta} \frac{|\langle\mathrm{X}, \mathrm{Y}\rangle|}{\|\mathrm{X}\|\|\mathrm{Y}\|} .
$$

The main result of this section is:
Lemma. $-\delta \sqrt{\frac{1-\alpha^{2}}{2}} \leqslant k(\mathrm{U}, \mathrm{T}) \leqslant \sqrt{\delta^{2} \alpha^{2}+4\left(1-\alpha^{2}\right)}$.

Proof. - To show the right-hand inequality, let X be a unitlength vector in U^{δ} such that its orthogonal projection Y onto T^{δ} is of maximum length $\alpha(\delta)$.

Since $X \in U^{\delta}$, we have $\|U(X)-X\| \leqslant \delta$. Writing

$$
\mathrm{X}=\mathrm{Y}+\mathrm{Y}^{\perp}, \mathrm{Y}^{\perp} \in \mathrm{T}_{\perp}^{\delta}
$$

we see that

$$
\begin{aligned}
\|T(X)-X\|^{2}=\|T(Y)-Y\|^{2}+ & \| T\left(Y^{1}\right) \\
& -Y^{1} \|^{2} \leqslant \delta^{2} \cdot \alpha^{2}+4\left(1-\alpha^{2}\right)
\end{aligned}
$$

So $k(\mathrm{U}, \mathrm{T}) \leqslant \max \left(\delta, \sqrt{\delta^{2} \alpha^{2}+4\left(1-\alpha^{2}\right)}\right)$. When $\delta<2$, the second term on the right is $\geqslant \delta$. When $\delta \geqslant 2$, then $\alpha=1$ and again the second term is $\geqslant \delta$.

To get the left-hand inequality, let X be a vector of length 1 minimizing $\sup (\|U(X)-X\|,\|T(X)-X\|)$. Write

$$
X=X_{U}+X_{T}+X_{\perp}
$$

where $X_{U} \in U^{\delta}, X_{T} \in T^{\delta}$, and $X_{\perp} \in U_{\perp}^{\delta} \cap T_{\perp}^{\delta}$. Then

$$
\begin{aligned}
& \|U(X)-X\|^{2} \geqslant \delta^{2}\left[\left(1-\alpha^{2}\right)\left\|X_{T}\right\|^{2}+\left\|X_{\perp}\right\|^{2}\right] \\
& \|T(X)-X\|^{2} \geqslant \delta^{2}\left[\left(1-\alpha^{2}\right)\left\|X_{U}\right\|^{2}+\left\|X_{\perp}\right\|^{2}\right]
\end{aligned}
$$

and so

$$
\delta^{2}\left(1-\alpha^{2}\right)\|\mathrm{X}\|^{2} \leqslant\|\mathrm{U}(\mathrm{X})-\mathrm{X}\|^{2}+\|\mathrm{T}(\mathrm{X})-\mathrm{X}\|^{2} \leqslant 2 k^{2}(\mathrm{U}, \mathrm{~T})
$$

and so $k(\mathrm{U}, \mathrm{T}) \geqslant \delta \sqrt{\frac{1-\alpha^{2}}{2}}$.
From the left-hand estimate, we see that for δ fixed, and hence for δ arbritrarily small, a lower bound for $1-\alpha^{2}$ gives a lower bound for $k(\mathrm{U}, \mathrm{T})$. From the right-hand side, we see that a lower bound for $k(\mathrm{U}, \mathrm{T})$ gives, for $\delta \ll k(\mathrm{U}, \mathrm{T})$, a lower bound for $1-\alpha^{2}$.

2. Proof of Theorem 1.

Let $v_{i}=(0,0, \ldots, 1,0, \ldots, 0)$ be the standard basis for \mathbf{C}^{n} and let

$$
w_{j}=\frac{1}{\sqrt{n}}\left(\zeta^{j}, \zeta^{2 j}, \ldots, \zeta^{n j}\right)
$$

Let V be the unitary transformation whose eigenvectors are the $v_{i}^{\prime} \mathrm{s}$, with $\mathrm{V}\left(v_{i}\right)=\zeta^{i} v_{i}$. Of course, the matrix for V is simply the diagonal matrix

$$
\mathrm{V}=\left(\begin{array}{lll}
\zeta^{1} & & 0 \\
& \zeta^{2} & \\
0 & & \zeta^{n}
\end{array}\right)
$$

