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Restricted volumes on Kähler manifolds
Tristan C. Collins (1) and Valentino Tosatti (2)

Dedicated to Professor Ahmed Zeriahi on the occasion of his retirement.

ABSTRACT. — We study numerical restricted volumes of (1, 1) classes on compact
Kähler manifolds, as introduced by Boucksom. Inspired by work of Ein–Lazarsfeld–
Mustaţă–Nakamaye–Popa on restricted volumes of line bundles on projective mani-
folds, we pose a natural conjecture to the effect that irreducible components of the
non-Kähler locus of a big class should have vanishing numerical restricted volume.
We prove this conjecture when the class has a Zariski decomposition, and give several
applications.

RÉSUMÉ. — Nous étudions les volumes restreints numériques de classes (1, 1) sur
des variétés kähleriennes compactes, introduits par Boucksom. Inspirés par les tra-
vaux de Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa sur les volumes restreints de fi-
brés en droites sur des variétés projectives, nous proposons la conjecture naturelle
que les composantes irréductibles du lieu non-kählerien d’une classe grosse ont un vo-
lume restreint numérique identiquement nul. Nous établissons cette conjecture sous
l’hypothèse que la classe admet une décomposition de Zariski, puis donnons plusieurs
applications.

1. Introduction

Let X be a smooth projective variety over C and L→ X a holomorphic
line bundle. Given V ⊂ X an irreducible positive-dimensional analytic sub-
variety, we define (following [21], and originating in [23, 41]) the restricted
volume of L along V to be

VolX|V (L) = lim sup
m→∞

dim Im(H0(X,mL)→ H0(V,mL|V ))
mdimV /(dimV )! .
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In particular, VolX|V (L) > 0 implies that L|V is big, but not conversely.
Geometrically, VolX|V (L) > 0 means that for all m sufficiently large and
divisible, the rational map Φm : X 99K Ym ⊂ CPNm given by sections of mL
restricts to a map Φm|V : V 99K Wm ⊂ CPNm which is birational with its
image Wm (see [5, Corollary 2.5]).

In the case when V = X we obtain the familiar volume of L, denoted
by VolX(L) or just Vol(L). It is easy to extend the definition of restricted
volumes to Q-divisors by homogeneity. Restricted volumes have proved to
be an extremely useful tool in algebraic geometry, see e.g. [5, 8, 10, 11, 18,
19, 27, 28, 31, 35, 37] and references therein.

Our main interest is in developing the theory of restricted volumes in
the transcendental setting when X is a compact Kähler manifold and L is
replaced by a (1, 1) cohomology class [α]. In the case when V 6⊂ EnK(α), the
non-Kähler locus of [α] as defined in [4], Hisamoto [24] and Matsumura [32]
independently found an analytic formula for the restricted volume, general-
izing Boucksom’s analytic formula for the volume of a line bundle [3], which
however is poorly behaved when V is contained in EnK(α).

On the other hand, in the absolute case when V = X, a general theory
of moving intersection products was developed by Boucksom and his collab-
orators [2, 6, 7, 8]. Our goal is to extend these ideas to the relative case,
and to develop a parallel theory to the algebraic case [21]. In the case of nef
classes, this was achieved in our earlier work [13] (see also [12, 14]).

Let now X be a compact Kähler manifold, let α a closed real (1, 1) form
such that its cohomology class [α] is pseudoeffective, and let V ⊂ X an
irreducible positive-dimensional analytic subvariety. We wish to define the
numerical restricted volume 〈αdimV 〉X|V . If V ⊂ Enn(α) (the non-nef locus
of [α] as defined in [4]) we define 〈αdimV 〉X|V = 0, while if V 6⊂ Enn(α) we
define

〈αdimV 〉X|V = lim
ε↓0

sup
T

∫
Vreg

((T + εω)|Vreg)dimV
ac ,

where ( · )ac denoted the absolutely continuous part in the Lebesgue decom-
position (as in [3]), and the supremum is over all closed real (1, 1) currents
T in the class [α] which satisfy T > −εω on X, such that T has analytic
singularities which do not contain V . The fact that such currents T exist
follows from the assumption that V 6⊂ Enn(α), as we will see. Also, if we
choose V = X then we have

〈αn〉X|X = Vol(α),

the volume of [α], as defined by Boucksom [3].
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This analytic definition coincides with the “mobile intersection number”
(αdimV · [V ])>0,

defined in Boucksom’s thesis [2, Definition 3.2.1], where he proves some of
its basic properties. For example, [2, Proposition 3.2.2] shows that when the
class [α] is nef then we simply have that

〈αdimV 〉X|V =
∫
V

αdimV .

For a general pseudoeffective class [α] we define its null locus to be

Null(α) =
⋃

〈αdim V 〉X|V =0

V,

where the union is over all irreducible analytic subvarieties of X with van-
ishing numerical restricted volume. When [α] is also nef this coincides with
the usual null locus (cf. [13]).

Conjecture 1.1. — Let X be a compact Kähler manifold and [α] a
pseudoeffective (1, 1) class. Then we have

EnK(α) = Null(α). (1.1)
Equivalently, if V is an irreducible component of EnK(α) then we have

〈αdimV 〉X|V = 0. (1.2)

Clearly it is enough to show (1.1) when [α] is big. In the case when [α] is
nef this is the main theorem of our previous work [13] (which was itself a tran-
scendental extension of Nakamaye’s Theorem [34]), and so Conjecture 1.1 is
the natural extension of our earlier result to all pseudoeffective (1, 1) classes.
As we will explain presently, it is also the natural transcendental extension
of a later result of Namakaye [35] and Ein–Lazarsfeld–Mustaţă–Nakamaye–
Popa [21].

Recall that every pseudoeffective class [α] has a divisorial Zariski decom-
position [α] = P + N , introduced by Boucksom [4] (and Nakayama [36] in
the algebraic case). The class P in general is nef in codimension 1, in the
sense that each irreducible component of Enn(P ) has codimension at least
2 in X. If P is actually nef, then we say that [α] has a Zariski decomposi-
tion. Thanks to a classical result of Zariski [47], every pseudoeffective (1, 1)
class has a Zariski decomposition when dimX = 2, however there are exam-
ples in dimensions greater than 2 of big classes which do not have a Zariski
decomposition, not even on any birational model [4, 36].

Theorem 1.2. — Conjecture 1.1 holds if the class [α] has a Zariski
decomposition. In particular, it always holds when X is a complex surface.
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In fact, it is enough to assume that [α] admit a Zariski decomposition on
some bimeromorphic model, see Theorem 6.3.

The connection with the algebraic setting is given by the following:

Theorem 1.3. — If X is a projective manifold, L is a pseudoeffective
line bundle and V ⊂ X is a positive-dimensional irreducible analytic subva-
riety, then given any ample line bundle H on X we have

〈c1(L)dimV 〉X|V = lim
ε↓0

VolX|V (L+ εH), (1.3)

where we restrict ourselves to ε ∈ Q>0. In particular, we always have

VolX|V (L) 6 〈c1(L)dimV 〉X|V . (1.4)

By homogeneity, this result also holds when L and H are just Q-divisors.
The quantity on the right hand side of (1.3) has been recently consid-
ered explicitly in [11]. In fact, more is true. When X is projective and
V 6⊂ B+(L) = EnK(c1(L)) (see e.g. [20] for more on B+ and B−, and [44,
Theorem 2.3] for this equality) then we simply have

〈c1(L)dimV 〉X|V = VolX|V (L),

thanks to [24, 32] (see Theorem 2.9). When V ⊂ B−(L) = Enn(c1(L)) we
have

〈c1(L)dimV 〉X|V = VolX|V (L) = 0.
This is because 〈c1(L)dimV 〉X|V = 0 by definition, while VolX|V (L) = 0 since
B−(L) ⊂ B(L) (the stable base locus of L) and it is clear from the definition
that VolX|V (L) = 0 holds whenever V ⊂ B(L) (this observation also justifies
our definition of 〈αdimV 〉X|V = 0 when V ⊂ Enn(α)).

But when V ⊂ B+(L) in general we have that

〈c1(L)dimV 〉X|V 6= VolX|V (L),

see Examples 2.11 and 5.6 (or [11, Example 2.3] for another example). Note
that this example shows that VolX|V (L) is not in general a numerical invari-
ant of the line bundle L, while obviously 〈c1(L)dimV 〉X|V is.

It is also important to note that given V ⊂ X, the map [α] 7→ 〈αdimV 〉X|V
is not continuous in general on the big cone (unlike the usual volume func-
tion), see Example 5.6.

In the algebraic setting, we show that Conjecture 1.1 holds in certain im-
portant cases thanks to existing work in the literature. Using Theorem 1.3 to-
gether with the main result of Ein–Lazarsfeld–Mustaţă–Nakamaye–Popa [21,
Theorem 5.7] we show that:
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Proposition 1.4. — Conjecture 1.1 holds when X is projective and
[α] = c1(D) for D a big R-divisor.

In fact, we also show in Proposition 3.3 that conversely the validity of
Conjecture 1.1 would give a transcendental proof of [21, Theorem 5.7].

Following Boucksom–Favre–Jonsson [8] in the algebraic case, we observe
that a recent result of Witt-Nyström [46] implies:

Proposition 1.5. — Conjecture 1.1 (in its equivalent form (1.2)) holds
when X is projective, [α] is any big (1, 1) class, and V is a prime divisor.

We now discuss a few applications of Conjecture 1.1. As in [21, 35], we
draw a connection between restricted volumes and moving Seshadri con-
stants. These are a generalization, first introduced in [35], of the usual Se-
shadri constants, which are defined for nef classes, to arbitrary (1, 1) classes.
Given a (1, 1) class [α], we define the moving Seshadri constant ε(‖α‖, x) as
follows: if x ∈ EnK(α) we set ε(‖α‖, x) = 0, and otherwise we set

ε(‖α‖, x) = sup
µ∗[α]=[β]+[E]

ε(β, µ−1(x)),

where the supremum is over all modifications µ : X̃ → X, which are isomor-
phisms near x, and over all decompositions µ∗[α] = [β] + [E] where [β] is a
Kähler class and E is an effective R-divisor which does not contain µ−1(x),
and where ε denotes the usual Seshadri constant of a nef class. Clearly the
moving Seshadri constants are trivial if [α] is not big. This definition agrees
with the algebraic definition in [21, 35] when X is projective and [α] = c1(D)
for a big R-divisorD. For a nef class [α], the Seshadri constants are also given
by the formula

ε(α, x) = inf
V 3x

(∫
V
αdimV

multlx V

) 1
dim V

, (1.5)

which is proved in [43, Theorem 2.8] (cf. [26, Proposition 5.1.9] in the alge-
braic case), and the infimum is achieved when [α] is Kähler. The following
is a generalization of this result to moving Seshadri constants, in analogy
with [21, Proposition 6.7]:

Theorem 1.6. — Assume Conjecture 1.1. Given any pseudoeffective
class [α] and any x ∈ X we have

ε(‖α‖, x) = inf
V 3x

(
〈αdimV 〉X|V

multlx V

) 1
dim V

,

where the infimum is over all irreducible positive-dimensional analytic sub-
varieties V containing x.
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The following result reproves and extends the main result of [35].
Theorem 1.7. — Assume Conjecture 1.1. Given any x ∈ X, the map

[α] 7→ ε(‖α‖, x) is continuous as [α] varies in H1,1(X,R).

