ROBERT BROOKS

On the angles between certain arithmetically defined subspaces of \mathbb{C}^n

Annales de l'institut Fourier, tome 37, nº 1 (1987), p. 175-185 http://www.numdam.org/item?id=AIF 1987 37 1 175 0>

© Annales de l'institut Fourier, 1987, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE ANGLES BETWEEN CERTAIN ARITHMETICALLY DEFINED SUBSPACES OF C^{*}

by Robert BROOKS(*)

In this note, we consider the following problem: Let $\{v_i\}$ and $\{w_j\}$ be two sets of unitary bases for \mathbb{C}^n . The bases $\{v_i\}$ and $\{w_j\}$ are about as "independent as possible" if, for all *i* and *j*, $|\langle v_i, w_j \rangle|$ is on the order of $\frac{1}{\sqrt{n}}$. For θ some fixed number, for instance $\frac{1}{5}$, we consider linear spaces V^{θ} (resp. W^{θ}) spanned by $[\theta \cdot n]$ of the vectors in the set $\{v_i\}$ (resp. $\{w_j\}$, where [] denotes the greatest integer function. What can one say about the angle between V^{θ} and W^{θ} , as *n* tends to infinity?

In view of the paper [5], we may view such a question as relating to the prediction theory of such subspaces, although we do not see a direct connection between the methods of [5] and the present paper.

Let us consider the following special cases: In the first case, let $\{v_i\}$ be the standard basis for \mathbb{C}^n , and let $\{w_j\}$ be the "Fourier transform" of this basis

$$w_j = \frac{1}{\sqrt{n}} \left(\zeta^j, \zeta^{2j}, \dots, \zeta^{nj} \right)$$

(*) Partially supported by NSF grant DMS-83-15522 ; Alfred P. Sloan fellow.

Key-words: Angles $-\lambda_1$ – Eigenvalues – Kloosterman sum.

where $\zeta = e^{2\pi i/n}$ is a primitive *n-th* root of 1. Then clearly $|\langle v_i, w_j \rangle| = \frac{1}{\sqrt{n}}$ for all i, j.

For a number α , let us denote by $[[\alpha]]$ the distance from α to the nearest integer

$$[[\alpha]] = \inf_{n \in \mathbb{Z}} |\alpha - n|.$$

Let V^{θ} and W^{θ} denote the spaces spanned by

$$\left\{ v_i : \left[\left[\frac{i}{n} \right] \right] < \theta \right\}$$
 and $\left\{ w_j : \left[\left[\frac{i}{n} \right] \right] < \theta \right\}$

respectively. For σ_n a permutation of the integers (mod n), let $W_{\sigma_n}^{\theta}$ be the space spanned by $\left\{ w_j : \left[\left[\frac{\sigma_n(j)}{n} \right] \right] < \theta \right\}$. Then we will show :

THEOREM 1. – (a) For any θ , the angle between V^{θ} and W^{θ} tends to 0 as n tends to ∞ .

(b) If the permutations σ_n are "sufficiently mixing", then the angle between V^{θ} and $W^{\theta}_{\sigma_n}$ stays bounded away from 0 as n tends to ∞ .

By "sufficiently mixing", we mean that, for all *i*, we do not have both $\left[\left[\frac{\sigma_n(i)}{n}\right]\right] < \theta$ and $\left[\left[\frac{\sigma_n(i+1)}{n}\right]\right] < \theta$. Clearly, weaker hypotheses on the σ_n would also allow us to conclude (b), but we will not explore this question here.

Now let us consider the following different example: for a prime p, let χ denote an even multiplicative character (mod p). Then set $\{v_i\}$, $\{w_i\}$ to be the following bases for \mathbf{C}^{p+1} :

$$v_{j} - \frac{1}{\sqrt{p}} (1, \zeta^{j}, \dots, \zeta^{(n-1)j}, 0) \, j = 0, \dots, p-1$$

$$v_{p} = (0, \dots, 0, 1)$$

$$w_{k} = \frac{1}{\sqrt{p}} (0, \chi(1) \, \zeta^{-k}, \chi(2) \, \zeta^{-\overline{2k}}, \dots, \chi(n-1) \, \zeta^{-(\overline{n-1})k}, 1)$$

$$k = 0, \dots, p-1$$

 $w_p = (1, 0, \dots, 0)$

where \overline{m} denotes the reciprocal of $m \pmod{p}$. Note that

$$\langle v_j, w_k \rangle = \frac{1}{p} \sum_{x=1}^{p-1} \overline{\chi(k)} \xi^{(jx+k\bar{x})} = \frac{1}{p} S_{\chi}(j,k,p)$$

where $S_{\chi}(j,k,p)$ is a Kloosterman sum. The fact that the bases $\{v_k\}, \{w_k\}$ are about as "independent as possible" is a deep result of A. Weil [7] that $|S_{\chi}(j,k,p)| < 2\sqrt{p}$.

