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ANALYTIC DISKS WITH BOUNDARIES
IN A MAXIMAL REAL SUBMANIFOLD OF C2

by Franc FORSTNERIC (*)

Introduction.

A real submanifold M of C" of class C1 is called totally real
if for all p in M the tangent space TpM contains no nontrivial
complex subspace. A totally real submanifold M C C" of real
dimension n is called maximal real.

Let A == {? G C : | ? I < 1} be the open unit disk, A the closed
unit disk, and b A the unit circle { 1 ? 1 = 1 } . A nonconstant
continuous map F : A —> C" that is holomorphic on A and maps
the circle & A to M is called an analytic disk with boundary in M.
Assuming that M is sufficiently smooth and the pullback F°*TAf
of the tangent bundle of M by the restriction of F° to b A is
a trivial bundle on b A , we shall describe the behavior of analytic
disks with boundary in M near an initial immersed analytic disk
F° in terms of an integer Ind y A f , called the index of M along
F° (Definition 1), that can be calculated from a parametrization
of M along the curve F°(bA).

We recall the known results. A special case of the problem we
are treating here is the classical Riemann boundary problem: Find
a continuous function / = u 4- iv: A —^ C which is holomorphic
on A and whose boundary values on b A satisfy a linear equation
a (z) u (z) — b (z) v (z) = c (z), where a, b and c are continuous
real functions on bA and a2 + b2 > 0. For each fixed z E & A
this equation determines a real line / (z) in the complex plane. If

(*) Research supported by a Sloan Foundation Predoctoral Fellowship.
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/ is a solution of this problem, the corresponding map
F ( z ) = ( z , / ( z ) )

is an analytic disk in C2 with boundary in the totally real
submanifold M = U {z} x / (z) of C2 . This problem was first

2E6A

solved by Hilbert [18] using Fredholm integral equations.
It can also be solved using the Cauchy type integrals; see [23,
Chapter 16]. The number of solutions depends on an integer called
the index which measures the rotation of the line / (z) in C as the
point z traces the circle b A once in the positive direction. If we
replace the right hand side of the equation by a more general expression
\ c ( z ,u , v ) , we obtain the nonlinear Riemann problem whose
solutions for small values of the parameter X € R were obtained by
Schauder's fixed point theorem [23, pp. 591-601].

In a different direction Bishop [7] solved a functional equation
by method of convergent iterations in order to construct families of
disks with boundaries in a given C-R submanifold of C" of dimension
bigger than n. These disks are small in the sense that they can be
shrunk to a point in M . In the case when dim M = n he constructed
such disks in a neighborhood of a point p E M for which the tangent
space T M contains a nontrivial complex subspace. Several authors
improved his results by working in different spaces of functions.
Later Hill and Taiani [19] solved Bishop's equation using the implicit
function theorem in Banach spaces. Very precise results in this
direction were obtained by Kenig and Webster [20, 21] and Bogges
and Pitts [8]. No such small disks can exist if At is a totally real
submanifold of C" since M is then locally polynomially convex
[17, p. 301]. However, if M is a compact maximal real submanifold
of C", the polynomial hull M has topological dimension at least
n 4- 1 [2, 9, 14], and the question arises whether the hull contains
any images of analytic disks or, more generally, analytic varieties
with boundaries in M. To our knowledge no counterexample is
known.

Alexander [1] and Bedford [4] proved that the families of disks
that form the topological boundary of the polydisk A'1 are stable
under small perturbations of the distinguished boundary (b A)" by
solving a generalized Bishop's equation using the implicit function
theorem. A similar method was used by Bedford and Gaveau, who



ANALYTIC DISKS 3

defined the index of an analytic disk [6, p. 992] and constructed
a family of nearby disks in a special case in order to compute the
envelope of holomorphy of certain two-spheres in C2 . In [5,
Theorem 2.1] Bedford proved a weaker version of our Theorem 1
in the case when the index of the initial disk F° with boundary
in M C C2 is non negative, and he showed by an example that the
initial disk may disappear under small perturbations of M in the
case when the index is negative. Lempert also constructed a family
of neighboring disks in a particular case [22].

In this paper we obtain a rather complete description of
analytic disks with boundary in M C C2 near an original immersed
disk F9. Our main tool is the implicit function theorem in Banach
spaces, and our method is similar to the one used in [ 4 , 5 , 6 ] . We
first define the index of a maximal real submanifold M C C" around
any closed curve in M (Definition 1). In Section 2 we show that
the index only depends on the homology class of the curve in M
and it induces a homomorphism H^M -^—^ Z when M is orientable.
Our index differs by one from the one used by Bedford and Gaveau
in [5 ,6 ] . Suppose that -F0 is an immersed analytic disk with
boundary in a submanifold M C C2 of the form (1.1). If the index
m of M around the curve F° (&A) is at least one, the analytic
disks with boundary in M that are close to F° in some Lipschitz
space form a (2m + 2)-parameter family that is stable under small
smooth perturbations of M (Theorem 1). If m == 1, these disks
form a Levi flat hypersurface 2 with boundary in M (Theorem 3).
If m > 2, the disks fill an open subset of C2 . If on the other hand
m < 0 , every disk with boundary in M that is sufficiently close
to F° in a Lipschitz space is just a reparametrization of the initial
disk. Moreover, there is a one parameter family Afy^X), of
deformations of M such that no disks with boundary in My for
s > 0 are close to F° (Theorem 2).

As an application of our method we obtain a regularity theorem
for immersed Levi flat hypersurfaces 2 in C2 with boundary in a
maximal real submanifold M in C2 . If M is of class C^ ,^^^ ,

\k — n
then 2 is of class ——— (Corollary 5). We also prove a strong

uniqueness result for an embedded Levi flat hypersurface (Theorem 6).
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The paper is organized as follows. In Section 1 we state our
results. In Section 2 we analyze the properties of the index
homomorphism. In Section 3 we obtain a normal form of the
tangent bundle of M along the boundary of an analytic disk. In
Sections 4 through 7 we prove the main results. Sections contains
five examples.

I wish to thank Edgar Lee Stout for his helpful suggestions and
for his interest in this work. I also thank the referee for his advice
to make the proof of Theorem 6 independent of the rest of the
paper.

1. Statement of the results.

Let M be a C1 maximal real submanifold of C" and let
F : bA ——> M be a closed path in M such that the pullback
F*TAf of the tangent bundle of M is a trivial bundle. Thus,
there exist continuous maps X ^ , X^ , . . . , X^ : 6 A ——> C"
such that, for each ?^A, the vectors X^ (?), . . . , X^ (?) form
a basis of the tangent space T^^Af. Let rf(?) be the determinant
of the complex n x n matrix X(S) = (^ ( ? ) , . . . , X^ (?)). Since
M is totally real at the point F(?), the vectors X^ ( ? ) , . . . , X^ (?)
are linearly independent over C whence d (?) =^ 0. The nonvanishing
function d : b A —> C\ {0} has a well-defined winding number
W(rf ) around the origin 0. If Y = (^ , . . . , VJ is another
n-tuple of maps from bA to C" such that, for each ? G 6 A , the
vectors Y^ ( ? ) , . . . , Y^ (?) form a basis of the tangent space
T^^Af, there is a map A : bA ——> GL(n , R) such that Y=AX
on bA. Hence d e t V = d e t A del X and

W (det X) == W (det A) + W (det X).
Since det A is real-valued and nonvanishing on bA, its winding
number equals 0 whence det Y and det X have equal winding
numbers. This justifies the following definition:

DEFINITION \. - If M, F and d are as above, then the winding
number W ( r f ) G Z is called the index of M along F and is denoted
by Ind^M.
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If the pullback F*TM is not trivial, it is isomorphic to a direct
sum of a trivial bundle of rank n - 1 and a Mobius band Oil —> 6 A
[25, p. 134]. The second possibility occurs if and only if M is not
orientable along the curve F '. 6 A ——> M. If M is orientable and
totally real, then the index is defined for every closed curve in M.
In Section 2 we shall show that the index Ind^, M only depends
on the homology class of F in H^ M. Moreover, we shall extend
the definition of index to maximal real immersed submanifolds
{ , : M1^ ——> C" that are not necessarily orientable such that the
index is a homomorphism ^ : Hi M ——> 1/2Z depending only
on the regular homotopy class of the totally real immersion i.

In the case when M2 is a compact orientable C1 submanifold
of C2 there is a close connection betv/een the index homomorphism
and the topology of M. (See Theorem 9 in Section 2,)

Assume now that M is a maximal real submanifold of C2 of
class C^ , k>l, and let FQ : A ——> C2 be an immersed analytic
disk with boundary in M. (F° is a C1 immersion on A.) We
shall assume that there is an open neighborhood U of F° (b A) in
M with trivial tangent bundle TC/. This implies in particular that
the index Ind^ M is an integer. Since M is totally real, the normal
bundle N U is isomorphis to the tangent bundle T U whence N U
is also trivial. Therefore there is a small neighborhood V of
F° (&A) in C2 such that M Fl V is a transversal intersection, i.e.,
there are real valued C^ functions r\ , r\ on V satisfying

M^ V= { zGF | ^ ( z )=^ (z )=0 } , dr\ Arfr^O. ( 1 . 1 )

Denote by Ck (V) the Banach space of real-valued C^ functions
on V with the standard norm

11^11= ^ sup { ID^z)! : z E V] ,
\a\<k

where the differentiation is with respect to the real coordinates on C2 .
If r =^ ( r ^ , r ^ ) ^ C k (V)2 is sufficiently close to r° in this norm,
the set

M,= { z G F I r i ( z ) = f 2 ( z ) = 0 } (1.2)

is a maximal real C^ submanifold of V that is close to M ^ =^ M
in the C^ sense. Moreover, every sufficiently small Ck perturbation
of M near F°(Z?A) is of this form.
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Let C172 (6A) be the Banach algebra of real-valued functions

on b A with finite Lipschitz norm of exponent 1/2:

H/ l l i /2 - sup |/(^)|+ sup ^^^".^r^. (1.3)
<?€=R 0 , r € E R H 9 - T J 1 7 2

Let C^2 (6 A) be the algebra of complex-valued functions with
finite norm (1.3). Denote by QL112 the subset of all functions in
Cc^CAA) which extend to holomorphic functions on A. The
space QL112 is a Banach algebra in the topology induced from
C^^^A). Each /G a172 extends to a holomorphic function on

A that satisfies the Lipschitz condition of order 1/2 on A [15, p. 74].

