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Abstract. — Let E be a field of characteristic p. The group Z×
p acts on E((X)) by

a ·f(X) = f((1+X)a−1). This action extends to the X-adic completion Ẽ of ∪n > 0E((X1/pn)).
We show how to recover E((X)) from the valued E-vector space Ẽ endowed with its action of Z×

p .
To do this, we introduce the notion of super-Hölder vector in certain E-linear representations
of Zp. This is a characteristic p analogue of the notion of locally analytic vector in p-adic
Banach representations of p-adic Lie groups.
Résumé. — Soit E un corps de caractéristique p. Le groupe Z×

p agit sur E((X)) par a ·
f(X) = f((1 + X)a−1). Cette action s’étend à la complétion X-adique Ẽ de ∪n > 0E((X1/pn)).
Nous montrons comment récupérer E((X)) à partir du E-espace vectoriel valué Ẽ muni de
son action de Z×

p . Pour faire cela, nous introduisons la notion de vecteur super-Hölder dans
certaines représentations E-linéaires de Zp. Ceci est un analogue en caractéristique p de la
notion de vecteur localement analytique dans les représentations de groupes de Lie p-adiques
sur des Banach p-adiques.

2020 Mathematics Subject Classification: 11S80, 12J25, 13J05, 22E35.
DOI: https://doi.org/10.5802/ahl.150

https://annales.lebesgue.fr/
https://doi.org/10.5802/ahl.150


1262 L. BERGER & S. ROZENSZTAJN

Introduction

Let p be a prime number, and let E be a field of characteristic p. Let E = E((X)),
and let Ẽ be the X-adic completion of ∪n> 0E((X1/pn)). Note that if E is perfect,
the field Ẽ is perfectoid. The group Z×p acts on E by (a · f) (X) = f((1 +X)a − 1).
This action extends to ∪n> 0E((X1/pn)) by (a · f)(X1/pn) = f((1 +X1/pn)a − 1), and
by continuity to Ẽ. The question that motivated this paper is the following.
Question. — Can we recover ∪n> 0E((X1/pn)) or even E((X)) from the data of

the valued E-vector space Ẽ endowed with the action of Z×p ?

In characteristic zero, it is possible to answer an analogous question by using
Schneider and Teitelbaum’s theory of locally analytic vectors in p-adic Banach
representations of p-adic Lie groups. For characteristic p representations, there is
no such theory. One of the main contributions of this article is to introduce a
characteristic p analogue of locally analytic functions and vectors.
LetM be an E-vector space, endowed with a valuation valM such that valM(xm) =

valM(m) if x ∈ E×. We assume that M is separated and complete for the valM -adic
topology. For example, we will consider M = E or Ẽ with the X-adic valuation. We
say that a function f : Zp →M is super-Hölder if there exist constants λ, µ ∈ R such
that valM(f(x)−f(y)) > pλ·pi+µ whenever valp(x−y) > i, for all x, y ∈ Zp and i > 0.
These super-Hölder functions are the characteristic p analogue of locally analytic
functions Zp → Qp. We prove an analogue of Mahler’s theorem for continuous
functions f : Zp → M , and give a characterization of super-Hölder functions in
terms of their Mahler expansions. This is a characteristic p analogue of a theorem
of Amice.
Assume now that Γ is a group that is isomorphic to Zp via a coordinate map c,

and that M is endowed with an E-linear action of Γ by isometries. We say that
m ∈ M is a super-Hölder vector if the orbit map z 7→ c−1(z) ·m is a super-Hölder
function Zp → M . This definition is a characteristic p analogue of the notion of
locally analytic vector of a p-adic Banach representation of a p-adic Lie group. We
let MΓ-sh,λ denote the space of super-Hölder vectors for a given constant λ as in the
definition above. We also let M sh denote the set of super-Hölder vectors in M . Our
main result is a complete answer to the question above. Consider M = Ẽ, endowed
with the action of Γ = 1 + pkZp for k > 1 (or k > 2 if p = 2).

Theorem. — For all n > 0, we have Ẽ(1+pkZp)-sh,k−n = E((X1/pn)).
In particular, Ẽsh = ∪n> 0E((X1/pn)).
The main ingredients of the proof of this theorem are some simple computations

in E[[X]], as well as Colmez’ analogue of Tate traces for Ẽ.
We give several applications of our main result. First, we compute the perfectoid

commutant of Aut(Gm), namely the set of u ∈ ẼvalX > 0 such that u ◦ γa = γa ◦ u
for all a ∈ Z×p , where γa(X) = (1 +X)a − 1. Using our main theorem, and a result
of Lubin-Sarkis on the classical commutant of Aut(Gm), we prove that such a u
is of the form γb(Xpn) for some b ∈ Z×p and n ∈ Z. Next we study (ϕ,Γ)-modules
over E. We prove that the action of Γ on a (ϕ,Γ)-module D is always super-Hölder,
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and deduce that (Ẽ ⊗E D)sh = (∪n> 0E((X1/pn))) ⊗E D. This allows us to extend
our computation of super-Hölder vectors to the finite extensions of Fp((X)) provided
by Fontaine and Wintenberger’s theory of the field of norms. We finish this article
with a computation that suggests that the theory of super-Hölder vectors could have
some applications to the p-adic local Langlands correspondence.
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1. Super-Hölder functions and vectors

In this section, we define super-Hölder functions Zp →M and super-Hölder vectors
inM whenM is a representation of a group isomorphic to Zp. We prove an analogue
of Mahler’s theorem for continuous functions Zp →M , and give a characterization
of super-Hölder functions in terms of their Mahler expansions.

