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INTERPOLATING SEQUENCES
OF COMPLEX HYPERPLANES
IN THE UNIT BALL OF C"

by
PASCAL J. THOMAS

This paper gives a sufficient condition for the existence of a
solution to the following problem :

Given a sequence of complex hyperplanes, {L}ez, > all
intersecting B” (the unit ball of C"), and given a sequence of
holomorphic functions {flez, CH” (B" ') is there a function
fEH” (B") such that fly=Fe ¢;'.j€EZ,, where ¢ is a
complex-linear map from B" ! onto L; NB" ? If there is such an
f, we shall say that {Lj}iE 2, is interpolating.

Notations. = If z=(z,,...,2z,)EC",w=(w,,...,w,)EC",
n
then z + W = 2 Z;w; and |z| = (z - 2)Y* (modulus of z),
j=1
z
z¥=—€9B" = {z:|z|=1}.
Iz |

For all j€Z, a4 = point of smallest modulus in L]. (a,. is the center
of the ball L, N B"). Equivalently,

L= (zeC": (z —a).aq=0 (qg+0).
For all jEZ, ,

U, = {z€EB": 4-(4—2)
I lg|(1=z-3)

<38,

Key-words: Interpolating sequences — Bounded holomorphic functions —
Carleson measures — Extension of functions.
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THEOREM 1. — Given a sequence {Lj} as above, it is interpolating
if the following sufficient conditions are met:

— 2 — 2
@ L Ll alap)

jezy |I1—g - a

SM<eo

and
(U) forall j,k€Z,,j+k, then UiﬂUk=®.

Remarks. — 1) By applying an element of the unitary group,
we can send any a; to a point of the form (a,0),a € B!. Then

7 —
U =

fi (21,22)2

s |

l—za

Since the definition of U; is rotation-invariant, we see that for all
i, U/ is a tube surrounding the hyperplane L,. , of radius
commensurate to 1 — |a |-

In particular, for € > 0 small enough, U; contains any set of
the form {z€B":3 weEL:dy(z,w) <e, where

— 2 — 2y \1/2
dzow) = <1_(1 2 (1 = lw] )>

11—z .w|?

is the “hyperbolic” distance, invariant under automorphism of B”".
The regions U,- are not automorphism-invariant, but condition (U)
implies in particular that the lines are separated in the metric dy,
so that if j# k, we can find f€H™ (B") such that f|L 1 and
f |L e = =0 (exphcxt computation omitted).

2) Trivially, if {L}cz , s interpolating, then the sequence
{a;};ez + associated to it is.

In [3], Berndtsson gives a sufficient condition for a sequence
{a}jcz, to be interpolating :

|¢ (@) |=€e>0,

Jij#k

where ¢, (z) is the automorphism of B" defined in([7], 2.2.1, p. 25):
a—P,(z)—s, Qa(z)

1—=z-.a

¢a(z) =
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P,z)=(z.af lal?)a is the projection of z onto the complex line
through ¢ and 0, Q,(z) =z—P,(z) is the projection of :z
onto the complex hyperplane through 0 orthogonal to a, and
s, = (1 — lal®)V?,

'<1>a].(ak)|2 = dy(a;,4;)*, so that the convergence of the above
product is equivalent to (B) together with the requirement that the
points a; are separated, ie. dy(a;,a,)=86>0 for j#k. (U)
implies, of course, that a; are separated. We are now ready for the
following

DEFINI'QON. — Given a function f.:L,—> C, define an
extension f,:B" —> C by

~

fk =fk°¢ak°Qak°¢ak'
This definition makes sense, since
bar (L) = 65, (L) = (22 6, (2) + G = |, [*)

= {z:z - a, = 0} = Range (Q,,),

and consequently ¢ak'(R(Qak)) =1L, so f; is indeed defined on
B". Furthermore,

fx IL,, =fxo ¢ak ° QakIR(Qak) ° ¢‘k|r‘k
=f,o ¢ak ° @y, lLk , since Q-is a projection,
=f,, since ¢ =¢ !.

In other words, f,;o bs = (fie© 9,,) 0 Q,, , ie. first we pull back
the situation to the case where f, is defined on a complex hyperplane
through 0, and extend it trivially to be independent of the last
coordinate.