Our main results are the following two theorems:

THEOREM 1. - Let M C C2 be a maximal real submanifold
of C2 of the form ( 1 . 1 ) and of class C k , k > 2 , and let
F '• A —^ C be an immersed analytic disk with boundary in M.
If the index Ind^Af = m is at least one, then there is an open
neighborhood B ^ B ^ x B ^ of the point (r ,t) = (r° ,0) in the
Banach space C^F)2 x R2^2 and a map

F = ( F ^ F ^ : B —^ (QL112)2

of class Ck ~1 satisfying :
( a ) F(r\0) = F ° ,
( b ) F ( r , t ) ( b A ) CM, for all ( r , t ) ( E B , x B ^
( c ) for each r E B^ and ^ , ̂  E B^ , ̂  ^ ^ , the analytic

disks F ( r , t ^ and F ( r , t ^ ) are distinct as maps from b A to
C2 , and

( d ) if F* E(a 1/2)2 is any analytic disk sufficiently close to
F° in the C112 norm such that F* (6A) C M, for some
r ^ B ^ then F* = F ( r , t ) for some t ^ B ^ .

The map a : B x A ——> C2 defined by a (r, t , ?) = F (r , t) (^)

is of class C 7 , where I is the integer part of ———. // m > 2 ,

there is a nonempty open subset E C C2 contained in the union
U F ( r , r ) ( A ) for each r ^ B ^

t^K^
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THEOREM 2. - Let M C C2 &6? a maximal real C4 submanifold
of C2 o/ r/z^ /orm <7.7^ a^zrf /6?r F° : A —> C2 &6? a^ immersed
analytic disk with boundary in M. If Ind o A f < 0 , rA^z r/^r^
^ ^m op^z neighborhood Sl of ^° in (QL112)2 such that the only
disks F G Sl with boundary in M are those of the form F° o 0,
where 0 in an automorphism of the unit disk. If F° is an embedding,
there is a path r (s) in C^ (V)2 starting at r (0) = r° such that
there is no disk F G S2 with boundary in My,^ for s > 0 .

The smoothness hypothesis on M in Theorems 1 and 2 can be
weakened somewhat. Several remarks are appropriate at this point.

Remark 1. — Our choice of the spaces C112 and QL112 is not
very important. If s < k — 2 is an integer and 0 < e < 1 , then
Theorem 1 holds if we replace the space C112 (6 A) by the space
C5^ (bA) of functions on bA whose derivatives of order s
satisfy the Lipschitz condition of order e. The corresponding map
F: C^ (V)2 x R2^2 —^ (QL5^)2 is of class C'-5-1 .

Remark 2. — Cirka proved [12, p. 293] that every holomorphic
map F : A —> C" whose boundary values lie in a totally real C^
submanifold M of C" (k > 1) can be extended to a map of class
C^-0 = H c*"1'6 on A. Therefore each individual map

0 < € < 1

F ( r , t ) : A —> C2 in Theorem 1 is of class Ck~o on A. A similar
result was proved under stronger initial assumptions of F also in
[6, Theorem 4.5] and [22]. Cirka's result will be used in the proof
of Theorem 1.

Remark 3. — If F : A —> C2 is an analytic disk with boundary
in M , so is F o 0 for each automorphism 0 of A . Since the group
AutA has dimension 3, this suggests that we could parametrize the
disks close to F° with boundaries in My by a smooth map
F f : B C C k (V)2 x R2^-1 —^ (a 1/2)2 , the additional three
parameters coming by composing the disks F ^ r ^ t ) with the
automorphisms of A. We shall see in Section 6 that such a
parametrization exists at least when k > 4 .

Remark 4. — The assumption that M be parallelizable in an
open neighborhood of the set F° (bA) is not necessary for Theorem 1
to hold, although it simplies the statement of the results. It suffices
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to assume instead that M is orientable along the curve
F ° : 6 A —> M . (See Section 4.) If F° : A —> M is an embedding,
the two assumptions are equivalent.

Theorem 2 gives a partial answer to a question raised by
Bishop [7] : If M is a totally real submanifold of the form
{(z ,/2 (z)) E C2 |z E C} , where h : C —> C is a function of class
C4. then the set of all simple closed curves 7: 6 A —> C of class
C172 such that the curve 6 —> F (6) == (7(0) ,h o 7 (0)) in 7^
bounds an analytic disk in C2 is a discrete subset of Cc^^A),
provided that we identify two curves which differ only by an
automorphism of A. To see this, observe that Indp M = 0 since
r is contractible in M and apply Theorem 2.

In the case when the index of M along -F° is one, the next
theorem implies that F° generates an immersed Levi flat hypersurface
with boundary in M that is stable under small perturbations of M.
A similar result was proved in [5] and [6].

THEOREM 3. - Let M C C2 be a maximal real C^ submanifold
of the form ( 1 . 1 ) , k > 3 , let F^ : A —> C2 be an immersed
analytic disk with boundary in M such that Ind ^M = 1, and
let I = (— 1 , 1) C R. There exist a neighborhood B of the point
r° in C^ (V)2 and a map a : B x / x A —> C2 of class
C ^ , / = [ ( k - 1)/2], satisfying

( a ) For each r E B the map a (r , • , • ) : / x A —> C2 is a
C1 immersion that is of class C k ~ l on I x A .

( b ) For each r £ B and t E / the map a (r, t , • ) : A —> C2

is an analytic disk with boundary in My .
( c ) If k > 4, ^/z^r^ ;51 a neighborhood U of the disk

o° = o (r°, 0, • ) m the space (OL 1/2)2 ^c^ that every analytic disk
f E U with boundary in My for some r E B equals a (r, t , • ) ° 0
/o/" a ^ € ( — 1 , 1 ) a^rf an automorphism 0 o/ A .

The next lemma shows that there are no immersed families of
disks with boundary in M through F° unless the index Ind o M
equals one.

LEMMA 4. — Let M be a maximal real submanifold of C2 and
^t I = (- 1 , 1) C R. // a : / x A —> C2 is a C1 immersion
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such that for each t G / the map o^ == a (r , - ) is an analytic disk
with boundary in M, then Ind y M = 1 for every t G /.

Lemma 4 and the uniqueness result Theorem 3 (c) imply
that, up to a reparametrization, every immersed family of analytic
disks with boundary in M arises as in Theorem 3. As a consequence
we obtain the following result on the regularity of immersed
families of disks.

COROLLARY 5. - Let M be a maximal real submanifold of C2

of class C^ , k > 4, and let a : I x A —> C2 be as in Lemma 4
above. Then there exists a C1 diffeomorphism h of I x A such
that a o h has the same properties as a and it is of class
C ^ / = [ k - \ ) / 2 ]

In the case when M is the boundary of an embedded Levi flat
hypersurface we obtain a stronger uniqueness result for analytic disks
with boundary in M.

THEOREM 6. - Let M be a maximal real submanifold of C2

of class C3 , and let o '. I x A —> C2 be a C3 embedding such
that for each t G / == (— 1 , 1) C R the map a1 = a ( t , • ) is an
analytic disk with boundary in M. Then there is an open
neighborhood U of a° (A) in C2 with the following property :
If f: A —> U is an analytic disk with boundary in M, then
/(A) = a ' (A) for some t E /.

If F° is an analytic disk with boundary in M, then by the
maximum principle F° (A) is contained in the polynomially convex
hull M of M. Therefore our results give some information on the
hull of At. If M and F° satisfy the hypotheses of Theorem 1 and
Ind^^>2, then F° generates an open subset of M which is
stable under small C2 perturbations of M. See also the examples
in Section 8.

If we only assume that the initial disk F° with boundary in M
is an immersion in a neighborhood of & A in A , a similar result
holds. Let M be orientable along F ° : 6 A —> M. Suppose that the
derivatives F\ and F^ have precisely p common zeroes on A.
If the number
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k = Ind M - p - 1

is nonnegative, then the nearby disks with boundary in M form a
(2 Ind^o M 4- 2)-parameter family that is stable under small C2

perturbations of M. This generalization is especially interesting in
the case when M is not orientable along the curve F° (&A), since
we may then replace F° by G° (z) = F° (z2) . We omit the details.

One would also like to know the answer to this problem when
F° : 6 A —> C" is an analytic disk with boundary in a maximal
real C2 submanifold M of C" for n>2. Suppose that there
exist n linearly independent vector fields X^ , . . . , X^ : 6 A —> C"
of class C172 such that for each / G { l , . . . , 7 i } and 6 E R, we
have

^X^e16) is tangent to M at F° (e10),
and

b) the components of X. extend to holomorphic functions
on A.

A straightforward generalization of our methods gives an (n — 1)-
parameter family of analytic disks with boundaries in M whose
images are pairwise distinct (although not necessarily disjoint), and
the family is stable under small C2 perturbations of M. The precise
number of parameters may be bigger than n — 1 if Ind o M is
at least two. On the other hand, if the maximal number of linearly
independent vector fields satisfying (a) and (b) above is less than
n, the initial disk F° may not be stable and there may be no nearby
disks. (See Example 5 in Section 8.)

In conclusion we mention some open problems related to our
discussion.