We also show that Conjecture 1.1 implies a positive answer to a question
of Boucksom [2] about a slightly different generalization of Seshadri constants
to pseudoeffective classes, which turns out to agree with the moving Seshadri
constants, see Theorem 7.3.

Our last application is a generalization of the local ampleness criterion
of Takayama [42, Proposition 2.1]:

Theorem 1.8. — Let X be a compact Kähler manifold and [α] a big
class. Let T > 0 be a closed positive current in the class [α] which is a
smooth Kähler metric on a nonempty open set U ⊂ X. Then, assuming
Conjecture 1.1, we have that U ⊂ EnK(α)c.

Here and in the rest of the paper, we use interchangably “Kähler metric”
and “Kähler form”. Of course, if [α] is also nef then we do not need to assume
Conjecture 1.1, thanks to our earlier work [13]. Such ampleness criteria (in
the projective case) were used to obtain quasi-projectivity criteria in [30,
Theorem 6.1] and [39, Theorem 6].

This paper is organized as follows. After defining numerical restricted
volumes and proving some of their basic properties in Section 2, where we
also prove Theorem 1.3, we state our main conjecture in Section 3, and we
give the proofs of Proposition 1.4 and Theorem 1.8. In Section 4 we prove
several technical results, and in Section 5 we prove a Fujita type approxima-
tion result. In Section 6 we prove Theorem 1.2, and in Section 7 we prove
Theorems 1.6 and 1.7, while Proposition 1.5 is proved in Section 8.
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2. Numerical restricted volumes of (1, 1) classes

Let (X,ω) be a compact Kähler manifold, [α] a pseudoeffective real (1, 1)
class on X. First, let us recall some standard concepts, referring for example
to [4] for details. Every pseudoeffective class contains closed positive (1, 1)-
currents, which are of the form T = α +

√
−1∂∂ϕ, where α is a closed real

(1, 1)-form representing the class and ϕ is a quasi-psh function such that
T > 0 in the weak sense. Furthermore, one can always find such a current
Tmin = α +

√
−1∂∂ϕmin which has minimal singularities, in the sense that

for every other closed positive current S = α+
√
−1∂∂ψ > 0 in the class [α]

there is some constant C such that ψ 6 ϕmin + C holds on X. In general
Tmin is not unique, but by definition the difference of the potentials of two
such currents is bounded.

We will also say that a closed real (1, 1)-current T = α +
√
−1∂∂ϕ is

almost positive if it satisfies T > −Cω weakly for some C > 0. Such a
current is said to have analytic singularities if there are a coherent ideal
sheaf I ⊂ OX and c ∈ R>0 such that ϕ is locally equal to

c log
N∑
j=1
|fj |2 + h,

where the fj are local generators of I and h is smooth. Such a current T is
then smooth outside the closed analytic subvariety V (I).

A Kähler current T is a closed positive (1, 1)-current which satisfies
T > εω for some ε > 0, and a class [α] is called big if it contains a Kähler
current. By Demailly’s regularization [15], big classes contain Kähler cur-
rents with analytic singularities. The intersection of the singular sets of all
Kähler currents in a big class [α] is the non-Kähler locus EnK(α) ⊂ X. This
subset is a closed proper analytic subvariety, since it is shown in [3] that [α]
contains a Kähler current with analytic singularities precisely along EnK(α).
Furthermore, EnK(α) is empty iff [α] is Kähler. We also define EnK(α) = X
when [α] is pseudoeffective but not big.

For a pseudoeffective class [α], the non-nef locus Enn(α) ⊂ X is then
defined by

Enn(α) =
⋃
ε>0

EnK(α+ εω), (2.1)

which is easily seen to be independent of the choice of ω. The non-nef locus
is in general a countable union of closed analytic subvarieties [29], and it is
empty iff [α] is nef.

We are now given V ⊂ X an irreducible k-dimensional analytic sub-
variety, k > 0. Following the terminology of [28] in the algebraic setting,
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we say that a pseudoeffective (1, 1)-class [α] is V -pseudoeffective (V -psef) if
V 6⊂ Enn(α), and that [α] is V -big if V 6⊂ EnK(α) (hence [α] is big). It is
clear that [α] is V -psef iff [α + εω] is V -big for all ε > 0. Furthermore, a
pseudoeffective (1, 1)-class [α] is V -big iff it contains a Kähler current with
analytic singularities which is smooth at the generic point of V (thanks to
the above-mentioned result of [3]). This observation is the analog of [28,
Lemma 2.8]. It then follows that [α] is V -psef iff for every ε > 0 it con-
tains a closed real (1, 1) current Tε = α +

√
−1∂∂ϕε > −εω with analytic

singularities which is smooth at the generic point of V .

We then wish to define the numerical restricted volume 〈αk〉X|V of [α] on
V . As we said in the introduction, if V ⊂ Enn(α) we simply define 〈αk〉X|V =
0. If on the other hand V 6⊂ Enn(α) (i.e. [α] is V -psef) then we define

〈αk〉X|V = lim
ε↓0

sup
T

∫
Vreg

((T + εω)|Vreg)kac, (2.2)

where the supremum is over all closed real (1, 1) currents T in the class [α]
which satisfy T > −εω on X, such that T has analytic singularities which
do not contain V (and as we just said such currents exist precisely when [α]
is V -psef). Note that the limit as ε→ 0 exists because the map

ε 7−→ sup
T

∫
Vreg

((T + εω)|Vreg)kac,

is monotone increasing in ε, and it is also not hard to see that it is in-
dependent of the choice of ω. The number 〈αk〉X|V is finite thanks to the
following lemma, which is a combination of [3, Proposition 2.6] and [32,
Proposition 4.1].

Lemma 2.1. — Let (X,ω) be a compact Kähler manifold, V ⊂ X an
irreducible analytic k-dimensional subvariety, T, S two closed (1, 1) currents
on X with T > −Aω, S > −Aω which restrict to V . Then for any p, q >
0, p+q 6 k, there is a constant C, which depends only on X,V, ω, p, q, A and
on the cohomology classes of T and S such that∣∣∣∣∣

∫
Vreg

(T |Vreg)pac ∧ (S|Vreg)qac ∧ ωk−p−q
∣∣∣∣∣ 6 C.

Proof. — Let µ : X̃ → X be an embedded resolution of singularities of V ,
so X̃ is compact Kähler manifold, µ is a composition of smooth blowups, the
proper transform Ṽ of V is smooth and µ|

Ṽ
: Ṽ → V is a modification. Given

a Kähler metric ω̃ on X̃, there is a constant B > 0 such that µ∗ω 6 Bω̃.
Then µ∗T is a well-defined closed (1, 1) current on X̃ with µ∗T > −ABω̃.
Now µ is an isomorphism from a Zariski open subset of Ṽ to a Zariski open
subset of V , and it identifies (T |Vreg)ac with (µ∗T |

Ṽ
)ac on these open sets.
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But these are two (1, 1) forms with coefficients which are L1
loc functions, and

a Zariski closed set has Lebesgue measure zero. The same discussion applies
to (S|Vreg)ac and (µ∗S|

Ṽ
)ac, and so∫

Vreg

(T |Vreg)pac ∧ (S|Vreg)qac ∧ωk−p−q =
∫
Ṽ

(µ∗T |
Ṽ

)pac ∧ (µ∗S|
Ṽ

)qac ∧µ∗ωk−p−q.

To bound this integral, we apply Demailly’s regularization procedure on Ṽ
and obtain a sequence Tj of smooth closed (1, 1) forms on Ṽ , cohomologous
to µ∗T |

Ṽ
, such that

Tj > −ABω̃ − Cλkω̃,
for a constant C depending on (Ṽ , ω̃) and continuous functions λk(x) which
decrease to ν(µ∗T |

Ṽ
, x) for any x ∈ Ṽ , and such that Tj(x)→ (µ∗T |

Ṽ
)ac(x)

a.e. as j → ∞. By [3, Lemma 2.5] the Lelong numbers ν(µ∗T |
Ṽ
, x) are all

bounded above by C, which depends only on (Ṽ , ω̃) and on the cohomology
class of µ∗T |

Ṽ
. Hence

Tj > −C0ω̃,

holds for all j.

Similarly, we construct smooth forms Sj with

Sj > −C0ω̃, Sj(x)→ (µ∗S|
Ṽ

)ac(x) for a.e. x ∈ Ṽ .
But now note that the integrals∫

Ṽ

(Tj + C0ω̃)p ∧ (Sj + C0ω̃)q ∧ µ∗ωk−p−q

are nonnegative and bounded above by

Bk−p−q
∫
Ṽ

(Tj + C0ω̃)p ∧ (Sj + C0ω̃)q ∧ ω̃k−p−q,

which is independent of j since it is a cohomological number. Hence, by
Fatou’s lemma,∫

Ṽ

(µ∗T |
Ṽ

+ C0ω̃)pac ∧ (µ∗S|
Ṽ

+ C0ω̃)qac ∧ µ∗ωk−p−q 6 C,

and also ∫
Ṽ

(µ∗T |
Ṽ

+ C0ω̃)pac ∧ (µ∗S|
Ṽ

+ C0ω̃)qac ∧ µ∗ωk−p−q > 0,

since the integrand is a nonnegative measure. Now expand this as∑
r,s

(
p

r

)(
q

s

)∫
Ṽ

(µ∗T |
Ṽ

)rac ∧ (C0ω̃)p−r ∧ (µ∗S|
Ṽ

)sac ∧ (C0ω̃)q−s ∧ µ∗ωk−p−q.

We need to bound the term with p = r, q = s, and this follows from the
estimate we just proved (which holds for all p, q > 0, p + q 6 k) together
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with a simple induction argument on r + s, the case of r = s = 0 being
trivial. �

Remark 2.2. — We have chosen to use the absolutely continuous Monge–
Ampère operator to define the numerical restricted volume, but we could
have equivalently used the non-pluripolar Monge–Ampère operator 〈 · 〉 as
defined in [7], since these agree on currents with analytic singularities (in-
deed, both are equal to the extension by zero of the Monge–Ampère operator
on the complement of the singular set of the current). Also, as we will see in
Remark 5.2, if V 6⊂ Enn(α) then we also have

〈αk〉X|V = lim
ε↓0

∫
Vreg

〈(Tmin,ε|Vreg)k〉, (2.3)

where Tmin,ε is a positive current with minimal singularities in the class
[α+ εω], for ε > 0, and where 〈 · 〉 on the RHS is the non-pluripolar Monge–
Ampère operator.

Remark 2.3. — One can formally also define the numerical restricted
volume when dimV = 0, i.e. V is a point, by setting 〈α0〉X|V equal to 0 if
V ⊂ Enn(α) and equal to 1 otherwise, and all theorems that we will prove
are still valid in this case. However, we will not insist on this, and from now
on V will always denote a positive-dimensional irreducible subvariety.

Remark 2.4. — As in [2], one can similarly also define a restricted nu-
merical intersection product

〈α1 · · ·αk〉X|V ,

which extends the algebraic construction in [8], where the [αj ]’s are pseudo-
effective classes with V 6⊂ ∪jEnn(αj).