Clearly, | f; ||H;,,(B,,) = || fx |]H,,(Lk) ; (fp is what was denoted
in the introduction f o ¢;1).

3) Suppose that for all j€Z,, a;= (®;,0), & €B'. Then all
the L; are parallel, L= {z, = o}, and {L} is an interpolating
sequence if and only if {a}jez + is an interpolating sequence in
B'.
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Conditions (U) reduces to

g._ak

<c<1l for j#k,
1 — a0

and condition (B) reduces to:

2 (1 - lal‘|2)(l - Iak |2) <

jij#k ll _a]ak |2

In the case n = 1, it is well known (see Carleson [4] or Garnett
[5]) that if the points are separated (i.e. (U)), then (B) « {og}
is interpolating, so from that point of view the result is sharp.

4) Of course the points g; cannot cluster at any interior point
of B". We will, without loss of generality, remove a finite number
of hyperplanes from our sequence and henceforth assume
|aj| =1/2, j€Z,, for technical reasons. ’

The main step in the proof of the theorem is the following :

PROPOSITION 1. — Under the assumptions (U) and (B), there
exist two positive constants C, and C,, and analytic functions
{Filkez, such that

() VzE€B, 2 |F () |<c,
k

(i) VKEZ, |Fy|y, |> e

(iii) Vj#k, |Fk|LI,|<C?2

(the F, are ‘pseudo P. Beurling functions”).

Proof of the Theorem (assuming Proposition 1). — We will show
that one can construct from the F, true P. Beurling functions, i.e.
E,(z) verifying:

(i) Vz€B, Y |E(2)|<c<e
k

(i)’ Eely =1
(iii)" E, |y =0, ik
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Then our interpolating function will be f =} };,; (z) E, (2).
k

Flu =Tl = fir and 1 flle < elsup | Flle) = e 5up || i flo <o

To construct the E, :

Firstlet G, = Erk): where ~ is the extension discussed above.
k| Lg

Then |G @) Sciley, G|, =1, 'Gk’L,| ,Hék
Let H, =G, 1 (1—G).
jij#*k

Since every factor is bounded below by 1/2,

b

I (1-G)I> % on L, and ]Hlek|>e—2cllc2
jii#k

while Hyl, =0, j#k.

Y zE€B, 2_ IHk(z)|<eC1102 AN IG (z)|< cllcz.
k C2

’

Finally, let E, = H,/(H,|.,)™

C
Bl =0, i#k, E, =1, and ¥ |E@)| <=2, qed.
k C2

Proof of Proposition 1. — Let
F(z) = (—|a, |*/1—z - &)Y W(a,2) I ¢4,(2) - G

jii#k
|1~k - 3| < Co1—|ax|?)
where p =>4 and C,= Cy(8,) > 1 will be specified, and following [3],
. a; _ 1 +a, - EI)
- q; 1 —a -q
(=g~ |ak|2>]

1= |a - 3 |

W(a,,z) = exp —
)
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Convergence of the infinite product will be proved below.
Note that |¢“i(z) . E,l< |¢a,,(z) " ail <1, so
|Fe@) | <2774 — |a /|1 — 2 - G )* | W(ag,2) |
The main step in the proof of [3] is that

Vz€B, Y (I — | |*/|1 —z.3|)*|Wa,2)| <M
p ,
so X |Fe(2)| <2P7*M, = ¢, , which proves (i).
k

Proof of (iii). — Case 1 : j is such that
[1—aja, | <Cy(1 —|a|?).
Then ¢,(z) -@; = (g —2) -3/l —z.a;,=0 for zEL; is a factor
in the mtjmlte product, so | F, (z)| =0 < c,/2.
Case 2: j issuchthat |1 —a;«a | = Co(1 — g, [*).

LeMMA 1. —If {Ly}xez, satisfy (U), and z€L;, j ¥k, then
G|l —z.ap|=|1—a;-a, |, where C; is a constant depending
onlyon 8.