Similarly, let W be the unitary transformation whose eigenvectors are the $w_{j}^{\prime} s$, with $\mathrm{W}\left(w_{j}\right)=\zeta^{j} \cdot w_{j}$. We compute:

$$
\text { LEMMA. - } \mathrm{W}=\left(\begin{array}{ccccccc}
0 & 1 & 0 & . & . & . & 0 \\
0 & 0 & 1 & 0 & . & 0 \\
1 & 0 & 0 & . & . & . & 0
\end{array}\right)
$$

Proof. $-\mathrm{W}=\mathrm{EVE}^{-1}$, where $\mathrm{E}=\left(e_{i j}\right)$ is given by

$$
e_{i j}=\frac{1}{\sqrt{n}} \zeta^{i j} .
$$

The lemma now follows by routine calculation.
To prove Theorem 1 (a) it suffices, from the lemma of $\S 1$, to show that $k(\mathrm{~V}, \mathrm{~W})$ tends to 0 as n tends to infinity.

But V-I has the matrix expression

$$
\left(\begin{array}{cccc}
\zeta-1 & & & 0 \\
& \zeta^{2}-1 \cdot & \\
& & \cdot & \\
0 & & \zeta^{n}-1
\end{array}\right)
$$

so that any element in $\mathrm{V}^{\boldsymbol{\theta}}$ satisfies

$$
\begin{equation*}
\|(\mathrm{V}-\mathrm{I})(v)\| \leqslant 2\left|\sin \left(\frac{\theta}{2}\right)\right|\|v\| . \tag{*}
\end{equation*}
$$

Now consider the vector v_{n} whose $j t h$ coordinate is 1 for $[[j / n]]<\theta$, and is 0 otherwise. Then we have that $v_{n} \in \mathrm{~V}^{\theta}$, so that, by (*) we have

$$
\left\|(\mathrm{V}-\mathrm{I})\left(v_{n}\right)\right\| \leqslant 2\left|\sin \left(\frac{\theta}{2}\right)\right|\left\|v_{n}\right\|
$$

On the other hand, from the lemma, we compute easily that

$$
\left\|(\mathrm{W}-\mathrm{I})\left(v_{n}\right)\right\|=\sqrt{2}
$$

Since $\left\|v_{n}\right\|=\sqrt{2[n \cdot \theta]+1}$, where [] denotes the greatest integer function, we have that

$$
k(\mathrm{~V}, \mathrm{~W}) \leqslant \sup \left(2\left|\sin \left(\frac{\theta}{2}\right)\right|, \frac{1}{\sqrt{[n \cdot \theta]+\frac{1}{2}}}\right)
$$

It is then evident that as $n \longrightarrow \infty$, we may choose $\theta \longrightarrow 0$ such that the right-hand side $\longrightarrow 0$, establishing Theorem 1 (a).

To establish $1(b)$, we first notice from the computation of the lemma that whenever σ_{n} is sufficiently mixing,

$$
\left\|\left(\mathrm{W} \sigma_{n}-\mathrm{I}\right) v\right\|=(\sqrt{2})\|v\|
$$

for $v \in \mathrm{~V}^{\theta}$. Fixing θ, for $v \in \mathrm{~V}^{\theta}$, let us write

$$
\begin{gathered}
v=w+w^{\perp}, w \in \mathrm{~W}_{\sigma_{n}}^{\theta}, w^{\perp} \in\left(\mathrm{W}_{\sigma_{n}}^{\theta}\right)^{\perp} \\
2\|v\|^{2}=\left\|\mathrm{W}_{\sigma_{n}}(v)-v\right\|^{2}=\left\|\mathrm{W}_{\sigma_{n}}(w)-w\right\|^{2}+\left\|\mathrm{W}_{\sigma_{n}}\left(w^{\perp}\right)-w^{\perp}\right\|^{2} \\
\leqslant 4 \sin ^{2}(\pi \theta) \cdot\|w\|^{2}+4\left\|w^{\perp}\right\|^{2}=4 \sin ^{2}(\pi \theta) \cdot\|w\|^{2}
\end{gathered}
$$

$$
+4\left(\|v\|^{2}-\|w\|^{2}\right)
$$

from which we see that

$$
\begin{aligned}
4\left(1-\sin ^{2}(\pi \theta)\right)\|w\|^{2} \leqslant 2\|v\|^{2} \quad \text { so that } \quad \frac{\|w\|}{\|v\|} & \leqslant \frac{1}{(\sqrt{2})} \cos (\pi \theta) \\
\alpha & \leqslant\left(\frac{1}{\sqrt{2}}\right) \cos (\pi \theta)
\end{aligned}
$$

Choosing θ smaller that $\frac{1}{4}$ then establishes Theorem $1(b)$.