As mentioned in the introduction, the numerical restricted volume coin-
cides with the “mobile intersection number”

〈αk〉X|V = (αk · [V ])>0,

defined in Boucksom’s thesis [2, Definition 3.2.1], where he proves some basic
properties. For the reader’s convenience, we incorporate some of these here.
The first property [2, Proposition 3.2.4] is a semicontinuity result:

Lemma 2.5. — Let (X,ω) be a compact Kähler manifolds and [αj ] be a
sequence of pseudoeffective classes which converge to a class [α]. If V is an
irreducible k-dimensional subvariety of X, with V 6⊂ Enn(αj) for all j, then
we have

〈αk〉X|V > lim sup
j→∞

〈αkj 〉X|V . (2.4)
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Proof. — First note that thanks to [4, Proposition 3.5], the minimal mul-
tiplicities ν([αj ], x) are lower semicontinuous

ν([α], x) 6 lim inf
j→∞

ν([αj ], x),

for all x ∈ X. Since V 6⊂ Enn(αj) for all j, and each such set is an at worst
countable union of Zariski closed sets (but not finite in general [29]), we
conclude that there is a point x ∈ V with ν([αj ], x) = 0 for all j. Therefore
ν([α], x) = 0 too, which shows that V 6⊂ Enn(α). In particular, the restricted
volume 〈αk〉X|V is defined by (2.2).

For each j we may choose Tj ∈ [αj ] with Tj > −εjω, εj → 0, with
analytic singularities not containing V , such that∣∣∣∣∣

∫
Vreg

(Tj + εjω)kac − 〈αkj 〉X|V

∣∣∣∣∣→ 0,

as j → ∞. Next, choose a sequence of closed smooth (1, 1) forms θj in the
class [α−αj ] which converge smoothly to zero. In particular, θj > −δjω for
some δj → 0. Then Tj + θj is a closed (1, 1) current in the class [α], with
analytic singularities not containing V , and with Tj + θj > −(εj + δj)ω,
and so

lim sup
j→∞

∫
Vreg

(Tj + θj + (εj + δj)ω)kac 6 〈αk〉X|V ,

from the definition. But the difference∣∣∣∣∣
∫
Vreg

(Tj + εjω)kac −
∫
Vreg

(Tj + θj + (εj + δj)ω)kac

∣∣∣∣∣
is easily seen to go to zero, using Lemma 2.1. This finishes the proof. �

Although we won’t use this, continuity in fact holds in (2.4) if V 6⊂
EnK(α), by [2, Proposition 3.2.4].

The second property is taken from [2, Proposition 3.2.2] (see also [32,
Proposition 4.5] for a weaker statement).

Lemma 2.6. — If [α] is nef and V is an irreducible k-dimensional sub-
variety of X then we have

〈αk〉X|V =
∫
V

αk.

Proof. — Since [α] is nef, for any ε > 0 there is a closed smooth form ρε
in [α] with ρε > −εω. In particular,

sup
T∈[α],
T>−εω,
V 6⊂E+(T )

∫
Vreg

(
T |Vreg + εω

)k
ac >

∫
Vreg

(ρε + εω)k =
∫
V

(α+ εω)k,
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and letting ε → 0 we get 〈αk〉X|V >
∫
V
αk. We want to show the reverse

inequality. Fix ε > 0 and pick Tε ∈ [α] with analytic singularities, with
Tε > −εω and V 6⊂ E+(Tε), such that∫

Vreg

(
Tε|Vreg + εω

)k
ac > sup

T∈[α],
T>−εω,
V 6⊂E+(T )

∫
Vreg

(
T |Vreg + εω

)k
ac − ε.

As in the proof of Lemma 2.1, up to considering an embedded resolution of
singularities of V , we may assume that V is smooth. Then (ρε+εω)|V is less
singular than (Tε + εω)|V , and we can apply [7, Theorem 1.16] to see that∫

V

(ρε + εω)|kV >
∫
V

〈(Tε + εω)|kV 〉,

where 〈 · 〉 is the non-pluripolar product. But if T is a positive current with
analytic singularities, we have 〈T k〉 = T kac, and so∫

V

(α+ εω)k =
∫
V

(ρε + εω)k >
∫
V

((Tε + εω)|V )kac

> sup
T∈[α],
T>−εω,
V 6⊂E+(T )

∫
V

(T |V + εω)kac − ε.

Letting ε→ 0 we conclude that 〈αk〉X|V 6
∫
V
αk, as required. �

The third property, following [2, Lemma 3.2.5], shows that when V 6⊂
EnK(α) then the definition of numerical restricted volume simplifies:

Lemma 2.7. — For any pseudoeffective class [α] and any irreducible k-
dimensional subvariety V which satisfies V 6⊂ EnK(α) (so in particular [α]
is big), we have

〈αk〉X|V = sup
T

∫
Vreg

(
T |Vreg

)k
ac , (2.5)

where the supremum is over all Kähler currents (or equivalently all closed
positive currents) in the class [α] with analytic singularities which do not
contain V .

Proof. — Clearly

〈αk〉X|V > sup
T∈[α],
T>0,

V 6⊂E+(T )

∫
Vreg

(
T |Vreg

)k
ac =: A,

where the supremum is over all closed positive currents in the class [α] with
analytic singularities which do not contain V . If we do not have equality,
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then there would exist δ > 0 such that

sup
T∈[α],
T>−εω,
V 6⊂E+(T )

∫
Vreg

(
T |Vreg + εω

)k
ac > A+ 2δ,

for ε > 0 arbitrarily small. For any such ε choose Tε ∈ [α] with analytic
singularities, with Tε > −εω, V 6⊂ E+(Tε) and∫

Vreg

(
Tε|Vreg + εω

)k
ac > A+ δ.

Let S ∈ [α] be a Kähler current with analytic singularities with S > ηω, η >
0, and with V 6⊂ E+(S), which exists thanks to the assumption that V 6⊂
EnK(α). Choose γ > 0 small enough so that

(1− γ)k(A+ δ) > A+ δ

2 .

Applying Lemma 2.1 we see that∣∣∣∣∣
∫
Vreg

(Tε|Vreg)iac ∧ (S|Vreg)k−iac

∣∣∣∣∣ 6 C,
for some fixed constant independent of ε (small). We can therefore choose γ
sufficiently small so that we also have

k−1∑
i=0

γk−i(1− γ)i
(
k

i

) ∣∣∣∣∣
∫
Vreg

(Tε|Vreg)iac ∧ (S|Vreg)k−iac

∣∣∣∣∣ < δ

8 ,

for all 0 < ε < 1. Fixing any ε < γη/2, we have that

(1− γ)Tε + γS > (−ε(1− γ) + γη)ω > (−ε+ γη)ω > γη

2 ω,

so that (1 − γ)Tε + γS ∈ [α] is a Kähler current with analytic singularities
which do not contain V and

A >
∫
Vreg

(
((1− γ)Tε + γS)|Vreg

)k
ac

> (1− γ)k
∫
Vreg

(
Tε|Vreg

)k
ac −

δ

8

> (1− γ)k
∫
Vreg

(
Tε|Vreg + εω

)k
ac −

δ

4

> (1− γ)k(A+ δ)− δ

4 > A+ δ

4 ,

a contradiction, where we chose ε small enough so that

(1− γ)k
∫
Vreg

(
Tε|Vreg

)k
ac > (1− γ)k

∫
Vreg

(
Tε|Vreg + εω

)k
ac −

δ

8 ,
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which is possible again thanks to Lemma 2.1. Since (1−γ)Tε +γS ∈ [α] is a
Kähler current, this argument also proves (2.5) when we restrict to Kähler
currents. �

Remark 2.8. — When [α] is big and V 6⊂ EnK(α), the numerical restricted
volume was introduced independently by Hisamoto [24] and Matsumura [32],
by the right hand side of (2.5) (using closed positive currents). They also
proved some of the basic properties of numerical restricted volumes in this
case. For example, the arguments in [24, Theorem 1.3] can be used to show
that when [α] is V -big we have

〈αk〉X|V =
∫
Vreg

〈(Tmin|Vreg)k〉,

where 〈 · 〉 on the RHS is the non-pluripolar Monge–Ampère operator. Our
main interest is however in the case when V is possibly contained in EnK(α),
so [α] is V -psef but not V -big.

The following result was proved independently by Hisamoto [24] and Mat-
sumura [32], using the crucial [21, Theorem 2.13]:

Theorem 2.9. — Let X be a projective manifold, L a big line bundle
and V ⊂ X an irreducible subvariety. If V 6⊂ EnK(c1(L)) = B+(L), then we
have

〈c1(L)dimV 〉X|V = VolX|V (L). (2.6)

By homogeneity, this result also holds when L is just a Q-divisor.
As remarked in the introduction, (2.6) remains also trivially true if V ⊂
Enn(c1(L)) = B−(L) since both sides are zero. In general however (2.6) fails,
see Examples 2.11 and 5.6 below.

The correct substitute for (2.6) is given by Theorem 1.3 which we now
prove.

Proof of Theorem 1.3. — If V ⊂ B−(L) = Enn(c1(L)) then
〈c1(L)dimV 〉X|V = 0 by definition, while also by definition we have V ⊂
B(L+ εH) for all ε ∈ Q>0, and so VolX|V (L+ εH) = 0 too.

If instead V 6⊂ Enn(c1(L)), then essentially by definition

〈c1(L)dimV 〉X|V = lim
ε→0,
ε∈Q>0

sup
T∈c1(L+εH),

T>0,
V 6⊂E+(T )

∫
Vreg

(T |Vreg)dimV
ac ,
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where the currents T have analytic singularities. But we also have that V 6⊂
B+(L+ εH) for all ε ∈ Q>0, and so Lemma 2.7 and Theorem 2.9 give

sup
T∈c1(L+εH),

T>0,
V 6⊂E+(T )

∫
Vreg

(T |Vreg)dimV
ac = 〈c1(L+ εH)dimV 〉X|V = VolX|V (L+ εH),

and the result follows. Finally, inequality (1.4) follows from this and the fact
that VolX|V (L) 6 VolX|V (L+ εH). �

Remark 2.10. — The quantity on the RHS of (1.3) has also recently been
studied in [11], where it is denoted by Vol+X|V (L) (see their Definition 2.2).

Example 2.11. — We give an example of a projective manifold X with a
big line bundle L and an irreducible subvariety V ⊂ B+(L) such that

〈c1(L)dimV 〉X|V 6= VolX|V (L). (2.7)

which also shows that VolX|V (L) is not in general a numerical invariant of
the line bundle L (more examples can be found in [21, Example 5.10], see
Example 5.6 below, and in [11, Example 2.3]).

Let S be the ruled surface described in [26, Example 10.3.3], which
possesses two numerically equivalent nef and big line bundles L1, L2 with
B(L1) = ∅,B(L2) 6= ∅. Let X = S × CP1, with projections π1, π2, and let

L̃1 = π∗1L1 + π∗2O(1), L̃2 = π∗1L2 + π∗2O(1).