1.1. Super-Hölder functions

We keep the notation of the introduction. Let M be an E-vector space, endowed
with a valuation valM such that valM(xm) = valM(m) if x ∈ E×. We assume thatM
is separated and complete for the valM -adic topology. For example, we will consider
M = E[[X]] with the X-adic valuation.
Let C0(Zp,M) denote the space of continuous functions f : Zp →M .
Definition 1.1. — We say that f : Zp → M is super-Hölder if there exist

constants λ, µ ∈ R such that valM(f(x)−f(y)) > pλ ·pi+µ whenever valp(x−y) > i,
for all x, y ∈ Zp and i > 0.
We let Hλ,µ(Zp,M) denote the space of functions such that valM(f(x)− f(y)) >

pλ · pi + µ whenever valp(x− y) > i, for all x, y ∈ Zp and i > 0, and Hλ(Zp,M) =
∪µ∈RHλ,µ(Zp,M) and H(Zp,M) = ∪λ∈RHλ(Zp,M).
For example, if M = E[[X]] with valM = valX , then [a 7→ (1 +X)a] ∈ H0,0(Zp,M).

Indeed, (1 +X)a − (1 +X)a+pib = (1 +X)a(1− (1 +Xpi)b) ∈ Xpi
E[[X]] if i > 0.

Remark 1.2. — The space Hλ,µ(Zp,M) is closed in C0(Zp,M).
Remark 1.3. — If α : Zp → Zp is an isometry, then f : Zp → M belongs to
Hλ,µ(Zp,M) if and only if f ◦ α ∈ Hλ,µ(Zp,M)
Proposition 1.4. — Suppose thatM is a ring, and that valM(mm′) > valM(m)+

valM(m′) for all m,m′ ∈M . If c ∈ R, let Mc = MvalM > c.
(1) If f ∈ Hλ,µ(Zp,Mc) and g ∈ Hλ,ν(Zp,Md), and ξ = min(µ + d, ν + c), then

fg ∈ Hλ,ξ(Zp,Mc+d).
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(2) If λ, µ ∈ R, then Hλ,µ(Zp,M0) is a subring of C0(Zp,M).
(3) If λ ∈ R, then Hλ(Zp,M) is a subring of C0(Zp,M)
(4) If d > 1, we see GLd(M) as a subset of the valued E-vector space Md(M). If

λ, ν ∈ R and Q ∈ Hλ(Zp,GLd(M)) are such that valM(detQ(x)) 6 ν for all
x ∈ Zp, then Q−1 ∈ Hλ(Zp,GLd(M)).

Proof. — Items (2) and (3) follow from item (1), which we now prove. If x, y ∈ Zp,
then

(fg)(x)− (fg)(y) = (f(x)− f(y)) g(x) + (g(x)− g(y)) f(y),
which implies the claim. We now prove (4). If d = 1, then

Q−1(y)−Q−1(x) = Q(x)−Q(y)
Q(x)Q(y) ,

which implies the claim. If d > 1, we can write Q−1 = tco(Q) · det(Q)−1, and the
claim results from (3), and (4) applied to d = 1. �

Remark 1.5. — Take u ∈ X +X2E[[X]], and let u◦n be u composed with itself n
times. Sen’s theorem ([Sen69, Theorem 1]) implies that valX(u◦pk(X)−X) > pk if
k > 0, so that valX(u◦x − u◦y) > pi if valp(x − y) > i. This implies that the map
Z> 0 → X +X2E[[X]], given by n 7→ u◦n, extends to a super-Hölder function on Zp.

1.2. Super-Hölder vectors

We now assume thatM is endowed with an E-linear action by isometries of a group
Γ, where Γ is isomorphic to Zp, via a coordinate map c. If m ∈M , let orbm : Γ→M
denote the function defined by orbm(a) = a · m, so that orbm ◦c−1 is a function
Zp →M .

Definition 1.6. — Let MΓ-sh,λ,µ denote the set of m ∈M such that orbm ◦c−1 ∈
Hλ,µ(Zp,M), and let MΓ-sh,λ and MΓ-sh be the corresponding sub-E-vector spaces
of M .

This definition should be seen as a characteristic p analogue of the locally analytic
vectors of a Banach representation of a p-adic Lie group, as defined in [ST03, § 7].
The requirement that Γ acts by isometries is the analogue of the condition that the
norm be invariant.

Remark 1.7. — We assume that Γ acts by isometries on M , but not that Γ acts
continuously on M , namely that Γ ×M → M is continuous. However, let M cont

denote the set of m ∈M such that orbm ◦c−1 : Zp →M is continuous. It is easy to
see that M cont is a closed sub-E-vector space of M , and that Γ×M cont →M cont is
continuous (compare with [Eme17, § 3]). We then have M sh ⊂M cont.

Lemma 1.8. — We have m ∈MΓ-sh,λ,µ if and only if valM(g ·m−m) > pλ · pi +µ
for all g ∈ Γ such that c(g) ∈ piZp.

Proof. — Since Γ acts by isometries, we have valM(hg ·m−h ·m) = valM(g ·m−m)
for all g, h ∈ Γ. �
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Lemma 1.9. — The space MΓ-sh,λ,µ is a closed sub-E-vector space of M .

Lemma 1.10. — If k > 0 and Γ′ = c−1(pkZp), then g 7→ c(g)/pk is a coordinate
on Γ′, and MΓ-sh,λ = MΓ′-sh,λ+k.

Proof. — It is clear that MΓ-sh,λ ⊂MΓ′-sh,λ+k. Conversely, let C = {1, . . . , pk−1}.
If m ∈MΓ′-sh,λ+k,µ, let ν = minc(h)∈C valM(h ·m−m). If g ∈ Γ\Γ′, we can write g =
gkh with c(h) ∈ C and gk ∈ Γ′. We then have g·m−m = (gk ·h·m−gk ·m)+(gk ·m−m)
so that valM(g ·m−m) > min(µ, ν).
This implies that m ∈MΓ-sh,λ,µ′ with µ′ = min(µ, ν)− pk+λ. �

In particular, the space MΓ′-sh does not depend on the choice of open subgroup
Γ′ ⊂ Γ, and we denote it by M sh.