Denoting by V^{θ} and W^{θ}_{x} the vectors spanned by

$$\{v_i: [[i/p]] \leq \theta\}$$
 and $\{w_i: [[j/p]] \leq \theta\}$

respectively, our second result is:

THEOREM 2. – For θ sufficiently small, the angle between V_{χ}^{θ} and W_{χ}^{θ} stays bounded away from 0 as p tends to ∞ , uniformly with respect to χ .

Our proof of Theorem 2 relies on the deep theorem of Selberg [6] that, when Γ_n is a congruence subsgroup of PSL (2, **Z**), then the first eigenvalue $\lambda_1(\mathbf{H}^2/\Gamma_n)$ of the spectrum of the Laplacian satisfies $\lambda_1(\mathbf{H}^2/\Gamma_n) \ge \frac{3}{16}$.

Another important ingredient in Theorem 2 is our recent work [3] on the behavior of λ_1 in a tower of coverings. Indeed it is not difficult to find an extension of Theorem 2 which is actually equivalent, given [3], to Selberg's theorem, at least after replacing " $\frac{3}{16}$ " by "some positive constant".

The main number-theoretic input into Selberg's theorem is the Weil estimate. Theorem 1 shows that, by contrast, the conclusion of Theorem 2 cannot be achieved directly by appealing to the Weil estimate, and suggests an interpretation of Selberg's theorem in terms of the random distribution of Kloosterman sums.

The proof of Theorem 1 is completely elementary.

We would like to thank Peter Sarnak for useful discussions, and Alice Chang for showing us the paper [5] and for her suggestions.

1. A Lemma.

In this section, we give a simple lemma in linear algebra which is the key to proving Theorems 1 and 2.

Suppose U and T are unitary matrices acting on \mathbf{C}^n . For a given value δ , let U^{δ} (resp. T^{δ}) be the subspace spanned by the eigenvectors of U (resp. T) whose eigenvalues λ satisfy $|\lambda - 1| < \delta$. Let U_{1}^{δ} and V_{1}^{δ} denote the perpendicular subspaces.

Denote by k(U,T) the expression

$$k(U,T) = \inf_{\|X\|=1} \max(\|U(X) - X\|, \|T(X) - X\|).$$

Let $\alpha(\delta)$ denote the cosine of the angle between U^{δ} and T^{δ} :

$$\alpha(\delta) = \sup_{\mathbf{X} \in \mathbf{U}^{\delta}, \mathbf{Y} \in \mathbf{V}^{\delta}} \frac{|\langle \mathbf{X}, \mathbf{Y} \rangle|}{\|\mathbf{X}\| \|\mathbf{Y}\|}.$$

The main result of this section is:

Lemma.
$$-\delta \sqrt{\frac{1-\alpha^2}{2}} \le k (U, T) \le \sqrt{\delta^2 \alpha^2 + 4(1-\alpha^2)}.$$

Proof. – To show the right-hand inequality, let X be a unitlength vector in U^{δ} such that its orthogonal projection Y onto T^{δ} is of maximum length $\alpha(\delta)$.

Since $X \in U^{\delta}$, we have $||U(X) - X|| \leq \delta$. Writing

$$X = Y + Y^{\perp}, Y^{\perp} \in T^{\delta}_{\perp},$$

we see that

$$\| T(X) - X \|^{2} = \| T(Y) - Y \|^{2} + \| T(Y^{\perp})$$
$$- Y^{\perp} \|^{2} \leq \delta^{2} \cdot \alpha^{2} + 4(1 - \alpha^{2}).$$

So $k(U,T) \le \max(\delta, \sqrt{\delta^2 \alpha^2 + 4(1 - \alpha^2)})$. When $\delta < 2$, the second term on the right is $\ge \delta$. When $\delta \ge 2$, then $\alpha = 1$ and again the second term is $\ge \delta$.