3. Proof of Theorem 2.

We begin this section with a quick review of the result of [3]. For \mathbf{M} a compact manifold, and $\mathbf{M}^{(t)}$ a family of finite covering spaces of M, we seek conditions of a combinatorial nature on $\pi_{1}(\mathrm{M}), \pi_{1}\left(\mathrm{M}^{(i)}\right)$ which govern the asymptotic behavior of $\lambda_{1}\left(\mathrm{M}^{(i)}\right)$ as i tends to infinity.

To state the main result of [3], let us assume that the $\mathrm{M}^{(\boldsymbol{(})}$,s are normal coverings of M , so that the group $\pi^{l}=\pi_{1}(\mathrm{M}) / \pi_{1}\left(\mathrm{M}^{(i)}\right)$ are defined. Let us also fix generators g_{1}, \ldots, g_{k} for $\pi(M)-$ note that g_{1}, \ldots, g_{k} also generate all the $\pi^{i} s$.

Let H_{i} denote orthogonal complement to the constant function in $\mathrm{L}^{2}\left(\pi^{i}\right)$, which carries an obvious unitary structure preserved by the action of π^{i}.

If H is any space on which π, acts unitarily, denote by $k(H)$
the "Kazhdan distance" from H to the trivial representation defined by

$$
k(\mathrm{H})=\operatorname{inf.}_{\|\mathrm{X}\|=1} \sup _{i=1, \ldots, k}\left\|g_{i}(\mathrm{X})-\mathrm{X}\right\|
$$

Then we have :

Theorem ([3]). - The following two conditions are equivalent:
a) There exists $c>0$ such that $\lambda_{1}\left(\mathrm{M}^{(i)}\right)>c$ for all i
b) There exists $k>0$ such that $k\left(\mathrm{H}_{i}\right)>k$ for all i.

We may now extend this result in the following way: we observe that each non-trivial representation of π^{i} occurs as an orthogonal direct summand in H_{i}, and furthermore that

$$
k\left(\stackrel{n}{i=1} \mathrm{H}_{i}\right)=\inf k\left(\mathrm{H}_{i}\right)
$$

Hence we may rephrase the Theorem as follows:

Corollary. - The following two conditions are equivalent:
a) There exist $c>0$ such that $\lambda_{1}\left(\mathrm{M}^{(i)}\right)>c$ for all i.
b) There exist $k>0$ such that for all i and for every nontrivial irreducible unitary representation H of $\pi^{i}, k(\mathrm{H})>k$.

We now observe that, using the technique of [1] and [2], we may weaken the hypothesis that M be compact. To explain this briefly, let us assume that M has finite volume, and let F be a fundamental domain for \mathbf{M} in \tilde{M}.

Recall from [1] that M satisfies an "isoperimetric condition at infinity" if there is a compact subset K of F such that $h(\mathrm{~F}-\mathrm{K})>0$ where h denote the Cheeger isoperimetric constant, with Dirichlet conditions on $\partial \mathrm{K}$ and Neumann conditions on $\partial \mathrm{F}-\partial \mathrm{K}$.

When M is a Riemann surface with finite area and a complete metric of constant negative curvature, then it is easily seen that M satisfies an isoperimetric condition at infinity.

The technique of [1] and [2] then applies directly to show how to adapt the arguments of the compact case to the case when M satisfies an isoperimetric condition at infinity.

We now apply these considerations to the manifolds

$$
\mathrm{M}^{(n)}=\mathbf{H}^{2} / \Gamma_{n}, \text { where } \Gamma_{n} \subset \operatorname{PSL}(2, \mathbf{Z})
$$

is the congruence subgroup

$$
\Gamma_{n}=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right):\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv \pm\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)(\bmod n)\right\}
$$

According to the theorem of Selberg [6] mentioned above,

$$
\lambda_{1}\left(H^{2} / \Gamma_{n}\right)>\frac{3}{16} .
$$

Let us fix generators

$$
\mathrm{V}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \quad \mathrm{w}=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)
$$

for $\operatorname{PSL}(2, \mathbf{Z})$, and observe that $\mathbf{H}^{2} / \Gamma_{n}$ is a finite area Riemann surface covering $\mathrm{H}^{2} / \mathrm{PSL}(2, \mathrm{Z})$, with covering group

$$
\pi^{n}=\operatorname{PSL}(2, \mathbf{Z} / n) .
$$

It follows from the corollary that there is a constant $k>0$ such that, for H any non-trivial irreducible representation of $\operatorname{PSL}(2, \mathbf{Z} / n)$, we have $k(\mathrm{H})>k$.