Problem 1. - If M is a closed compact C1 maximal real
submanifold of C", are there any positive dimensional analytic
varieties with boundaries in M ? If so, do such varieties fill the
polynomial hull M of M ?

It is well-known that if M is not smooth, the set M/M need
not contain any positive dimensional varieties [26,30]. However,
if M is a smooth manifold, it seems that no counterex amples are
known. Recently Alexander and Wermer [3] obtained rather precise
description of the hull in special cases. See also [32, 33].
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Problem 2. — Describe the global behavior of analytic disks
with index one with boundary in a compact maximal real submanifold
M C C2 . In the examples in Section 8 below such disks form a
compact immersed Levi flat hypersurface. Is this always true ? For
partial results see [32, 33].

Problem 3. - Suppose that • M C C" is a maximal real
submanifold, n > 3, and F° is an immersed disk satisfying the
conditions (a) and (b) above. Find all analytic disks with boundary
in M near F° . A special case is the nonlinear vector valued Riemann
problem whose solution can be found in [23, p. 591-601].

2. Properties of the index .

Let G=G(n) denote the Grassman manifold of oriented real
^-dimensional subspaces of C". If g E G , we choose n vectors
X^ , . . . , X^ in C" that form a positively oriented real orthonormal
basis of g and denote by X == (X^ . . . ,X^) the complex n x n
matrix whose columns are the vectors X.. We define

7r(g)==det(^ , . . . , ^ ) . (2.1)

If Y ^ (Y^ . . . , 5^) is another positively oriented orthonormal
basis of g , there is a real matrix A E SL(n , R) such that Y =AX
whence de t r=det .4 deiX==detX. Thus the formula (2.1) gives
a well-defined map TT : G ——> C. Its zero set consists of precisely
those ^-dimensional subspaces of C" that contain a nontrivial
complex subspace. In other words, G^=G\7r~ 1 {0} is the set of
all oriented totally real ^-dimensional subspaces of C" .

The map TT induces a homomorphism of homology groups

H , 7 r : H ^ ( G ^ —> H i ( C \ { 0 } ) = Z . (2.2)

Let L : M —> C" be a C1 immersion of an oriented
n-dimensional manifold M to C" . By mapping each point p ^ M
to the oriented /2-plane through 0 parallel to the tangent
plane rfi(TpAf) we define a mapping i ^ ' . M ——> G. If the
immersion i is totally real, the image L^ (M) is contained in the
set G^y of the totally real ^2-planes, and we may compose the map
Hi (i^) with the map (2.2) to obtain a homomorphism

/ ^ = H i ( T r ) o H i ( ^ ) : H i (M) —> Z . (2.3)
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For each closed path F : bA —> M we denote by [F] G H M
the cycle generated by F. If i : M <-—^ C'1 is the inclusion of
an oriented maximal real submanifold M C C" into C" , we claim
that

/, [F] = Ind^ M

where IndpM is given by Definition 1 in Section 1. To see this,
let X^ , . . . ,X^ : bA —^ C" be continuous maps such that, for
each point ? E & A , the vectors X^ ( ? ) , . . . , X^ (?) form a positively
oriented real orthonormal basis of the tangent space T^^Af. These
vectors then represent the ^-plane ^ (F(?)) C G^. By (2.1) we have

TT o ^ (F(?)) = det {X\ ( ? ) , . . . , ̂  (?)). (2.4)

By (2.3) ^ [F] is the winding number of the map

? —^ T T O ^ ( F ( ? ) )
around 0. Definition 1 and (2.4) imply that this equals Ind^M
and the claim is proved.

Although the map i* : M —> G depends on the choice
of orientation on M, the induced homomorphism 1^ does not.
Namely, if i' : M —> C" is the same immersion with the opposite
choice of orientation on M, then TT o (^ (p) == — TT o ^ (jr?) for every
p E M . The map z —^ — z on C \ { 0 } induces the identity map
on H i ( C \ { 0 } ) = Z whence /, = /^ .

We shall extend the definition of index to maximal real immersed
manifolds that are not necessarily orientable. Let G be the Grassman
manifold of (nonoriented) real /^-planes in C" and let a : G ——^ G
be the two-to-one projection that forgets the orientation. Let
r : C \ { 0 } ——> P1 be the canonical projection onto the real
projective space. If X^ , . . . , X^ is an orthonormal basis of a totally
real /^-plane g^=-G, we define

%=r(det(^ ,...,^)).

This gives a well-defined map TT : G^ ——^ P1 , where G^ denotes
the set of totally real /^-planes. Clearly we have r o TT = TT o a
on G,,.

If L : .M ——> C" is a maximal real immersion, we let
--^ rs<

i : M ——> G^ be the induced map that sends each p ^ - M to the
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tangent plane dt(Tp M). We define a homomorphism
7,:H,M -^ 1/2 Hi P1 = 1/2 Z

by
^ = l / 2 H , ( 7 r ) o H , ( 7 ) .

We have to prove that I , = I , if the manifold M is orientable. In
this case we also have the map i^ : M —> G^ such that o oT^ ==T.
Thus

7T o f = TT o (or o ^) = (7^0 a) o ^ = (r o 7r) o ^ = r o (7T o ^)

whence

A - -^ (7^0 7) = ̂  Hi (r) o H^ (TT o i^) =-j Hi (T) o /^ .

Since H^ (r) : H i ( C \ { 0 } ) = Z —> H^P1 = Z is the multiplication
by 2, 1/2 Hi (7) is the identity and 1,^1,. Thus the definitions
agree for orientable manifolds.

If the maximal real immersions ^ , ^ : M —^ C" are regularly
homotopic through maximal real immersions, then the induced maps

^e sfc /^1

^ , ̂  : ̂  —^ G'^ are homotopic, hence H^ ( l^ ) = H^ (i^) and
/^^-

The following lemma describes the behavior of index under
biholomorphic change of coordinates.

LEMMA 7. - Let M C C" be a C1 maximal real submanifold
and F : bA —> M a closed path in M. I f ^ ' . U —> $ (U) C C"
is a biholomorphic map on an open neighborhood U of F(bA)
in C" and if g (z) = del d <S> (F (z)) for all z^bA,then

Jnd^ ̂  $ (M) == W (g) + Ind^, M.

Proof. - Suppose first that M is orientable along F. Then

Ind^^=W(det(^ , . . . , ^ ) )

for some vector fields X^ , . . . ,X^ : bA —> C" tangent to M
along F(bA). If A (z) =d^ (F(z)), then the vector fields

AX, , . . . , A X ^ :bA —> C^
are tangent to ^(M) along the curve ^ > o F : b A —> C'1. Thus
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In(4 o F ^ (M) = W (det (AX)) == W (det A • det JQ

= W(de tA) -\- W(det Z)

= Wte) + Ind^.

If M is not orientable, we apply the same proof to the map
z —> F ( z 2 ) . Lemma 7 is proved.

In the case when M is a compact orientable surface embedded
in C2 there is a close connection between the index and the topology
of M. Following Bishop [7] we call a point p ^ M exceptional
if the tangent space T M is a complex linear subspace of C2 . Since
the set of complex subspaces is thin in the set of all real 2-planes in
C2 through 0, a generic submanifold M2 of C2 will only have
isolated exceptional points. If p G M is such an isolated exceptional
point, there is a contractible neighborhood U of p in M such that
U\ {p} is a totally real submanifold of C2 . The natural orientation
on the complex line T M induces in a natural way an orientation
on U. Let F : bA —> U\ {p} be any simple closed curve that
winds around p in the positive direction with respect to the chosen
orientation on U.

DEFINITION 2. - If p is an exceptional point of M and if F
is as above, we define the index of p to be the integer
IndpM = IndyM.

Since IndpM only depends on the homology class of F in
U\{p}, the index Ind M of p is well-defined. We may extend
the definition of index to all points of M by letting IndpM = 0
if M is totally real at p . The definition of index can be extended
in an obvious way to immersed submanifolds of C2 that have only
isolated exceptional points.

The following lemma shows how to compute the index of an
isolated exceptional point in terms of a local parametrization
of M.

LEMMA 8.—Let U be an open set in C containing A , and
3g

let g : U —> C be a C function such that — (z) ^= 0 for everyoz
z ^ 0. If we let
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M = { ( z ^ O O E C ' l z e c / } ,
then Indo j^ equals the winding number of the map

^: bA —> C\{0}
3z

around 0.

Proof. — The vectors

X^)=( . ) and y^- f . ,' , J
\ Qg/9x (z) / \ Qg/9y (z) /

form a framing of TAf. By Definition 1 Indo M is the winding
number of the determinant

d (z) = det Wz), Y(z)) = -^(z) - z^-(z) = - 2^(z)
3^ bx 3z

around 0 which equals the winding number of 3^/3z~. This concludes
the proof of Lemma 8.

Example. — Let k , / G Z^, / > 1 . The manifold

^^= { ( z , z f c z r € C^z G C}

is totally real except possibly at 0, and

Indo M = W (z^ z1-l) = k - I + 1 .

This shows that every integer may arise as the index of an isolated
exceptional point.

Bishop considered the local expansion of order 2 of a submanifold
M2 C C2 near an exceptional point p E A / [ 7 ] . He showed that,
in an appropriate system of local holomorphic coordinates (z, w)
in C2 near p , we have

p = = 0 , TpAf= { w = 0 } , M == {(z,g(z))},
where

^ ( z ) = a z 2 + j 8 z2 4 -7z z + o ( | z | 2 ) . (2.5)

If I (3 | ̂  17 1/2 and 7 ^= 0, there is a local change of coordinates at
0 such that in the new coordinates
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g ( z ) = I S (z2^?)-^ z + o ( | z | 2 ) , |8>0,

with j3 ̂  1/2. The number j3 is a biholomorphic invariant of M.
The exceptional point p = 0 is elliptic if j3 < 1/2 and is hyperbolic
if j3> 1/2. Since

^gz= 2 j 3 F + z - h o ( | z | ) = ( l + 2ft)x + ( 1 -2^)iy + o ( | z | ) ,
oz

Lemma 8 implies that the index Ind M equals 1 if p is an elliptic
point and equals — 1 if p is a hyperbolic point. If the genericity
assumptions in (2.5) do not hold, the example above shows that the
index Indp M may be any integer. Bishop called such a point
exceptionally exceptional.