Thus for all z€L,,

1 — || G, _lak|2 C,
< 3

if we pick C, = 2C,.
Sofor zE€L;, |F(2)| < (1/2)° |W(a,,2)|. But
1-_ '_.2 _— 2 _ 2
IWia,,2)| = <exp—2 |25 a-lgfa Iakl)>

j1—z-q [1 =g al

1 - |a/l2)(1 — | [*)

M
X (exp ,Z Il_ai'Eklz )<e (see [3]).

So it will be enough to take

2eM
= log, to get (iii).
C2
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Proof of (ii). — First note that

Fk'Lk Ew(ak ,Z) lll;klk ¢ai(z) 'a_j
|1=aj G| < Co (1—|ax]2)

z€L, CU,, hence z ¢U;, so

_ a—2).a )
A= 1S 29 > 2o,
| 84,2) - 3] 2.3 >80 q;| > 27

each term in the infinite product is bounded below, so we only have
to consider

.
= |10y 3]
7:|1—g« ax|< Co 1—|ax|2)
itk ,
1—Ja
= > hL.
i:ll-—q.ik|<co(l—lak|2) Il —z- ajl
j*k
By Lemma 1, exchanging k and j,
Cll—z.q| =21 —a - g
Thus our sum is
1 —a?
<q, ) B
i+ |1—aj . @ |< Co(1— |ag |2) |1~ a - q

—_ 2 —_ 2
<c, ECO(I |ak_[) (1 |a,|_)
i 11— e |1 = a- g

<C,C, M,

so the infinite product in F, converges and is bounded befow by
e—(2/80)C0C3M

On the other hand,

1~ |z.3f (= [af)0 = |al)

W(a,,z)| > exp— 2. L —

W, 2)]| 7 |1—z-g) 1— g -al

> exp — D 1—|z-_E!|2 C, _ (l-*]ailz)(l_—-zlakf)
J |1'_Z‘a/l Il—ak’ail 1“]a,~-ak|

by lemma 1.
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LEMMA 2. — Given any two points a;,a, € B",zE€EL,, then

Ll AL PR el 1 o
|1—z-4 |1~ a - g

Thus

A= gHA — &) = -1sc,m
p— =€ .
|1 - af

—2M (cq/6g+9)C
So we may take ¢, = e (c0/b0* A€

of (ii).

]W(ak,z)l = exp — 2 18C,
7

, which concludes the proof

Proof of the Lemmas

Proof of Lemma 1. — Choose coordinates so that a4 = (a,0).
Let a, = (b,,b'), b'€C""'. q, ¢ U, means

|by, —a|=8,|1 —b,a|,
so it will be enough to show
C|1—ab,—z .%'|>|b, —a],
for z=(a,z’)EL,NB, ie.
[z'P<1—lal*.
|1—ab, -2 .B'|>|1—ab,| —/1—lal? /1— b,
_ |b, —al?
|1 —ab,|+/1—1al* /1 —|b,]*"

However,
2
1—lalP <200 —la) <211 —bi@|<~|b,—a|
and °

L= b, P <20 —|b,p <2001 —lal + |b, —a)

1
<2<1 +——)|b,—a|.
8o
lb, —al?

=
Le /2000 + 2\ o
1 /Z N, .
50/ 8 5, )) 1% ¢l

So the last expression is
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and C, =(6/(1 + 2/ T+ 8,) " will do.
Proof of Lemma 2. — Note first that

_ .“':2 1_ . a;
1=]z-3f <U+z.gp—Ealey,

|1 =z -3 1=z -3

So thatif 1~ |4 +@G|*/|1 —a; -a|>1/9, we have

—_ —12 —_ —12
*lz_°_‘il|_ < 2(9)% , g.e.d.
'I“Z‘ail |l—ak°a,'

If on the contrary

_ 1 _
(1= |ay -ailz)<§|1 —a -G,

then
L= o) <=1 =0y -3
( Iakl)\gl ak‘ail.
So
[1=z-3|"*> |1 =g -g"* —|1—2z.G]|"

_ 1 _
=[1=a g — (1= |a)? > (1) |1~ - 5]

and ([3], lemma 5)
1=|z-g*<2(0—|z-g) <40 — |z 3| + |~ |a -T)
<4 =g + 1= |a, - a]H.
Hence
1= |z.g[ _40 =gl + 1~ la - )

17z al (%)zll—ak'ixl

©) @@ U~ o g
4|1 —a - g

, q.e.d.