To get the left-hand inequality, let X be a vector of length 1 minimizing sup (||U(X) - X||, ||T(X) - X||). Write

$$\begin{split} \mathbf{X} &= \mathbf{X}_{\mathbf{U}} + \mathbf{X}_{\mathbf{T}} + \mathbf{X}_{\mathbf{L}} \\ \text{where } \mathbf{X}_{\mathbf{U}} &\in \mathbf{U}^{\delta} \text{ , } \mathbf{X}_{\mathbf{T}} \in \mathbf{T}^{\delta} \text{ , and } \mathbf{X}_{\mathbf{L}} \in \mathbf{U}^{\delta}_{\mathbf{L}} \cap \mathbf{T}^{\delta}_{\mathbf{L}} \text{ . Then} \\ &\| \mathbf{U}(\mathbf{X}) - \mathbf{X} \|^{2} \geqslant \delta^{2} \left[(1 - \alpha^{2}) \| \mathbf{X}_{\mathbf{T}} \|^{2} + \| \mathbf{X}_{\mathbf{L}} \|^{2} \right] \\ &\| \mathbf{T}(\mathbf{X}) - \mathbf{X} \|^{2} \geqslant \delta^{2} \left[(1 - \alpha^{2}) \| \mathbf{X}_{\mathbf{U}} \|^{2} + \| \mathbf{X}_{\mathbf{L}} \|^{2} \right] \end{split}$$

and so

$$\delta^{2} (1 - \alpha^{2}) \| X \|^{2} \leq \| U(X) - X \|^{2} + \| T(X) - X \|^{2} \leq 2 k^{2} (U, T)$$

and so $k(U, T) \geq \delta \sqrt{\frac{1 - \alpha^{2}}{2}}$.

From the left-hand estimate, we see that for δ fixed, and hence for δ arbitrarily small, a lower bound for $1 - \alpha^2$ gives a lower bound for k(U, T). From the right-hand side, we see that a lower bound for k(U, T) gives, for $\delta \ll k(U, T)$, a lower bound for $1 - \alpha^2$.

2. Proof of Theorem 1.

Let $v_i = (0, 0, \dots, 1, 0, \dots, 0)$ be the standard basis for \mathbf{C}^n and let

$$w_j = \frac{1}{\sqrt{n}} \left(\zeta^j, \zeta^{2j}, \ldots, \zeta^{nj} \right).$$

Let V be the unitary transformation whose eigenvectors are the v'_i 's, with $V(v_i) = \zeta^i v_i$. Of course, the matrix for V is simply the diagonal matrix

$$\mathbf{V} = \begin{pmatrix} \boldsymbol{\zeta}^1 & & \mathbf{0} \\ & \boldsymbol{\zeta}^2 & \\ \mathbf{0} & & \boldsymbol{\zeta}^n \end{pmatrix}$$

Similarly, let W be the unitary transformation whose eigenvectors are the $w_i's$, with $W(w_i) = \zeta^j \cdot w_i$. We compute:

R. BROOKS

LEMMA. -
$$W = \begin{pmatrix} 0 & 1 & 0 & . & . & 0 \\ 0 & 0 & 1 & 0 & . & 0 \\ 1 & 0 & 0 & . & . & 0 \end{pmatrix}$$
.

Proof. $-W = EVE^{-1}$, where $E = (e_{ij})$ is given by

$$e_{ij} = \frac{1}{\sqrt{n}} \, \zeta^{ij} \, .$$

The lemma now follows by routine calculation.

To prove Theorem 1(a) it suffices, from the lemma of $\S 1$, to show that k(V, W) tends to 0 as n tends to infinity.

But V - I has the matrix expression

$$\begin{pmatrix} \zeta - 1 & 0 \\ & \zeta^2 - 1 \\ 0 & \cdot \zeta^n - 1 \end{pmatrix}$$

so that any element in V^{θ} satisfies

$$\| (V - I) (v) \| \le 2 | \sin \left(\frac{\theta}{2}\right) | \| v \|.$$
 (*)

Now consider the vector v_n whose *jth* coordinate is 1 for $[[j/n]] < \theta$, and is 0 otherwise. Then we have that $v_n \in V^{\theta}$, so that, by (*) we have

$$\| (\mathbf{V} - \mathbf{I}) (v_n) \| \leq 2 | \sin \left(\frac{\theta}{2}\right) | \| v_n \|.$$

On the other hand, from the lemma, we compute easily that

$$\|(W - I)(v_n)\| = \sqrt{2}.$$

Since $||v_n|| = \sqrt{2[n \cdot \theta] + 1}$, where [] denotes the greatest integer function, we have that

$$k(\mathbf{V}, \mathbf{W}) \leq \sup \left(2 |\sin\left(\frac{\theta}{2}\right)|, \frac{1}{\sqrt{[n \cdot \theta] + \frac{1}{2}}}\right)$$

It is then evident that as $n \longrightarrow \infty$, we may choose $\theta \longrightarrow 0$ such that the right-hand side $\longrightarrow 0$, establishing Theorem 1 (a).