Proposition 1.11. — Suppose that M is a ring, and that g(mm′) = g(m)g(m′)
and valM(mm′) > valM(m) + valM(m′) for all m,m′ ∈M and g ∈ Γ.

(1) If v ∈ R and m,m′ ∈MΓ-sh,λ,µ ∩MvalM > v, then m ·m′ ∈MΓ-sh,λ,µ+v;
(2) If m ∈MΓ-sh,λ,µ ∩M×, then 1/m ∈MΓ-sh,λ,µ−2 valM (m).

Proof. — Item (1) follows from Proposition 1.4 and Lemma 1.8. Item (2) follows
from

g
( 1
m

)
− 1
m

= m− g(m)
g(m)m . �

Remark 1.12. — One can extend the definition of super-Hölder vectors to the
setting of a p-adic Lie group G acting by isometries on a valued E-vector spaceM as
follows (the details are in our paper Super-Hölder vectors and the field of norms). Let
P be a nice enough open pro-p subgroup of G. We say that m ∈M is super-Hölder
if and only if there exists λ, µ ∈ R and e > 0 such that valM(g ·m−m) > pλ+ei + µ

whenever g ∈ P pi , for all i > 0. Juan Esteban Rodríguez Camargo pointed out to
us that there is a similar purely metric characterization of locally analytic vectors
for a p-adic Lie group acting on a Banach space.

1.3. Mahler’s theorem

In this section, we prove a characteristic p analogue of Mahler’s theorem for
continuous functions Zp → Qp. We then give a characterization of super-Hölder
functions in terms of their Mahler expansions. If z ∈ Zp and n > 0, then

(
z
n

)
∈ Zp

and we still denote by
(
z
n

)
its image in Fp.

Theorem 1.13. — If {mn}n> 0 is a sequence ofM such thatmn → 0, the function
f : Zp →M given by f(z) = ∑

n> 0

(
z
n

)
mn belongs to C0(Zp,M). We have

mn = (−1)n
n∑
i=0

(−1)i
(
n

i

)
f(i) and inf

z ∈Zp

valM(f(z)) = inf
n> 0

valM(mn).

Conversely, if f ∈ C0(Zp,M), there exists a unique sequence {mn(f)}n> 0 such
that mn(f)→ 0 and such that f(z) = ∑

n> 0

(
z
n

)
mn(f).
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Proof. — Our proof follows Bojanic’s proof (cf [Boj74]) of Mahler’s theorem. The
first part of the theorem is easy: f is continuous since it is a uniform limit of con-
tinuous functions, and if f(z) = ∑

n> 0

(
z
n

)
mn, then valM(f(z)) > infn> 0 valM(mn).

The fact that
mn = (−1)n

n∑
i=0

(−1)i
(
n

i

)
f(i)

is a classical exercise, given that f(k) = ∑k
j=0

(
k
j

)
mj for all k > 0, and it implies

that valM(mn) > infz ∈Zp valM(f(z)) for all n. In order to show the converse, it is
enough to show that if f is continuous and

mn(f) = (−1)n
n∑
i=0

(−1)i
(
n

i

)
f(i),

then mn(f) → 0. Indeed, the functions f and z 7→ ∑
n>0

(
z
n

)
mn(f) are then two

continuous functions on Zp with the same values on Z>0, so that they are equal.
We now show that mn(f)→ 0. If s > 0, there exists t such that if valp(x− y) > t

then valM(f(x) − f(y)) > s, as f is uniformly continuous. Take n > pt and write
n = qpt + r with 0 6 r < pt and q > 1. Writing i = a+ jpt, we get

mn(f) =
pt−1∑
a=0

q∑
j=0

(−1)n+a+jpt

(
n

a+ jpt

)
f
(
a+ jpt

)
.

As we are in characteristic p, Lucas’ theorem implies that
(

n
a+jpt

)
=
(
r
a

)(
q
j

)
, so that:

mn(f) =
pt−1∑
a=0

(−1)n+a
(
r

a

) q∑
j=0

(−1)j
(
q

j

)
f
(
a+ jpt

) .
As (∑q

j=0(−1)j
(
q
j

)
) · f(a) = 0, and valM(f(a+ jpt)− f(a)) > s for all j, we get that

valM(mn(f)) > s if n > pt. �

We now give a characterization of super-Hölder functions in terms of their Mahler
expansions.

Proposition 1.14. — If f ∈ C0(Zp,M), then f ∈ Hλ,µ(Zp,M) if and only if for
all i > 0, we have valM(mn(f)) > pλ · pi + µ whenever n > pi.

Proof. — Take f ∈ C0(Zp,M) such that valM(mn(f)) > pλ · pi + µ whenever
n > pi. Recall that if a ∈ Zp and i > 1, then for all j < pi we have

(
a
j

)
=
(
a+pi

j

)
in

Fp. If z ∈ Zp and i > 1, then

f
(
z + pi

)
− f(z) =

∑
n> 0

mn(f)
((

z + pi

n

)
−
(
z

n

))

=
∑
n> pi

mn(f)
((

z + pi

n

)
−
(
z

n

))
.