Using a theorem of Chern and Spanier [11] Bishop proved
[7, p. 12] that in the case when an embedded compact oriented surface
M C C2 has only isolated nondegenerate exceptional points, the
difference between the number of elliptic points and the number of
hyperbolic points equals the Euler number \ (M) of M. He only
gave the details in the case when M is a sphere, but the proof holds
in general. His result implies the following theorem:

THEOREM 9. — Let M be a closed compact oriented surface
embedded differentiably in C2 . If M has only isolated exceptional
points, then

i I n d p ^ = x W .
pGM

Initially Theorem 9 holds only when M is of class C2 and has
nondegenerate exceptional points, but one can show using the
properties of index that these additional assumptions are not necessary.
Notice that the index of an isolated exceptional point does not depend
on the orientation of M. Recently Webster proved [27, 28] the

v^
formula ^L Ind M = \ (M) + \ (TV) for every compact immersed

pGM

surface in C2 , where N is the normal bundle of the immersion and
no exceptional point of M is exceptionally exceptional.
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3. Geometry near the boundary of an analytic disk.

In this section we shall find a normal form for the tangent
bundle of a maximal real submanifold M in C2 along the boundary
of an analytic disk F in terms of the index IndpM. A similar result
was used by Bedford and Gaveau [5,6]. We shall identify the functions
on b A with the 27T-periodic functions on R and write f(Q)
instead of f(e16).

LEMMA 10. —Let F : A —> C2 be an immersed analytic disk
with boundary in a C2 maximal real orientable submanifold
M C C2 . // m = \n&pM, there is a 2 x 2 matrix A (0) with
entries in QL112 and an a G QL112 such that, if we put

lie16 \ i a(0) \
X,(6)=( Q ) and Y^0)= (^ _ ;^) ,

the vectors X (6) = A (0) X^ (0) W y ( ( 9 ) = A ( 0 ) y o ( 0 ) /orm
62 mz/ 6^ o/ the tangent space Tp^M for each Q . Moreover,
the matrix A is invertible, and the component of A~1 are
in a112.

Note. — We shall see in the course of the proof that if M is of
class C k , k ̂  2, and 0 < 6 < 1 , we may choose A and

a(0) = H a^e116

/ = = o

to be of class c k ~ 2 ' € on b A and a^ = Imc^ = 0.
We denote by / the harmonic conjugate function of a function

/ on 6A. If /(0) = S c^70 , then

7(^)=; S c^0-/ ^ c^ .
y = - oo / = 1

It is well-known that / —^ / is a bounded linear operator of
C^C^A) into itself [19, Proposition 3.1; 15, p. 83]. The same is
true for each Lipschitz space 0s > e , where s ^ Z^ and 0 < e < 1
[19, Proposition 3.1]. For each / eC l / 2 ( 6A) the function /+?/
is in QL112.
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Proof of Lemma 10. - Since F = (7^ ,F^) is an immersion,
the derivatives F\ and F^ have non common zero on A. By
a_ theorem of Cirka [12, p. 293] the map F is of class C2"0 on
A and so the derivatives F\ ,F\ are of class C^0 . Hence there
exist C172 functions g i , g ^ on A , holomorphic on A, such that
F f l g l ^ F 2 8 2 = l on A - Define

^.(?fe'-^M).
v Fz (z) gi (z) /

Then det A = F \ g ^ - } - F \ g ^ = \ , hence A is invertible and the
components of A~1 are in QL112.

/ie16 \
Let XQ (0) = ( . j . The vector

~ / F 1 (^)\ rf /77 f^A^) ̂ w«) =,/(^) ̂  (;̂
is clearly tangent to M at the point F(0) and is nonvanishing for
every 6 . Since F*TM is a trivial bundle, there is another C1 vector
field Y(0) such that for all 6 , X ( 6 ) and Y (0) form a basis of

T^,)^. Let roW-^"1^)^)^^). We have
^P^) '

det (^ (0), Y (0)) = det J(0) det (XQ (0), 7^ (0))

=det(;^(0),y,(0))

= ^/0 |3(0)

whence ft (6) ̂  0 for all 0 . We compute the winding numbers of
both sides:

m = W (det (X, Y)) = W (^ (5 (0)) = 1 + W (j3).

This implies that the function 0 —> g(-m+i)ie ^Q^ ^ winding
number 0 whence it is an exponential,

^-m+l)i6 p^ ^ ^a(9)-¥ib(6)

If we set v (0) = (T^)-^) , then
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v(Q)e(-m+^te p(6)=e-'b(e)+">(e)

= g i ( . b ( 9 ) + i b ( 9 ) )

=j3*(0)

is an invertible element of QL ̂ 2 . Since u has no zeroes on b A, we
may replace V by vY. We extend j3* to an analytic function on
A and define

^(z,w)= F(z) + wft* (z) (~ g2 (z) ), (3.2)

,(,) =^^(^)-g2(z)^y). (3.3)
V^2^) ^l00^ (Z)/

Then the vector .4-1 Y = Y. equals VQ (0) == f a „.) . Since
\g(m-l)iff/

del A =j3* is invertible in (^1/2 , the components of A~1 are in
(Sl1/2 . Notice that when m = 1 we may take (3 = (3* and y = 1.

The first component a of YQ may not be in QL112. If we
let 8(0)= ie-10 a(0) and set ^(0) = Re5 (0)+0m6^(0) , the
first component of uX^ + Y^ equals

u(e)ieie +a(e)=ieie (u(e)-ie-16 a(0))

= ^((ImS) (0) + ;a[m5K<9))

which is an element of tt172 . If we replace YQ by uX^ + Eg ,
Lemma 10 is proved.

The proof shows that if M is of class C^ and 0 < e < 1, we
may choose X , Y and A as in Lemma 10 such that their components
are in the algebra QLk~2><: (bA).

4. Parametrization of the disks.

In this section we will find a convenient parametrization of all
maps FGC^CfcA) 2 that map bA to My for some r close to r°.
In Section 5 and 6 we will examine the conditions under which a given
map in our parametrized family is the boundary value of an analytic
disk.
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Let X. Y : 6 A —^ C2 be chosen as in Lemma 10. Denote
by / the harmonic conjugate of /. Consider the map

G:C112 (bA)2 xC112 (bA)2 —> C112 (6 A)2 ,

given for each u = (i^ , u^) and /= (/i , /^) m C1/2 (b A)2 by

G(u,f)=F° +^+^ ^K/1 +; / i )^+f ( /2 + y 2 ) ^ - (4.1)

Since the vectors X(B) ,iX(6) , 7(0) and ^(0) form a real basis
of C2 for each 0, every map F : b A —> C2 that is of class
C112 equals G (u, f) for some uniquely determined real-valued
functions u^ , ̂  . A . fi e CA/2 (6A)'

Let F be the open subset of C2 for which (1.1) holds. Choose
u and / sufficiently small in the C112 (b A) norm such that
G (u, /) (b A) C F. The condition that the image G (u , f) (b A)
lies in the manifold ̂  is equivalent to

^ ( r , u , f ) = r { G { u , f ) ) ^ Q . (4.2)

The map ^ is defined on an open neighborhood B^ xB^ x B ^ of the
point (r , u , f) = (r° , 0 , 0) in the Banach space

Ck (V)2 x C1/2 (b A)2 x C172 (bA)2

and maps it into C112 (b A)2 .

LEMMA 11- — 77z^ equation (4.2) has a unique solution

f=f(r,u), /(r°,0)==0 (4.3)

in a neighborhood of the initial point (r° , 0) satisfying
<Hr, M , / ( A \ i0)=0.

Proof. — By the implicit function theorem in Banach spaces
[ 10, p. 61 ] it suffices to prove that

(i) the map ^ is of class C 1 , and
(ii) the partial derivative

D^$( r ° ,0 ,0 ) : C112 (6 A)2 —> C172 (&A)2

is a linear isomorphism.
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Observe that the map G defined by (4.1) is affine in both
variables whence it is smooth in these variables. The map $ is clearly
linear in r. Lemma 5.1 in [19, p. 340] implies that for each fixed
r^Ck(V)2 the map

(u.f) —^ r(G(u,f))

is of class C k ~ l . More generally, if r G C ^ (V)2 and if we replace
C^^A) by the space C^^&A),^ is of class C k - s - l .

To compute Dy.<^ we identify C2 with R4 in the standard
way. Let X* and V* be the vectors that correspond to iX and

iY under this identification, ana denote by V r = ( 1 ) the real
^ V / y

gradient of r represented by the 2 x 4 matrix of partial derivatives.
By the chain rule we have for each h = (/^ , h^) E C172 (b A)2

D^(r, u,f)h= Vr(G(^./)) . (/^ X* + h^ Y* -h^ X-h^ Y) .

Since the vector fields X and Y are tangent to M o = M along
F° (&A), we have

Vr°(F°) -^=0 and V^° (F° ) -y=0 . (4.4)

Therefore

D^0-°,0,0)/z== V^F0)-^^*^ y*)=C. ( / ! 1) (4.5)
^2

where C is the real 2 x 2 matrix function V^°(F°) - (^* , V*)
on Z?A with entries in C172 (ft A).

We claim that detCO^O for every 6. If not, there are real
numbers a , b ^= 0 such that, for some OQ ,

o = c ( @ o ) . (fl) =vr°(F°(0o)).( ;r*(0o),y*(0o))- ( a )
"t?' v 0 '

= V r° (F°(0o)) • (^* (^o) + bY" (0o)).