These line bundles are still nef and big and numerically equivalent. We have
that B(L̃1) = ∅, while if p ∈ B(L2) then V := {p} × CP1 ⊂ B(L̃2). Since
L̃1, L̃2 are nef and numerically equivalent, we obtain from Lemma 2.6 that

〈c1(L̃1)〉X|V = 〈c1(L̃2)〉X|V =
∫
V

c1(L̃1) = 1,

while clearly
VolX|V (L̃2) = 0,

since V ⊂ B(L̃2), and so L := L̃2 gives an example of (2.7) Lastly, we check
that

VolX|V (L̃1) > 0,
which shows that the restricted volume is not a numerical invariant. Indeed,
since B(L1) = ∅, we can find a section s ∈ H0(S, kL1), k > 1, with s(p) 6= 0.
Note that kL̃1|V ∼= O(k), so given any s′ ∈ H0(V, kL̃1|V ) = H0(CP1,O(k))
we can regard π∗1s ⊗ π∗2s′ as a section in H0(X, kL̃1) which restricts to s′
on V . Therefore every section of kL̃1|V lifts to X, and the same holds for
sections of `kL̃1, for every ` > 1, and so we conclude that VolX|V (L̃1) > 0.
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3. The main conjecture

The following is our motivating problem, and is equivalent to Conjec-
ture 1.1:

Conjecture 3.1. — Let X be a compact Kähler manifold, [α] a pseu-
doeffective class on X and V be an irreducible component of EnK(α) (which
is necessarily positive-dimensional). Then

〈αdimV 〉X|V = 0.

Note that this is obviously true if [α] is not big. In general, Conjecture 3.1
is equivalent to the equality

EnK(α) = Null(α),
in Conjecture 1.1 because it is immediate to see that if V 6⊂ EnK(α) then
〈αdimV 〉X|V > 0. Using Lemma 2.6, we see that Conjecture 3.1 holds when
[α] is nef, thanks to the main theorem of our earlier work [13].

As a simple corollary of this conjecture, we obtain the transcendental
analog of [21, Theorems 5.2(b) and 5.7]:

Proposition 3.2. — Let X be a compact Kähler manifold, [α] a pseu-
doeffective class on X and V be an irreducible component of EnK(α). Assume
Conjecture 3.1. Then for any sequence of pseudoeffective classes αj that con-
verge to α, we have that

〈αdimV
j 〉X|V → 0.

Proof. — Suppose this is false, so that there exists a sequence of pseudo-
effective classes αj which converge to α and with

〈αdimV
j 〉X|V > ε > 0,

for all j. In particular we have V 6⊂ Enn(αj). Applying Lemma 2.5 we con-
clude that 〈αdimV 〉X|V > ε > 0, a contradiction to Conjecture 3.1. �

Conjecture 3.1 would also give a new proof of a theorem of Ein–
Lazarsfeld–Mustaţă–Nakamaye–Popa [21, Theorem 5.7], the main theorem
of their paper:

Proposition 3.3. — Let X be a projective manifold and D a big R-
divisor on X. Assume Conjecture 3.1. If V is one of the irreducible compo-
nents of EnK(D), then

lim
D′→D

VolX|V (D′) = 0, (3.1)

where the limit is over all Q-divisors D′ whose classes converge to the class
of D.
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Proof. — Let D′ → D be Q-divisors as in the statement. Thanks to (1.4),
which by homogeneity holds for Q-divisors, we have that

VolX|V (D′) 6 〈c1(D′)dimV 〉X|V ,

and so the result follows from Proposition 3.2. �

Conversely, [21, Theorem 5.7] implies Conjecture 3.1 whenX is projective
and [α] = c1(D) for D a big R-divisor:

Proof of Proposition 1.4. — Let V be an irreducible component of
EnK(c1(D)), of dimension k > 0, and fix an ample Q-divisor H such that
D + λH is a Q-divisor for some λ ∈ R>0. We may assume that V 6⊂
Enn(c1(D)), otherwise the result is trivial. Then from the definition we have

〈c1(D)k〉X|V = lim
ε↓0

sup
T∈c1(D+εH),

T>0,
V 6⊂E+(T )

∫
Vreg

(T |Vreg)kac,

where the currents T have analytic singularities. By construction, there is a
sequence εj ∈ R>0 with εj → 0 such that D + εjH is a Q-divisor, and so
suppressing the index j from the notation we may assume that D+ εH is a
Q-divisor.

Then note that V 6⊂ EnK(D + εH) for all such ε > 0, and so Lemma 2.7
and Theorem 2.9 give

sup
T∈c1(D+εH),

T>0,
V 6⊂E+(T )

∫
Vreg

(T |Vreg)kac = 〈c1(D + εH)dimV 〉X|V = VolX|V (D + εH).

But now [21, Theorem 5.7] says that limε→0 VolX|V (D + εH) = 0, and the
result follows. �

We close this section with the very simple proof of Theorem 1.8:

Proof of Theorem 1.8. — Given any x ∈ U let V be any irreducible sub-
variety of X which passes through x, and say dimV = k > 0. By definition
we have

〈αk〉X|V >
∫
Vreg

(T |V )kac > 0,

where the last inequality follows from the fact that T is a smooth Kähler
metric near x. Since V is arbitrary, it follows from Conjecture 3.1 that x 6∈
EnK(α), as required. �
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4. Technical lemmas

In this section we prove some technical results, which will be used in
the proofs of the main theorems. First of all, we note the following (cf. [9,
Corollary 4.6] in the algebraic case):

Lemma 4.1. — If µ : X̃ → X is a surjective holomorphic map between
compact Kähler manifolds and [α] is a big class on X, then

Enn(µ∗α) = µ−1(Enn(α)).

Proof. — Let T be a closed positive current in the class [α] with mini-
mal singularities, so by definition Enn(α) = {x ∈ X | ν(T, x) > 0}. Thanks
to [7, Proposition 1.12], µ∗T has minimal singularities in the class [µ∗α],
so Enn(µ∗α) = {x ∈ X̃ | ν(µ∗T, x) > 0}. A result of Favre [22] and Kisel-
man [25] implies that ν(µ∗T, x) > 0 iff ν(T, µ(x)) > 0, and the result fol-
lows. �

The next result that we will need is the bimeromorphic invariance of the
numerical restricted volume, which is analogous to [21, Lemma 2.4] in the
algebraic case:

Lemma 4.2. — Let µ : X̃ → X be a modification between compact Käh-
ler manifolds, which is a composition of blowups with smooth centers, and let
V ⊂ X be a k-dimensional irreducible subvariety not contained in µ(Exc(µ)),
so that its proper transform Ṽ is well-defined and µ|

Ṽ
: Ṽ → V is a modifi-

cation. If [α] is a big (1, 1) class on X then

〈αk〉X|V = 〈µ∗αk〉
X̃|Ṽ .

Proof. — If V ⊂Enn(α) then by definition 〈αk〉X|V =0. Since Enn(µ∗α)=
µ−1(Enn(α)) by Lemma 4.1, we see that Ṽ ⊂ Enn(µ∗α) and so 〈µ∗αk〉

X̃|Ṽ =
0 too. So we assume that V 6⊂ Enn(α), so that

〈αk〉X|V = lim
ε↓0

sup
T∈[α],
T>−εω,
V 6⊂E+(T )

∫
Vreg

(T |Vreg + εω)kac.

If T is any such current, then µ∗T ∈ [µ∗α] has analytic singularities which
don’t contain Ṽ , and satisfies µ∗T > −εµ∗ω. Fix ω̃ a Kähler metric on
X̃. Then µ∗ω 6 Cω̃ for some constant C, and so µ∗T > −εCω̃. Since
µ|
Ṽ

: Ṽ → V is a modification we have∫
Vreg

(T |Vreg + εω)kac =
∫
Ṽ reg

(µ∗T |
Ṽ reg

+ εµ∗ω)kac 6
∫
Ṽ reg

(µ∗T |
Ṽ reg

+ εCω̃)kac,
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and taking the supremum over all T and letting ε→ 0 we conclude that
〈αk〉X|V 6 〈µ∗αk〉X̃|Ṽ .

For the converse, let E = Exc(µ) be the union of all the exceptional divisors
of µ. Then there are a smooth form η, a quasi-psh function ψ and δ > 0
small such that

η = [E]−
√
−1∂∂ψ,

and
ω̃ := µ∗ω − δη,

is a Kähler metric on X̃, see e.g. [38, Lemma 6]. Let T̃ be a current on X̃ in
[µ∗α], with analytic singularities which don’t contain Ṽ and with T̃ > −εω̃.
Then T̃ − εδη > −εµ∗ω, and since the current µ∗η is cohomologous to zero
on X, we see that T := µ∗(T̃ − εδη) > −εω is a current on X in the class
[α], which is smooth at the generic point of V . We have∫
Ṽ reg

(T̃ |
Ṽ reg

+ εω̃)kac =
∫
Ṽ reg

(T̃ |
Ṽ reg
− εδη + εµ∗ω)kac =

∫
Vreg

(T |Vreg + εω)kac.

If Tj is a Demailly regularization of T , then Tj > −2εω for all j large, Tj ∈ [α]
have analytic singularities which do not contain V , and (Tj)ac(x) → Tac(x)
pointwise for all x ∈ V generic. By Fatou’s lemma,

lim inf
j→∞

∫
Vreg

(Tj |Vreg + 2εω)kac >
∫
Vreg

(T |Vreg + 2εω)kac >
∫
Vreg

(T |Vreg + εω)kac.

Choosing j large, we get∫
Ṽ reg

(T̃ |
Ṽ reg

+ εω̃)kac 6
∫
Vreg

(Tj |Vreg + 2εω)kac + ε.

Taking the supremum over all T̃ and letting ε→ 0 we conclude that
〈µ∗αk〉

X̃|Ṽ 6 〈α
k〉X|V . �

We now recall the following lemma proved in [44, Proposition 2.5]:

Lemma 4.3. — Let µ : X̃ → X be a modification between compact Kähler
manifolds. If [α] is any (1, 1) class on X then

EnK(µ∗α) = µ−1(EnK(α)) ∪ Exc(µ).

The following result is the analog for the null locus:

Lemma 4.4. — Let µ : X̃ → X be a modification between compact Kähler
manifolds, which is a composition of blowups with smooth centers. If [α] is
any (1, 1) class on X then

Null(µ∗α) = µ−1(Null(α)) ∪ Exc(µ).
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Proof. — Since [α] is big if and only if [µ∗α] is big [3, Proposition 4.12],
the statement is only nontrivial when [α] is big, which we assume. First
we show that Null(µ∗α) ⊂ µ−1(Null(α)) ∪ Exc(µ). Let x 6∈ µ−1(Null(α)) ∪
Exc(µ) and let Ṽ be any irreducible subvariety of X̃ through x. Then V :=
µ(Ṽ ) is an irreducible subvariety of X, whose proper transform equals Ṽ ,
and 〈αdimV 〉X|V > 0. Lemma 4.2 gives 〈(µ∗α)dimV 〉

X̃|Ṽ > 0. Since Ṽ was
arbitrary, we conclude that x 6∈ Null(µ∗α).

Conversely, we show that µ−1(Null(α)) ∪ Exc(µ) ⊂ Null(µ∗α). First, let
us see that Exc(µ) ⊂ Null(µ∗α). If x ∈ Exc(µ), Zariski’s main theorem
implies that the fiber µ−1(µ(x)) is connected and positive dimensional. Let
E be an irreducible component of µ−1(µ(x)), and let µ′ : X ′ → X̃ be an
embedded resolution of singularities of E, so that its proper transform E′ ⊂
X ′ is smooth and connected and µ′|E′ : E′ → E is bimeromorphic. Then
Lemma 4.2 implies that 〈(µ′∗µ∗α)dimE〉X′|E′ = 〈(µ∗α)dimE〉

X̃|E . We also
have the trivial inequality

〈(µ′∗µ∗α)dimE〉X′|E′ 6 VolE′(µ′∗µ∗α|E′),

but the class µ′∗µ∗α|E′ is zero since E′ is contained in a fiber of µ◦µ′, and so

〈(µ′∗µ∗α)dimE〉X′|E′ = 0 = 〈(µ∗α)dimE〉
X̃|E ,

and we conclude that x ∈ Null(µ∗α).