Since valM(mn(f)) > pλ · pi + µ whenever n > pi, the formula above implies that
valM(f(x+pi)−f(x)) > pλ ·pi+µ. Iterating this, we get that valM(f(x+kpi)−f(x))

ANNALES HENRI LEBESGUE



Decompletion of cyclotomic perfectoid fields in positive characteristic 1267

> pλ · pi + µ for all k ∈ Z> 0. By continuity, this implies that valM(f(y)− f(x)) >
pλ · pi + µ for all x, y ∈ Zp such that valp(y − x) > i.
Assume now that f ∈ Hλ,µ(Zp,M). We prove that for all i > 0 and n > pi, we have

valM(mn(f)) > pλ · pi + µ. Fix i > 0 and take a ∈ {0, . . . , pi − 1}. Define a function
g on Zp by g(z) = f(a+ piz)− f(a). By hypothesis, we have valM(g(z)) > pλ · pi +µ
for all z. This implies that valM(mn(g)) > pλ · pi + µ for all n. We now compute
mn(g). We have

g(z) =
∑
n> 0

((
a+ piz

n

)
−
(
a

n

))
mn(f)

=
∑
n> pi

((
a+ piz

n

)
−
(
a

n

))
mn(f) =

∑
n> pi

(
a+ piz

n

)
mn(f),

since a 6 pi − 1. If we write n = t + pi`, with 0 6 t 6 pi − 1 and ` > 1, then(
a+piz
n

)
=
(
a
t

)(
z
`

)
. This implies that

g(z) =
pi−1∑
t=0

∑
`> 1

(
a

t

)(
z

`

)
mt+pi`(f),

which gives m`(g) = ∑pi−1
t=0

(
a
t

)
mt+pi`(f) for all ` > 1. This now implies that

valM

pi−1∑
t=0

(
a

t

)
mt+pi`(f)

 > pλ · pi + µ

for all ` > 1 and a ∈ {0, . . . , pi − 1}. The matrix (
(
a
t

)
)06 a,t6 pi−1 is unipotent

with integral coefficients. Hence for a given ` > 1, the above inequality implies that
valM(ma+pi`(f)) > pλ ·pi+µ for all a ∈ {0, . . . , pi−1}. Writing n > pi as n = a+pi`,
we get valM(mn(f)) > pλ · pi + µ for all n > pi. �

Remark 1.15. — Let Wλ,µ(Zp,M) denote the set of f ∈ C0(Zp,M) such that
valM(mn(f)) > pλn+ µ for all n > 0.
Proposition 1.14 implies that Wλ,µ(Zp,M) ⊂ Hλ,µ(Zp,M) ⊂ Wλ−1,µ(Zp,M).

Proposition 1.14 and Remark 1.15 strengthen the analogy between our definition of
super-Hölder functions and the classical theory of locally analytic functions. Indeed,
if f : Zp → Qp is a continuous function, and if f(z) = ∑

n> 0

(
z
n

)
mn(f) is its Mahler

expansion, then by a result of Amice ([Ami64], see [Col10, Corollary I.4.8]), f is
locally analytic if and only if there exists λ, µ ∈ R such that valp(mn(f)) > pλ ·n+µ
for all n > 0.

Remark 1.16. — Daniel Gulotta pointed out to us that Gulotta (in [Gul19, § 3]),
as well as Johansson and Newton (in [JN19, § 3.2]), had defined a generalization of
locally analytic functions, for functions valued in certain general Tate Zp-algebra.
When p = 0 in the algebra, their definition is equivalent to our definition of super-
Hölder functions.
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2. Decompletion of cyclotomic perfectoid fields
Let E+ = E[[X]]. For n > 0, let E+

n = E[[X1/pn ]], so that E+ = E+
0 . Let E+

∞ =
∪n> 0 E+

n and let Ẽ+ be the X-adic completion of E+
∞. We denote by E, En, E∞, Ẽ

the fields E+[1/X], E+
n [1/X], E+

∞[1/X], Ẽ+[1/X] respectively. The ring Ẽ+ is the
ring of integers of the field Ẽ = Ẽ+[1/X]. If E is perfect, then Ẽ is perfectoid.

2.1. The action of Z×p

The group Z×p acts continuously by isometries on each E+
n by the formula a·X1/pn =

(1 +X1/pn)a − 1. This action is compatible when n varies, extends to the fields En,
and extends by continuity to Ẽ+ and Ẽ.

Remark 2.1. — If E = Fp, then Ẽ is the tilt of Q̂p(µp∞) (see § 3.3 for more
details). The group Γ = Gal(Qp(µp∞)/Qp) is isomorphic to Z×p via the cyclotomic
character χcyc, and acts on Ẽ by g(f) = χcyc(g) · f .
If k > 1 (or k > 2 if p = 2), let Γk = 1 + pkZp. The natural coordinate on Γk is

given by 1 + pka 7→ logp(1 + pka)/pk. It differs from the coordinate 1 + pka 7→ a
(which is not a group homomorphism) by an isometry. By Remark 1.3, the definition
of (Ẽ+)Γk-sh,λ,µ does not depend on the choice of one of those coordinates, and we
use 1 + pka 7→ a.
Proposition 2.2. — We have E+

n = (E+
n )Γk-sh,k−n,0.

Proof. — We have (1 +X1/pn)1+pk+ib = (1 +X1/pn) · (1 +Xpk+i−n)b, so that

valX
((

1 +X1/pn
)1+pk+ib

−
(
1 +X1/pn

))
> pk−n · pi.

This implies that X1/pn ∈ (E+
n )Γk-sh,k−n,0. The claim now follows from Proposi-

tion 1.11 and Lemma 1.9. �
Taking n = 0 in Proposition 2.2, we find that E[[X]] = E[[X]]Γk-sh,k. Let E =

E+[1/X].
Corollary 2.3. — We have E = EΓk-sh,k.
Proof. — This follows from Propositions 2.2 and 1.11. �

Proposition 2.4. — If ε > 0, then E[[X]]Γk-sh,k+ε ⊂ E[[Xp]].
Proof. — Take f(X) ∈ E[[X]]. There is a power series h(Y, Z) ∈ E[[Y, Z]] such that

f(Y + Z) = f(Y ) + Z · f ′(Y ) + Z2 · h(Y, Z).
If m > 0, this implies that

f
(
(1 +X)1+pm − 1

)
= f

(
X +Xpm(1 +X)

)
= f(X) +Xpm(1 +X) · f ′(X) + O

(
X2pm

)
.