This says that the vector ^* ((9^) + bY" (0^) == K^(0o) + bY^^))
lies in T^o(e )Af which is a contradiction since A/ is totally real.
Therefore det C is a nonvanishing function in C1/2 (6 A) whence
C-1 exists and has components in C172 (b A). This shows that the



22 F. FORSTNERIC

partial derivative (4.5) is a linear isomorphism with the inverse
h > c l • h and the implicit function theorem applies, The
solution / (r, u) is of class C^"1 . This proves Lemma 11.

If / is the solution (4.3) of (4.2), let F be the composition
map

?(r.u)=G(u.f(r,u)) (4.6)

defined on an open neighborhood B^ x B^ of (r° , 0) in
C^n2 xC^fcA)2 .

It follows that, for each r E B ^ and u E B ^ , F ( r , u) (bA) CM .
We shall compute the partial derivative D^ / ( r , u) of the map

(4.3) at the point (r° ,0). Applying the chain rule to the map $
defined by (4.2) we get

0 = D^(r° , 0 , 0) = D^(r° , 0 , 0) o D^ f(r^ , 0)

+ D ^ $ ( r ° , 0 , 0 ) . (4.7)

The last term in (4.7), evaluated on v = (i^ , v^), is

D^(r° ,0 ,0)u= vr°(F0) . D^ G(0,0)u

=Vr°(F°) . (Ui^+u^ V)

which is 0 in view of (4.4). On the other hand, we have seen above
that D ^ ^ ) ( r ° , 0 , 0 ) is a linear isomorphism. Thus (4.7) implies

D^°,0)=0. (4.8)

We can use (4.8) to find the partial derivative D^ F of the map F
defined by (4.6) at the point r = r° , u == 0:

D^F(r°,0)y=D^G(0,0)u==i; i^+^ Y = (X , V). { v 1 }
\^}

Since the matrix (^(0), Y(0)) is nondegenerate for every 0, it
follows that the derivative D^F(r° ,0) is a linear isomorphism
of Cy (6 A)2 onto itself.

If we write a map F* E C^2 (&A)2 that is close to F° in the
form F* == G(u . /), then u and / are small in the C172 (&A)-norm.
Hence, if F*(&A)C^ for some A-e^ , the map F * = = G ( u , f )
is a solution of (4.2) that is close to the initial solution FQ = G (0 , 0).
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The uniqueness part of the implicit function theorem implies that
/=/('*, ^)^whence F* = F(r , i<). This shows that the range of the
C1 map F defined by (4.6) contains all elements of C^2 (&A)2

that are close to F° and map b A to a small perturbation My of M.
If we replace C112 (bA) in the analysis above by C^^A)

for some integer s < k - 2 and 0 < e < 1, we obtain a map

F^C^F)2 xC^(&A) 2 ——^ C^(6A)2

of class C k ~ s ~ ~ l that parametrizes all maps of class C5^ from 6 A
to small perturbations My of Af.

It remains to show how one can remove the hypothesis that M
be parallelizable in an open neighborhood of the set F° (&A). We
shall assume instead that M is orientable along the closed curve F°.
We extend F° to a C1 immersion ^ : V ——> V from an open
tube V in C2 containing the circle b A x {0} onto an open
neighborhood ^ of J70 (6 A) in C 2 . There is a C1 closed
submanifold M in V that is mapped by ^ onto an open
neighborhood of F° (6 A) in Af. Since Af is orientable along F°,
^ is a transversal intersection in the tube "V provided that V is
sufficiently small. Moreover, every map F : b A ——> V that is
sufficiently close to F° uniformly on b A has a unique lift F to "V
such that ^ o p = F and F(l) is close to ( l , 0 ) e r . If we
approximate ^ sufficiently close by a C^ map, we may assume
that M is of class C^ and the lifting property still holds. Since
we have not used the analyticity of vector fields X and Y so far,
we can work with M instead of M, thus obtaining a parametrization
(4.6) of all C172 maps F : b A —> M^V near F° in terms
of parameters u G C172 (&A)2 and rE C^ (P^)2 .

5. Proof of Theorem 1.

Assuming that w = Ind^oAf> 1 we shall now analyze the
conditions on u under which the map F(r , u) define by (4.6) is
an element of (QL112 )2 , i.e., it is the boundary value of an analytic
disk. Let f=f(r^u)=(f^(r,u\f^(r,u)) and ^ = ^ ( r , u ) for
/ == 1 , 2. Denote the A:-th Fourier coefficient of a function / by
f(k). Recall that 7(0) =0 .
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Since F° G (QL112 )2 , we must have

u,X-Vu^Y^i(f, +if,)X+i(f^ 4-^)70 (O1/2)2. (5.1)

Let A . J^Q and YQ be as in Lemma 10. Recall that the inverse
matrix A~1 has components in ^1/2. Multiplying (5.1) by A~1

we conclude that the expression

u,X^ +^o -^'(/i +A)^o + ^ ( A ̂ ô (5.2)
must be in (O172)2.

The second component of (5.2) equals

(^2 (0) + ^'(/2 (0) + i?2 (0))) ^(w "1)0- (5.3)

The function (5.3) is in (2172 if and only if the Fourier coefficients
of order less than — m + 1 of the function

^2 ^'(^ +^)=(^2 -/2)+^2 (5.4)

all vanish. Since w > 1 by assumption and f^ + //^ is holomorphic,
this condition is equivalent to u^ (/) = 0 for / < — m + l . The
most general form of the real valued function u^ satisfying this
condition is a trigonometric polynomial

m -1
u^ =P(a,b)==dQ + 2 Re ^ (a^-ib^e^6 (5.5)

7^1

depending on 2 w — 1 real parameters
a=(dQ ,^1 , . . . , ^ _ i ) , 6 ==(61 , . . . , ^_ i ) .

00

Let a = ^ c .̂ '̂0 G a1/2 be the first componert of YQ . The
/•=o

Fourier expansion of the product P(a, b) a is of the form

m -1 oo
P(a.b)a= ^ 5 ^ ( f l , & ) < ? - ^ + ^ € f ( a , b ) e i f e ,

/^i /^l)

where each coefficient 6^a,b) is a linear combination of the
parameters a , b. If we define

7̂ . (a . 6) = - ;§y_i (a. 6), 2 < / < m
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and set

m

j(a,b)(0)= ^ 7^0^)0^ ^^a~b)e-ife. (5.6)
/•=2

then the function

0 ——> ^ / 0 7 te^ ) (0 )+P( f l , 6 ) (0 )a (0 )==P(a ,6 ) (0 )

is an element of QL112 for each (a, b) G R2 m - l .
The first component of the map (5.2) may now be written in the

form

(^i -7(^.6))^ + P ( a , b ) - ^ - i ( f , +i?[)ie^ + K/2 +^)a .

Each term after the first one is in OL112 whence so is

(^i -7(^))^ .
Since the function u ^ - y ( a , b ) is a real-valued, its most general
form is

(^i -7(^6))(0)=fi(c,rf)(0)=co +2Re(ci -^)^,(5.7)

where c = (c^ , C i ) G R2 and 6/ = ̂  E R. Therefore the most
general form of the function u^ is u^ = 7 (a , 6) + Q (c . rf) .

The map ^ = ( ^ ^ . ^) : R2m +2 _^ ^1/2 ^^2 determined
by (5.5) and (5.7) is a linear one-one function of the 2m 4- 2 real
parameters t = (a , b , c , rf) G R2^ +2 . Our construction implies
that the range of the Ck~l map

( r .O ——^ F ( r , t ) = F ( r , u ( t ) ) , (5.8)

which is defined on a neighborhood of ( r , t ) = (r° , 0) in the Banach
space C2 (F)2 x R 5 , contains all analytic disks that have boundary
in M, and are close to F° in the space (a172)2. This proves (a),
(b) and (d) of Theorem 1. To prove (c) it suffices to show that the
partial derivative D,F(r° , 0) is nonsingular. By the chain rule this
follows immediately from the fact that D^F is nonsingular at the
point r= r° , u = 0.

If we replace QL112 by the algebra^ste (b A) for some integer
s<k-2 and 0 < e < l , the map F ( r , u ) is of class C k - s - l

in ( r , u ) and consequently F (r , t) is of class C k ~ s ~ l .
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In order to prove the claim about smoothness of the map
a : B x ~ K — — > C2 , a ( r , t , ?) = F ( r , 0(?), observe that a is
the composition of the Ck~s~l map

5 x A — ^ a ^ x A , ( ( r . O , ? ) — — ^ (F(r .O,?)
and the evaluation map

J^a^xA——> C2 ,£'(F.?)=F(?).
The map E is clearly linear in F , and for each fixed F it is of class
C5 in ?. Therefore E is of class C5 whence a is of class

/ = min { s , k — s — 1}.
\k- l1

This value is maximal when s = / == ——— .

It remains to show that in the case m > 2 there is a nonempty
open subset ECC2 contained in the union U F ( r , r ) (A)

rea^
for all r close to r°. Choose a point ?o G A such that the linear
map R2'71-1 ^ C, (a, 6) ^ -P(^6)G-oK'?-1 has real
rank two. This is possible if m > 2 ; almost any choice of ^o works.
The construction of F ( r , t ) implies that the derivative of the map
R2m-l ̂  »__, c2 ,

((^&),?) H-^ F (^ (^&,0 ,0 ) )0 ) (5.9)
has real rank four at the point < a = = 0 , f c = 0 , ? = ? o , r = ^ ° . The
calculation is similar to (6.5) and (6.6) in the Proof of Theorem 3
below, and we omit the details. The implicit function theorem implies
that the map (5.9) is a submersion at (a, b) = (0 , 0), ? = ?o, r = r° ,
and Theorem 1 is proved.