Let now x ∈ µ−1(Null(α))\Exc(µ). By definition µ is an isomorphism
near x, and there is an irreducible subvariety V of X through µ(x) with
〈αdimV 〉X|V = 0. If Ṽ denotes the proper transform of V , which passes
through x, then Lemma 4.2 gives 〈(µ∗α)dimV 〉

X̃|Ṽ = 〈αdimV 〉X|V = 0, and
so x ∈ Null(µ∗α). �

5. Fujita approximation

To establish a Fujita-type approximation result for the numerical re-
stricted volume, the following lemma is the key:

Lemma 5.1. — Let (X,ω) be a compact Kähler manifold and [α] a pseu-
doeffective class. Then for every ε > 0 small there exists a closed (1, 1)
current Tε ∈ [α], with Tε > −εω, with analytic singularities contained in
Enn(α), and such that for all irreducible subvarieties with V 6⊂ Enn(α) we
have ∫

Vreg

(Tε|Vreg + εω)dimV
ac > 〈αdimV 〉X|V , (5.1)
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and
lim
ε↓0

∫
Vreg

(Tε|Vreg + εω)dimV
ac = 〈αdimV 〉X|V . (5.2)

Proof. — Let V be any such subvariety, with k = dimV > 0. Recall-
ing (2.1), we see that V 6⊂ EnK(α + εω), for all ε > 0, and so if Tmin,ε is
any positive current with minimal singularities in the class [α + εω] then
Tmin,ε has locally bounded potentials on a Zariski open subset of X which
contains the complement of Enn(α). Applying Demailly’s regularization [15]
to Tmin, ε

2
− ε

2ω we obtain currents Tε > −εω in the class [α] with analytic
singularities contained in Enn(α), and so that Tε is less singular than Tmin, ε

2
(since the potentials along Demailly’s regularization procedure decrease to
the original current), and Tε can thus be restricted to V .

If Sε is any current in [α] with analytic singularities not containing V
and with Sε > − ε2ω, then Sε + εω is more singular than Tε + εω, and these
two positive currents are cohomologous and have analytic singularities, and
so ∫

Vreg

(
Sε|Vreg + ε

2ω
)k

ac
6
∫
Vreg

(Sε|Vreg + εω)kac 6
∫
Vreg

(Tε|Vreg + εω)kac,

thanks to [7, Theorem 1.16]. We note here that their result is for V smooth,
but these integrals don’t change if we pass to a resolution of singularities,
and that their result is stated for the nonpluripolar product (instead of
the Monge–Ampère of the absolutely continuous part), but these agree for
currents with analytic singularities. We conclude that

〈αdimV 〉X|V 6 sup
Sε

∫
Vreg

(
Sε|Vreg + ε

2ω
)k

ac
6
∫
Vreg

(Tε|Vreg + εω)kac,

where the supremum is over all currents Sε as before (with ε > 0 fixed),
which proves (5.1).

To prove (5.2), we just note that by definition we have

sup
Sε

∫
Vreg

(Sε|Vreg + εω)kac 6 〈αdimV 〉X|V + ψV (ε),

with ψV (ε)→ 0 as ε→ 0, where the supremum is over all currents Sε ∈ [α]
with Sε > −εω and with analytic singularities not containing V . Since the
currents Tε above are included in this supremum, we conclude that∫

Vreg

(Tε|Vreg + εω)kac 6 〈αdimV 〉X|V + ψV (ε),

and we are done. �

Remark 5.2. — A very similar argument, using again [7, Theorem 1.16],
and using non-pluripolar products, can easily be used to prove (2.3).
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Using this lemma we can prove the following Fujita-type approximation
result for the numerical restricted volume (cf. [32, Theorem 4.8] in a more
restrictive setting). In the algebraic setting, Fujita approximation results for
the restricted volume were obtained independently in [21, 41].

Theorem 5.3. — Let (X,ω) be a compact Kähler, and [α] a pseudoef-
fective class. Then for every ε > 0 there is a modification µε : Xε → X,
which is an isomorphism outside Enn(α) such that µ∗ε(α + εω) = Aε + Eε
with Aε a semipositive class and Eε an effective R-divisor, such that for ev-
ery irreducible subvariety V 6⊂ Enn(α) we have that the support of Eε does
not contain the proper transform Vε of V , and∫

Vε

AdimV
ε − ψV (ε) 6 〈αdimV 〉X|V 6

∫
Vε

AdimV
ε ,

where ψV (ε)→ 0 as ε→ 0.

By subtracting from Aε a small multiple of the exceptional divisors of
µε, and adding this to Eε one can also achieve that the class Aε is Kähler,
but we will not need this.

Proof. — Given ε > 0 small, use Lemma 5.1 and obtain Tε ∈ α a closed
(1, 1) current with analytic singularities contained in Enn(α), with Tε > −εω,
and with

〈αdimV 〉X|V 6
∫
Vreg

(Tε|Vreg + εω)dimV
ac ,

for all such V . Let µε : Xε → X be a principalization of the ideal sheaf of the
singularities of Tε, followed by an embedded resolution of the singularities of
the proper transform Vε of V , which we therefore assume is smooth. Then
µ∗εTε has analytic singularities along an effective R-divisor Eε not containing
Vε and the Siu decomposition of µ∗ε(Tε + εω) is

µ∗ε(Tε + εω) = θε + [Eε],
where θε is a smooth closed form, which satisfies θε > 0. Denote Aε = [θε].
Since µε is an isomorphism at the generic point of V , as in Lemma 2.1 we
see that ∫

Vreg

(Tε|Vreg + εω)kac =
∫
Vε

(µ∗ε(Tε + εω)|Vε
)kac,

where we set k = dimV , and also∫
Vε

(µ∗ε(Tε + εω)|Vε)kac =
∫
Vε

((θε + [Eε])|Vε)kac =
∫
Vε

θkε =
∫
Vε

Akε .

Hence we conclude that

〈αdimV 〉X|V 6
∫
Vε

Akε ,
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which is half of what we want. The other half follows as in the proof of (5.2),
which gives∫

Vε

Akε =
∫
Vreg

(Tε|Vreg + εω)kac 6 〈αdimV 〉X|V + ψV (ε),

and we are done. �

This in turn implies the following log concavity result (cf. [21, 32]):

Theorem 5.4. — If α1, α2 are two pseudoeffective classes on X with V
an irreducible k-dimensional suvbariety not contained in Enn(α1)∪Enn(α2),
then

〈(α1 + α2)k〉
1
k

X|V > 〈α
k
1〉

1
k

X|V + 〈αk2〉
1
k

X|V .

Proof. — Since V is irreducible, V not contained in Enn(α1)∪Enn(α2) is
equivalent to V not contained in Enn(α1) and also not contained in Enn(α2).
Note also that

Enn(α1 + α2) ⊂ Enn(α1) ∪ Enn(α2).

So all the three numerical restricted volumes are defined by (2.2). Fix ε > 0,
and apply Theorem 5.3 to [α1] to get a modification µ1 : X1 → X and a
current T 1

ε ∈ [α1] with analytic singularities not containing V , T 1
ε > −εω,

with µ∗1(T 1
ε + εω) = θ1 + [E1] and∣∣∣∣∫

V1

θk1 − 〈αk1〉X|V
∣∣∣∣ 6 ψ(ε),

where V1 is the proper transform of V and ψ(ε) → 0 as ε → 0. We do the
same for [α2] and get µ2 : X2 → X, and T 2

ε with∣∣∣∣∫
V2

θk2 − 〈αk2〉X|V
∣∣∣∣ 6 ψ(ε).

We can pass to a common resolution µ : X̃ → X, which is still an isomor-
phism at the generic point of V , and pullback everything upstairs, without
changing notation, so that µ∗(T 1

ε + εω) = θ1 + [E1], and so on.

Then T 1
ε + T 2

ε is a current in [α1 + α2] with analytic singularities not
containing V , T 1

ε + T 2
ε > −2εω, and

µ∗(T 1
ε + T 2

ε + 2εω) = θ1 + θ2 + [E1] + [E2],

and

〈(α1 +α2)k〉X|V >
∫
Vreg

((T 1
ε +T 2

ε +2εω)|Vreg)kac−ψ(ε) =
∫
Ṽ

(θ1 +θ2)k−ψ(ε),
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for a possibly different function ψ(ε). By the usual log concavity property of
the volume of a nef class [3] we have(∫

Ṽ

(θ1 + θ2)k
) 1

k

>

(∫
Ṽ

θk1

) 1
k

+
(∫

Ṽ

θk2

) 1
k

.

Putting these together and letting ε→ 0 finishes the proof. �

For fixed V , the set A of big classes α with V 6⊂ EnK(α) is easily seen to
be convex and open (see [32, Proposition 4.10]). As in [32, Corollary 4.11]
we obtain:

Corollary 5.5. — If V is an irreducible subvariety of X, and A is the
open convex cone of V -big classes, then the function α 7→ 〈αdimV 〉X|V from
A to R is continuous.

Proof. — Indeed the function α 7→ 〈αdimV 〉
1
k

X|V is concave on A thanks
to Theorem 5.4. Since A is convex and open, this function is therefore con-
tinuous. �

Example 5.6. — In general, the function α 7→ 〈αdimV 〉X|V is not contin-
uous on the whole big cone. An example of such a discontinuity for the alge-
braic restricted volume was given in [21, Example 5.10], and we now check
that in this same example the numerical restricted volume is discontinuous
as well. Of course, Proposition 3.2 says that (assuming Conjecture 3.1) the
numerical restricted volume is continuous at certain points on the closure
of A (this closure is of course the closed convex cone of V -psef classes), the
ones where V is one of the irreducible components of EnK(α), and indeed
that its value there is zero.

Following [21, Example 5.10] we let π : X → CP3 be the blowup of
CP3 along a line `, and let L = π∗O(1) and V ⊂ X be a smooth curve of
bidegree (2, 1) inside the exceptional divisor E ∼= CP1 × CP1, where π|E :
E → ` is the projection onto the first factor. It is computed in [21] that
VolX|V (L) = 1, while

∫
V
c1(L) = 2 and VolX|V (L− 1

mE) = 2 + 1
m for all m

large. The Q-divisors L − 1
mE are ample for m large, and so Theorem 2.9

gives 〈c1(L − 1
mE)〉X|V = VolX|V (L − 1

mE) = 2 + 1
m . Also, since L is nef,

Lemma 2.6 gives 〈c1(L)〉X|V =
∫
V
c1(L) = 2.

On the other hand, if we fix m large so that H = L− 1
mE is ample, then

we have

E = EnK(c1(L)) =
⋂
ε>0

Enn(c1(L−εH)) =
⋂
ε>0

Enn

(
c1

(
L+ ε

m(1− ε)E
))

,

and so E ⊂ Enn(c1(L + εE)) for all ε > 0. Since V ⊂ E, this gives 〈c1(L +
εE)〉X|V = 0 for all ε > 0, and so the function t 7→ 〈c1(L + tE)〉X|V is
discontinuous at t = 0.