We now let n be a prime p, and fix a Dirichlet character χ $(\bmod p)$. We will assume that $\chi(-1)=1$. We now consider the following representation H_{x}, which is the representation associated to X in the continuous series of representations of PSL $(2, Z / n)$: The representation of H_{x} is the set of all functions f on

$$
\mathbf{Z} / p \times \mathbf{Z} / p-\{0\}
$$

which transform according to the rule

$$
\begin{equation*}
f(t x, t y)=\chi(t) f(x, y), t \in(\mathbf{Z} / p)^{*} \tag{*}
\end{equation*}
$$

and where PSL $(2, \mathbf{Z} / p)$ acts on f by the rule

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) f(x, y)=f(a x+c y, b x+d y) .
$$

We may take as a basis for H_{x} the functions

$$
\begin{aligned}
f_{a}(x, 1) & =1 \quad \text { if } \quad x=\mathrm{a} \\
& =0 \text { otherwise }
\end{aligned}
$$

$$
f_{a}(1,0)=0
$$

for $a=0, \ldots, p-1$ and

$$
\begin{aligned}
& f_{\infty}(x, 1)=0 \quad \text { for } \quad x=0, \ldots, p-1 \\
& f_{\infty}(1,0)=1
\end{aligned}
$$

using (*) to extend the $f_{a}^{\prime} s$ to all values of x, y.
Then an orthonormal basis of eigenvectors of V is given by

$$
\begin{array}{ll}
v_{b}=\frac{1}{\sqrt{p}}\left(\sum_{x=0}^{p-1} \zeta^{b x} \cdot f_{x}\right) & \mathrm{V}\left(v^{b}\right)=\zeta^{b} v_{b} \\
v_{\infty}=f_{0} & \mathrm{~V}\left(v_{\infty}\right)=v_{\infty}
\end{array}
$$

and an orthonormal basis of eigenvectors of W is given by

$$
\begin{array}{ll}
w_{b}=\frac{1}{\sqrt{p}}\left(\sum_{x=0}^{p-1} \zeta^{-b x} \chi(x) f_{\bar{x}}\right) & \mathrm{W}\left(w_{b}\right)=\zeta^{b} w_{b} \\
w_{\infty}=f_{0} & \mathrm{~W}\left(w_{\infty}\right)=w_{\infty}
\end{array}
$$

where \bar{x} is the multiplicative inverse of $x(\bmod p)$, and $\overline{0}=\infty$.
When χ is the trivial character, the vector

$$
\sqrt{\frac{p}{p+1}} v_{0}+\frac{1}{\sqrt{p+1}} v_{\infty}=\sqrt{\frac{p}{p+1}} w_{0}+\frac{1}{\sqrt{p+1}} w_{\infty}
$$

splits off as a trivial representation, but for all other characters χ, H_{χ} is irreducible [4].

Theorem 2 is now an immediate consequence of the corollary above, the lemma of $\S 1$, and Selberg's theorem.

BIBLIOGRAPHIE

[1] R. Brooks, The Bottom of the Spectrum of a Riemannian Covering, Crelles J., 357 (1985), 101-114.
[2] R. Brooks, The Spectral Geometry of the Apollonian Packing, Comm. P. Appl. Math., XXXVIII (1985), 357-366.
[3] R. Brooks, The Spectral Geometry of a Tower of Coverings, J. Diff. Geom., 23 (1986), 97-107.
[4] Gelfand, Graev, and Pyatetskii-Shapiro, Representation Theory and Automorphic Functions, W.B. Saunders Co. ,1969.
[5] H. Helson and D. Sarason, Past and Future, Math. Scand., 21 (1967), 5-16.
[6] A. Selberg, On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math, VIII (1965), 1-15.
[7] A. Weil, On Some Exponential Sums, Proc. Nat. Acad. Sci. $U S A, 34$ (1948), 204-207.

Manuscrit reçu le 9 juillet 1985
révisé le 14 mai 1986.
Robert Brooks,
Dept. of Mathematics
University of Southern California
Los Angeles, CA 90089-1113 (USA).