If f(X) /∈ E[[Xp]], then f ′(X) 6= 0. Let µ = valX(f ′(X)). The above computations
imply that valX((1 + pi+k) · f(X) − f(X)) = pi+k + µ for i � 0. This implies the
claim. �
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Corollary 2.5. — We have (E+
∞)Γk-sh,k−n = E+

n .

Proof. — Take f(X1/pm) ∈ (E+
∞)Γk-sh,k−n where f(X) ∈ E[[X]]. Since valX(hp) =

p · valX(h) for all h ∈ Ẽ+, we have fpm(X) ∈ (E+
∞)Γk-sh,k+m−n, where fpm(X) ∈

E[[X]] is fpm(X) = f(X1/pm)pm . If m > n + 1, then Proposition 2.4 implies that
fp

m(X) ∈ E[[Xp]], so that f(X) = g(Xp), and f(X1/pm) = g(X1/pm−1). This implies
the claim. �

2.2. Tate traces

We recall some constructions of Colmez (see [Col08, § 8.2]). For m > 0 let Im =
p−mZ ∩ [0, 1), and let I = ∪mIm. Note that if i ∈ Im, then (1 +X)i ∈ E+

m.

Lemma 2.6. — The elements (1 +X)i, i ∈ Im, form a basis of E+
m over E+

0 .

Proof. — See [Col08, Lemma 8.2]. Colmez works with E = Fp, but the proofs are
the same with arbitrary coefficients. �

Proposition 2.7. — Any f ∈ Ẽ+ can be written uniquely as ∑i∈ I(1+X)iai(f),
with ai(f) ∈ E+

0 , and ai(f) → 0. Moreover, valX(f) − 1 < infi∈ I valX(ai(f))
6 valX(f).

Proof. — See [Col08, Props 4.10 and 8.3]. �

In particular, for all i ∈ I, the map Ẽ+ → E+
0 , given by f 7→ ai(f) is continuous.

Proposition 2.8. — There exists a family {Tn}n> 0 of continuous maps Tn :
Ẽ+ → E+

n satisfying the following properties:
(1) The restriction of Tn to E+

n is the identity map.
(2) We have Tn(f)→ f as n→ +∞.
(3) We have valX(Tn(f)) > valX(f)− 1 for all n.
(4) Each Tn is Z×p -equivariant.

Proof. — If f = ∑
i∈ I(1 + X)iai(f), let Tn(f) = ∑

i∈ In
(1 + X)iai(f). With this

definition, the first property is immediate. The second and third one follow from
Proposition 2.7.
For the last one, observe that if i ∈ I and g ∈ Z×p , then g · (1 + X)i = (1 + X)ig

so g · (1 + X)i can be written uniquely as (1 + X)σg(i)ui,g(X) with σg(i) ∈ I and
ui,g(X) ∈ E+

0 . The map σg induces a bijection from Im to itself for all m. Take
f ∈ Ẽ+, and write f = ∑

i∈ I(1 +X)iai(f). We have

g · f =
∑
i∈ I

(1 +X)σg(i)ui,g(X)(g · ai(f)),

so that

Tn(g · f) =
∑
i∈ In

(1 +X)σg(i)ui,g(X)(g · ai(f)) = g · Tn(f). �

TOME 5 (2022)



1270 L. BERGER & S. ROZENSZTAJN

2.3. Decompletion of Ẽ

We now prove that Ẽsh = E∞. More precisely, we have the following result.
Theorem 2.9. — We have ẼΓk-sh,k−m = Em for all m > 0, and Ẽsh = E∞.
Proposition 2.10. — If f ∈ (Ẽ+)Γk-sh,λ,µ, then Tn(f) ∈ (E+

n )Γk-sh,λ,µ−1.
Proof. — If g ∈ Γk, then g(Tn(f))− Tn(f) = Tn(g(f)− f) so that

valX (g(Tn(f))− Tn(f)) = valX (Tn(g(f)− f)) > valX(g(f)− f)− 1
by Proposition 2.8. This implies the claim. �

Proof of Theorem 2.9. — Take f ∈ (Ẽ+)Γk-sh,k−m. By Proposition 2.10, we have
Tn(f) ∈ (E+

n )Γk-sh,k−m for all n > 0. By Corollary 2.5, Tn(f) ∈ E+
m for all n. Since

Tn(f)→ f as n→ +∞, we have f ∈ E+
m.

Hence (Ẽ+)Γk-sh,k−m = E+
m, and this implies the theorem by Proposition 1.11. �

3. Applications

We now give several applications of the fact that Ẽsh = E∞.

3.1. The perfectoid commutant of Aut(Gm)

In this section, we assume that E = Fp. If a ∈ Z×p , let γa(X) = (1+X)a−1 ∈ Fp[[X]].
Note that if f ∈ Ẽ, then a · f = f ◦ γa. If u ∈ Ẽ+ is such that valX(u) > 0, the
series γa ◦ u converges in Ẽ+. If u = γb(Xpn) for some b ∈ Z×p and n ∈ Z, then
u ◦ γa = γa ◦ u for all a ∈ Z×p .

Theorem 3.1. — If u ∈ Ẽ+ is such that valX(u) > 0 and u ◦ γa = γa ◦ u for all
a ∈ Z×p , then there exists b ∈ Z×p and n ∈ Z such that u(X) = γb(Xpn).
Recall that a power series f(X) ∈ Fp[[X]] is separable if f ′(X) 6= 0. If f(X) ∈

X · Fp[[X]], we say that f is invertible if f ′(0) ∈ F×p , which is equivalent to f
being invertible for composition (denoted by ◦). We say that w(X) ∈ X · Fp[[X]] is
nontorsion if w◦n(X) 6= X for all n > 1. The following is a reformulation of [Lub94,
Lemma 6.2].
Lemma 3.2. — Let w(X) ∈ X + X2 · Fp[[X]] be an invertible nontorsion series,

and let f(X) ∈ X · Fp[[X]] be a separable power series. If w ◦ f = f ◦ w, then f is
invertible.
Lemma 3.3. — If u ∈ Ẽ+ is such that valX(u) > 0 and u ◦ γa = γa ◦ u for all

a ∈ Z×p , then u ∈ (Ẽ+)sh.