– 930 –



Restricted volumes on Kähler manifolds

6. Restricted volumes and Zariski decompositions

Let us briefly recall a few facts about Zariski decompositions on sur-
faces [47]. A good reference for all the unproved statements which follow
is [1]. Let L be a pseudoeffective line bundle on a smooth projective surface
X. Then L can be written uniquely as L = P +N where P is a nef Q-divisor
class, N =

∑
j ajDj , aj ∈ Q+ is an effective Q-divisor, P · N = 0, and ei-

ther N = 0 or the matrix (Di ·Dj) is negative definite. Furthermore we have
H0(X,mL) ∼= H0(X,mP ) for any m > 0 such that mP is integral. It follows
that Vol(L) = Vol(P ) = P 2. We also have

B+(L) = B+(P ) = Null(P ),

while
B−(L) = Supp(N).

A substitute for this theory in higher dimensions are divisorial Zariski
decompositions, introduced by Boucksom [4] (and Nakayama [36] in the
algebraic case). Let X be a compact Kähler manifold and [α] a big class.
The divisorial Zariski decomposition [α] = P +N of [α] is defined by letting

N =
∑
D

ν([α], D)[D],

where we sum over all prime divisors D ⊂ X, and defining P = [α]−N . Here
ν([α], D) = infx∈D ν(Tmin, x), where Tmin is any positive current with mini-
mal singularities in the class [α]. Boucksom [4] shows that N is an effective
R-divisor (possibly zero), and that P is a big class with Vol(α) = Vol(P ). By
construction P is nef in codimension 1, which means that ν(P,D) = 0 for all
prime divisors D (equivalently, every irreducible component of Enn(P ) has
codimension at least 2). Clearly, the support of N coincides with the set of
codimension 1 components of Enn(α).

If it happens that P is nef, then we say that [α] has a Zariski decompo-
sition. These do not always exist (see [4]), but they always exist on Kähler
surfaces (because in this case nef in codimension 1 is the same as nef).

We need a few preparatory lemmas. The first one is a straightforward
generalization of [32, Claim 4.7].

Lemma 6.1. — If [α] is big and [α] = P + N is its divisorial Zariski
decomposition, then we have

EnK(α) = EnK(P ).

– 931 –



Tristan C. Collins and Valentino Tosatti

Proof. — By slight abuse of notation, let us also setN =
∑
D ν([α], D)[D],

which now is a closed positive current in the cohomology class N . Fix δ > 0.
We claim that the map

P : T 7−→ T −N ,
gives a bijection between the set of closed positive (1, 1) currents T in [α]
which satisfy T > δω, and closed positive (1, 1) currents T̃ in P which satisfy
T̃ > δω. Indeed, if T ∈ [α] is a closed (1, 1) current with T > δω, for any
prime divisor D we have ν(T,D) > ν(Tmin, D) = ν([α], D), since Tmin is less
singular than T . On the other hand, we have the Siu decomposition

T = S +
∑
D

ν(T,D)[D],

which has the property that S > δω too. Therefore

T −N = S +
∑
D

(ν(T,D)− ν([α], D))[D] > S > δω,

is a closed (1, 1) current in the class P . Conversely if T̃ is a closed (1, 1)
current in P with T̃ > δω, then clearly T̃ +N > δω is a closed (1, 1) current
in [α].

Also P clearly sends Kähler currents with analytic singularities in [α] to
Kähler currents with analytic singularities in P , and vice versa. Recall that

EnK(α) =
⋂
T

E+(T ),

where the intersection is over all Kähler currents T ∈ [α] with analytic
singularities, and similarly for P . If x 6∈ EnK(α) then we can find a Kähler
current T ∈ [α] with analytic singularities which is smooth near x. This
implies that x is not in the support of N , and so T −N is a Kähler current
with analytic singularities in P , smooth near x. This shows that EnK(P ) ⊂
EnK(α).

On the other hand, if T̃ ∈ P is a Kähler current with analytic singulari-
ties, we claim that ν(T̃ ,D) > 0 for any prime divisor D with ν([α], D) > 0.
If not, then there would be a prime divisor D with ν([α], D) > 0 but T̃ is
smooth at the generic point of D. We have T̃ > εω for some ε > 0. Pick
η > 0 small enough so that the class ηN has a smooth representative χ with
χ > − ε2ω. Then

S = T̃ + χ+ (1− η)N > ε

2ω,

is a Kähler current with analytic singularities in [α] and
ν(S,D) = (1− η)ν([α], D) < ν([α], D),

which is a contradiction.
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Let now x 6∈ EnK(P ), so there is a Kähler current T̃ ∈ P with analytic
singularities, smooth near x. We have just proved that ν(T̃ , D) > 0 for any
prime divisor D in the support of N , hence x 6∈ Supp(N), and so

T = P−1(T̃ ) = T̃ +N ,

is a Kähler current in [α] with analytic singularities and smooth near x,
which proves EnK(α) ⊂ EnK(P ). �

The following is an improvement on [32, Proposition 4.6].

Lemma 6.2. — If [α] is big and V is an irreducible positive dimensional
subvariety of X which is not contained in Enn(α), then we have

〈αdimV 〉X|V = 〈P dimV 〉X|V .

Proof. — Write [α] = P + N for the divisorial Zariski decomposition.
Since V is not contained in Enn(α), it is also not contained in Supp(N),
since this is a subset of Enn(α).

We need a variant of the construction in the previous lemma. For ε > 0 let
Tmin,ε be a positive current with minimal singularities in the class [α+ εω],
and let νε(α, x) = ν(Tmin,ε, x). Then we have that νε(α, x) increases to
ν([α], x) as ε decreases to zero. As before, let νε(α,D) = infx∈D νε(α, x)
and define a closed positive current Nε =

∑
D νε(α,D)[D]. This sum con-

verges, since it is dominated by N because νε(α,D) 6 ν([α], D), which also
implies that Nε is the current of integration on an effective R-divisor, i.e.
only finitely many terms νε(α,D)[D] are nonzero. Of course if νε(α,D) > 0,
then ν([α], D) > 0 too, so let D1, . . . , Dk be all the prime divisors in X with
ν([α], D) > 0. Fix β1, . . . , βk closed smooth forms on X which represent
[D1], . . . , [Dk].

First of all, if T̃ ∈ P is a closed (1, 1) current with analytic singularities
and with T̃ > −εω and V 6⊂ E+(T̃ ), then T̃ + N > −εω is a closed (1, 1)
current with analytic singularities in [α] with singular set not containing V ,
and ∫

Vreg

(T̃ |Vreg + εω)dimV
ac =

∫
Vreg

((T̃ +N )|Vreg + εω)dimV
ac ,

since (N|Vreg)ac = 0. This shows that 〈P dimV 〉X|V 6 〈αdimV 〉X|V .

If now T ∈ [α] is a closed (1, 1) current with analytic singularities, with
T > −εω and V 6⊂ E+(T ), then as in the proof of Lemma 6.1 we have that
T −Nε > −εω and so

T̃ = T −Nε +
k∑
j=1

(νε(α,Dj)− ν([α], Dj))βj > −εω − ψ(ε)ω,
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is a closed (1, 1) current in P with analytic singularities and with singular
set not containing V , where ψ(ε) → 0 as ε → 0 (and is independent of T ),
since νε(α,Dj)→ ν([α], Dj). Furthermore,∫

Vreg

(T |Vreg + εω)dimV
ac =

∫
Vreg

((T −Nε)|Vreg + εω)dimV
ac

=
∫
Vreg

(T̃ |Vreg + (ε+ ψ(ε))ω)dimV
ac + Ψ(ε),

using Lemma 2.1, where Ψ(ε)→ 0 as ε→ 0 (and is independent of T ). This
implies 〈P dimV 〉X|V > 〈αdimV 〉X|V . �

We can now give the proof of Theorem 1.2:

Proof of Theorem 1.2. — If V ⊂ Enn(α), then we have 〈αdimV 〉X|V = 0
by definition, so we may assume that V is not contained in Enn(α). Since
we assume that P is nef, Lemmas 6.2 and 2.6 give

〈αdimV 〉X|V = 〈P dimV 〉X|V =
∫
V

P dimV .

Thanks to Lemma 6.1 we have EnK(α) = EnK(P ), so that V is one of the
irreducible components of EnK(P ). The main result of [13] then shows that∫

V

P dimV = 0. �

In fact, Theorem 1.2 holds more generally if α admits a Zariski decom-
position on some bimeromorphic model.

Theorem 6.3. — If [α] is big and if there exists µ : X̃ → X a modifi-
cation, with X̃ Kähler and such that [µ∗α] admits a Zariski decomposition,
and V is one of the irreducible components of EnK(α) which we assume is
not contained in µ(Exc(µ)), then

〈αdimV 〉X|V = 0.

Note that the assumptions of this theorem hold for example if we assume
that there exists a positive current Tmin in [α] with minimal singularities
which has analytic singularities, by [33, Proposition 4.1] (although it is stated
there for divisors, the simple proof works for general (1, 1) classes). In this
case, the map µ is a resolution of the singularities of Tmin, which are along
Enn(α) = µ(Exc(µ)), and we may assume without loss of generality that
V 6⊂ Enn(α).

Proof. — Since V is not contained in µ(Exc(µ)), then Lemma 4.2 gives
〈αk〉X|V = 〈µ∗αk〉

X̃|Ṽ , where Ṽ is the proper transform of V under µ, and
k = dimV . We also have that EnK(µ∗α) = µ−1(EnK(α))∪Exc(µ), thanks to
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Lemma 4.3, and so Ṽ is an irreducible component of EnK(µ∗α). The result
is trivial if V ⊂ Enn(α), so we may assume that V 6⊂ Enn(α), and thanks to
Lemma 4.1 we have that Ṽ 6⊂ Enn(µ∗α). If P denotes the positive part of
[µ∗α] in the divisorial Zariski decomposition, by assumption we have that P
is nef, and Lemmas 6.2 and 2.6 give

〈µ∗αk〉
X̃|Ṽ = 〈P k〉

X̃|Ṽ =
∫
Ṽ

P k.

Thanks to Lemma 6.1 we have EnK(µ∗α) = EnK(P ), so that Ṽ is one of the
irreducible components of EnK(P ). The main result of [13] then shows that∫

Ṽ

P k = 0. �

7. Moving Seshadri constants

Recall that if [α] is a nef (1, 1) class and x ∈ X we let the Seshadri
constant of [α] at x be

ε(α, x) = sup{λ > 0 | π∗[α]− λ[E] nef},

where π : X̃ → X is the blowup of X at x, and E is the exceptional divisor.
These were first introduced by Demailly [16]. It follows easily from the defi-
nition that ε( · , x) is a continuous function on the nef cone. Furthermore, it
is also concave since ε(α+β, x) > ε(α, x)+ε(β, x) for any nef classes [α], [β],
and it satisfies (1.5) as shown in [43, Theorem 2.8] (cf. [26, Proposition 5.1.9]
in the algebraic case) using crucially the Demailly–Păun Theorem [17]. It is
also not hard to see that (see [16]) if [α] is Kähler then we have

ε(α, x) = sup
{
γ > 0

∣∣∣∣ ∃ T ∈ [α], T > 0, T has an isolated
singularity at x with ν(T, x) > γ

}
. (7.1)

The moving Seshadri constants are a generalization of this concept to
classes which need not be nef. Let [α] be a pseudoeffective class on a compact
Kähler manifoldX. Given any point x ∈ X, following [21, 35] in the algebraic
case, we define the moving Seshadri constant ε(‖α‖, x) as follows. If x ∈
EnK(α) we set ε(‖α‖, x) = 0, and otherwise we set

ε(‖α‖, x) = sup
µ∗[α]=[β]+[E]

ε(β, µ−1(x)),

where the supremum is over all modifications µ : X̃ → X, which are isomor-
phisms near x, and over all decompositions µ∗[α] = [β] + [E] where [β] is a
Kähler class and E is an effective R-divisor which does not contain µ−1(x).
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Clearly, when [α] = c1(D) for a pseudoeffective R-divisor D, we have that
ε(‖α‖, x) = ε(‖D‖, x), as defined in [21, Section 6].