6. Proof of Theorems 2 and 3.

Proof of Theorem 2. — Recall that F ( r , u) is analytic if and
only if the Fourier coefficients of the function (5.4) of order less than
—m 4- 1 vanish. Here f=f(r, u) is given by Lemma 11. We now
have m <0 and hence — m + l > 0 . Since f^ (0) = 0 and both
u^ and /2 are rea^ ^l^d, it follows that u^ (0) = 0 == f^ (0).
Further, since f^ + if^ is analytic, its negative Fourier coefficients
vanish whence u^ (k) = 0 for f c < 0 . Since u^ is real valued,
ii^(k)= u^(—k)=Q if ^>0 . This shows that u ^ ^ Q . As in
Section 5 we conclude that u^ is of the form (5.7) with 7(0, b) = 0.
Thus (5.8) defines a C3 map
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F : C4 (V)2 X R3 ——^ Cc72 (&A)2

such that every analytic disk with boundary in My which is close
to F° is of the form F ( r , t) for some ^ = (c^ ,Ci ,d) G R3 .

Since we must also have f^ (r, t) (0) == 0, it is no longer true
that each F ( r , t) is analytic. Denote by 2 the set of pairs
( r , t ) E C4 (V)2 x R3 in the domain of F for which F(r, t) is
an element of (QL112)2 .

LEMMA 12. - There is a neighborhood U == U^ x [/̂  of
(r°,0) in C4 (F)2 x R3 wYA the property: If (r, r) G 2 H [/,
^2 0 ,^ ' )E 2 /o/- a// ^G <7^

Proof-^fe have seen in Section 5 that D^FO-°,0) is
nondegenerate. Choose an affine map S : C^2 (b A)2 —^ R3 which
is one-one on the image D^F(r° , 0) (R3) and 5'(F°)==0. Such
a map exists by the Hahn Banach extension theorem.

Denote by AutA the group of automorphisms of A. Let
C: C^ (&A)2 x AutA —> C^2 (b A)2 be the composition map
CCF,0) == F Q ( I > . Clearly C is linear in F ' , for each fixed F the
map 0 —^ CCF,0) is of class C1 according to Lemma 1 in [19].
Thus C is of class C1 .

Denote by T : C4 (V)2 x R3 x AutA —> C^2 (bA)2 the C1

map
r^^^CCF^,^)-^,^^

where F is considered as a C1 map into C^(&A) 2 . A
straightforward calculation shows that the derivative D^ T (r° , 0, id)
is nondegenerate and its range equals the range of D^F (r , 0).

It follows that S o F : C^V)2 x R3 ——> R3 is a submersion
with respect to t G R3 at the point (r°, 0), and

S o T: C^F)2 x R3 x AutA —> R3

is a submersion with respect to 0 G AutA at the point (r°,0,z'd).
The implicit function theorem implies that for each

(^^EC^n2 x R3 x R3

close to (r°, 0,0) there exist unique t ' € R3 close to 0 and
0 G AutA close to the identity such that
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^(FO-.^y-X^CFO-.Oo^) . (6.1)

As X runs over a neighborhood of 0 in R 3 , so does t1 . Thus (6.1)
determines a correspondence 0 = 0 (r, t , ̂ ') satisfying

^(^^^(F^Oo^,^)). (6.2)

Suppose now that ( r , t ) G 2. This means that F ( r , t ) is an
analytic disk with boundary in ^ and hence so is

F0-,r)o0(,.,r,r').

Since F(r, • ) parametrizes all analytic disks with boundary in My,
it follows that F {r \ t) o 0 ( r , t , t 1 ) = F(r, ̂ ) for some ^ G R3

close to 0. The relation (6.2) implies S (F(r ,^))= 5' (F(r,^))
and hence ^ = ^ by the choice of S . This means that (r,^) is
an element of 2 and Lemma 12 is proved.

In fact we proved more: if (r, t) G 2, then there is an
automorphism 0 (r) of the disk such that F(r , t) = F ( r , 0) o 0 ( t ) .
Thus, modulo the automorphisms of A, there is at most one
analytic disk with boundary in My close to F° .

Denote by CQ (r) the 0-th Fourier coefficient of the function
/2 O*. 0). To prove Theorem 2 we have to find a path r = r (s) in
the parameter space C^F)2 starting at r(0)==r° such that
CQ (r (s)) ^ 0 for s > 0 since then the corresponding map F (r, 0)
is not analytic. It suffices to find a vector / E C^TO2 such that the
derivative Dy. CQ (r°) r ' is nonzero.

If we denote by h (/) = (h ̂  (r^.h^ (/)) the derivative
D, /(r° , 0) / , then D, CQ (r°) r ' = h^) (0). From (4.2) and (4.5)
we compute using the chain rule

0 = D, <I> ( r° ,0 ,0) / = /(F°)

+ D^ (A-° ,0 ,0) . D,/(^° ,0) / = / (F°) + C . h (/), (6.3)

where C is an invertible matrix function on & A , If F° is an
embedding, one can see that the set of functions / (F°), r ' E C4 (F)2 ,
is dense in the space of continuous functions on b A. Hence (6.3)
implies that we can find an r such that the function h^ { r ' ) has
positive values on &A and therefore h^ (/) (0) > 0. This concludes
the proof of Theorem 2.
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Proof of Theorem 3. — Let m = Ind ^ A/. Recall that the
parameter space t = ( t 1 . t " ) consists of 2m — 1 parameters
t ' = ( a , b ) and three parameters t^ = (c ,d) (Section 5). Let
o(r,t\^) = F (r, 0\ 0)) (?). Clearly a satisfies Theorem 3 (6).
To prove (a) assume that m = 1 so that t ' = a ^ R and let .4 (?)
be the matrix function (3.3). We have

D^ a ( r° ,0 ,?) = D^ F(r° ,())(?) = D^ F° (?) = A (?) Q (6.4)

and

D, a ( r° ,0 ,? ) = D, F(r°,0)(?) = A (?) (a(?)) . (6.5

This shows that the map (^,?)_—> ^('*°,^?) is a C1 immersion
( / = [ (Ar-1 /2) ] ) of ( - e , e ) x A into C2 for a small e>0 . The
same is then true for each r in a neighborhood B of r°. After a
change in the ^ variable we may assume that e == 1 .

For a fixed r E B the map
/ = (- 1 ,1 ) —^ (^(A)2 , t -^ a ( r , t ^ )

is of class Ck~l . (See the Remark 1 following Theorem 1.) For
each 0 < § < 1 the restriction map QL112 ( A ) — ^ C ^ ( A ( 0 , § ) )
is smooth. Finally, the evaluation C^ (A (0,5)) x A ( 0 , 5 ) — > C
given by (/,?) —> /(?) is of class C" . Hence (r ,?) —> o ( r , t ^ )
is of class Ck~l on 7 x A ( 0 , § ) . Since this holds for each 5 < 1,
the map a ( r , . , . ) is Ck~l on 7 x A . This proves (a).

To prove (c) notice that when m = 1 and A: > 4 the proof of
Lemma 12 shows that every disk F ( r , t) is of the form

F( r , ( ^ , 0 ) )o^

where ^ is an automorphism of A . Theorem 3 is proved.

7. Proof of Lemma 4 and Theorem 6.

Proof of Lemma 4. - Let a : I x A —^ C2 be a C1 immersion
and at == a( / 1 , • ) . The vectors
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ax^ ( r ,z) = iz — o ( r , z ) ,
3z

;^(^)=—o(r,z)
d^

are tangent to M at the point a ( r ,z) for all z £ &A and t E /,
and for each fixed ^ E / we have

»\ ^
det(^(r,z),J^,z))= ^det (—- a ( ^ , z ) , — a (r ,z)) .

^z ot /

Since a is an immersion, the determinant on the right hand side is
nonvanishing for all z E A whence its winding number is zero.
Therefore by Definition 1

Ind^M = W (det (X, ,^)) = W (iz) = 1.

Lemma 4 is proved.

Proof of Theorem 6. — Choose a relatively compact subinterval
J C (— 1 ,1) . The set 2 = a (J x A) is an embedded hypersurface
of class C3 in C2 with boundary b"L = a (S x ^A). Choose a
neighborhood V of 2 in C2 such that 2 is a closed subset of
V . If V is sufficiently small, there are real C3 functions F and k
on V such that S^ = {F = 0} is a closed C3 hypersurface in V
containing S , {k = 0} is a closed C3 hypersurface intersecting
ZQ transversely along &S = a (J x 6 A), and A: < 0 on Z . We
may assume that dF ¥= 0 on V.

For c ^ R we define

( ^ ( z ) + c ^ ( z ) if f c ( z ) > 0 ,
c v ) J F ( Z ) if ^ ( z ) < 0 ,

and 2^. = {z G F: F^,(z) = 0}. There is an open neighborhood
U of 2 contained in V such that U H 2^. is a real C2 hypersurface
containing 2 .

LEMMA 13. - There is a c>0 and a neighborhood U^, of 2
such that 2^, H U^, is pseudoconvex from the side {F^<0} and
2 _ ^ H L .̂ ;5 pseudoconvex from the side [ F _ ^ > 0}.
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Proof. - We shall prove the pseudoconvexity of 2 (c > 0) since
the proof for 2_^, is analoguous. Choose a neighborhood U^. C U of
2 such that c/r < 1 on U^. It suffices to consider the set
W^. = U^ 0 {k>0} since 2^. coincides with 2 where A;<0.
On W^, we have

|rfF^ - dFKISc^^ lO \ck\ \k\ \dk\=0(k),

where the bound in 0(k) is independent of c on the set W .
Similarly we show that 13F^, - 3F | = 0(k) on W . Let
3 F^. = ̂  dz + 6^. dw and define a (1 ,0 ) vector field X^. on U^.
by X^ = = - ^ a / a z + ^ a / 3 w . Then O F ^ , X ^ > = 0 which means
that X^. is complex tangent to the hypersurface 2^..