180

To establish 1 (b), we first notice from the computation of the lemma that whenever σ_n is sufficiently mixing,

$$\| (W \sigma_n - I) v \| = (\sqrt{2}) \| v \|$$

for $v \in V^{\theta}$. Fixing θ , for $v \in V^{\theta}$, let us write
 $v = w + w^{\perp}, w \in W^{\theta}_{\sigma_n}, w^{\perp} \in (W^{\theta}_{\sigma_n})^{\perp}$.
 $2 \| v \|^2 = \| W_{\sigma_n}(v) - v \|^2 = \| W_{\sigma_n}(w) - w \|^2 + \| W_{\sigma_n}(w^{\perp}) - w^{\perp} \|^2$
 $\leq 4 \sin^2(\pi\theta) \cdot \| w \|^2 + 4 \| w^{\perp} \|^2 = 4 \sin^2(\pi\theta) \cdot \| w \|^2$
 $+ 4 (\| v \|^2 - \| w \|^2)$

from which we see that

$$4\left(1-\sin^{2}\left(\pi\theta\right)\right) \|w\|^{2} \leq 2\|v\|^{2} \quad \text{so that} \quad \frac{\|w\|}{\|v\|} \leq \frac{1}{(\sqrt{2})}\cos\left(\pi\theta\right),$$
$$\alpha \leq \left(\frac{1}{\sqrt{2}}\right)\cos\left(\pi\theta\right).$$

Choosing θ smaller that $\frac{1}{4}$ then establishes Theorem 1 (b).

3. Proof of Theorem 2.

We begin this section with a quick review of the result of [3]. For M a compact manifold, and $M^{(i)}$ a family of finite covering spaces of M, we seek conditions of a combinatorial nature on $\pi_1(M), \pi_1(M^{(i)})$ which govern the asymptotic behavior of $\lambda_1(M^{(i)})$ as *i* tends to infinity.

To state the main result of [3], let us assume that the $M^{(l)}s$ are normal coverings of M, so that the group $\pi^{l} = \pi_{1}(M)/\pi_{1}(M^{(l)})$ are defined. Let us also fix generators g_{1}, \ldots, g_{k} for $\pi(M)$ – note that g_{1}, \ldots, g_{k} also generate all the $\pi^{l'}s$.

Let H_i denote orthogonal complement to the constant function in $L^2(\pi^i)$, which carries an obvious unitary structure preserved by the action of π^i .

If H is any space on which π acts unitarily, denote by k(H)

7

the "Kazhdan distance" from H to the trivial representation defined by

$$k(\mathbf{H}) = \inf_{\|\mathbf{X}\| = 1} \sup_{i = 1, ..., k} \|g_i(\mathbf{X}) - \mathbf{X}\|.$$

Then we have :

THEOREM ([3]). - The following two conditions are equivalent :

a) There exists c > 0 such that $\lambda_1(\mathbf{M}^{(i)}) > c$ for all i

b) There exists k > 0 such that $k(H_i) > k$ for all i.

We may now extend this result in the following way: we observe that each non-trivial representation of π^i occurs as an orthogonal direct summand in H_i, and furthermore that

$$k\left(\begin{array}{c} n\\ \oplus\\ i=1 \end{array}^{n} \mathbf{H}_{i} \right) = \inf k(\mathbf{H}_{i}).$$

•Hence we may rephrase the Theorem as follows:

COROLLARY. – The following two conditions are equivalent:

a) There exist c > 0 such that $\lambda_1(\mathbf{M}^{(i)}) > c$ for all *i*.

b) There exist k > 0 such that for all *i* and for every nontrivial irreducible unitary representation H of π^i , k(H) > k.

We now observe that, using the technique of [1] and [2], we may weaken the hypothesis that M be compact. To explain this briefly, let us assume that M has finite volume, and let F be a fundamental domain for M in \widetilde{M} .

Recall from [1] that M satisfies an "isoperimetric condition at infinity" if there is a compact subset K of F such that h(F - K) > 0 where h denote the Cheeger isoperimetric constant, with Dirichlet conditions on ∂K and Neumann conditions on $\partial F - \partial K$.

When M is a Riemann surface with finite area and a complete metric of constant negative curvature, then it is easily seen that M satisfies an isoperimetric condition at infinity.

The technique of [1] and [2] then applies directly to show how to adapt the arguments of the compact case to the case when M satisfies an isoperimetric condition at infinity.