Note that such decompositions always exist when x 6∈ EnK(α), since we
may pick a Kähler current T in the class [α] which has analytic singularities
and is smooth near x, and let µ be the resolution of the singularities of T ,
and all the stated properties hold. More precisely, say we have that T > εω,
and we resolve so that

µ∗T = θ + [F ],
where θ > εµ∗ω is a smooth form and F an effective R-divisor, and µ is
a composition of blowups with smooth centers. But recall that if G is the
exceptional set of µ (which is an effective divisor) then there is δ > 0 small
so that [θ] − δ[G] is a Kähler class on X̃. Then we let [β] = [θ] − δ[G] and
E = F + δG.

Note also that if µ is as above then we have ε(β, µ−1(x)) 6 Vol(β) 1
n ,

thanks to (1.5), and also

Vol(β) =
∫
X̃

βn 6 Vol(β + [E]) = Vol(µ∗α) = Vol(α),

where the inequality follows from the definition (and the fact that E is an
effective R-divisor). Together, these imply that

ε(‖α‖, x) 6 Vol(α) 1
n ,

and so the supremum in the definition of the moving Seshadri constant is
finite.

First, let us observe the following:

Proposition 7.1. — If [α] is a nef class, then for every x ∈ X we have

ε(‖α‖, x) = ε(α, x).

Proof. — If x ∈ EnK(α) then ε(‖α‖, x) = 0 by definition, while ε(α, x) =
0 because of (1.5) together with the main theorem of [13]. Assume now that
x 6∈ EnK(α). If µ : X̃ → X is any modification as in the definition above,
so that µ∗[α] = [β] + [E] where [β] is a Kähler class and E is an effective
R-divisor which does not contain µ−1(x), then note that

ε(α, x) = inf
V 3x

(∫
V
αdimV

multlx V

) 1
dim V

= inf
Ṽ 3µ−1(x)

(∫
Ṽ
µ∗αdimV

multlx V

) 1
dim V

> inf
Ṽ 3µ−1(x)

(∫
Ṽ
βdimV

multlx V

) 1
dim V

= ε(β, µ−1(x)),

(7.2)
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using (1.5) and the fact that, since E is an effective R-divisor which does
not contain Ṽ , and µ∗[α] is nef and [β] is Kähler, we have∫

Ṽ

µ∗αdimV = Vol(µ∗α|
Ṽ

) > Vol(β|
Ṽ

) =
∫
Ṽ

βdimV ,

as above. This gives ε(α, x) > ε(‖α‖, x). Conversely, since x 6∈ EnK(α), we
can find a Kähler current in the class [α] with analytic singularities and
smooth near x. Resolving it we obtain a modification µ : X̃ → X, which is
an isomorphism near x, and such that µ∗[α] = [β]+[E] where [β] is a Kähler
class and E is an effective R-divisor which does not contain µ−1(x). For any
k > 2 we obtain

µ∗[α] =
((

1− 1
k

)
µ∗[α] + 1

k
[β]
)

+ 1
k

[E] =: [βk] + 1
k

[E],

which is the sum of the Kähler class [βk] and an effective R-divisor which
does not contain µ−1(x). By definition,

ε(‖α‖, x) > ε(βk, µ−1(x)),
and letting k → ∞ (recall that ε( · , µ−1(x)) is continuous on the nef cone)
we obtain

ε(‖α‖, x) > ε(µ∗α, µ−1(x)) = ε(α, x),
where the last equality follows from (1.5) as in the first line of (7.2). �

We first prove half of Theorem 1.6:

Theorem 7.2. — Assume Conjecture 3.1. Given any pseudoeffective
class [α] and any x ∈ X we have

ε(‖α‖, x) 6 inf
V 3x

(
〈αdimV 〉X|V

multlx V

) 1
dim V

,

where the infimum is over all irreducible analytic subvarieties V contain-
ing x.

Proof. — If x ∈ EnK(α) then both sides are zero, using Conjecture 3.1.
If x 6∈ EnK(α), then any irreducible subvariety V which contains x satisfies
V 6⊂ EnK(α). Thanks to Lemma 2.7, we have that

〈αk〉X|V = sup
T

∫
Vreg

(T |Vreg)kac,

where k = dimV and the supremum is over all Kähler currents T ∈ [α] with
analytic singularities which do not contain V .

In fact, we claim that we obtain the same result if we take the supremum
only among all Kähler currents T ∈ [α] with analytic singularities which do
not contain V , and which are smooth near x. Indeed, since x 6∈ EnK(α),

– 937 –



Tristan C. Collins and Valentino Tosatti

there exists a Kähler current S ∈ [α] with analytic singularities which do
not contain V and which is smooth near x. If T is any other Kähler current
in the class [α] with analytic singularities which do not contain V , then
writing T = α +

√
−1∂∂ϕ1 and S = α +

√
−1∂∂ϕ2 we have that T̂ =

α +
√
−1∂∂max(ϕ1, ϕ2) is also a Kähler current in the class [α], which

restricts to V , is locally bounded near x, and is globally less singular than
T . Then regularizing T̂ we obtain another Kähler current T̃ in the class [α],
with analytic singularities which do not contain V and which is smooth near
x, and which is less singular than T . Therefore [7, Theorem 1.16] implies
that ∫

Vreg

(T |Vreg)kac 6
∫
Vreg

(T̃ |Vreg)kac, (7.3)

which proves the claim.

Let now T be any Kähler current in [α] with analytic singularities which
do not contain V , and which is smooth near x, and let µ : X̃ → X be a
resolution of its singularities (which is therefore an isomorphism near x),
so µ∗T = θ + [F ] where θ is smooth and semipositive and F is an ef-
fective R-divisor which does not contain µ−1(x). As before, if G denotes
the exceptional set of µ then for all δ > 0 sufficiently small we have that
[θ]−δ[G] =: [βδ] is a Kähler class on X̃, and Eδ := F +δG is still an effective
R-divisor which does not contain µ−1(x). Then µ∗[α] = [βδ] + [Eδ] and we
have ∫

Vreg

(T |Vreg)kac =
∫
Ṽ

θk =
∫
Ṽ

(βδ + δc1(G))k, (7.4)

where Ṽ denotes the proper transform of V . Take now a sequence Tj of
Kähler currents as before so that

lim
j→∞

∫
Vreg

(Tj |Vreg)kac = 〈αk〉X|V ,

which exist thanks to our earlier claim. Resolve Tj by µj : Xj → X with
µ∗jTj = θj + [Fj ] and let as before [βj,δ] = [θj ]− δ[Gj ]. For each j choose δj
small enough so that [βj ] := [βj,δj

] is Kähler and∫
Ṽ j

(βj + δjc1(Gj))k 6
∫
Ṽ j

βkj + 1
j
.

This gives ∫
Vreg

(Tj |Vreg)kac 6
∫
Ṽ j

βkj + 1
j
,
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and since µ∗j [α] = [βj ] + [Ej ] with βj Kähler and Ej an effective R-divisor
which does not contain µ−1

j (x), then∫
Vreg

(Tj |Vreg)kac 6 sup
µ

∫
Ṽ

βk + 1
j
,

and passing to the limit in j we have proved that

〈αk〉X|V = sup
T

∫
Vreg

(T |Vreg)kac 6 sup
µ

∫
Ṽ

βk,

where the supremum is over all modifications µ which are isomorphism near
x and so that µ∗[α] = [β] + [E] with [β] Kähler and [E] is an effective
R-divisor which does not contain µ−1(x).

Conversely suppose we are given a modification µ which is an isomor-
phism near x and so that µ∗[α] = [β] + [E] with [β] Kähler and [E] is an
effective R-divisor which does not contain µ−1(x). Choosing a Kähler metric
ω ∈ [β], we have that T = µ∗(ω + [E]) is a Kähler current in the class [α]
which restricts to V and is smooth near x. Note that for any closed positive
current S on X̃ we have that µ∗µ∗S − S is supported on E = Exc(µ), so
by Federer’s support theorem (see e.g. [40]) we have µ∗µ∗S−S = [F ] where
F is an R-divisor with support contained in the support of E. We conclude
that (µ∗T )ac = (ω + [E])ac = ω, and so∫

Vreg

(T |Vreg)kac =
∫
Ṽ

βk,

holds. Regularizing T we obtain a sequence of Kähler currents T̃ j in the
class α, with analytic singularities which do not contain V and which are
smooth near x, and with (T̃ j)ac(y)→ Tac(y) pointwise for all y where T (y)
is smooth (in particular, for all generic y ∈ V ). Thanks to Fatou’s lemma
we have

lim inf
j→∞

∫
Vreg

(T̃ j |Vreg)kac >
∫
Vreg

(T |Vreg)kac,

and so we conclude that

sup
µ

∫
Ṽ

βk 6 〈αk〉X|V ,

and therefore we have proved the Fujita-type result that

〈αk〉X|V = sup
µ

∫
Ṽ

βk.

Given now any V 3 x irreducible k-dimensional subvariety, we have(
〈αk〉X|V
multlx V

) 1
k

= sup
µ

( ∫
Ṽ
βk

multlx V

) 1
k

> sup
µ
ε(β, µ−1(x)) = ε(‖α‖, x),
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where the inequality follows from (1.5). This completes the proof. �

From this we deduce:

Proof of Theorem 1.7. — The set Ax of big classes [α] with x 6∈ EnK(α)
is convex and open (see [32, Proposition 4.10]), and the function ψ : Ax → R
given by ψ(α) = ε(‖α‖, x) is concave because

ε(‖α+ β‖, x) > ε(‖α‖, x) + ε(‖β‖, x),

whenever [α], [β] ∈ Ax (because this concavity already holds for the standard
Seshadri constants). It follows that ψ is continuous on Ax, and so it remains
to show that if x ∈ EnK(α) and [αj ] are (1, 1) classes which converge to [α]
then

lim
j→∞

ε(‖αj‖, x) = 0.

But this follows immediately from Proposition 3.2 and Theorem 7.2. �

We can now complete the proof of Theorem 1.6.

Proof of Theorem 1.6. — If x ∈ EnK(α) then both sides are zero, using
Conjecture 3.1. So we may assume that x 6∈ EnK(α). Thanks to Theorem 7.2
it is enough to show that

ε(‖α‖, x) > inf
V 3x

(
〈αdimV 〉X|V

multlx V

) 1
dim V

.