Proof. — The group Z×p acts on Ẽ+ by a · u = u ◦ γa, so we need to check that the
function a 7→ γa ◦ u is super-Hölder. This is clear since

γa(u) =
∑
n> 1

(
a

n

)
un and valX(u) > 0. �
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Proof of Theorem 3.1. — Take u ∈ Ẽ+ such that valX(u) > 0 and u ◦ γa = γa ◦ u
for all a ∈ Z×p . By Lemma 3.3 and Theorem 2.9, there exists m > 0 such that u ∈ E+

m.
Hence there is an n ∈ Z such that f(X) = u(X1/pn) belongs to X · Fp[[X]] and is
separable. Take g ∈ 1 + pZp such that g is nontorsion, and let w(X) = γg(X) so that
u ◦ w = w ◦ u. We also have f ◦ w = w ◦ f . By Lemma 3.2, f is invertible. Since
f ◦ γa = γa ◦ f for all a ∈ Z×p , [LS07, Theorem 6] implies that f ∈ Aut(Gm). Hence
there exists b ∈ Z×p such that f(X) = γb(X). This implies the theorem. �

3.2. Decompletion of (ϕ,Γ)-modules

Let Γk = 1 + pkZp with k > 1, as in § 2.1. Let M be a finite-dimensional E-vector
space with a continuous semi-linear action of Γk.
Proposition 3.4. — There is an E+-lattice in M that is stable under Γk.
Proof. — Choose any lattice M+

0 of M . The map π : Γk ×M →M is continuous,
so there is an open subgroup H of Γk and an n > 0 such that π−1(M+

0 ) contains
H × XnM+

0 . In particular, h(m) ∈ X−nM+
0 for all h ∈ H and m ∈ M+

0 . Since H
is open in the compact group Γk, it is of finite index, and there exists d > n such
that g(m) ⊂ X−dM+

0 for all g ∈ Γk and m ∈ M+
0 . The space M+ = ∑

g ∈Γk
g(M+

0 )
is an E+-module such that M+

0 ⊂M+ ⊂ X−dM+
0 , so that M+ is a lattice of M . It

is clearly stable under Γk. �
Choosing such an E+-lattice in M defines a valuation valM on M , such that Γk

acts on M by isometries. We make such a choice, and we can therefore define M sh

and MΓk-sh,λ as in Definition 1.6. We say that the action of Γk on M is super-Hölder
if M = M sh.
Lemma 3.5. — The space MΓk-sh,λ does not depend on the choice of Γk-stable

lattice of M . If λ 6 k then MΓk-sh,λ is sub-E-vector space of M .
Proof. — The first assertion results from the fact that if we choose two E+-lattices

M+
1 and M+

2 in M , then there exists a constant C such that |val1− val2| 6 C.
Next, recall that by Corollary 2.3, E = EΓk-sh,k. If m ∈ M sh,λ, f ∈ E, and

g ∈ Γk, then g(fm)− fm = g(f)(g(m)−m) + (g(f)− f)m, so that fm ∈M sh,λ by
Lemma 1.8. �
Lemma 3.5 implies that M sh is a sub-E-vector space of M . We say that a basis of

M is good if it generates a lattice that is stable under Γk.
Proposition 3.6. — Take λ 6 k and fix a good basis of M . We have M =

MΓk-sh,λ if and only if the map Γk → Mn(E+), given by g 7→ Mat(g), is in
Hλ(Γk,Mn(E+)).
Proof. — We fix a good basis (m1, . . . , mn) ofM , and work with the corresponding

valuation valM on M . By Lemma 3.5, we have M = MΓk-sh,λ if and only if mj ∈
MΓk-sh,λ for all j. We have g ·mj = ∑n

i=1 Mat(g)i,jmi by definition of Mat(g). Hence
if g, h ∈ Γk, then g · mj − h · mj = ∑n

i=1(Mat(g)i,j − Mat(h)i,j)mi. This implies
that if ` > 0 and µ ∈ R, then valM(g · mj − h · mj) > pλ+` + µ if and only if
valX(Mat(g)−Mat(h)) > pλ+` + µ. This implies the claim. �
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If M is a finite-dimensional E-vector space with a semi-linear action of Γk, then
Ẽ⊗E M is a finite-dimensional Ẽ-vector space with a semi-linear action of Γk. If M
is super-Hölder, there exists m0 = m0(M) > 0 such that M = MΓk-sh,k−m0

Proposition 3.7. — If M is super-Hölder and m > m0(M), then we have
(Ẽ⊗E M)Γk-sh,k−m = Em ⊗E M .

Proof. — By the same argument as in the proof of Lemma 3.5, we see that for
m > m0, (Ẽ⊗E M)Γk-sh,k−m is a sub-Em-vector space of Ẽ⊗E M . The space (Ẽ⊗E
M)Γk-sh,k−m contains M , and therefore also Em ⊗E M . This proves one inclusion.
We now prove that (Ẽ⊗EM)Γk-sh,k−m ⊂ Em⊗EM . Fix a good basis (m1, . . . , mn)

of M , the corresponding valuation valM on Ẽ ⊗E M , and m > m0. Take x =∑n
i=1 ximi ∈ Ẽ⊗EM and write g(x) = ∑n

i=1 fi(g)mi. We have x ∈ (Ẽ⊗EM)Γk-sh,k−m

if and only if fi ∈ Hk−m(Γk, Ẽ) for all i. In addition, g(x) = ∑
i,j g(xi) Mat(g)j,imj.