To prove that 2^ is pseudoconvex from the side {F^ <0} it
suffices to show that the Levi form Lp (X^) of F^. applied to the
vector X^. is nonnegative on 2^.. From the estimate

|3F^ -3F |=0(A; )
it follows that | X^. - Xo | = 0 (fc) on W^.. Computation gives

L F ^ ( X , ) = L ^ ( X Q ) + O ( / O

=L^(X^)+3ck2 4(Xo)+6dt | OA;, X^) |2 + O(^).

Since 2 is Levi flat, Lp (XQ ) = 0 on 2 and therefore
L p ( X o ) = 0 ( ^ ) on W,n 2,.

The second term on the right is also 0(/0. Since the hypersurface
[k = 0} intersects each leaf of 2 transversely and Xg is tangent
to these leaves, the quantity | O f c , X Q > | 2 is bounded below by
a constant K > 0. Thus

LF ( X ^ ) > 6 c K A ; 4 - 0 ( A Q > ( 6 c K - C i ) A;

on W^ H 2^,, where c^ is a constant independent of c. If we
choose c > C i / 6 K , then the Levi form of 2^. is strictly positive
on 2^ H W^,. Therefore 2^, is strictly pseudoconvex outside 2
and Lemma 13 is proved.
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Fix a c>0 for which the conclusions of Lemma 13 hold.
The domain A^ = { z € U ^ , : F^ , (z )<0} is pseudoconvex along

the hypersurface 24" = 2^.0 U^., the domain

A- = { z G U , : F _ , ( z ) > 0 }

is pseudoconvex along 2~ =2^.0 L^ , and A4" HA" =2 . Since
o : I x A —^ C2 is an embedding that is holomorphic in ? ^ A ,

d
the vector field V ( t , ?) == ;' — o ( ^ , ?) is also holomorphic in ? and

dt
is transversal to 2. Let Y(^) be a holomorphic vector field on
a neighborhood of a° (A) in C2 that approximates the holomorphic
field V ( 0 , ^ ) uniformly on the disk a°(A). If the approximation
is close enough, then Y is transversal to 2 near o° (A); suppose
that it is pointing into the domain A'1' .

Let /: A —> C2 be an analytic disk with boundary in 62.
If /(A) is sufficiently close to a° (A) but is not contained in A4' ,
then for a suitable e > 0 the analytic disk

? —> / (? )+e .Y (/(?))

has boundary in A"*" and it touches the pseudoconvex hypersurface
^+ in an interior point. This is a contradiction and therefore /(A)
is contained in A^ . In a similar way we prove that /(A) is contained
in A- whence /(A) C 2. It follows that /(A) is a leaf of 2. This
concludes the proof of Theorem 6.

8. Examples.

Example 1. - Let T2 = {(e10 , e i T ) \ e , r G R} be the standard
totally real torus in C 2 . The vector fields X = (ie10 ,0) and
Y = (0 , ie17) parallelize the tangent bundle of T 2 . If

F=(F^F2):A —^ C2

is an analytic disk with boundary in T2 , the index Ind^T2 equals
the winding number of the determinant
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/^(^) 0 \ ,. ,.
^V 0 iF^e10)) r l ( e ) F 2 ( e )

which is W(F^) -hW(F^) . By the argument principle W(F^) equals
the number of zeroes of F^ in A and similarly for F ^ . For example,
if F ( z ) = = ( z p , z ^ ) , we have Ind^T2 = p + ^ . In particular, the
index of every nonconstant analytic disk with boundary in T2 is
positive.

By Theorem 1 there is an s = 2 (W (F^) + W (F^)) 4- 2 parameter
family of analytic disks with boundary in T2 near F. In our case
we can see this directly. Since F. is a proper holomorphic map of
A onto itself, F. is a finite Blaschke product

s! z-a^
F)(z)=^ n ——^-. / = 1 , 2

.=1 1 - < ^

depending on 5. = 2W(F.) 4- 1 real parameters c., Rea7 Ima7

All disks with boundary in T2 are stable under small C2

perturbations of T2 .
The disks with index one are either of the form

z ——^ (0(z) ,c ) or z ——^ (c, 0(z)), where 0 is an
automorphism of A and | c \ == 1. The images of these disks form
the topological boundary of the bidisk

A2 = { ( z , w ) G C 2 : |z |< 1 , | w | < 1 } .

By Theorem 3 the two families of disks are stable under small
C3 perturbations of T2 , a result that has been proved already by
Alexander [1] and Bedford [4]. Lemma 4 implies that there are no
other immersed families of disks with boundary in T2 .

Example 2. - Although it is known that the torus is the only
compact orientable two-manifold that can be embedded totally real
to C2 , Rudin showed [24] that the (nonorientable) Klein bottle
also embeds totally real in C2 . Here is a slight modification of his
example. Choose constants a>b>0 and let <t> : R2 —^ C2

be defined by

(^ ((f), 9) - (a + b cos (f)) e216 ,

*2 (0 .^) = (sin 0 + ; sin 2 0) e16 .
(8.1)
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One can check easily that $ is one-to-one on the region
-7r<0<7T, 0<0<7T

and that it satisfies the conditions

0(0+ 2 7 r , 0 ) = $ ( 0 , 0 ) = < I > ( - 0 , 0 +7T).

The complex Jacobian of $ equals

de td^ (0 ,0 )=^ 3 1 0 (6 cos2 0 + 2 a c o s 0 + 6 (8.2)

+ i(6b cos3 0 + 8a cos2 0 - 26 cos 0 - 4a)).

One can check that the function in parenthesis has no zeroes on R2

and therefore $ ( R 2 ) = ^ is a totally real embedded Klein bottle
in C2 .

For each 0 G R we define a map F . : C —> C2 by

F^ (z) = ((a + b cos 0) z2 , (sin 0 + f sin 2 0)z) .

Clearly F^ is an analytic disk with boundary in K . From (8.2) we see
that the Jacobian determinant of 0 along the curve 6 —> F. ( e 1 0 )
is a constant multiple of e316 and therefore Indc K= 3 for each

0

0 G R. Thus there is an 8-parameter family of disks with boundary
in K near F ^ , and each F^ generates an open subset contained
in the hull of K according to Theorem 1. One parameter is 0, and
three parameters come from compositions of F ' . with automorphisms
of A. This leaves four other parameters. It seems far from obvious
how to find these remaining disks without using Theorem 1.

For 0 = 0 we have F^ (z) = ((a + b) z2 ,0). The disk
/(z) = ((a + b) z ,0) also has boundary in K . Since the cycle
[FJ E H^ K determined by FQ equals 2 [/] and index is a

homomorphism on H^ K , we have Ind^K = — Ind ,Q K = — . Recall

that the fractional indices can occur only in the case of nonorientable
submanifolds.

For each integer k we define a map
^ : C* x C — ^ C * x C

by

^ (z,w) = (z,z^w).
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Clearly ^ is a biholomorphic with the inverse (z, w) —> (z, z ~ k w).
If ^ is the Klein bottle considered above, then K^ = 4^ (X') is
also a totally real Klein bottle. The Jacobian of ^ equals

d(z) det^(/(z))= (a +6)^.

Lemma 7 implies

Ind^ == Ind^ + W (rf) =-4- k.

This shows that every number in — Z \ Z can arise as the index of an

analytic disk with boundary in a totally real Klein bottle in C2 .
Similarly, the map $ : R2 —> C2 ,

$(0,0) = (cos06?2 ( 0 ,s in06? ! 0)

induces a totally real immersion of the Klein bottle into the boundary
of the unit ball in C2 , and F^ (z) = (cos 0 • z2 , sin 0 • z) is an
analytic disk with boundary in $ (R2) and with index 3.

Example 3. - In this example we show that the results of
Theorem 1 hold only for sufficiently small perturbations of a maximal
real manifold M C C2 . We shall construct a regular homotopy of
totally real embedded tori 7^ , e > 0, starting at the torus

To = { | z | = 1 , \w\ = 1}

in C2 , such that at e = 1 the structure of analytic disks with
boundary in T ̂  and the polynomially convex hull 7^ change
catastrophically. This example is of interest in connection with the
classical nonlinear Riemann problem [23, p. 591; 31].

For e > 0 and k ^ Z we define a map ^ ^ : (R 2 ) —> C2 by

^ , ( 0 , r )= (^^^ (6+^ T ) ) . (8:3)

We have $^ (0 ,r) = <^ (0',/) if and only if 6 = 0' (mod 2ir)
and T = r (mod 27r). The Jacobian of <^ ^ equals

detrf$, ^ (e . r )^-^^ 1 ) 0 '̂T (8.4)

which has no zeroes on R2 . Hence <^ ^ (R2 ) = 7^ ^ is a totally real
torus in C2 for each e and k. The map 4>^ ^ is smooth in e ,
and TQ ^ is the standard torus 6 A x & A .
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To find the index of 7^ ^ along a closed curve
F=(F , ,F , ) :6A -^ 7^

we evaluate the Jacobian of <^ ^ at the points F ( z ) , z E ^ A . If
^e . fcO 9 . 7 ' ) = (^w), it follows from (8.3) and (8.4) that

detrf<^(0,r) = -zw + ez^.

Therefore Ind^ 7^ ^ equals the winding number of the function

d ( z ) = - F , ( z ) F ^ z ) - ^ - eF^z)^1 , z E ^ A .

In particular, if e = 1 and F°(z) = (z ,0), then
I n ^ o ^ = W ( z f c + l ) = f c 4 - 1.

This shows that there exist totally real tori in C2 with disks of
arbitrary integral indices, both positive and negative.