182

We now apply these considerations to the manifolds

$$\mathbf{M}^{(n)} = \mathbf{H}^2 / \Gamma_n$$
, where $\Gamma_n \subset \text{PSL}(2, \mathbf{Z})$

is the congruence subgroup

$$\Gamma_n = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{n} \right\}.$$

According to the theorem of Selberg [6] mentioned above,

$$\lambda_1 \left(\mathbf{H}^2 / \Gamma_n \right) > \frac{3}{16}.$$

Let us fix generators

$$\mathbf{V} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \qquad \qquad \mathbf{W} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$

for PSL(2, Z), and observe that H^2/Γ_n is a finite area Riemann surface covering $H^2/PSL(2, Z)$, with covering group

$$\pi^n = \mathrm{PSL}(2, \mathbf{Z}/n).$$

It follows from the corollary that there is a constant k > 0 such that, for H any non-trivial irreducible representation of $PSL(2, \mathbb{Z}/n)$, we have k(H) > k.

We now let *n* be a prime *p*, and fix a Dirichlet character $\chi \pmod{p}$. We will assume that $\chi(-1) = 1$. We now consider the following representation H_{χ} , which is the representation associated to χ in the continuous series of representations of PSL (2, \mathbb{Z}/n): The representation of H_{χ} is the set of all functions *f* on

$$Z/p \times Z/p - \{0\}$$

which transform according to the rule

$$f(tx, ty) = \chi(t) f(x, y), \ t \in (\mathbf{Z}/p)^*$$
(*)

and where PSL $(2, \mathbf{Z}/p)$ acts on f by the rule

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} f(x, y) = f(ax + cy, bx + dy).$$

We may take as a basis for H_{v} the functions

R. BROOKS

$$f_a(x, 1) = 1$$
 if $x = a$

= 0 otherwise

$$f_a(1,0) = 0$$

for $a = 0, \ldots, p - 1$ and

$$f_{\infty}(x, 1) = 0$$
 for $x = 0, ..., p - 1$
 $f_{\infty}(1, 0) = 1$

using (*) to extend the f_a 's to all values of x, y.

Then an orthonormal basis of eigenvectors of V is given by

$$v_{b} = \frac{1}{\sqrt{p}} \left(\sum_{x=0}^{p-1} \zeta^{bx} \cdot f_{x} \right) \qquad V(v^{b}) = \zeta^{b} v_{b}$$
$$v_{\infty} = f_{0} \qquad V(v_{\infty}) = v_{\infty}.$$

and an orthonormal basis of eigenvectors of W is given by

$$w_b = \frac{1}{\sqrt{p}} \left(\sum_{x=0}^{p-1} \zeta^{-bx} \chi(x) f_{\overline{x}} \right) \qquad W(w_b) = \zeta^b w_b$$
$$w_{\infty} = f_0 \qquad \qquad W(w_{\infty}) = w_{\infty}$$

where \overline{x} is the multiplicative inverse of x (mod p), and $\overline{0} = \infty$.

When χ is the trivial character, the vector

$$\sqrt{\frac{p}{p+1}}v_0 + \frac{1}{\sqrt{p+1}}v_{\infty} = \sqrt{\frac{p}{p+1}}w_0 + \frac{1}{\sqrt{p+1}}w_{\infty}$$

splits off as a trivial representation, but for all other characters χ , H_{χ} is irreducible [4].

Theorem 2 is now an immediate consequence of the corollary above, the lemma of 1, and Selberg's theorem.

BIBLIOGRAPHIE

- [1] R. BROOKS, The Bottom of the Spectrum of a Riemannian Covering, Crelles J., 357 (1985), 101-114.
- [2] R. BROOKS, The Spectral Geometry of the Apollonian Packing, Comm. P. Appl. Math., XXXVIII (1985), 357-366.
- [3] R. BROOKS, The Spectral Geometry of a Tower of Coverings, J. Diff. Geom., 23 (1986), 97-107.
- [4] GELFAND, GRAEV, and PYATETSKII-SHAPIRO, Representation Theory and Automorphic Functions, W.B. Saunders Co., 1969.
- [5] H. HELSON and D. SARASON, Past and Future, Math. Scand., 21 (1967), 5-16.
- [6] A. SELBERG, On the Estimation of Fourier Coefficients of Modular Forms, Proc. Symp. Pure Math, VIII (1965), 1-15.
- [7] A. WEIL, On Some Exponential Sums, Proc. Nat. Acad. Sci. USA, 34 (1948), 204-207.

Manuscrit reçu le 9 juillet 1985 révisé le 14 mai 1986.

Robert BROOKS, Dept. of Mathematics University of Southern California Los Angeles, CA 90089-1113 (USA).