Hence fj : g 7→ ∑n
i=1 g(xi) Mat(g)j,i belongs toHk−m(Γk, Ẽ) for all j. We have g(x`) =∑n

j=1 fj(g)(Mat(g)−1)`,j. By Propositions 3.6 and 1.4, [g 7→ g(x`)] ∈ Hk−m(Γk, Ẽ)
and therefore x` ∈ ẼΓk-sh,k−m = Em for all `. �

Corollary 3.8. — If M is super-Hölder, then (Ẽ⊗E M)sh = E∞ ⊗E M .

The field E = E((X)) is equipped with its action of Z×p and with the E-linear
Frobenius map ϕ given by ϕ(f)(X) = f(Xp). Let Γ = Γk with k > 1. A (ϕ,Γ)-
module D over E is a finite-dimensional E-vector space, endowed with commuting,
semi-linear actions of ϕ and Γ, such that the action of Γ is continuous and such that
Mat(ϕ) is invertible (in any basis of D).

Proposition 3.9. — If D is a (ϕ,Γ)-module over E, then D = DΓk-sh,k.

Lemma 3.10. — If ` > 1 and λ, µ ∈ R, then Hλ,µ(Γ`,Mn(E+)) is a ring, that is
stable under ϕ.

Proof. — The first claim follows from Proposition 1.4. The second one follows from
the fact that if M ∈ Mn(E+), then valX(ϕ(M)) > valX(M). �

Proof of Proposition 3.9. — Choose a good basis (d1, . . . , dn) of D. We can replace
(d1, . . . , dn) by (Xsd1, . . . , X

sdn) for some s > 0, and assume that P = Mat(ϕ) ∈
Mn(E+). Take r > 1 such that XrP−1 ∈ X Mn(E+). Let Gg be the matrix of g ∈ Γ.
By continuity of the map Γ → GLn(E+), g 7→ Gg, there exists ` > k such that for
all g ∈ Γ`, we have valX(Gg − Id) > r. Write Gg = Id +XrHg with Hg ∈ Mn(E+).
By definition of r, we have Xrg(P )−1 ∈ X Mn(E+), so that if Qg = Xr(p−1)g(P )−1,

then Qg ∈ X Mn(E+). The commutation relation between ϕ and Γ` gives Pϕ(Gg)
= Ggg(P ) for all g ∈ Γ`. Therefore, Pϕ(Id +XrHg) = (Id +XrHg)g(P ), so that

Pg(P )−1 − Id = Xr (Hg − Pϕ(Hg)Qg) .

This implies that Pg(P )−1 − Id ∈ Xr Mn(E+). Let

f(g) = Hg − Pϕ(Hg)Qg = X−r
(
Pg(P )−1 − Id

)
.
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Recall that Qg, f(g) ∈ Mn(E+) for all g ∈ Γ`, and that (compare with Proposi-
tion 1.4(4))

Qg = Xr(p−1)g(P )−1 = Xr(p−1)g(tco(P ))g
(
det(P )−1

)
and

f(g) = X−r
(
Pg(tco(P ))g

(
det(P )−1

)
− Id

)
.

By Propositions 1.11 and 2.2, and Lemma 3.10, there exists µ ∈ R such that g 7→ Qg

and g 7→ f(g) belong to H`,µ(Γ`,Mn(E+)).
Let f0 = f and for i > 1, let fi : Γ` → Mn(E+) be the function

g 7→ Pϕ(P ) · · ·ϕi−1(P ) · ϕi(f(g)) · ϕi−1(Qg) · · ·ϕ(Qg)Qg.

Since P ∈ Mn(E+), Lemma 3.10 implies that fi ∈ H`,µ(Γ`,Mn(E+)). In addition,
valX(Qg) > 1, so that valX(ϕi−1(Qg) · · ·ϕ(Qg)Qg) > (pi− 1)/(p− 1). Hence ∑i> 0 fi
converges in H`,µ(Γ`,Mn(E+)), and we let T (f) be its limit.
We have T (f)(g) = Hg. This implies that g 7→ Hg belongs to H`,µ(Γ`,Mn(E+)),

and hence so does g 7→ Gg = Id +XrHg.
We therefore have D = DΓ`-sh,`, so that D = DΓk-sh,k by Lemma 1.10. �

Corollary 3.11. — If D is a (ϕ,Γ)-module over E, then (Ẽ⊗E D)Γk-sh,k−m =
Em ⊗E D for m > 0.

We now prove the following result, which generalizes Proposition 3.9. Note that
the underlying constants are not as good as in the case of a (ϕ,Γ)-module.

Proposition 3.12. — If M is a finite-dimensional E-vector space with a contin-
uous semi-linear action of Γk, then M = M sh.

Proof. — Choose a good basis of M . Let f(g) denote the matrix of g ∈ Γ in this
basis. If ` > 1, there exists k > ` + 1 such that f(g) ∈ Id +Xp` Mn(E+) for all
g ∈ 1 + pkZp. Write f(g) = Id +Xp`

H. The cocycle formula gives

f(gp) =
(
Id +Xp`

H
) (

Id +g
(
Xp`

H
))
· · ·

(
Id +gp−1

(
Xp`

H
))
.