More Remarks. — 5) The interpolation problem is invariant under
automorphisms of the ball. Condition (U) is not. An optimal (but
not very practical) statement of the theorem would be: if there exists
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Y € Aut(B) such that {Y(L)},cg, satisfies (B) and (U), then
{L,.} ez, is an interpolating sequence.

It is natural to ask whether the theorem can be proved if one
substitutes for - (U) the weaker, invariant requirement that the
hyperplanes L; be separated in the metric dy . Unfortunately,
it seems to require some new idea, since U, is precisely the region
where |¢al.(z) . E,I is small.

6) Amar [1] has put to use (essentially) the same infinite

product P(z) = 1I ¢"/(z) +a; to prove similar results; specifically,
€zy "

if f;€H”,f€BMOA is obtained, and if f; verify:
) ¥ -4 fL,-lfilp dn,,_, <o
+

je 2
where p 2 1, and d\,,_, is 2n — 2-dimensional Lebesgue measure
on L;, then f€HP(B") is obtained.

This is done by solving a certain 0 problem, namely, if g is a
C™ solution to the interpolation problem, let f=g + uP with
ou = — (1/P) dg. One then needs:

(US)36,,86, >0 suchthat Vvz€U(5,), II |¢a’.(z) . E,-] =96,.
Jii+k
Clearly, (US) == (B), and by Remark 5, (US)= (U) (cf.

[1], lemma 2.1). Applying (US) to z =g, , one see that it implies
in fact

v =la T = lal?
® viez,, ¥ 4 Tla%-g |)£12 49 ¢ .
jii ke [1—a - a

With the help of lemmas 1 and 2, one can show that (U) and
(P) « (US).

Under those assumptions, one can use Berndtsson’s L™ solution
to the 9 equation [2] to obtain an interpolating f€ H™, but one has
to require a further condition involving ‘‘Cl measures” (see [2]),
which is also more restrictive than (B), and not equivalent to (P).
It gives rise to unwieldy computation, even fqr n=2.

But we are now in a position to strengthen Amar’s results;
Theorem 1 implies that under (US), bounded data can be interpolated
by a bounded function, and we have :
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THEOREM 2. — If {Li}xcz, verifies (U) and (B), and {f;}
verifies (HP), then there exists f € HP (B) such that

fly =h,VEkEZL (1<p<ew).

Note that, since Y, (1 — |a.|?) f’-k «d\,,_, is a Carleson
k
measure in B", condition (H?) must be verified if there is an

interpolating function f.

Theorem 2 is a consequence of :

LEMMA 4. — If there are P. Beurling functions for a sequence
of hyperplanes {L,}, then it is HP -interpolating.

This implies in particular that any H” -interpolating sequence
will be HP-interpolating, since one can show it will necessarily have
P. Beurling functions (follow Varopoulos’ proof [9] or [5], p. 298).

Proof of lemmad.— Let f(z)= 2 fk(z) E, (z), where

kEZ 4
E, are the P. Beurling functions and f;ILk = fr-

Let S=0B", do = 2n — 1-dimensionnal Lebesgue measure
on S

[ 1rrdo =j; , ;f;Ekl”do
<[ (ZIAF)(2 1) ao

<c X L'f;clpda, (where 1/p + 1/qg = 1).
k

It is enough to show that, for an appropriate choice of f;, the last
series is convergent (which will retroactively prove that the integrals
we wrote down were making sense).

Let f,(@) = (1= |a[*/1 =z - G)* i@ filu, = T lu -
fk drops off more rapidly away from L.

[li@P do) = f( el Y e p o g0 Qo 0@ dota)

l—z°akl
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where ¢ = [ Q=Q¢k. Since ¢(S) =S, we make the change
of variable w = ¢(z), to get

L1filPdo= [ [1=w -G |fPop0Qw) I,w) dow)
where Jd,(w) is the real Jacobianof ¢ |, at w.