For every ε > 0 small, take the currents Tε > −εω as in Lemma 5.1, so that
for all irreducible subvarieties V 6⊂ Enn(α) we have∫

Vreg

(Tε|Vreg + εω)dimV
ac > 〈αdimV 〉X|V (7.5)

Let µε : Xε → X be a resolution of the singularities of Tε, (note that µε is
an isomorphism near x since the singularities of Tε are contained in Enn(α))
so that µ∗εTε = θε + [Fε] where θε > −εµ∗εω is smooth and Fε is an effective
R-divisor which does not contain µ−1

ε (x). Choose then δε > 0 small enough
so that

[βε] := [θε + 2εµ∗εω]− δε[Gε],
is a Kähler class onXε, where Gε is the exceptional set of µε. Up to shrinking
δε, we may also assume that

θε + 2εµ∗εω − δεRε > (1− γε)(θε + 2εµ∗εω),

on Xε, where Rε is a suitable smooth representative of [Gε], and γε are
positive numbers which converge to zero as ε→ 0. If we let Eε = Fε + δεGε,
then Eε is an effective R-divisor which does not contain µ−1

ε (x) and we have

[µ∗ε(α+ 2εω)] = [βε] + [Eε].
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Let now Ṽ ε be an irreducible analytic subvariety of Xε which contains
µ−1
ε (x), of dimension k > 0, and such that

ε(βε, µ−1
ε (x)) =

( ∫
Ṽ ε
βkε

multlµ−1
ε (x) Ṽ ε

) 1
k

,

which exists thanks to (1.5), since [βε] is Kähler. Since µ−1
ε (x) is not on

the exceptional set of µε, it follows that Vε := µε(Ṽ ε) is an irreducible
k-dimensional analytic subvariety of X, which passes through x, and with
multlµ−1

ε (x) Ṽ ε = multlx Vε. We have∫
Ṽ ε

βkε > (1− γε)k
∫
Ṽ ε

(θε + 2εµ∗εω)k > (1− γε)k
∫

(Vε)reg

(Tε|(Vε)reg + εω)kac

> (1− γε)k〈αk〉X|Vε
,

using (7.5) for the last inequality, and so( ∫
Ṽ ε
βkε

multlµ−1
ε (x) Ṽ ε

) 1
k

> (1− γε)
(
〈αk〉X|Vε

multlx Vε

) 1
k

> (1− γε) inf
V 3x

(
〈αdimV 〉X|V

multlx V

) 1
dim V

,

and

ε(‖α+ 2εω‖, x) > ε(βε, µ−1
ε (x)) > (1− γε) inf

V 3x

(
〈αdimV 〉X|V

multlx V

) 1
dim V

.

As we let ε→ 0, the LHS converges to ε(‖α‖, x) thanks to Theorem 1.7, and
we are done. �

Lastly, we show that Conjecture 3.1 would also answer a question of
Boucksom. In [2, Section 3.3] he defines the Seshadri constant ε(α, x) for a
pseudoeffective (1, 1) class [α] (not necessarily nef) at a point x 6∈ Enn(α)
as the supremum of all γ > 0 such that for all ε > 0 there exists a current
Tε ∈ [α] with Tε > −εω on X and such that Tε has an isolated singularity at
x with Lelong number ν(Tε, x) > γ. For convenience, let us define ε(α, x) = 0
for all x ∈ Enn(α). Boucksom proves in [2, Theorem 3.3.2] that if x 6∈ Enn(α)
then

ε(α, x) = sup{γ > 0 | E ∩ Enn(µ∗[α]− γ[E]) = ∅},
where µ : X̃ → X is the blowup of x with exceptional divisor E.

Inspired by [35], Boucksom asks in [2, Remark, p. 90] whether for a big
class [α] we have that ε(α, x) = 0 for a generic point x of EnK(α). It is not
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hard to see that this is a consequence of Conjecture 3.1. In fact, we prove
the following stronger result:

Theorem 7.3. — Let [α] be a pseudoeffective class on a compact Kähler
manifold X, and assume Conjecture 3.1. Then for every x ∈ X we have

ε(α, x) = ε(‖α‖, x). (7.6)
In particular, ε(α, x) = 0 for all x ∈ EnK(α).

Proof. — First we claim that if x 6∈ EnK(α) (so [α] is necessarily big)
then we have

ε(‖α‖, x) = sup
{
γ > 0

∣∣∣∣ ∃ T ∈ [α], T > 0, T has an isolated
singularity at x with ν(T, x) > γ

}
. (7.7)

For simplicity denote the RHS of (7.7) by γ(α, x). Since x 6∈ EnK(α), there
is a Kähler current S ∈ [α] which is a smooth Kähler metric near x, and
if we add to S a small multiple of

√
−1∂∂(θ(z) log |z − x|2) (where θ is

a cutoff function in a chart at x) we see that γ(α, x) > 0. Fix now any
0 < γ < γ(α, x), so that there is a current T > 0 in [α] which has an
isolated singularity at x with ν(T, x) > γ. Considering (1 − δ)T + δS for
δ > 0 small, and applying Demailly regularization to this (thus lowering γ
slightly), we may assume without loss of generality that T is a Kähler current
with analytic singularities.

Thus x is isolated in the analytic variety E+(T ) and we may consider
a resolution µ : X̃ → X of the ideal sheaf defining the singularities of T
with the point x removed, so that µ an isomorphism near µ−1(x). We have
that µ∗T = θ + [E], where θ > ηµ∗ω for some η > 0 and θ is smooth
everywhere except at µ−1(x) where it has Lelong number at least γ, and E
is an effective R-divisor. As we have done earlier, let ρ be a smooth form
on X̃ which is cohomologous to a µ-exceptional effective divisor F and such
that ω̂ = µ∗ω − δρ is a Kähler metric on X̂ for some small δ > 0. Then
β = θ − ηδρ > ηω̂ is a Kähler current on X̂ which is smooth away from
µ−1(x) (and with ν(β, µ−1(x)) > γ) and so its cohomology class [β] is Kähler
(since EnK(β) has no isolated points). We thus have µ∗[α] = [β]+ [E+ηδF ],
where the divisor E + ηδF does not contain µ−1(x), and so

ε(‖α‖, x) > ε(β, µ−1(x)) > γ,
and since γ < γ(α, x) is arbitrary, this proves that ε(‖α‖, x) > γ(α, x).

For the reverse inequality, fix 0 < γ < ε(‖α‖, x) and a modification
µ : X̃ → X which is an isomorphism near x and so that µ∗[α] = [β] + [E]
with [β] Kähler and E an effective R-divisor which does not contain µ−1(x),
and with ε(β, µ−1(x)) > γ. Up to lowering γ slightly, there is a Kähler
current T̃ ∈ [β] with an isolated singularity at µ−1(x) with ν(T̃ , µ−1(x)) > γ.
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Then T = µ∗(T̃ + [E]) is a Kähler current in the class [α] with an isolated
singularity at x with ν(T, x) > γ, and so γ(α, x) > γ. Since γ < ε(‖α‖, x) is
arbitrary, this proves that ε(‖α‖, x) 6 γ(α, x).

Now that (7.7) is proved, combining it with the definition of ε(α, x) we
see that

ε(α, x) = lim
ε↓0

γ(α+ εω, x) = lim
ε↓0

ε(‖α+ εω‖, x),

for all x 6∈ Enn(α) = ∪ε>0EnK(α+ εω). Applying Theorem 1.7 we conclude
that (7.6) holds for all x 6∈ Enn(α), and hence for all x (since in the other
case both sides are zero). �

8. Relations with the orthogonality conjecture

The orthogonality conjecture of Boucksom–Demailly–Păun–Peternell [6]
states that if [α] is a pseudoeffective class on a compact Kähler manifold
then

〈αn−1〉 · α = Vol(α), (8.1)
where 〈 · 〉 denotes the moving intersection product [2, 6, 7, 8]. One way to
define it is the following: consider the currents with analytic singularities
Tε ∈ [α] with Tε > −εω given by Lemma 5.1, take µε : Xε → X a resolution
of the singularities of Tε, so that µ∗ε(Tε + εω) = θε + [Eε], and θε > 0 is now
smooth, while Eε is an effective R-divisor. Then for 1 6 p 6 n we define

〈αp〉 = lim
ε→0

[(µε)∗(θpε)] ∈ Hp,p(X,R),

where showing the existence of the limit requires some work [2]. This is well-
defined independent of the choice of the currents Tε, and it is easy to see
that (8.1) is equivalent to

lim
ε→0

∫
Xε

θn−1
ε ∧ [Eε] = 0. (8.2)

This is known when X is projective and [α] = c1(L) by [6, Theorem 4.1] (see
also [8, Corollary 3.6]), if X is projective and [α] is general by [46], and if X
is general and Vol(α) = 0 (i.e. [α] is not big) by [45].

If we write [α] = P +N for the divisorial Zariski decomposition, then we
have P = 〈α〉, and N = limε→0(µε)∗[Eε]. We also have that 〈αk〉 = 〈P k〉 (see
e.g. [7, 8], and compare with Lemma 6.2), and that the mobile intersection
product 〈αk〉 is continuous as [α] varies in the big cone. It is also not hard
to see that (8.1) holds if and only if we have the following two relations

〈αn−1〉 · P = Vol(α), (8.3)
〈αn−1〉 ·N = 0. (8.4)
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Relation (8.4) by itself is in general weaker than (8.1).

The relation with restricted volumes is the following: if D is a prime
divisor and D 6⊂ Enn(α), then we have

〈αn−1〉X|D 6 〈αn−1〉 ·D =
∫
D

〈αn−1〉. (8.5)

Indeed, using the notation from above, we have µ∗εD = Dε + Fε, where Dε

is the proper transform and Fε is a µε-exceptional effective divisor, and so

〈αn−1〉 ·D = lim
ε→0

∫
Xε

θn−1
ε ∧ [µ∗εD] = lim

ε→0

∫
Dε

θn−1
ε + lim

ε→0

∫
Xε

θn−1
ε ∧ [Fε]

> lim
ε→0

∫
Dε

θn−1
ε = 〈αn−1〉X|D,

where the last equality follows from (5.2). Following [8, Lemma 4.10] we have
the following:

Proposition 8.1. — If the orthogonality in (8.4) holds for all big classes
on X, then Conjecture 3.1 holds whenever V is a divisor.

Thanks to the work of Witt-Nyström [46], this immediately implies
Proposition 1.5.

Proof. — Let V be a prime divisor which is one of the irreducible com-
ponents of EnK(α), and is not contained in Enn(α). The goal is to show
that ∫

V

〈αn−1〉 = 0, (8.6)

which thanks to (8.5) implies that 〈αn−1〉X|V = 0 as required. For ε > 0
small enough, [α−εω] is still big and V is one of the irreducible components
of Enn(α− εω), and so if we show that∫

V

〈(α− εω)n−1〉 = 0, (8.7)

then passing to the limit (recall that the mobile product is continuous in
the big cone) we obtain (8.6). Since V is a component of Enn(α− εω), if we
write [α − εω] = Pε + Nε for the divisorial Zariski decomposition, then we
have

[α− εω] > Pε + t[V ],
for some t > 0 (which depends on ε), where the inequality of classes means
that the difference is pseudoeffective. Therefore,∫
X

〈(α− εω)n−1〉 ∧ (α− εω) >
∫
X

〈(α− εω)n−1〉 ∧ Pε + t

∫
V

〈(α− εω)n−1〉,
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but using (8.4) we have that∫
X

〈(α− εω)n−1〉 ∧ (α− εω) =
∫
X

〈(α− εω)n−1〉 ∧ Pε,

and so we conclude that (8.7) holds. �
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