Proposition 2.2, with n = 0, implies that gm(Xp`
H) ≡ Xp`

H mod Xpk for all
0 6 m 6 p − 1. Hence f(gp) ≡ (Id +Xp`

H)p mod Xpk . This implies that f(gp) ≡
Id +Xp`+1

Hp mod Xpk so that f(gp) = Id modXp`+1 since k > `+ 1.
Since (1 + pkZp)p = 1 + pk+1Zp, the above computation implies by induction on i

that f(1 + pk+iZp) ⊂ Id +Xp`+i Mn(E+) for all i > 0.
This implies that M = MΓk-sh,`,0 by Lemma 1.8. �

Corollary 3.13. — Let N be an E-vector space, with a compatible valuation
and a semi-linear action of Γk by isometries. Let Nfin denote the set of x ∈ N
that belong to a finite dimensional E-vector space stable under Γk, in analogy with
classical Sen theory.
Proposition 3.12 implies that Nfin ⊂ N sh. In particular, if N = Ẽ, then Ẽfin =

Ẽsh = E∞.
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3.3. The field of norms

Let K be a finite extension of Qp. Let Kn = K(µpn) and let K∞ = ∪n> 0Kn. The
field of norms of the extension K(µp∞)/K is defined and studied in [Win83]. It is
the set of sequences {xn}n> 0 where xn ∈ Kn and NKn+1/Kn(xn+1) = xn for all n > 0.
This set has a natural structure of a field of characteristic p whose residue field is
that of K∞ (§ 2.1 of ibid), which we denote by EK . If K = Qp, then EQp = Fp((X)),
where X = {xn}n> 0 with xn = 1 − ζpn for n > 1. When K is a finite extension of
Qp, EK is a finite separable extension of EQp of degree [K∞ : (Qp)∞] (§ 3.1 of ibid).
Let ΓK = Gal(K∞/K), so that ΓK is isomorphic to an open subgroup of Z×p via

the cyclotomic character χcyc. The group ΓK acts naturally on EK , and if g ∈ ΓK ,
then g(X) = (1 + X)χcyc(g) − 1. Let ϕ : EK → EK denote the map y 7→ yp. Let
ẼK denote the X-adic completion of ∪n> 0ϕ

−n(EK). In particular, ẼQp = Ẽ in the
notation of § 2, and ẼK is the tilt of K̂∞ (§ 4.3 of ibid and [Sch12, § 3]).

Lemma 3.14. — We have ϕ−n(EK) = En ⊗E EK for all n, and ẼK = Ẽ⊗E EK .
Proof. — The extensions En/E and EK/E are linearly disjoint since the first is

purely inseparable and the second is separable. By comparing degrees, we get the
first claim. It implies that Ẽ⊗E EK → ẼK is surjective, and the second claim follows,
since [ẼK : Ẽ] = [EK : E] = [K∞ : (Qp)∞]. �

Corollary 3.15. — We have Ẽsh
K = ∪n> 0ϕ

−n(EK).
Proof. — This follows from Lemma 3.14 and Corollary 3.11, as EK is a (ϕ,ΓK)-

module over E, and ∪n> 0ϕ
−n(EK) = E∞ ⊗E EK . �

Remark 3.16. — In characteristic zero, K̂∞ is a p-adic Banach representation of
ΓK , and by [BC16, Theorem 3.2], K∞ is the space K̂ la

∞ of locally analytic vectors
in K̂∞.

3.4. The p-adic local Langlands correspondence

We now prove a result that suggests that the theory of super-Hölder vectors could
have some applications to the p-adic local Langlands correspondence. In order to
avoid too many technicalities, we consider only the simplest example. Recall that if
f ∈ E+, there exist f0, . . . , fp−1 ∈ E+ such that f = ∑p−1

i=0 ϕ(fi)(1 +X)i. We define
ψ(f) = f0. The map ψ : E+ → E+ has the following properties: ψ(fϕ(h)) = hψ(f)
if f, h ∈ E+ and ψ ◦ g = g ◦ ψ if g ∈ Z×p .
Let M = lim←−ψ E+ be the set of sequences m = (m0,m1, . . .) with mi ∈ E+ and

ψ(mi+1) = mi for all i > 0. The space M is endowed with an action of Z×p given by
(g ·m)i = g ·mi and the structure of an E+-module given by (f(X)m)i = ϕi(f(X))mi.
Following Colmez, we could extend these structures to an action of the Borel subgroup
B2(Qp) of GL2(Qp) on M , and this idea is an important step in the construction of
the p-adic local Langlands correspondence. The representation M is then the dual
of most of the restriction to B2(Qp) of a parabolic induction. However, we don’t use
this here.
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Let valX be the X-adic valuation on M : valX(m) is the max of the n > 0 such
that m ∈ XnM . The space M is separated and complete for the X-adic topology,
although this is not the natural topology on M (the natural topology is induced by
the product topology lim←−ψ E+ ⊂ ∏E+. The action of Z×p on M is not continuous for
the X-adic topology: M 6= M cont in the notation of Remark 1.7).
We have an injection i : E+ →M , given by i(f) = (f, ϕ(f), ϕ2(f), . . .).

Proposition 3.17. — We have MΓk-sh,k = i(E+).

Proof. — Recall that if m ∈M and f(X) ∈ E, then (f(X)m)j = ϕj(f(X))mj for
all j > 0. We have valX(ϕj(f(X))) = pj valX(f(X)). In particular, if m ∈ MΓk-sh,k,
then mj ∈ (E+)Γk-sh,k+j. The results of § 2.1 imply that mj ∈ ϕj(E+). If mj = ϕj(fj),
the ψ-compatibility implies that fj = f0 for all j > 0. This implies the claim. �

A generalization of Proposition 3.17 to representations of B2(Qp) obtained from
(ϕ,Γ)-modules using Colmez’ construction shows that using the theory of super-
Hölder vectors, we can recover the (ϕ,Γ)-module giving rise to such a representation
of B2(Qp). One of the main results of [BV14] is that every infinite dimensional
smooth irreducible E-linear representation of B2(Qp) having a central character
comes from a (ϕ,Γ)-module by Colmez’ construction. Is it possible to reprove this
result using super-Hölder vectors?
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