The Jacobian matrix of ¢ as a map from B” to B” can be
computed with no difficulty (e.g. in the case @, = (0,a)) and the
real Jacobian of ¢ asa map from B” to B" is

(1 — IakIZ)n+1/ll —w. a_k|2(n+l) .

Apw) [\t (1 —|a )" *!
J =
|¢(W)| ( aIWI) Il_w.Eklz(nH)
e L el Y
[1—w.g? |1 —w.g |V
(1—|ak|2)n

So
Llfklp de =(1— |ak|2)nj; [1=w.g|"¢~D |fclP o ¢ 0 Qw)da(w)
<PV~ |ary [ 15Po ¢ o Qo) dow)

=277 (1 - Iaklz)n./;(o) £l o 6" dAyu (W),

where d\,,_; is 2n — 2-dimensional Lebesgue measure on
R(Q), because lfk [Po¢poQ is a function depending on n — 1
variables only. Notice that

ba R(Q) =B"71(0,1) — L, =B"'(0,(1 — ¢, )"

is given by ¢ak(z) =a, — sakz(z - @, = 0!) sothat ¢ simply induces
a dilation with ratio (1 — |a,[*)Y? and

/I;(Qk)lfk lp ° ¢(WI) d7\2(n—— 1) (W')
= A= [a Py [ 1P 00" Ay ),

hence [ |fyP do<Cn,p)(1 = |a, | ka |feP dX1y, which
by (HP) is a term in a convergent series, q.e.d.
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7)In the other direction (finding necessary conditions), the
“trivial” result cannot be improved.

Namely, if {L;} is an interpolating sequences of hyperplanes,
then {a;} is an interpolating sequence of points, so they must satisfy
Varopoulos’s necessary condition (cf. [10]):

— 2 — 2\ \n
v ¥ Tlha-iapy

j€Z 4 |1—q -3

where C is a constant (independent of k).
On the other hand, using the fact that U L, must be a zero-set
JjEZ 4+
for an H™ function, and Skoda’s Blaschke condition for the
Nevanlinna class [8] (which cannot be quantitatively improved for
H™ , cf. Hakim & Sibony [6], or again [3]), we find:
S) Y (—|gp) <cC.
JEZ 4+
(S) is a consequence of (V) (which is the invariant version of (S)).
No stronger condition of the same type can be substituted for (S)
without some geometrical requirement (e.g all L; are parallel!),
as shown by :

ProroSITION 2. — For all n=1, for all € > 0, there is an
interpolating sequence of C-hyperplanes, {L,},Ez + in B" such that

6) L (1—|g)™ =+,

JEZ 4

Proof —We shall use as “‘centers” of the hyperplanes L; the
points a; given by Berndtsson ([3], Theorem 4) which satisfy (6)
(refer to [3] for the precise details of the construction).

Berndtsson shows that there are ‘‘pseudo P. Beurling functions”,
F,€H” (B") satisfying (i) and:

aGi)" Fi(a) = 1
Since in fact
1— g (**!

6 =(7=2"5)

we have (ii) since FiILi =1,
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LEMMA 5. — With Berndtsson’s choice of a;, we also have :
(i) [Fz)| <=, z€L, J# k.

Proposition 2 then follows in the same way as Theorem 1 (with
c, = 1).

Proof of Lemma 5.—Recall that 1 — R <, are two
sequences of positive numbers, and that Berndtsson’s sequence is

indexed 4" ,m€Z,,1<j<C,

Il—a,'-'l -717,"|>100(1—Rm),]'$k,
and

|1 —a 7a| > 50 max(,, ,r,), m#n.

If ZELa;g"
1—z~71;"=1—|a;,"|2=1—R,2n.
For j# k,
21—z @ |1z @)= |1 —ar Ty |

$0

1
|1—2 .7;;;"|>5(100)(1 —R,)— (1—R2)>20(1 —R%),

so that
1

1
[Fop @< g <7

For Fag’" # m, things are even easier:
— | > 1 - = —_ — R2
|1 z-aklzzll a;"azl (1—R2)

50 2
= 2 max(r,,r,) — (1 —R;)

> 10(1 — R%), q.ed.
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