We shall analyse more carefully the analytic disks of the form

G(z) = (z,^(z)), z E A (8.5)

with boundaries in 7^ = 7^ _ ^ and show that their nature changes
discontinuously at the point e = 1 . The condition G (^A) C T
is equivalent to

\ z g ( z ) -e| = 1 , z G 6 A .

Therefore there is a finite Blaschke product B (z) such that
zg(z) = e +5(z ) , z E A . (8.6)

Evaluating the_equation (8.6) at z ^ 0 gives B (0) = - e. Since
I B | < 1 on A , we must have e < 1 or else there are no disks of
the form (8.5) with boundaries in 7^ . If e = 1 , then B (0) = — 1
whence B ^ — 1 on A . Therefore the only disk of the form (8.5)
with boundary in 7\ is F° (z) == (z , 0).

If 0 < e < 1 , the equation (8.6) has several solutions. We shall
only consider those for which B is a single Blaschke factor,

^(z)^^—^, a E A . c E R . (8.7)

The conditions B (0) = — e implies e = ae10 . For each e E [0, 1)
we have a family of solutions of (8.6)
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(1 -e^e""
1 - € e ' c z^(c,e)(z)=-———^-, (8.8)
1 —— f: 0"- 7

depending on one real parameter c, such that the corresponding
analytic disks

G(c ,e ) (z )= (z,^(c,e)(z)) (8.9)

have boundaries in 7^ . A simple calculation shows that the index
of 7^ along G ( c , e ) equals one.

Similarly there exist disks of the form (8.5) with index bigger
than one provided that 0 < e < 1 . They correspond to the solutions
of (8.6) where the Blaschke product B consists of more than one
factor.

A catastrophic change occurs at the point e = 1 . The disks
with positive indices that exist for e < 1 disappear and all that is
left is the "singular" disk F° of index 0 with boundary in 7\ .
For e > 1 there are no disks of the form (8.5) with boundary
in r,.

There is a family of analytic disks

F,(z) = (^,z 4- e^), z € A , c e R

with boundary in 7^ for each e. A simple calculation shows that
Indp 7^ =1 and by Theorem 1 this family is stable under small
C2 perturbations of 7^ .

We shall show that for each e > 0 the polynomial hull of 7^
is the union of images of all analytic disks with boundaries in it and
therefore the hull also changes catastrophically at e = 1 . Denote
by M^ the hypersurface

M^ = {(e16 ,w) |0 G R j w - ee-16 | < 1}

with boundary 7^ . If e < 1 and G (c,e) is given by (8.9), we
denote by A^ the hypersurface

N, = { G ( c , 6 ) ( z ) | z G A , c G R}

with boundary in Fg . The union M^ U N^ bounds a pseudoconvex
domain S2^ when c < 1 . Since M^ and A^ are contained in the
polynomial hull 7^ , the same is true of ^. One can see that ^2g
is the union images of analytic disks of the form (8.5).
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PROPOSITION 14. - The poly nomially convex hull of T^ equals

( a ) the closure of the domain ^ if 0 < e < 1 ,
( b ) the union of M^ and the disk A x {0} if e = 1 , and
( c ) the hypersurface M^ if e > 1 .

Proof of (a). - Fix an e e [0, 1) and let Sl = ̂  . Observe
that for each z € A the fiber

n^ = {w e c | (z, w) e n}
is a region in C bounded by the closed curve

7 ^ —^ C , 7 ( c ) = ^ ( c , 6 ) ( z ) ,
where

(1 -e2)^ (1 -e2)
^(c,e)(z)

1 — e ^lc • z ^ lc — e • z

is given by (8.8). The above formula for g shows that the image of
7 equals the image of the circle | w | = 1 under the conformal map
w —> (1 — e2)/^ -- ez) . Hence the boundary of ^ is a circle
containing 0 in the interior.

Let A ^ : C2 ——> C2 be multiplication by t > 0 in the second
coordinate, i.e., A^ (z ,w) = (z , rw) . The family of pseudoconvex
domains ^ = ^^(^2) in C2 has the following properties:

(i) ^ C Sl5 if r < s ,

(ii) U n^^ and U O ^ A x C ,
r < j r> o

(iii) H = n ^ , where the closure is in A x C, and
t>s

(iv) Int ( U n^^T.
r > ^

A theorem of Docquier and Grauert [13] implies that Sl is holo-
morphically convex in the Stein manifold A x C and therefore it
is polynomially convex. This proves Part (a).

Proof of (b). — As e tends to 1 from below, the domains ^
converge to M^ U (A x {0}). By part (a) it suffices to show that no
point (z , w ) E A x C * lies in the hull of T, . From (8.8) we see
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immediately that

lim g ( c , e ) ( z ) = 0
c-" 1
e < 1

uniformly in c €E R and uniformly on the compact subsets of A.
Fix a w € C* and choose an e < 1 such that 2 | ̂  (c , e) (z) | < | w |
for all c. Then the point (z , w) does not lie in S2^. Since

T, CA^WCA^)

for each 0 < e < 1, part (a) implies 7\ C ̂  . This shows that
(z , w) does not lie in 7^ and part (b) is proved.

Proof of ( c ) . - Observe that for e > 1 the set 7^ is contained
in A^(M^) if t>0 is sufficiently large. For example, t = 2e would
do. Therefore by part (b) we have

f, C A, (A/,) = A, (M, U A x C) .

Let M^M^ and denote, for each z € 6 A , by M^ the fiber of M
over z : X, = { w G C |(z , w) ̂ ^0 . Since each fiber M^ is a convex
disk in {z} x C, it follows that

f, CMU(Ax {0} ) .

It remains to prove that no point (z , 0), z G A, is in the hull of 7^.
By Runge's theorem we can find a holomorphic polynomial

P(w) arbitrarily close to the function - — o n the fiber M, C C.
w

The polynomial P(zw) is then close to — — on the fiber M. for
w

each z £ & A and so the polynomial

/ z ( z , w ) = z + wP(zw)

is small on M. Since h (z , 0) = z, this implies that no point (z , 0)
for z G C* is in the hull of 7^ . To show the same for (0 , 0) we
choose an automorphism B of A such that B (0) ~=^ 0 and
approximate the function

B ( z ) ^ w P ( B ( z ) w )
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by a holomorphic polynomial on a neighborhood of A x C. This
proves (c) and concludes the proof of Proposition 14.

Example 4. — We shall use the previous example to construct
totally real three dimensional tori in C3 with rather bizzare
polynomial hulls.

Choose a real C°° function e > 0 on b A and define the
following subsets of C3 :

T, = {(e16 ^-IQ ( 2 + ^ 0 ) , 6 ? - / ( 0 + ^ (1 + e(eiQ) + e17))

1 0 , 0 , T O R } ,

M, = {(e10 , e - i e ( 2 + ^ ) , 6 ? - ( < 0 + ^ (1 -^ e ( e i e ) + re17))

\e , 0 , r G R , 0 < ^ < 1}.

The set 7^ is a smooth totally real three-torus in C 3 , and M^ is
a smooth four-dimensional submanifold with boundary 7^. We fix
a function e and drop e in our notation.

Denote, for each z G 6 A , by 7^ the fiber of T over z, and
similarly for Af^. Considering the projection onto C2 x { 0 } and
applying Proposition 14 (c) we conclude that the hull T is obtained
by taking the polynomially convex hull of each fiber 7 ^ , z E 6 A .
Parts (b) and (c) of Proposition 14 imply that 7^ =X, if e ( z ) > 0
and t, =M, U A^ if e ( z ) = 0 , where

A, == { 0 , 0 ) E C 2 : | ? - 2 z | < l } .

Choose a closed subset K C b ^ and let e be a smooth
nonnegative function on b A that vanishes precisely on K. The
above implies

t^M.U ( U {z }xA,V
VzCA: /

For example, if we choose K to be a Cantor set, then the hull of
the torus 7\ is the smooth manifold with boundary M^ together
with a Cantor set of disjoint disks.

Example 5. — In this example we show that our results in
dimension n = 2 do not have straightforward generalizations for
n>3.
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For each k G R let ^ : R3 —> C3 be the smooth map

^ (0 , r , 5) = (e16 , ̂ ^0 , (5 + ix(t2)) 6?- /0 ) ,

where x(0 is a smooth function which equals 0 for r < 0 and
is positive for t>0. One can check easily that ^ is a totally
real embedding of R 3 into C 3 . The set M^ = < ^ ( R 3 ) contains
the boundary of the analytic disk F° (z) == (z , 0 , 0) (set t = ^ = 0).
The vectors

9 /X,(6)=^ ^ (0 ,0 ,0 )=^ 0

\0

/ 0

x^e)=-^-^(e , o , o ) = ^ e i k e
6t \\0

/ 0

^3(0)=^-^(0,0,0)=( 0
3^ ^

form a real basis of T^O^)A^ for each 0. Notice that Ind ^M^ = k.
The components of the first two vectors extend holomorphically to
A if k>0, but we cannot find three independent vector fields
tangent to M^ along F°(6A) with this property.

The analytic disks close to F° can be written in the form

F(z )=(z ,^ (z ) ,6 (z ) ) . (8.10)

The third component is of the form

b ( e i o ) = = l ( s ( e l e ) ^ i x o t2 ( e ^ ^ e - 1 0 . (8.11)

If b is the boundary value of an analytic function on A, then the
0-th Fourier coefficient of s and x ( ^ 2 ) vanishes. Since ^ > 0 ,
the definition of \ implies that t is identically zero, and (8.11)
implies that s = 0 as well.

It follows that F° is the only analytic disk of the form (8.10)
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with boundary in M^. Notice however that along the circle F° (b A)
the manifold M^ has infinite order of contact with the manifold

M[ = {(e10 .^^^-^Ir^eR}

which bounds a 2k 4- 1 parameter family of disks of the form (8.10).
This shows the subtlety of our problem in dimensions bigger than
two.
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